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Abstract:

This paper investigates the seismic vulnerability of existing RC frames exposed to corrosion
and subjected to near-field and far-field ground motions. A threefold approach for corrosion is
adopted to illustrate the probabilistic framework and define time-dependent performance
criteria for an accurate seismic fragility assessment. A bond-slip model is employed to simulate
the fixed-end rotation and column-beam joints behaviour to account for the deficit in the bond
strength of plain rebars. Such a model is calibrated using experimental studies from the
literature and considering the effects of corrosion. An inelastic buckling model of steel bars is
also incorporated in the finite element model through a hysteretic material to investigate its
impact on the deformation capacity of RC members. The effects of near-field and far-field
earthquakes are investigated through incremental dynamic analyses (IDA) and cloud analyses
on a typical four-storey RC frame with plain bars. Results from the fragility analysis indicate
that corrosion has significant effects on the seismic performance of such RC frames over time
and near-field pulse-like motions are more destructive than both near-field no-pulse-like and
far-field earthquakes.

1. Introduction

Nowadays, there is an extensive portfolio of existing reinforced concrete (RC) structures with
plain steel rebars that have been designed according to obsolete low-seismic-oriented technical
codes [e.g., Cardone (2016), De Risi et al. (2017), Di Sarno and Pugliese (2020)]. Such
structures are commonly considered sub-standards due to lack of seismic details in the critical
zones (i.e., beam-columns joints, high stirrups spacing, poor-quality and low-strength concrete,
reduced bond strength) and, therefore, at high risk of either extensive damage or sudden
collapse if subjected to earthquake events [e.g., De Risi et al. (2017), O’Reilly and Sullivan
(2019)]. These latter are yet characterized by several features, e.g., type of fault rupture, source-
to-site path, local soil conditions, which distinguish their potential damage to RC buildings and
may induce catastrophic outcomes [e.g., Fragiadakis et al. (2005)]. Specifically, near-source
earthquakes have commonly short-duration, often pulse-like and high-frequency contents due
to the short distance from the source, compared to far-field earthquakes [e.g., Gorair and Maity
(2019); Bhandari et al. (2019)]. Although, many studies have focussed on estimating the effects
of such near-field and far-field ground motions on various structural systems to provide
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comprehensive design guidelines [e.g., Dadashi'and Nasserasadi. (2015): Mosleh et al. (2016);
Moniri (2017); Li'et al (2018): Nabil t/al (2021)]. the seismic assessment of RC structures

often neglects the time-dependent deterioration of the mechanical properties of constitutive
materials due to corrosion. The last observation, along with the lack of time-dependent
performance demand criteria, may lead to an overestimation of the actual structural
performance.

In addition, on-site surveys of post-earthquake-damaged of such existing structures subjected
to strong earthquake excitations have demonstrated a poor and weak bond between smooth

bars and the surrounding concrete [€igi Fabbrocino et al. (2005): Furtado et al.. (2021) .

Particularly, structural joints under seismic loadings exhibit a highly complex stress state which
induces a progressive bond deterioration [_]. The
latter leads to a relevant slippage that may cause large local and global structural deformability.
Few experimental studies have been conducted to investigate the bond behaviour between
smooth rebars and the concrete, typically with pull-out and beam tests, which have also
provided guidelines on macro-modelling such a complex phenomenon in finite element

applications of RC structures [e.g., Vierderame et all (2009) = PartI; Verderame et al. (2009) =
Part 11 Xing et all (2015): Melo et al: (2015): Cairns (2021)]. However, long-time exposure to

aggressive environments may cause steel bars to rust, increasing their volume and generating
local tensile stresses on surrounding concrete, compromising bond strength properties and
inducing subsequent spalling of concrete cover. Only a few studies exist yet on this subject to
the authors’ knowledge [ ].
The progressive cracking expansion due to the loss of bond at the steel-concrete interface
causes the spalling of concrete cover and leads longitudinal rebars to buckle outwards. The
inelastic buckling of steel reinforcement has relevant effects on the deformation capacity of

RC members as it is characterized by a softening branch in compression after its onset [-
_]; such a threshold depends primarily on the stirrup spacing-to-diameter
ratio (L/d), named slenderness ratio. If the slenderness ratio ranges between 8 and 20, the onset
occurs after the yielding stress, for smaller values otherwise. Although some experimental
campaigns and numerical modelling attempts have been conducted to investigate the inelastic
buckling of plain rebars [e.g., Cosenza and Prota (2006); Prota et al. (2009)], there is no
evidence, to the best of authors’ knowledge, of corrosion effects on this old type of reinforcing
steel.

Another key aspect that emerged from past earthquakes is related to potential shear failures of
low-seismic designed RC columns. Many old RC buildings under earthquake loadings have
exhibited brittle failures due to the shear failure mechanism in RC columns. [_
Parisi' (2010); Ricci'et'al. (2011): 0" Reilly and Sullivan'(2019)]. Therefore, a shear model
capable of capturing either the shear failure or the coupled shear-flexural failure of RC columns
is deemed necessary. Mostly, such models are calibrated and compared over experimental tests

that include pristine RC columns [EigSeztlerand Sezen (2008): Park'et'al. (2012): Colajanni
_] and require an effort to investigate whether or not they are

still suitable when corrosion occurs. Thus, to account for the modelling uncertainties, a
probabilistic approach should be used. In such cases, the response surface methodology [-

] is the best trade-off between the accuracy of a meta-model and the
implementation of several uncertainties.
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To these aims, the present study investigates the seismic response of existing RC structures
with plain rebars exposed to corrosion and subjected to near- and far-field ground motions. A
nonlinear finite element (FE) model of a typical four-storey RC frame is adopted for the
fragility assessment. Non-uniform corrosion is applied externally (one-sided and two-sided
attack) to beams and columns to simulate a realistic scenario, whereas a three-fold probabilistic
approach is used for its initiation, propagation and deterioration. A trilinear bond-slip model is
introduced for the slippage in beam-column and fixed-end joints, calibrated over experimental
tests available in the literature. Such a model is then modified according to the increased
corrosion rate. Moreover, the inelastic buckling of smooth rebars is incorporated into the
refined model of the RC cross-sections through a hysteretic material to account for its effects
on the deformation capacity of RC members. An existing shear model is then combined with
the nonlinear fibre sections, modified to account for corrosion effects, to simulate possible
brittle failure mechanisms.

Finally, the fragility assessment of the testbed frame is conducted through nonlinear
Incremental Dynamic Analysis (IDA) [e.g, Vamvatsikos and Cornell (2002); Vamvatsikos and
Cornell (2004)] and Cloud analysis [g.g., Bazzurro et al. (1998); Cornell et al. (2002); Miano
et al. (2018)] based on a selection of fifty as-recorded ground motions [EEMA P-695 (2009)].
Such natural motions are divided into three sub-categories: (a) far-field (FF), (b) near-field no-
pulse like (NFNP), and (c) near-field pulse-like (NFPL) ground motions. Fragility curves are
built upon intervals of 25 years using time-dependent performance demand criteria defined
herein as maximum inter-storey drift ratios (IDR).

2. Probabilistic non-uniform corrosion

One of the major concerns for engineers is the durability and service-life of aged RC structures
[e.g., Moreno et al. (2018); Qu et al. (2020)]. The effects of corrosion typically reduce
mechanical properties and substantially impact the geometrical properties of constitutive
materials, which may alter the global structural behaviour during earthquake events.

Since corrosion is undoubtedly difficult to predict as it includes several uncertainties, using a
deterministic approach may lead to extreme conservative structural responses that aim not to
impair structural safety but increase restoration costs. Therefore, a three-fold probabilistic
approach is adopted to cope with such uncertainties and adequately evaluate the various
corrosion stages (corrosion initiation, propagation and deterioration).

