

Deposited via The University of Leeds.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/237673/>

Version: Accepted Version

Article:

Pugliese, F. and Di Sarno, L. (2022) Probabilistic structural performance of RC frames with corroded smooth bars subjected to near- and far-field ground motions. *Journal of Building Engineering*, 49. 104008. ISSN: 2352-7102

<https://doi.org/10.1016/j.jobe.2022.104008>

This is an author produced version of an article published in *Journal of Building Engineering*. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: <https://creativecommons.org/licenses/>

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Probabilistic Structural Performance of RC Frames with Corroded Smooth Bars Subjected to Near- and Far-Field Ground Motions

Pugliese, F. ^{1,2} and Di Sarno, L. ³

⁽¹⁾ Institute for Risk and Uncertainty and Department of Civil Engineering and Industrial Design, School of Engineering, University of Liverpool, Liverpool, UK. Email address: Francesco.Pugliese@liverpool.ac.uk.

⁽³⁾ Department of Civil Engineering and Industrial Design, School of Engineering, University of Liverpool, Liverpool, UK. Email address: luigi.di-sarno@liverpool.ac.uk; Department of Engineering, University of Sannio, Benevento, Italy.

⁽²⁾ Corresponding author: Francesco.Pugliese@liverpool.ac.uk.

Abstract:

This paper investigates the seismic vulnerability of existing RC frames exposed to corrosion and subjected to near-field and far-field ground motions. A threefold approach for corrosion is adopted to illustrate the probabilistic framework and define time-dependent performance criteria for an accurate seismic fragility assessment. A bond-slip model is employed to simulate the fixed-end rotation and column-beam joints behaviour to account for the deficit in the bond strength of plain rebars. Such a model is calibrated using experimental studies from the literature and considering the effects of corrosion. An inelastic buckling model of steel bars is also incorporated in the finite element model through a hysteretic material to investigate its impact on the deformation capacity of RC members. The effects of near-field and far-field earthquakes are investigated through incremental dynamic analyses (IDA) and cloud analyses on a typical four-storey RC frame with plain bars. Results from the fragility analysis indicate that corrosion has significant effects on the seismic performance of such RC frames over time and near-field pulse-like motions are more destructive than both near-field no-pulse-like and far-field earthquakes.

1. Introduction

Nowadays, there is an extensive portfolio of existing reinforced concrete (RC) structures with plain steel rebars that have been designed according to obsolete low-seismic-oriented technical codes [e.g., Cardone (2016), De Risi et al. (2017), Di Sarno and Pugliese (2020)]. Such structures are commonly considered sub-standards due to lack of seismic details in the critical zones (i.e., beam-columns joints, high stirrups spacing, poor-quality and low-strength concrete, reduced bond strength) and, therefore, at high risk of either extensive damage or sudden collapse if subjected to earthquake events [e.g., De Risi et al. (2017), O'Reilly and Sullivan (2019)]. These latter are yet characterized by several features, e.g., type of fault rupture, source-to-site path, local soil conditions, which distinguish their potential damage to RC buildings and may induce catastrophic outcomes [e.g., Fragiadakis et al. (2005)]. Specifically, near-source earthquakes have commonly short-duration, often pulse-like and high-frequency contents due to the short distance from the source, compared to far-field earthquakes [e.g., Gorai and Maity (2019); Bhandari et al. (2019)]. Although, many studies have focussed on estimating the effects of such near-field and far-field ground motions on various structural systems to provide

45 comprehensive design guidelines [e.g., Dadashi and Nasserasadi, (2015); Mosleh et al. (2016);
46 Moniri (2017); Li et al. (2018); Nabil et al. (2021)], the seismic assessment of RC structures
47 often neglects the time-dependent deterioration of the mechanical properties of constitutive
48 materials due to corrosion. The last observation, along with the lack of time-dependent
49 performance demand criteria, may lead to an overestimation of the actual structural
50 performance.

51 In addition, on-site surveys of post-earthquake-damaged of such existing structures subjected
52 to strong earthquake excitations have demonstrated a poor and weak bond between smooth
53 bars and the surrounding concrete [e.g., Fabbrocino et al. (2005); Furtado et al., (2021)].
54 Particularly, structural joints under seismic loadings exhibit a highly complex stress state which
55 induces a progressive bond deterioration [e.g., Braga et al. (2009); Melo et al. (2015)]. The
56 latter leads to a relevant slippage that may cause large local and global structural deformability.
57 Few experimental studies have been conducted to investigate the bond behaviour between
58 smooth rebars and the concrete, typically with pull-out and beam tests, which have also
59 provided guidelines on macro-modelling such a complex phenomenon in finite element
60 applications of RC structures [e.g., Verderame et al. (2009) – Part I; Verderame et al. (2009) –
61 Part II; Xing et al. (2015); Melo et al. (2015); Cairns (2021)]. However, long-time exposure to
62 aggressive environments may cause steel bars to rust, increasing their volume and generating
63 local tensile stresses on surrounding concrete, compromising bond strength properties and
64 inducing subsequent spalling of concrete cover. Only a few studies exist yet on this subject to
65 the authors' knowledge [e.g. Robuschi et al. (2020); Robuschi et al. (2021); Xi et al. (2021)].
66 The progressive cracking expansion due to the loss of bond at the steel-concrete interface
67 causes the spalling of concrete cover and leads longitudinal rebars to buckle outwards. The
68 inelastic buckling of steel reinforcement has relevant effects on the deformation capacity of
69 RC members as it is characterized by a softening branch in compression after its onset [e.g.,
70 Akkaya et al. (2019)]; such a threshold depends primarily on the stirrup spacing-to-diameter
71 ratio (L/d), named slenderness ratio. If the slenderness ratio ranges between 8 and 20, the onset
72 occurs after the yielding stress, for smaller values otherwise. Although some experimental
73 campaigns and numerical modelling attempts have been conducted to investigate the inelastic
74 buckling of plain rebars [e.g., Cosenza and Prota (2006); Prota et al. (2009)], there is no
75 evidence, to the best of authors' knowledge, of corrosion effects on this old type of reinforcing
76 steel.

77 Another key aspect that emerged from past earthquakes is related to potential shear failures of
78 low-seismic designed RC columns. Many old RC buildings under earthquake loadings have
79 exhibited brittle failures due to the shear failure mechanism in RC columns. [e.g., Augenti and
80 Parisi (2010); Ricci et al. (2011); O'Reilly and Sullivan (2019)]. Therefore, a shear model
81 capable of capturing either the shear failure or the coupled shear-flexural failure of RC columns
82 is deemed necessary. Mostly, such models are calibrated and compared over experimental tests
83 that include pristine RC columns [e.g. Seztler and Sezen (2008); Park et al. (2012); Colajanni
84 et al. (2015); Zimos et al. (2018)] and require an effort to investigate whether or not they are
85 still suitable when corrosion occurs. Thus, to account for the modelling uncertainties, a
86 probabilistic approach should be used. In such cases, the response surface methodology [Box
87 and Wilson (1951)] is the best trade-off between the accuracy of a meta-model and the
88 implementation of several uncertainties.

89 To these aims, the present study investigates the seismic response of existing RC structures
 90 with plain rebars exposed to corrosion and subjected to near- and far-field ground motions. A
 91 nonlinear finite element (FE) model of a typical four-storey RC frame is adopted for the
 92 fragility assessment. Non-uniform corrosion is applied externally (one-sided and two-sided
 93 attack) to beams and columns to simulate a realistic scenario, whereas a three-fold probabilistic
 94 approach is used for its initiation, propagation and deterioration. A trilinear bond-slip model is
 95 introduced for the slippage in beam-column and fixed-end joints, calibrated over experimental
 96 tests available in the literature. Such a model is then modified according to the increased
 97 corrosion rate. Moreover, the inelastic buckling of smooth rebars is incorporated into the
 98 refined model of the RC cross-sections through a hysteretic material to account for its effects
 99 on the deformation capacity of RC members. An existing shear model is then combined with
 100 the nonlinear fibre sections, modified to account for corrosion effects, to simulate possible
 101 brittle failure mechanisms.