The most used probabilistic approach for the time to corrosion initiation is the Duracrete model
(2000), which is the one-dimensional solution of Fick’s second law for the chloride diffusion

process.
1

" _y C2 [ 1 (1 Ccrit)]_z 1~a (1)
mit = X\ ek Dote 17T Co

In Eq. (1), X1 represents the parameter to account for the model uncertainty related to the Fick’s
second law, c is the concrete cover, D, is the chloride migration coefficient, t is the reference
time (which is commonly equal to 28 days), C, is the chloride content on the concrete surface,
k. is the environmental coefficient accounting for the temperature, k. is the curing time
coefficient, k, is the correction coefficient for the test method, « is the age factor, erf is the
Gauss error function and C,,;¢ is the critical chloride concentration.
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Duracrete (2000) assumes four categories for chloride-induced corrosion: (a) atmospheric, (b)
splash, (c) tidal and (d) submerged. These latter define the statistical distributions of the model
parameters in Eq. (1). The testbed structure is located close to the Italian coast and exposed to
marine splash; thus, the parameters associated with category (b) are taken to compute the
occurrence time of corrosion initiation. Table 1 illustrates the statistical distributions of each
model parameters in Eq. (1).

Table 1. Statistical distribution of the model parameters in Eq. (1). (keynotes: p and o for the lognormal
distribution are the mean and the standard deviation of the associated normal distribution, w/b — It is assumed 0.5
in this study; Beta (a, b, lw, up) is a beta distribution with a and b shape parameters, and Iw and up lower and

2
upper bounds, respectively; Gamma (y, o) is a gamma distribution with shape parameter a = (E) and scale

0'2
parameter 3 = I)

Parameter Description Distribution Name
u Iy
X Model Uncertainty Lognormal (u, 6) 1 0.05
u o
Dy g)’;}l’zm Diffusion i mal (u, o) 15.8 1072 (m%s) 0.2
u o
ke Environmental Factor Gamma (y, o) 0.265 0.045
u o
kt test method factor Normal (y, 6) 0.832 0.024
a b lw Up
ke Execution Factor Beta (a, b, lw, up) 4.445 2.333 0.400 1.000
to Reference time Deterministic 0.0767 yr
u
Cerit Critical Chloride Content Normal (i, 6) 0.5 0.1
C Surface ' Chloride
Concentration

It is calculated as a function of the water-to-binder ratio (w/b=0.5): Co = Ao (w/b) + &o.

n (¢}
Chlorid, tent 7
s oride content regression Normal (u, o) 7758 1.360
parameter
0 (e}
E t the chlorid
o rror erm- for the chloride Normal (u, o) 0 1.105
concentration
a b Iw up
o Age Factor Beta (a, b, 1w, up) 4.075 9.508 0.000 1.000

Monte Carlo simulations are performed across 50,000 samples to solve Eq. (1). The results of
the probability density functions (PDF) in Figure 1, both for transverse and longitudinal rebars,
show that corrosion initiates earlier on the transverse (9 years) than longitudinal steel bars (14
years).
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0.15 0.15
= LN(ULog = 2.2, 0105 = 0.9) = LN(Uiog = 2.6, 010 = 0.8)
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Figure 1. Corrosion Initiation time: (a) transverse and (b) longitudinal rebars. (keynote: u, o4 and op,g4are the

mean and standard deviation of logarithmic values, respectively).

Once the values of the corrosion initiation are obtained, the corrosion rate becomes the key
factor in the corrosion propagation and deterioration.

tprop(t_tinit) (2)

p(t) = R(t) ri(t)dt

tinit
In Eq. (2), p(?) is the pit depth with time, R(?) is the pitting factor defined as the ratio between
the maximum pit depth and the mean pit depth, ri?) (= 0.0116i.0y(t), icorr(t) =
0.85 icorro(t = 0)tprop *2%, Where icory(t) and igoryo(t = 0) are the impressed currents at
a general time t and at time t equal to zero) is the corrosion rate and t,., is the time for
corrosion to propagate (tprop)-
Corrosion propagation coincides with the cracking initiation that occurs when the localized
tensile stresses, produced by the corrosion products filling the pores in the surrounding
concrete, reach the critical tensile strength of the concrete. Then, Eq. (2) can be solved by
imposing t = t,, (t., is the time to cracking initiation) and p(t) = P.rit (Periz 1S the pit depth
for cracking initiation) [Cui et al. (2014)].

ter = tinie + < Poriz(XoR) )Ml ®
0.0139 i,p-(t =0) R

Alonso et al. (1998) conducted an experimental campaign to investigate the corrosion attack
penetration (x,), which produced the first visible crack (crack width (w) equal to 0.05 mm),
with various cover-to-steel diameter (c/d) ratios, assuming yet uniform corrosion. They also
proposed a deterministic relationship between the attack penetration and cover-to-dimeter
ratio. This study introduces a lognormal distribution to simulate the attack penetration to induce
the cracking initiation, which is based on a homoscedastic model with a variable mean and a
constant standard deviation. The results of such statistical distribution are shown in Figure 2a.
Similarly, many experimental studies [e.g., Rodriguez et al., 1997; Torres-Acosta et al., 2003;
Yu et al., 2015) have been carried out to evaluate the pitting factor and a few focussed on its
numerical-related uncertainties [Stewart and Al-Harthy (2008); Kashani et al. (2013); Zhao et
al. (2018)] and FE numerical implementations [g.g., El Alami et al. (2021)]. Therefore, only
the diameters of interest complying with typical steel diameters adopted in existing RC
structures, are collected in this study from the comprehensive experimental campaigns. The
Akaike Information Criterion (AIC, Akaike (1998)) was used as a selection method to

5
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distinguish the best suitable probabilistic distribution for the pitting factor, among the set of
chosen distribution models (i.e., Normal, Lognormal, Generalised Extreme Values and Weibull
distributions). The outcomes of such a statistic analysis are shown in Table 2, while Figure 2b
illustrates graphically the cumulative density function (CDF) of the best-fitting model
(Generalised extreme value distribution, GEV). For further details on the AIC method, the
authors remind to the original work published by Akaike (1998).

Table 2. Best-fitting model analysis for pitting factor

Statistical Distribution Log (Likelihood) AIC
Normal -143.29 292.58
Lognormal -134.49 272.98
Generalised Extreme Value -132.91 271.83
Weibull -143.16 290.33
(a) (b)
10° 3 1.0
1log(c/d) = log(a) + b log(xo) 0.8 -
{12a=100.93, b=1.06 = ’
c 10=0.18 = 0.6 1 — ECDF
£ 1071 4 b
= ] T —— GEV(ug, 06, k)
x - S (3.82,1.28,0.01)
— Fitting
0.2 A
B Exp.
10-2 A ———rr ———rrr 0.0 - f T T T T
107t 10° 10! 107 0 2 4 6 8 10 12
c/d pitting Factor, R

Figure 2. (a) Pitting critical depth and (b) pitting factor statistical distributions

Based on the results of the AIC method, the pitting factor can be adequately defined by a
generalised extreme value distribution (GEV) with its three parameters as it gives the desired
lowest AIC value (location parameter L, scale parameter o;, and shape parameter k).

The imminent progress of corrosion induces the continuous degradation of steel rebars;
specifically, the growth of the crack width (w) corresponds to two specific deterioration
aspects: (a) severe cracking (sc) and, (b) delamination and spalling of the concrete cover (sp).
Technical standards [e.g., CEB (1993); ACI (2001); EN (2004),] have provided values for the
severe cracking width (ws) between 0.15mm and 0.3mm. In evaluating the seismic
performance of RC structures, researchers mostly referred to those values using a deterministic
approach and possibly in a conservative manner (setting the several cracking at 0.15-0.20 mm).
Although such an approach may seem adequate to benefit safety, it could be excessively
conservative for moderate decision-making risk-based solutions. Thus, in the context of the
probabilistic framework, uniform distribution with lower and upper bounds equal to 0.15mm
and 0.30mm, respectively, could be a reasonable solution to fairly account for uncertainties.
Conversely, the cracking width associated with spalling of the concrete cover (ws) 1s not
included in technical standards and is often neglected in the deterioration stage of corrosion.
However, the latter is necessary when evaluating the performance of local and global structural
systems, although it involves many uncertainties such as longitudinal and transverse steel bar
diameters, clear cover depth and concrete tensile strength, among the others. Rodriguez et al.

6
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(1996) carried out an experimental campaign to evaluate the residual capacity of corroded RC
columns. Such experimental tests also provided the attack penetration (in mm) corresponding
to the delamination and spalling of the concrete cover. Such values are herein collected and the
empirical CDF computed. Then, the above-mentioned AIC method is applied to find the
plausible probabilistic distribution for the crack width inducing spalling of the concrete cover.

Table 3. Best-fitting model analysis for the cracking width inducing spalling of the concrete cover

Statistical Distribution Log(Likelihood) AIC
Normal -18.81 41.62
Lognormal -15.51 35.02
Generalised Extreme Value -15.19 36.38
Weibull -17.96 39.92

The statistical analysis in Table 3 shows that the lognormal distribution is the best model
estimate for the empirical results. Both the uniform distribution for severe cracking width and
the lognormal distribution for the cracking width leading to spalling of the concrete cover are
shown in Figures 3a and 3b. Such cracking width distributions need evidently the associated
occurrence time to fully define the threefold corrosion probabilistic approach.

(a) (b)
15 1.0
— UN(a,b)=(0.15,0.30)
— ~ 0.8 -
8 &
2 10 s
éu — 0.6 4
B =
Yy— [V
w 5_ ™ 04‘
& S 0,4 —— ECDF
' = LN(UL0og:OLog)=(0.43,0.39)
O T T T T O-O T T T T T T T
0.15 0.20 0.25 0.30 0 1 2 3 4 5 6 7 8
Wsc [mm] Wsp [mm]

Figure 3. (a) Severe crack width and (b) Cover spalling lognormal statistical distribution

In this respect, Vidal et al. (2004) carried out an experimental campaign to investigate the
distribution of corrosion on steel reinforcement and the crack width induced in the concrete,
thus, providing a linear relationship, as follows:

w(t) = 0.0575[AA; 1 (t) — AAcg] 4)
where AA; 1 = As — Acorr (A and Ay, area of sound and corroded steel, respectively) is
the steel area loss at the time t, AA.p is the steel area loss at the cracking initiation and w is the
crack width. Val and Melchers® model (1997) (Figure 4) is adopted to compute the area loss
due to the pitting corrosion:

1T—dz—(A +A t <i
4 1 2) p()_\/i
Acorr = d 5
O=1 A +a, S<pm=d ©)
0 p(t) =>d
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Figure 4. (a) Uniform corrosion, (b) pitting corrosion and (c) _ (keynote: Pmean -

average pit depth, pma. — max pit depth, Dy — diameter of the sound steel)

3. Deterioration numerical modelling procedure

The details of the numerical procedure to simulate the pitting corrosion in the RC cross-sections
are hereby presented. Such a numerical procedure is similar to the approach adopted by
Pugliese et al. (2021).

First of all, the mechanical and the geometrical properties are simulated to generate the model
in Opensees [_]. The time to corrosion initiation is calculated using Eq. (1)
according to the parameters provided in Table 1. Such values are assumed to be the same both
for beams and columns. Once the cover and the diameter of the steel bars of each RC cross-
section have been defined, the pitting factor and the attack penetration depth are sampled from
the GEV and the lognormal distributions provided in Figures 2b and 2a, respectively. These
latter are adopted to simulate the time to cracking initiation through a lognormal distribution
with a mean (1) computed with Eq. (3) and a standard deviation (5) equal to 0.53y [Thoft=
Christensen (2000)].

It is worthy of note that the value of R is assumed as being a statistical independent
homogenous random field; that is, there is zero correlation between RC cross-sections, thus
implying a different pitting factor for all RC components.

Hence, the values of severe cracking width and cracking width to spalling of the concrete cover
are generated from the distributions graphically depicted in Figures 3a and 3b. Such values are
employed in Eq. (4) to compute the area loss of the steel reinforcement and Eq. (5)-to-(7) for

the pitting depth p(t). This latter is used in Eq. (2) to compute the occurrence time to severe
cracking (t,.) and spalling of the concrete cover (tg,) through a lognormal distribution with a
mean calculated from Eq. (3) and a standard deviation of 0.53 .

As the response of the testbed building refers to 0, 25 and 50 years, the pitting depth and the
time occurrence of the various corrosion phases are linearly interpolated to obtain the
corresponding parameters.
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3.1 Effects of corrosion on the mechanical properties of steel reinforcement bars
The percentage of the area loss (Corrosion area loss Rate, CR) by the steel reinforcement is
namely calculated as the relative difference between the sound and the corroded steel bar
following this equation:
Ag— A t 8
CR(t)[%]= S Acorr()xloo ( )
S

Such a formulation is then adopted to evaluate the reduction in the strength, through the
yielding (fsy) and the ultimate stresses (fs, ), and the ductility, through the ultimate strain (&gy,).
In this study, the reduction of the yielding and the ultimate stresses is assumed to follow the

linear relationship:

fs(&) = £s(1 — @,sCR[%]) ©)
while the ultimate strain is computed through the exponential relationship:
Esu(t) = gsue_auSCR[%] (10)

In Eq. (9) and Eq. (10), ays and a, are the reduction coefficient equal to 0.01 and 0.055,
respectively, according to Di Sarno and Pugliese (2020).

3.2 Effects of corrosion on the mechanical properties of the concrete
Concrete is indirectly exposed to the effects of corrosion over time, which jeopardise its tensile
strength inducing cracking and reducing its compressive strength and ductility.
To compute the reduction of the compressive strength (5.,,.) Coronelli and Gambarova (2004)
proposed a formulation based on modified compressive field theory by Vecchio and Collins
(1986). Such a reduction has then been modified by Di Sarno and Pugliese (2020) to account
for the effects of corrosion on the un-effective concrete core and the various exposure that the
concrete can be subjected to. The following formulation is adopted in this study:

Bcone = ! (1

fe(®) = Beone fc B 1401 W(O)Npars
Bx,ygco

In Eq. (11), f. is the compressive strength of the concrete, nsas is the number of the rebars on

side of exposure, By, is the cross-section dimension on the side of exposure, and & is the
strain at the peak of the compressive strength. Further details on the effects of corrosion on the
mechanical properties of the concrete can be found in Di Sarno and Pugliese (2020).

4. Case Study RC frame

A two-dimensional four-storey external RC frame is adopted as a testbed for the fragility
assessment (Figure 5). Such an external frame represents a typical structural configuration
designed between the 1960s and 1970 in Italy, and it is generally the most exposed to chloride-
induced corrosion compared to internal frames, which are namely protected by infills.

The RC frame has a total height of 12.2m with an inter-storey between 2.9m on the ground
floor and 3.1m for the remaining floors. Such an RC frame is composed of squared cross-
section columns with geometrical dimensions 350x350mm on the ground floor and 300x300
mm for the rest of the building. Both are reinforced with 3+3®16 longitudinal rebars and ®6
transversal rebars with a 150mm stirrup spacing. Instead, rectangular cross-sections are used
for beams with geometrical dimensions equal to 300x500mm and 800x200mm, respectively;

9



297  the 300x500mm beams are symmetrically reinforced with 4+4®14, while the 800x200mm
298  beams with 6+6®14 (Figure 5). Both have @6 transverse rebars with a 200 mm stirrup spacing.
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4+4014 = D6/200mm |
®6/200mm
300 "
301 Y
302 Figure 5. Testbed RC frame (units: mm)

303

304  The concrete class is simulated through a lognormal distribution with a mean resistance of 20
305 MPa and a coefficient of variation (COV) equal to 0.15 [_]. The class of
306  steel corresponds to a lognormal distribution with a mean yielding strength of 330 MPa and a
307 COV equal to 0.08, according to past studies available in the literature [e.g., _
308 -)]. Table 4 shows the random parameters of the mechanical and geometrical properties
309  of the RC building. It is worth noticing that there is zero correlation between the mechanical
310  and geometrical random variables, and zero correlation among the mechanical properties of
311  steel reinforcing bars. All parameters in Table 4 are considered independent random variables
312 (e.g., fyis not correlated to Es).
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Table 4. Statistical mechanical and geometrical properties of RC components (Keys: LN — lognormal distribution,
p and COV for the lognormal distribution are the mean and the coefficient of variation of the associated normal
distribution)