102 Finally, the fragility assessment of the testbed frame is conducted through nonlinear
 103 Incremental Dynamic Analysis (IDA) [e.g., Vamvatsikos and Cornell (2002); Vamvatsikos and
 104 Cornell (2004)] and Cloud analysis [e.g., Bazzurro et al. (1998); Cornell et al. (2002); Miano
 105 et al. (2018)] based on a selection of fifty as-recorded ground motions [FEMA P-695 (2009)].
 106 Such natural motions are divided into three sub-categories: (a) far-field (FF), (b) near-field no-
 107 pulse like (NFPN), and (c) near-field pulse-like (NFPL) ground motions. Fragility curves are
 108 built upon intervals of 25 years using time-dependent performance demand criteria defined
 109 herein as maximum inter-storey drift ratios (IDR).

110

111 2. Probabilistic non-uniform corrosion

112 One of the major concerns for engineers is the durability and service-life of aged RC structures
 113 [e.g., Moreno et al. (2018); Qu et al. (2020)]. The effects of corrosion typically reduce
 114 mechanical properties and substantially impact the geometrical properties of constitutive
 115 materials, which may alter the global structural behaviour during earthquake events.

116 Since corrosion is undoubtedly difficult to predict as it includes several uncertainties, using a
 117 deterministic approach may lead to extreme conservative structural responses that aim not to
 118 impair structural safety but increase restoration costs. Therefore, a three-fold probabilistic
 119 approach is adopted to cope with such uncertainties and adequately evaluate the various
 120 corrosion stages (corrosion initiation, propagation and deterioration).

121 The most used probabilistic approach for the time to corrosion initiation is the Duracrete model
 122 (2000), which is the one-dimensional solution of Fick's second law for the chloride diffusion
 123 process.

$$t_{init} = X_1 \left\{ \frac{c^2}{4k_e k_c k_t D_0 t_0^\alpha} \left[\operatorname{erf}^{-1} \left(1 - \frac{C_{crit}}{C_0} \right) \right]^{-2} \right\}^{\frac{1}{1-\alpha}} \quad (1)$$

124 In Eq. (1), X_1 represents the parameter to account for the model uncertainty related to the Fick's
 125 second law, c is the concrete cover, D_0 is the chloride migration coefficient, t_0 is the reference
 126 time (which is commonly equal to 28 days), C_0 is the chloride content on the concrete surface,
 127 k_e is the environmental coefficient accounting for the temperature, k_c is the curing time
 128 coefficient, k_t is the correction coefficient for the test method, α is the age factor, erf is the
 129 Gauss error function and C_{crit} is the critical chloride concentration.

130 Duracrete (2000) assumes four categories for chloride-induced corrosion: (a) atmospheric, (b)
 131 splash, (c) tidal and (d) submerged. These latter define the statistical distributions of the model
 132 parameters in Eq. (1). The testbed structure is located close to the Italian coast and exposed to
 133 marine splash; thus, the parameters associated with category (b) are taken to compute the
 134 occurrence time of corrosion initiation. Table 1 illustrates the statistical distributions of each
 135 model parameters in Eq. (1).

136
 137 Table 1. Statistical distribution of the model parameters in Eq. (1). (keynotes: μ and σ for the lognormal
 138 distribution are the mean and the standard deviation of the associated normal distribution, w/b – It is assumed 0.5
 139 in this study; Beta (a, b, lw, up) is a beta distribution with a and b shape parameters, and lw and up lower and
 140 upper bounds, respectively; Gamma (μ , σ) is a gamma distribution with shape parameter $\alpha = \left(\frac{\mu}{\sigma}\right)^2$ and scale
 141 parameter $\beta = \frac{\sigma^2}{\mu}$)