Parameter | Description Distribution name | Units | Source

(1, COV)
fe Concrete Compressive strength | LN (20, 0.15) MPa | Jalayer et al. (2015)
fy Yielding stress of steel bars LN (330, 0.08) MPa | Verderame et al. (2001)
Es Elastic modulus of steel bars LN (200000, 0.05) MPa | Pugliese et al. (2022)
c Cover LN (40, 0.20) mm Ni Choine et al. (2016)
Do Diameter of sound steel bars LN (variable, 0.035) | mm Pugliese et al. (2022)

4.1 Finite element model

The non-linearity of columns and beams is modelled using a displacement-based element
(DBE) with five Gauss-Lobatto integration points at the end of each RC member. The length
of such a DBE is calibrated using experimental tests of RC columns subjected to cycling
loadings (section 4.5), while the remaining part of the element is modelled through an elastic
beam-column element. The computational advantage of adopting such structural configuration
stands in solving quickly the non-linear dynamic equations. DBEs include non-linear fibres for
steel and concrete to define RC cross-sections and capture their flexural behaviour. A zero-
length spring is added to the element to account for shear failures; the envelope model of Setzler
and Sezen (2008) is utilised to define the hysteretic material characteristics (named Hysteretic)
available in Opensees [MecKenna (2000)]. Finally, a tri-linear constitutive material through a
zero-length section is introduced and implemented in the FE model to simulate the strain
penetration in the structural foundation and the bond-slip in beam-column joints. Details of the
FE model are shown in Figure 6.

Structural node

B U D A 1 Rigid Link
Model Details #2 /\ | Model Details #1
|
| |
A~ ® @ - | L1 — Elastic
: I | Element
Zerf) Length R(;tatlonal | Zero-Length |
Spring Bond Slip T Rotational |
Zero-Length Shear Spring Straln .
Spring Penetration Displacement-based
Element

22244 2z

Figure 6. FEM details
4.2 Constitutive Materials
4.2.1 Concrete Model
Popovics® model (1973), named Concrete04 in Opensees [McKenna (2000)], is used in this
study to simulate the stress-strain relationship of the concrete. Such a model is purposely
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chosen as it includes the tensile response of the concrete; otherwise, the model could lead to
convergence issues if the corrosion propagation causes the complete loss of steel reinforcement
area. Concrete04 adopts Karsan-Jirsa (1969) model to account for stiffness degradation during
the loading-unloading in compression, and the secant stiffness in tension; this constitutive
material is implemented in the FE model both in the concrete cover and the confined concrete
core. The confinement parameters for the concrete core are defined with the model developed
by Razvi and Saatcioglu (1999). Using the relationships illustrated in Section 3.2, Figures 7a
and 7b show the stress-stress relationship of the un-corroded/corroded cover and core concrete.

(a) (b)
10 10
0 0
© ©
[a N o
S —10 A = —10 A
2 2
—20 4 — pristine —20 4 — pristine
— corroded — corroded
_30 T T T T _30 T T T T
-8 -6 -4 -2 0 2 -8 -6 -4 -2 0 2
&l€co E/€co

Figure 7. Cyclic response of the concrete: (a) concrete cover and (b) concrete core

The results in Figures 7a and 7b illustrate how the effects of corrosion are more significant on
the concrete cover than the concrete core, both in terms of strength and ductility.

4.2.2 Steel Reinforcement Model

In this study, a hysteretic material is adopted to simulate the effects of the inelastic buckling
on the stress-strain behaviour of steel reinforcement bars. The model parameters of such
constitutive material are computed using the formulations given in Di Sarno et al. (2021). They
used a genetic algorithm and Bayesian updating to optimise the model parameters for three of
the most adopted constitutive materials for steel bars. Once the parameters were defined, a
comprehensive parametric study was conducted and formulations provided as a function of the
slenderness ratio (L/d). The effects of the inelastic buckling on the hardening strain are

calculated as follows:
€ € Ly ~>6? 12
ﬂ=1+l<—"—1>(0.125—> l (12)
&y &y d

In Eq. (12), €5, indicates the onset of buckling, €, the hardening strain from the tensile response
and ¢, the yielding strain. Since the investigation of the post-buckling compressive response
of smooth bars from the parametric study indicated that all curves tend to a horizontal
asymptote (f,) for infinite values of strains, the following formulation can be used:
L -1.53 (1 3)
fas = 11.88f, (5)

Figures 8a and 8b show the results of the steel bar constitutive model for columns and beams.
The effects of corrosion are included using the approach described in Section 3. The onset of
buckling is reached on beams earlier than columns because of the higher slenderness ratio. The
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advantages of using such a hysteretic model stand in: (a) a straightforward implementation in
a FE model, (b) capacity of predicting the pinching due to open/closure of cracking during
cyclic loadings and (c) accurately capturing the post-elastic effects of steel reinforcement on
the global behaviour of RC members under seismic loadings.

(a) (b)
600 600
400 - — 400 - —
— 200 A — 200 A
& ‘ &
= 0 1 s 0
< 200 = o 200 o
—— pristine —— pristine
—400 1 —— corroded —400 1 —— corroded
_600 T T T T T _600 T T T T T
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
ley ley

Figure 8. Hysteretic material: (a) columns with L/d = 9.4 and (b) beams with L/d = 14.3

4.3 Bond-Slip Model

Based on the experimental results of _, a multilinear model approach
for the bond-slip is herein adopted. Such an approach is modified according to the formulations

given in Eq. (8), (9) and (10) to account for corrosion.

The envelope of the trilinear model, herein implemented through a hysteretic material, consists
of (a) an initial branch where there is no stiffness loss and almost zero-slippage with a stress
value equal to one-third the yielding stress of steel reinforcement, (b) yielding of steel rebars
with an average slip taken from experimental tests and (c) complete loss of bond.

According to Berry and Eberhard (2008), bond-slip can be modelled with a zero-length section

element; such a rotational spring includes the trilinear model (Figure 9a) introduced above for
steel reinforcement and _ model (Concrete01 in Opensees [_])
for concrete. Unlike common stress-strain concrete constitutive models implemented for RC
sections, the rotational spring includes a stress-slip relationship; specifically, concrete slip is
computed multiplying the strain for an assumed depth over which the compressive strains act
(Figure 9b).

(a) (b)
600 0 - —
— pristine /
- corroded -5 -
g
‘ :_.._...... ez f =
‘ —15 A1 — pristine
—— corroded
o L] L] L] L] _20 L L] L] L] L] L]
0 2 4 6 8 10 -100 -50 0 50 100
Slip, s[mm] Slip, scfmm]

Figure 9. Bond Slip Models: (a) Steel bars and (c) Concrete
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4.4 Shear model for RC columns

There are primarily two different ways to model the shear failure that can be coupled to the
flexural response of RC cross-sections: (a) a section aggregator with a force-displacement
constitutive model and (b) an additional spring working in the perpendicular direction to the
element axis. Both lead to the same result and are based on the force-displacement model of
Setzler and Sezen (2008). In this study, the section aggregator has been used as it has the
specific advantage of reducing the number of nodes in the FE model.

The shear model of Setzler and Sezen (2008) consists of (a) maximum shear and corresponding
displacement, (b) onset of shear degradation and corresponding displacement and (c) shear at
the axial loading failure.

However, evaluating the shear response of uncorroded and corroded RC sections is highly
complex; in fact, there are many formulations for the shear strength of RC cross-sections in the
literature, but they mainly refer to pristine sections. Thus, using the same formulation for
corroded sections could lead to inaccurate results as they were built upon comprehensive
experimental campaigns of RC sections with un-corroded steel rebars.