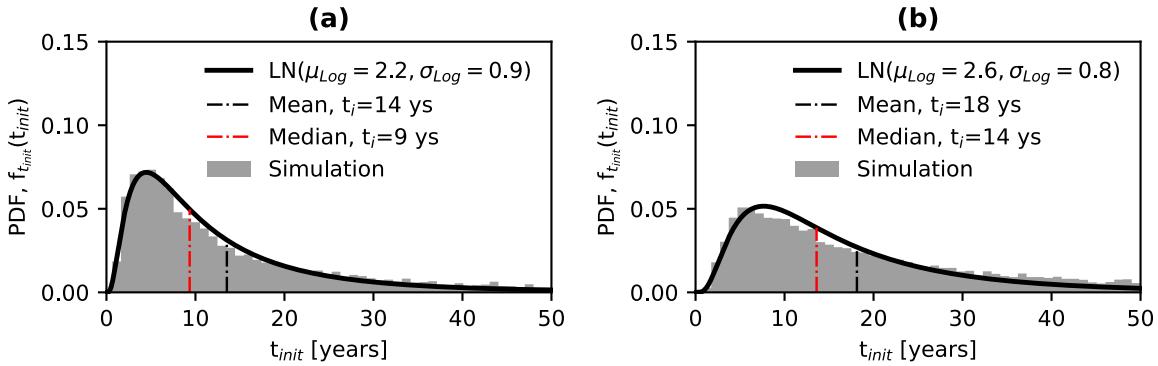
Parameter	Description	Distribution Name	μ	σ
X_I	Model Uncertainty	Lognormal (μ , σ)	1	0.05
D_0	Chloride Coefficient	Normal (μ , σ)	$15.8 \cdot 10^{-12} \text{ (m}^2/\text{s)}$	0.2μ
k_e	Environmental Factor	Gamma (μ , σ)	0.265	0.045
k_t	test method factor	Normal (μ , σ)	0.832	0.024
k_c	Execution Factor	Beta (a, b, lw, up)	4.445	a b l_w u_p 2.333 0.400 1.000
t_0	Reference time	Deterministic	0.0767 yr	
C_{crit}	Critical Chloride Content	Normal (μ , σ)	0.5	0.1
C_0	Surface Chloride Concentration			

It is calculated as a function of the water-to-binder ratio (w/b=0.5): $C_0 = A_0 (w/b) + \varepsilon_0$.

			μ	σ
A_0	Chloride content regression parameter	Normal (μ , σ)	7.758	1.360
ε_0	Error term for the chloride concentration	Normal (μ , σ)	0	1.105
α	Age Factor	Beta (a, b, l_w , u_p)	4.075	a b l_w u_p 9.508 0.000 1.000

142
 143 Monte Carlo simulations are performed across 50,000 samples to solve Eq. (1). The results of
 144 the probability density functions (PDF) in Figure 1, both for transverse and longitudinal rebars,
 145 show that corrosion initiates earlier on the transverse (9 years) than longitudinal steel bars (14
 146 years).

147



148
149 Figure 1. Corrosion Initiation time: (a) transverse and (b) longitudinal rebars. (*keynote: μ_{Log} and σ_{Log} are the*
150 *mean and standard deviation of logarithmic values, respectively*).

151
152 Once the values of the corrosion initiation are obtained, the corrosion rate becomes the key
153 factor in the corrosion propagation and deterioration.

$$p(t) = R(t) \int_{t_{init}}^{t_{prop}(t-t_{init})} r_i(t) dt \quad (2)$$

154 In Eq. (2), $p(t)$ is the pit depth with time, $R(t)$ is the pitting factor defined as the ratio between
155 the maximum pit depth and the mean pit depth, $r_i(t)$ ($= 0.0116 i_{corr}(t)$, $i_{corr}(t) =$
156 $0.85 i_{corr,0}(t = 0) t_{prop}^{-0.29}$, where $i_{corr}(t)$ and $i_{corr,0}(t = 0)$ are the impressed currents at
157 a general time t and at time t equal to zero) is the corrosion rate and t_{prop} is the time for
158 corrosion to propagate (t_{prop}).