Hence, the response surface of the modelling uncertainties is adopted as a surrogate model.
Such a surrogate model can combine adequately and reliably the soundness of a numerical
approach and the effectiveness of an analytical method. Particularly, the numerical approach is
built upon the modified compression field theory introduced by Vecchio and Collins (1986)
and uses the software Response 2000 (Bentz, 2000).

The shear strength depends primarily on three different contributions: (a) concrete, (b)
transverse rebars and (c) size aggregate. Yet, the size aggregate has a small influence on the
total shear, thus, only the categories (a) and (b) are considered in this study.

V= £(fe fy A) (14)

In Eq. (14) A, is the steel area of transversal bars.

Using the probabilistic approach described in Section 3 and the random variables in Table 4,
Monte Carlo simulations are performed to apply the pitting corrosion on RC column cross-
sections. First of all, the random variables in Table 4 and Eq. (1) are used to generate the
mechanical and geometrical properties and, the time to corrosion initiation for the examined
RC section. Then, the values of x, and R are sampled from the lognormal and generalised
extreme value distributions depicted in Figures 2a and 2b, and employed in Eq. (3) for the time
to cracking initiation. The uniform and the lognormal distributions compute the severe cracking
and the cracking for the concrete spalling. Thus, both values are inserted into Eq. (2) for the
corresponding times.

The cracking widths and the corresponding times are therefore interpolated at 0, 25 and 50
years, respectively. At each time step (e.g., 0, 25 and 50 years), Eq. (4)-to-(7) calculate the
reduction of the area for steel reinforcing transverse and longitudinal bars, and Eq. (8)-to-(10)
define the reduction of the tensile stresses and the ultimate strain to characterise the constitutive
relationship of the steel bars. Eq. (11) describes, instead, the decrease in the compressive
strength of the concrete at each time interval. Gravity analyses (via Monte Carlo simulations)
are also performed to calculate the median values of the axial loadings (N) acting on the
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437  examined pristione RC columns, which are assumed to be constant for the corroded RC frame.
438  Once all parameters are defined, they can be employed in the software Response 2000
439 (f¢, fy Ay) to calculate the corresponding shear and displacement of the examined RC cross-
440  sections. Table 5 shows an example of a simulation for the 300x300mm and 350x350mm RC
441  column cross-sections.

442
443 Table 5. Numerical values for the shear capacity and corresponding displacement of RC columns
300x300mm RC Column
Time[years] f.[MPa] fy[MPa] Av[mm?2] NIkN] VIkN] A/L[%]
0 24.32 238.97 28.27 161 38.10 0.65
25 22.74 234.57 24.53 161 36.90 0.57
50 14.95 172.85 0.00 161 24.90 0.19
350x350mm RC Column
Time[years] f.[MPa] fy[MPa] Av[mm?2] N[KkN] VIkN] A/L[%]
0 23.07 301.74 28.27 286 59.46 0.72
25 21.83 297.67 25.94 286 58.20 0.70
50 18.73 273.34 14.03 286 49.20 0.66
444
445  The numerical values are then replaced by an analytical first-order polynomial formulation:
V= ay+afc+ ayf,A, (15)

446  The results of the response surface for the RC columns with squared section 350x350 mm and
447  300x300 mm are shown in Figure 10.
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450 Figure 10. Response Surface for Shear strength and Drift ratio of RC columns: (a-b) 350x350 mm and (c-d)
451 300x300 mm
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The  response  surface, through the  function  [regress® in MATLAB
(“https://it. mathworks.com/help/stats/regress.html"), can analytically reproduce with good
accuracy the maximum shear and its corresponding drift ratio. The analytical formulation can
be implemented in the model and, shear strength and corresponding drift are calculated at each
step of the Monte Carlo simulation.

4.5 Response validation of RC columns under cycling loadings

Since numerical methods include many uncertainties, they need to be validated and calibrated
against experimental results to reproduce accurate and reliable numerical outcomes [g.g.,
Castaldo et al. (2020)]

Experimental test results of RC columns under cycling loading are herein collected from [Di
Ludovico et al. (2013)] as a reference to validate the FE model illustrated above. They used
eight full-scale concrete columns (square and rectangular) reinforced with plain and deformed
rebars, and designed according to provisions and construction materials enforced for the time
span 1940-1970. The mean cylindrical compressive strength of the concrete was equal to
18.85MPa, and the yield and ultimate tensile strength of steel rebars were 330MPa and
445MPa, respectively. The slenderness ratio (L/d) for the inelastic buckling model was 12.5.
In this study, columns with plain rebars and two different geometrical configurations are
investigated: (a) rectangle column (300x500mm) with the strong axis perpendicular to the
cyclic loading and (c) rectangle column (500x300mm) with the strong axis parallel to the cyclic
loading.

The numerical validation is based on different FE model configurations: (a) one force-based
element over the whole height of the columns (FB), (b) one displacement-based element over
the whole height of the columns (DB1), (c) four displacement-based elements over the whole
height of the columns(DB4), (d) one displacement-based element with a length equal to the
width of the column cross-section plus an elastic element for the remaining part of the column
(DBDb) and (e) one displacement-based element with a length equal to the height of the column
cross-section plus an elastic element for the remaining part of the column (DBh). All the FE
configurations include a zero-length section for the strain penetration and the section
aggregator accounting for potential shear failures.
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483 Figure 11. RC columns under cycling loading: (a)-(c)-(e)-(g)-(i) 300x500 and (b)-(d)-(f)-(h)-(1) 500x300 RC
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The results of the numerical methods in Figures 11 show that the FE model with one
displacement-based element plus the elastic element can capture better the cyclic behaviour of
RC columns with plain rebars with good accuracy, in terms of strength, ductility and energy
dissipation. Table 6 and Table 7 summarises the comparisons between the experimental and
numerical results.

Table 6. Finite Element model vs experimental result comparisons (RC columns with cross-section 300x500mm)

Model Peak (Positive) (kN) Peak (Negative) (kN) Error (%)
Experimental 67.7 -66.7 -

FB 58.8 -58.8 20.8
DBI1 98.2 -98.2 51.2
DB4 66.8 -66.8 18.8
DBb 65.1 -64.9 22.7
DBh 67.4 -64.4 19.0

Table 7. Finite Element model vs experimental result comparisons (RC columns with cross-section 500x300mm)

Model Peak (Positive) (kN) Peak (Negative) (kN) Error (%)
Experimental 119.5 -117.7 -
FB 95.7 -94.3 25.0
DB1 139.8 -139.8 49.3
DB4 108.9 -106.3 19.7
DBb 107.1 -104.4 21.5
DBh 118.31 -116.7 14.8

The error is computed as follows:

Zi(Vexp - Vnum)2 (16)

%) =
Error(%) J 5 Vexpz

In Eq. (16) Vey, and Vo, are the shear from the experimental and numerical results,

respectively.

5. Fragility Analysis

In this section, the fragility assessment of the testbed RC frame is conducted. Fragility curves
are built upon nonlinear time history analyses using the Cloud Analysis and the Incremental
Dynamic Analysis (IDA), and relate the vulnerability of a structure with the probability of
exceeding a specified limit state [€.g., Kwon and Elnashai (2006)].

5.1 Ground Motion Selection

The Cloud analysis depends on nonlinear time history analyses of un-scaled records. To be
consistent with the engineering demand parameter (EDP) chosen for the fragility assessment,
the un-scaled records should cover a wide range of seismic intensity measures (IM). This
observation is necessary to reduce the uncertainty in evaluating the logarithmic regression
slope. To this end, at least 30-to-40% of un-scaled records should exceed the probability of the
specified limit state. Conversely, the IDA involves nonlinear time histories analyses of scaled
ground motions. Specifically, a ground motion record is applied to the structure and scaled up
and down until reaching the imminent collapse; this latter coincides with the inter-storey drift
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ratio reaching the onset of a specific limit state. Usually, 8-to-12 scaling points should be
enough to reach the desired performance and prevent excessive scaling which could affect
ground motion features. The sets of ground motions presented in EEMA P695 (2009) are
herein used for the fragility assessment of the sample RC frame. Such a set of records include
fifty ground motions, which can be grouped as (a) twenty-five far-field (FF) motions, (b)
fifteen near-field no-pulse motions (NFNP) and (c) thirteen near-field pulse-like (NFPL)
motions. Table 8 shows some details of the earthquake name, the station where it was recorded
and the type of ground motions. Since this study deals with a two-dimensional FE model, only
one horizontal as-recorded signal is collected from the PEER-Database corresponding to the
maximum peak ground acceleration between the two horizontal components.

Figure 12 illustrates the elastic response spectra (ERS) with damping equal to 5% of all un-
scaled ground motions, along with the percentile 16™,50™ and 84™.

(a) (b) (c)
4 4 4
—— Maedian —— Median —— Median

3 ---- Perc. 16 & 84 3 ---- Perc. 16 & 84 3 ---- Perc. 16 & 84
—_ ® 5,(T1)[g]=0.62 — Sa(T1)[g]1=0.97 — ® S,(T1)[gl=0.74
[@)] (@)] [@)]
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Figure 12. ERS: (a) Far-Field,(b) Near-Field and (c) Pulse-Like (Keynotes: Percentile — Perc.)
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Table 8. Sets of Ground Motions (FEMA P695)

Record  Earthquake Station Type | Record Earthquake Station Type
Number Number

1 San Fernando LA-Hollywood Stor FF FF 26 Nahanni, Canada Site 1 NFNP
2 Friuli Tolmezzo FF 27 Nahanni, Canada Site 2 NFNP
3 Imperial Valley-06 Delta FF 28 Loma Prieta BRAN NFNP
4 Imperial Valley-06 ElCentro Array #11 FF 29 Loma Prieta Corralitos NFNP
5 Superstition Hills-02  El Centro Imp. Co. Cent FF 30 Erzican, Turkey Erzican NFNP
6 Superstition Hills-02 ~ Poe Road FF 31 Cape Mendocino Cape Mendocino NENP
7 Loma Pieta Capitola FF 32 Northridge-01 LA-Sepulveda VA Hospital NFNP
8 Loma Pieta Gilroy Array #3 FF 33 Northridge-01 Northridge-17645 Saticoy St NFNP
9 Cape Mendocino Fortuna Blvd FF 34 Kocaeli, Turkey Yarimca NFNP
10 Landers Coolwater FF 35 Chi-Chi, Taiwan TCU067 NFNP
11 Landers Yermo Fire Station FF 36 Chi-Chi, Taiwan TCU084 NENP
12 Northridge-01 Beverly Hills-Mulhol FF 37 Denali, Alaska TAPS Pump Station #10 NFNP
13 Northridge-01 C. Country-W Lost Cany FF 38 Imperial Valley-06 El Centro Array #6 NFPL
14 Kobe, Japan Nishi-Akashi FF 39 Imperial Valley-06 El Centro Array #7 NFPL
15 Kobe, Japan Shin-Osaka FF 40 Irpinia, Italy Sturno (STN) NFPL
16 Kocaeli, Turkey Arcelik FF 41 Superstition Hills-02  Parachute Test Site NFPL
17 Kocaeli, Turkey Duzce FF 42 Loma Prieta Saratoga - Aloha Ave NFPL
18 Chi-Chi, Taiwan CHY101 FF 43 Cape Mendocino Petrolia NFPL
19 Chi-Chi, Taiwan TCU045 FF 44 Landers Lucerne NFPL
20 Duzce, Turkey Bolu FF 45 Northridge-01 Rinaldi Receiving Sta NFPL
21 Manyjil, Iran Abbar FF 46 Northridge-01 Sylmar-Olive View Med FF NFPL
22 Hector Mine Hector FF 47 Kocaeli, Turkey Izmit NFPL
23 Gazli, USSR Karakyr NFNP | 48 Chi-Chi, Taiwan TCUO065 NFPL
24 Imperial Valley-06 Bonds Corner NFNP | 49 Chi-Chi, Taiwan TCU102 NFPL
25 Imperial Valley-06 Chihuahua NFNP | 50 Duzce, Turkey Duzce NFPL
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The first natural period of the RC sample building (0.72sec) falls to the right of spectral
acceleration peaks for far-fields, while close to the peaks for near-field and pulse-like motions.
It can be noted that the median values for near-field and pulse-like motions produce greater
acceleration responses than far-fields.

5.2 Limit states

Due to the lack of time-dependent performance demand parameters in technical standards, the
limit states (LS) are herein calculated by running nonlinear static analyses with different lateral
loading configurations [EN8 = Part 3 (2005)] and various corrosion conditions. Performance
points are defined according to Di Sarno and Pugliese (2020) for each LS (limited Damage —
DL, Severe Damage — DS, Near-Collapse — NC); such values determine a set of points on the
capacity curve, from which the ones that produce the smallest are collected. The LSs are the
structural capacity that refers herein as maximum inter-story drift ratios (IDR).

The median values across one-thousand Monte Carlo simulations for all LSs and for each time
step (0,25 and 50 years) are illustrated in Table 9.

Table 9. Limit states over time.

Time [yeas] DL [%] DS [%] NC [%]
0 0.80 1.62 2.75
25 0.72 1.31 2.53
50 0.57 1.10 1.89

The decrease of the LSs in Table 9 agrees with the occurrence time of each corrosion phase.
The last observation can be found running the deterioration modelling described in Section 3
across 50,000 Monte Carlo simulations and computing the median values for crack width (w)
and pitting depth (p) (Figures 13a and 13b).
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Figure 13. (a) cracking width and (b) pitting depth over time

The crack width and pitting depth values are rather small at 25 years; conversely, the building
appears to be suffering significant and very high damage at 50 years.

5.3 Fragility curves based on Cloud and IDA

The maximum inter-story drift ratio (IDR) from each nonlinear dynamic analysis is divided by
a specified limit state LS in Table 9 to determine the demand-to-capacity ratios (DCyg; =
IDR;/LS;). DC,s is used as the structural performance variable herein. It has been shown that
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its use facilitates the determination of the onset of a specified limit state ( when DC; s = 1, the
onset of the LS is reached, Jalayer et al. (2007)).

For the Cloud-based fragility, the pairs of the spectral acceleration at the first natural period of
the RC structure S, (T ); and DC; s ; for each ground motion are interpolated using a power-law
relationship that becomes a linear regression in light of a logarithmic homoscedastic model
(constant variance). Such a linear regression (in log scale) determines the conditional median
(Mpcygis,ry)) Of DCps for a given level of the S, (Ty).

InNpegisury = Mag +ay InS,(Ty) (17)
where a,; and a, are the regression parameters. The conditional logarithmic standard deviation
Boc,gis,cry) given Sq(Ty) can be calculated as:

2 (18)
) (ln DCps; —In nDCL5|Sa(T1)l-)
BDCLS|5a(Tl) = N —2
The structural fragility is then evaluated assuming a lognormal distribution as follows:
In 19
P(DCys > 11S4(T) = (M) o
Ppcisisa(my)

where @ is the normal standard distribution.
As for IDA, the fragility curves can be defined as the cumulative distribution of the S, (T;);
that attain the specified LS. The best-fitting is expressed as:
InSe(Ty) —In 77DCL5|Sa(T1)> (20)
Bocysisatry)
Unlike the probability of failure defined for the Cloud analysis in Eq. (17), np¢,g|s,(ry) and

P(DCps > 1|S4(Ty)) = ‘1’(

Bocygisqcr;) EQ- (18) represents the median and standard deviation of the S, (T;) defined by
each ground motion record that reaches the onset of the LS, respectively.