159 Corrosion propagation coincides with the cracking initiation that occurs when the localized
160 tensile stresses, produced by the corrosion products filling the pores in the surrounding
161 concrete, reach the critical tensile strength of the concrete. Then, Eq. (2) can be solved by
162 imposing $t = t_{cr}$ (t_{cr} is the time to cracking initiation) and $p(t) = p_{crit}$ (p_{crit} is the pit depth
163 for cracking initiation) [Cui et al. (2014)].

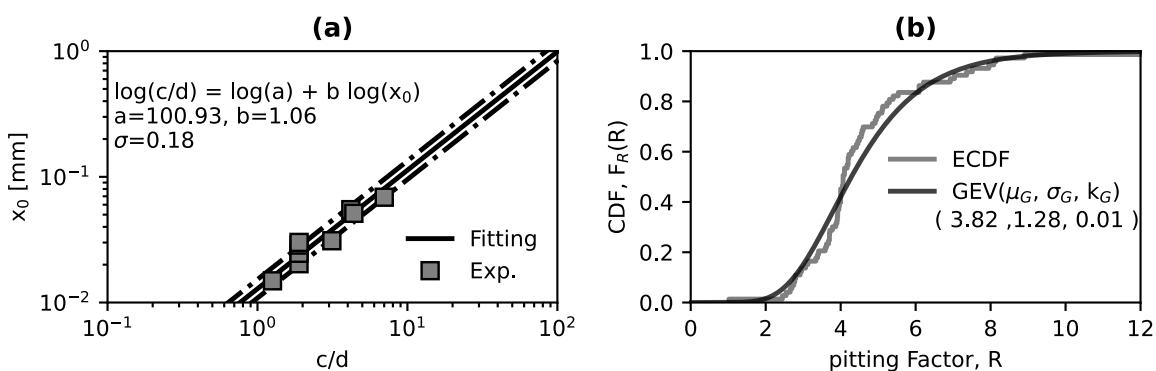
$$t_{cr} = t_{init} + \left(\frac{p_{crit}(x_0 R)}{0.0139 i_{corr}(t = 0) R} \right)^{1.41} \quad (3)$$

164 Alonso et al. (1998) conducted an experimental campaign to investigate the corrosion attack
165 penetration (x_0), which produced the first visible crack (crack width (w) equal to 0.05 mm),
166 with various cover-to-steel diameter (c/d) ratios, assuming yet uniform corrosion. They also
167 proposed a deterministic relationship between the attack penetration and cover-to-diameter
168 ratio. This study introduces a lognormal distribution to simulate the attack penetration to induce
169 the cracking initiation, which is based on a homoscedastic model with a variable mean and a
170 constant standard deviation. The results of such statistical distribution are shown in Figure 2a.
171 Similarly, many experimental studies [e.g., Rodriguez et al., 1997; Torres-Acosta et al., 2003;
172 Yu et al., 2015] have been carried out to evaluate the pitting factor and a few focussed on its
173 numerical-related uncertainties [Stewart and Al-Harthy (2008); Kashani et al. (2013); Zhao et
174 al. (2018)] and FE numerical implementations [e.g., El Alami et al. (2021)]. Therefore, only
175 the diameters of interest complying with typical steel diameters adopted in existing RC
176 structures, are collected in this study from the comprehensive experimental campaigns. The
177 Akaike Information Criterion (AIC, Akaike (1998)) was used as a selection method to

178 distinguish the best suitable probabilistic distribution for the pitting factor, among the set of
 179 chosen distribution models (i.e., Normal, Lognormal, Generalised Extreme Values and Weibull
 180 distributions). The outcomes of such a statistic analysis are shown in Table 2, while Figure 2b
 181 illustrates graphically the cumulative density function (CDF) of the best-fitting model
 182 (Generalised extreme value distribution, GEV). For further details on the AIC method, the
 183 authors remind to the original work published by Akaike (1998).

184
 185 Table 2. Best-fitting model analysis for pitting factor

Statistical Distribution	Log (Likelihood)	AIC
Normal	-143.29	292.58
Lognormal	-134.49	272.98
Generalised Extreme Value	-132.91	271.83
Weibull	-143.16	290.33



187
 188 Figure 2. (a) Pitting critical depth and (b) pitting factor statistical distributions
 189

190 Based on the results of the AIC method, the pitting factor can be adequately defined by a
 191 generalised extreme value distribution (GEV) with its three parameters as it gives the desired
 192 lowest AIC value (location parameter μ_G , scale parameter σ_G , and shape parameter k_G).
 193 The imminent progress of corrosion induces the continuous degradation of steel rebars;
 194 specifically, the growth of the crack width (w) corresponds to two specific deterioration
 195 aspects: (a) severe cracking (w_{sc}) and, (b) delamination and spalling of the concrete cover (w_{sp}).
 196 Technical standards [e.g., CEB (1993); ACI (2001); EN (2004),] have provided values for the
 197 severe cracking width (w_{sc}) between 0.15mm and 0.3mm. In evaluating the seismic
 198 performance of RC structures, researchers mostly referred to those values using a deterministic
 199 approach and possibly in a conservative manner (setting the severe cracking at 0.15-0.20 mm).
 200 Although such an approach may seem adequate to benefit safety, it could be excessively
 201 conservative for moderate decision-making risk-based solutions. Thus, in the context of the
 202 probabilistic framework, uniform distribution with lower and upper bounds equal to 0.15mm
 203 and 0.30mm, respectively, could be a reasonable solution to fairly account for uncertainties.
 204 Conversely, the cracking width associated with spalling of the concrete cover (w_{sp}) is not
 205 included in technical standards and is often neglected in the deterioration stage of corrosion.
 206 However, the latter is necessary when evaluating the performance of local and global structural
 207 systems, although it involves many uncertainties such as longitudinal and transverse steel bar
 208 diameters, clear cover depth and concrete tensile strength, among the others. Rodriguez et al.

(1996) carried out an experimental campaign to evaluate the residual capacity of corroded RC columns. Such experimental tests also provided the attack penetration (in mm) corresponding to the delamination and spalling of the concrete cover. Such values are herein collected and the empirical CDF computed. Then, the above-mentioned AIC method is applied to find the plausible probabilistic distribution for the crack width inducing spalling of the concrete cover.

Table 3. Best-fitting model analysis for the cracking width inducing spalling of the concrete cover

Statistical Distribution	Log(Likelihood)	AIC
Normal	-18.81	41.62
Lognormal	-15.51	35.02
Generalised Extreme Value	-15.19	36.38
Weibull	-17.96	39.92

The statistical analysis in Table 3 shows that the lognormal distribution is the best model estimate for the empirical results. Both the uniform distribution for severe cracking width and the lognormal distribution for the cracking width leading to spalling of the concrete cover are shown in Figures 3a and 3b. Such cracking width distributions need evidently the associated occurrence time to fully define the threefold corrosion probabilistic approach.

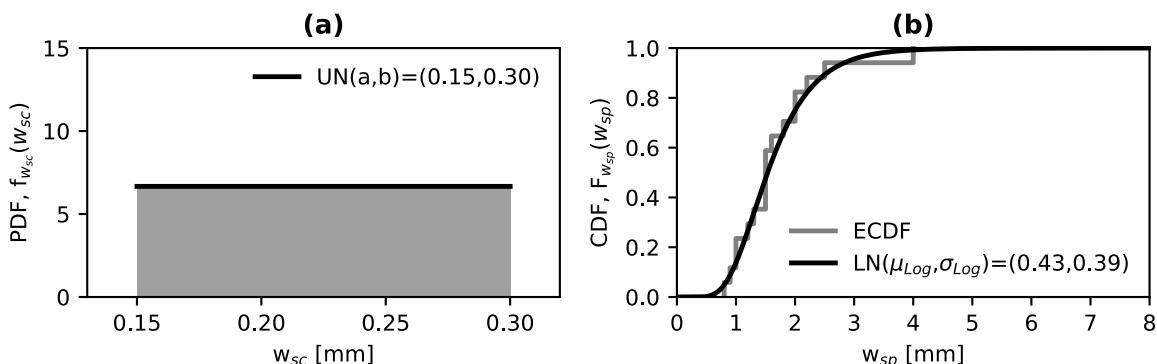


Figure 3. (a) Severe crack width and (b) Cover spalling lognormal statistical distribution