5.4 Discussion and Comparisons

The IDA was performed using the NFNP, FF and NFPL earthquake records and considering
all the LSs. For the sake of clarity, only the limit state of NC is plotted in Figure 14, while
Table 10 and Table 11 illustrates the median and the logarithmic standard deviation values for
each LS. The light grey lines in Figure 14 represent the IDA curves acquired for each ground
motion record, while black, red and blue lines describe the percentile 16™, 50™ and 84™ for the
whole set of motions at 0, 25 and 50 years, respectively.
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Figure 14. IDA curves: (a) NFNP, (b) FF and (c) NFPL. (Keynote: straight-line percentile 50, dashed lines
percentile 16 and 84)
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Table 10. Median values (1p, ¢im) from IDA curves for each given LS

. NFNP FF NFPL
Limit State
t=0 t=25 t=50 | t=0 =25 t=50 |t=0 t=25 =50
Limited Damage (DL) | 0.37 0.33 0.26 036  0.32 0.26 0.35 0.32 0.26
Severe Damage (DS) 0.74 0.60 0.51 0.61 0523 0.44 0.60 0.51 0.42
Near Collapse (NC) 1.23 1.14 0.86 0.89 0.82 0.64 0.90 0.80 0.62
Table 11. Logarithmic Standard deviation values (Bpc, 4;im) from IDA curves for each given LS
NFNP FF NFPL
Limit State
t=0 t=25 t=50 | t=0 t=25 t=50|t=0 t=25 t=50
Limited Damage (DL) | 0.10 0.10 0.10 0.22 0.22 0.19 | 0.15 0.14 0.13
Severe Damage (DS) 0.22 0.18 0.15 0.29 0.27 0.25 0.23 0.22 0.20
Near Collapse (NC) 0.29 0.28 0.26 0.34 0.33 0.29 | 0.30 0.30 0.22

According to Figure 14 and Table 10, corrosion has significant effects on the seismic
performance of the testbed building as the median values are decreasing over time. Moreover,
the seismic performance reduction is fully compliant with the increase of the crack width and
pitting depth over the structure lifetime (Figure 13). The results illustrate a decrease in the
median values by 9% at 25 years and almost 30% at 50 years, which tend to fluctuate a bit for
the various limit states. Similarly, the logarithmic standard deviation values are slightly
decreasing with the increase of the corrosion rate for each limit state.

Figure 15 plots the regression analysis for the LS of NC in the logarithmic scale of the cloud
data based on unscaled ground motion records at 0, 25 and 50 years. Finally, Table 12 and
Table 13 show the values of median and standard deviation of the IMs obtained for each given
LS.

Table 12. Median values (1p¢, ¢;1m) from Cloud data for each given LS

.. NFNP FF NFPL
Limit State
t=0 t=25 t=50 | t=0 t=25 t=50 |t=0 =25 1t=50
Limited Damage (LD) | 0.16 0.12 0.06 0.31 0.27 0.20 0.29 0.25 0.17
Severe Damage (DS) 0.62 0.39 0.24 0.66 0.51 0.40 0.59 0.46 0.42
Near Collapse (NC) 1.69 1.43 0.76 1.16 1.05 0.73 1.03 0.93 0.63
Table 13. Logarithmic Standard deviation values (Bpc, ¢/im) from Cloud data curves for each given LS
.. NFNP FF NFPL
Limit State
t=0 t=25 t=50 |t=0 =25 t=50 |t=0 +t=25 1t=50
Limited Damage (LD) | 0.23 0.24 0.25 0.33 0.33 0.33 0.33 0.33 0.30
Severe Damage (DS) 0.23 0.24 0.25 0.33 0.33 0.33 0.33 0.33 0.30
Near Collapse (NC) 0.23 0.24 0.25 0.33 0.33 0.33 0.33 0.33 0.30

As a matter of comparisons with IDA features, the median values of the cloud analysis
determine the same effects on the structural seismic performance over time, that is, a slight
reduction at 25 years and a more significant decrease at 50 years, while the standard deviations
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are slightly increasing over time and remain constant regardless of the limit state. Unlike the
IDAs, the cloud analysis shows that NFNPs and NFPLs are more destructive than FFs.

NFNP shows the highest reduction in terms of seismic performance as the decrease is around
26% at 25 years and more than 60% at 50 years. On the other hand, NFPLs and FFs determine
lesser reduction, between 15% and 40%, at 25 and 50 years, respectively.
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Figure 15. Cloud Analysis for near-fields for the limit state NC. (a) t = 0 years, (b) t =25 years and (¢) t = 50
years

5.4.1 IDA Fragility Curves
Figures 16, 17 and 18 show the fragility curves calculated for all the LSs. Moreover, the failure

probability difference (t refers to as a general time, e.g., t = 25,50 years, while t = 0 refers
to the pristine structure at the time of construction), using the pristine condition as a benchmark,
is also provided. This latter gives relevant indications, compared with the pristine structural
condition, on the increase in the failure probability of the RC case-study frame subjected to the

corrosion effects.
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Figure 16. Fragility curves and their difference for the LS of DL. (a-d) NFNP, (b-e) FF and (c-f) NFPL
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Figure 17. Fragility curves and their difference for the LS of DS. (a-d) NFNP, (b-e) FF and (c-f) NFPL
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Figure 18. Fragility curves and their difference for the LS of NC. (a-d) NFNP, (b-¢) FF and (c-f) NFPL

The fragility curves have been derived, as previously mentioned, using the spectral acceleration
at the first natural period of the structure, Sa(T1), and critical damping of 5%. It is worth
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noticing that corrosion does affect the elastic properties of the structure; as a result, modal
analyses were performed at each specified time interval to calculate the first natural frequency
of the testbed building.

As it is expected, highly corrosive environments have a significant impact on the seismic
vulnerability of the RC frame over time. Specifically, the limit state of DL presents the highest
difference in the failure probability in comparison with the other LSs. This observation can be
found in the effect of corrosion on the initial stiffness of the structure. Since DL occurs almost
in the elastic region, the structural damage due to non-uniform corrosion is more relevant for
NFNP and NFPL than FF ground motions. This latter seems to be following the results
produced by the spectral acceleration at the first natural period on the median elastic spectrum
of the fifty signal records (Figure 12). The plateau in Figures 16d and 16e for NFNPs and
NFPLs determine 100% of reaching the limit state in an interval between 0.3g and 0.4g;
conversely, there is no plateau for FFs, which attain the specified LS at 0.3g. At 25 years,
NFNPs reduce the seismic vulnerability by almost 90%, while 45% and 62% for FFs and
NFPLs, respectively.

The limit state of DS produces lower failure probabilities compared to DL as characterized by
higher IDRs, yet exhibiting a very similar trend to DL in terms of failure probability
differences; particularly, the structure subjected to NFNPs experiences the highest damage due
to corrosion with a decrease by 63% and 90% at 25 and 50 years, respectively. Instead, FFs
and NFPLs exhibited a maximum reduction of the seismic vulnerability equal to 39% and 52%
at 25 years, and 73% and 87% at 50 years.

The results of the fragility analysis for the limit state of NC suggests that NFPL ground motions
have a larger influence on the failure probability of the RC frame, compared to FFs and NFNPs.
The last observation can be found in the Sa(T1) values that imply imminent collapse (intended
here as the attainment of the specified limit state), which are 0.9g, 1.1g and 1.5g for NFPLs,
FFs and NFNPs, respectively. In contrast with FFs and NFNPs, NFPL earthquake excitations
induce a more relevant decrease in the structural vulnerability when corrosion occurs; the
difference in the failure probability is equal to 59% for NFPLs, while 55% and 50% for FFs
and NFNPs at 50 years. The outcomes in Figures 16, 17 and 18 and those presented in Table 6
reveal that NFPLs are the most destructive earthquakes for such a type of RC structure. On the
contrary, the building seems to be more vulnerable to FFs than NFNPs. These observations
indicate that often the information obtained from the elastic response spectrum do not reflect
the nonlinear behaviour of the structure subjected to scaled natural records; thus, such
information should be taken cautiously (Figure 19).
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Figure 19. Comparison of IDA fragility curves for NFNP, FF and NFPL. (a) t=0, (b) t=25 and (c) t=50 years
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5.4.2 Cloud Fragility Curves