In this respect, Vidal et al. (2004) carried out an experimental campaign to investigate the distribution of corrosion on steel reinforcement and the crack width induced in the concrete, thus, providing a linear relationship, as follows:

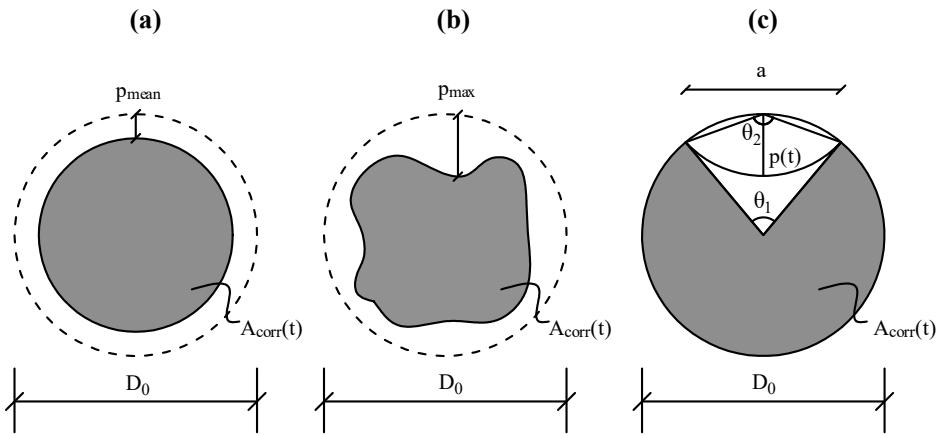
$$w(t) = 0.0575[\Delta A_{i+1}(t) - \Delta A_{CR}] \quad (4)$$

where $\Delta A_{i+1} = A_s - A_{corr}$ (A_s and A_{corr} , area of sound and corroded steel, respectively) is the steel area loss at the time t , ΔA_{CR} is the steel area loss at the cracking initiation and w is the crack width. Val and Melchers' model (1997) (Figure 4) is adopted to compute the area loss due to the pitting corrosion:

$$A_{corr}(t) = \begin{cases} \frac{\pi d^2}{4} - (A_1 + A_2) & p(t) \leq \frac{d}{\sqrt{2}} \\ A_1 + A_2 & \frac{d}{\sqrt{2}} < p(t) \leq d \\ 0 & p(t) \geq d \end{cases} \quad (5)$$

$$A_1 = \frac{1}{2} \left[\theta_1 \left(\frac{d}{2} \right)^2 - a \left| \frac{d}{2} - \frac{p(t)^2}{d} \right| \right], \quad A_2 = \frac{1}{2} \left[\theta_2 p(t)^2 - a \frac{p(t)^2}{d} \right] \quad (6)$$

$$\theta_1 = 2 \arcsin \left(\frac{2a}{d} \right), \quad \theta_2 = 2 \arcsin \left(\frac{a}{p(t)} \right), \quad a = 2p(t) \sqrt{1 - \left(\frac{p(t)}{d} \right)^2} \quad (7)$$



232
233
234
235

Figure 4. (a) Uniform corrosion, (b) pitting corrosion and (c) Val and Melchers' model (1997) (keynote: p_{mean} - average pit depth, p_{max} - max pit depth, D_0 - diameter of the sound steel)

236

3. Deterioration numerical modelling procedure

237 The details of the numerical procedure to simulate the pitting corrosion in the RC cross-sections
238 are hereby presented. Such a numerical procedure is similar to the approach adopted by
239 Pugliese et al. (2021).