Figures 20, 21 and 22 show the results of the fragility assessment of the sample building using
the Cloud data for each LS.
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Figure 20. Fragility curves and their difference for the LS of DL. (a-d) NFNP, (b-e) FF and (c-f) NFPL

(a)
1.0
S
0.8 1
S 06
e}
o
a 0.4 1
g
=2 0.2 1
©
[N
00 T T T
00 03 06 09 1.2
Sa(T1)[g]
(d)
1.0
-—- 25
. 0.8 1 —.- 50
o
Il 0.6 - BN
=2 / \
S ‘\
Load I M
b AN
0.2 i/ \\.\
. /I \.'.'l
OO . T T T
00 03 06 09 1.2
Sa(T1)[g]

Failure Probability, p¢

=0)

prt)-pAt

1.0
0.8 +
0.6
0.4 +
0.2 +
OO T T T
0.0 03 06 09 1.2
Sa(T1)lg]
(e)
1.0
-—- 25
0.8 1 —- 50
0.6 -
N
0.4 1 /~/ ‘\
0.2 1 /. //’ \\\\'\
/./, \{\'5
00 ‘I T T
0.0 03 06 09 1.2
Sa(T1)lgl

Failure Probability, pr

prt)-pAt

T
0.00.10.20.30.40.50.6

Lo (c)
. S~ ’—"__
./ ,/’
0.8 1 / ,I
0.6 - 1
-/
III
0.4 i) — 0
021 /1 = §2
/
OO / T T T
00 03 06 09 1.2
Sa(T1)lgl
(f)
1.0
-—- 25
0.8 7 —-- 50
0.6 1 /.-\‘
04 ;0\
I\
021 1/ N\
'y N
0.0 4. . —
00 03 0.6 09 1.2
Sa(T1)[g]

Figure 21. Fragility curves and their difference for the LS of DS. (a-d) NFNP, (b-e) FF and (c-f) NFPL
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Figure 22 Fragility curves and their difference for the LS of NC. (a-d) NFNP, (b-¢) FF and (c-f) NFPL

As for the IDAs, the cloud-based fragility curves determine a significant decrease in the seismic
performance of the structure over time, regardless of the considered limit state.

According to the results in Figure 20, the limit state of DL shows that NFNPs are more
destructive than FFs and NFPLs. Such observation agrees with the elastic response spectrum
median values presented in Figure 12. The reduction in the seismic vulnerability is equal to
22% for NFNP motions, while 16% both for FFs and NFPLs at 25 years. On the other hand,
the RC frame experience a decrease of 67% for NFNPs, 47% for FFs and 58% for NFPLs at
50 years. The maximum failure probability (equal to 100%) is reached at 0.2g for NFNPs,
0.38g for NFPLs and 0.5 for FFs at a lifetime of 50 years.

The results for the limit state of DS illustrates similar trends in comparison with DL. The
structure suffers more significant damage when subjected to NFNP and NFPL motions. The
latter observation can also be found when corrosion occurs; specifically, the seismic
performance decreases by 65% at 50 years, in contrast with 52% and 59% for FF and NFPL
motions at 50 years. The imminent collapse, referred to a failure probability of 100% for the
limit state of SD, is achieved at 0.85g, 0.95g and 0.82g for NFNPs, FFs and NFPLs,
respectively.

In contrast with DL and DS, the limit state of NC shows different results in the fragility curves.
The structure experiences more damage and deterioration when subjected to FFs and NFPLs
than NFNPs. The values of Si(T1) at 50 years and for a failure probability of 50% are 1.03g,
1.16g and 1.68g for NFPL, FF and NFNP ground motions, which indicate the strong effects of
the first two sets of earthquakes on the sample building. However, the difference in the failure
probability implies that NFNP ground motions have more relevant effects on the global seismic
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performance of the building when subjected to corrosion. In particular, there is a decrease by
60% compared to 50% and 54% for FFs and NFPLs. Such a reduction becomes quite similar
at a lifetime of 25 years, that is, around 15-t0-20%.

6. Conclusions

This paper investigates the seismic performance of a typical four-storey RC frame with plain
rebars designed in the 1960s-1970s exposed to chloride-induced corrosion and subjected to
near-field and far-field earthquakes. A three-fold probabilistic approach is used to simulate the
corrosion phases including cracking initiation, severe cracking and spalling of the concrete
cover. The finite element model accounts for complex phenomena such as the bond between
concrete and steel bars, shear failure of RC columns and inelastic buckling of steel
reinforcement bars. From the comprehensive numerical study, the following conclusions can
be drawn:

- The threefold probabilistic approach is deemed accurate to simulate the corrosion stages
in RC members. Specifically, the lognormal distribution, based on a homoscedastic
model, for the cracking initiation seems to accurately predict the crack width in the
early stage of corrosion. Severe cracking is simulated through a uniform distribution to
account for the uncertainties stated in technical codes. The experimental results for the
crack width inducing cover spalling can be modelled by a lognormal distribution. The
latter adds a relevant step in evaluating the time to the spalling of the concrete cover
and its consequence to the seismic performance of RC structures;

- The surrogate model for the shear strength of corroded RC components, based on the
modified compressive field theory, showed that such a methodology can be used to
predict the maximum shear and its corresponding drift ratio; besides, it also has
relevance to be utilized as a practical analytical tool;

- The proposed finite element model of RC members under cycling can accurately predict
the experimental response of typical RC columns designed according to previous low-
seismic oriented technical standards. Such a model includes a trilinear model for
simulating the bonding in the beam-column joints and the post-elastic response of steel
reinforcement due to the inelastic buckling. It is demonstrated that the use of a
displacement-based element with a length equal to the maximum of the RC cross-
section geometrical dimensions can simulate both strength and ductility;

- The response of the seismic fragility of RC structure cannot be predicted based on the
overall information given by the elastic properties of the ground motions (i.e., the
elastic response spectrum). The behaviour of the structure to earthquake excitation is
largely affected by the scaling involved in the IDA. Only for high-scaling whereas the
structure mainly responds into the elastic region, the fragility curves seems to agree
with the overall information obtained by the elastic response spectra.

- Corrosion has significant effects on the seismic performance of RC buildings over time,
both IDA-based and Cloud-based.

- According to the fragility analysis through the IDA, the NFPLs are more destructive
than FFs and NFPLs. The limit states of LD presented the highest failure probability
difference. Specifically, there was a seismic performance reduction equal to 100%
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between 0.3g and 0.4g for NFNPs and NFPLs, while 0.3g for FFs. Similar trends were
obtained for the limit state of DS. Particularly, NFNP exhibited an increase in the
seismic vulnerability by 63% and 90% at 25 and 50 years, while to 39% and 52% at 25
years, and 73% and 87% at 50 years for FFs and NFPLs, respectively.

Conversely, NFPLs seems to be more destructive for the limit state of NC, exhibiting
an imminent collapse at 0.9g, while 1.1 and 1.5g for FF and NFNP ground motions.
The comparison of the fragility curves (IDA-based) illustrates that the sample building
was, in general, more vulnerable to NFPLs than FFs and NFNPs.

In comparison with IDA-based fragility, the Cloud-based fragility curves for the limit
states of DL and DS show lower reductions in the seismic performance of the building.
For instance, NFNP motions determined a decrease by 22% and 67% at 25 and 50 years,
while 16% and 47% for FFs, considering the limit state of DL; such a reduction was
observed to be more than 50% for all the motion records for the limit state of DS.
Instead, the limit state of NC showed that the structure exhibited more damage and
deterioration when subjected to NFPLs and FFs. Specifically, the imminent collapse
related to the attainment of the specified limit state was reached much earlier for NFPL
and FF (1.3g and 1.7g, respectively) motions than NFNP earthquakes (2.5g); This study
indicates that future studies should investigate the effects of corrosion on the inelastic
buckling and bond strength of smooth rebars;

Further experimental studies should be conducted on the effects of corrosion on the
bond strength and the inelastic buckling of smooth rebars.
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