240 First of all, the mechanical and the geometrical properties are simulated to generate the model
241 in OpenSees [McKenna (2000)]. The time to corrosion initiation is calculated using Eq. (1)
242 according to the parameters provided in Table 1. Such values are assumed to be the same both
243 for beams and columns. Once the cover and the diameter of the steel bars of each RC cross-
244 section have been defined, the pitting factor and the attack penetration depth are sampled from
245 the GEV and the lognormal distributions provided in Figures 2b and 2a, respectively. These
246 latter are adopted to simulate the time to cracking initiation through a lognormal distribution
247 with a mean (μ) computed with Eq. (3) and a standard deviation (σ) equal to 0.53μ [Thoft-
248 Christensen (2000)].

249 It is worthy of note that the value of R is assumed as being a statistical independent
250 homogenous random field; that is, there is zero correlation between RC cross-sections, thus
251 implying a different pitting factor for all RC components.

252 Hence, the values of severe cracking width and cracking width to spalling of the concrete cover
253 are generated from the distributions graphically depicted in Figures 3a and 3b. Such values are
254 employed in Eq. (4) to compute the area loss of the steel reinforcement and Eq. (5)-to-(7) for
255 the pitting depth $p(t)$. This latter is used in Eq. (2) to compute the occurrence time to severe
256 cracking (t_{sc}) and spalling of the concrete cover (t_{sp}) through a lognormal distribution with a
257 mean calculated from Eq. (3) and a standard deviation of 0.53μ .

258 As the response of the testbed building refers to 0, 25 and 50 years, the pitting depth and the
259 time occurrence of the various corrosion phases are linearly interpolated to obtain the
260 corresponding parameters.

261 **3.1 Effects of corrosion on the mechanical properties of steel reinforcement bars**

262 The percentage of the area loss (Corrosion area loss Rate, CR) by the steel reinforcement is
 263 namely calculated as the relative difference between the sound and the corroded steel bar
 264 following this equation:

$$CR(t)[\%] = \frac{A_s - A_{corr}(t)}{A_s} \times 100 \quad (8)$$

265 Such a formulation is then adopted to evaluate the reduction in the strength, through the
 266 yielding (f_{sy}) and the ultimate stresses (f_{su}), and the ductility, through the ultimate strain (ε_{su}).
 267 In this study, the reduction of the yielding and the ultimate stresses is assumed to follow the
 268 linear relationship:

$$f_s(t) = f_s(1 - \alpha_{ys} CR[\%]) \quad (9)$$

269 while the ultimate strain is computed through the exponential relationship:

$$\varepsilon_{su}(t) = \varepsilon_{su} e^{-\alpha_{us} CR[\%]} \quad (10)$$

270 In Eq. (9) and Eq. (10), α_{ys} and α_{us} are the reduction coefficient equal to 0.01 and 0.055,
 271 respectively, according to [Di Sarno and Pugliese \(2020\)](#).

273 **3.2 Effects of corrosion on the mechanical properties of the concrete**

274 Concrete is indirectly exposed to the effects of corrosion over time, which jeopardise its tensile
 275 strength inducing cracking and reducing its compressive strength and ductility.

276 To compute the reduction of the compressive strength (β_{conc}) [Coronelli and Gambarova \(2004\)](#)
 277 proposed a formulation based on modified compressive field theory by [Vecchio and Collins](#)
 278 [\(1986\)](#). Such a reduction has then been modified by [Di Sarno and Pugliese \(2020\)](#) to account
 279 for the effects of corrosion on the un-effective concrete core and the various exposure that the
 280 concrete can be subjected to. The following formulation is adopted in this study:

$$f_c(t) = \beta_{conc} f_c \quad \beta_{conc} = \frac{1}{1 + 0.1 \frac{w(t) n_{bars}}{B_{x,y} \varepsilon_{c0}}} \quad (11)$$

281 In Eq. (11), f_c is the compressive strength of the concrete, n_{bars} is the number of the rebars on
 282 side of exposure, $B_{x,y}$ is the cross-section dimension on the side of exposure, and ε_{c0} is the
 283 strain at the peak of the compressive strength. Further details on the effects of corrosion on the
 284 mechanical properties of the concrete can be found in [Di Sarno and Pugliese \(2020\)](#).

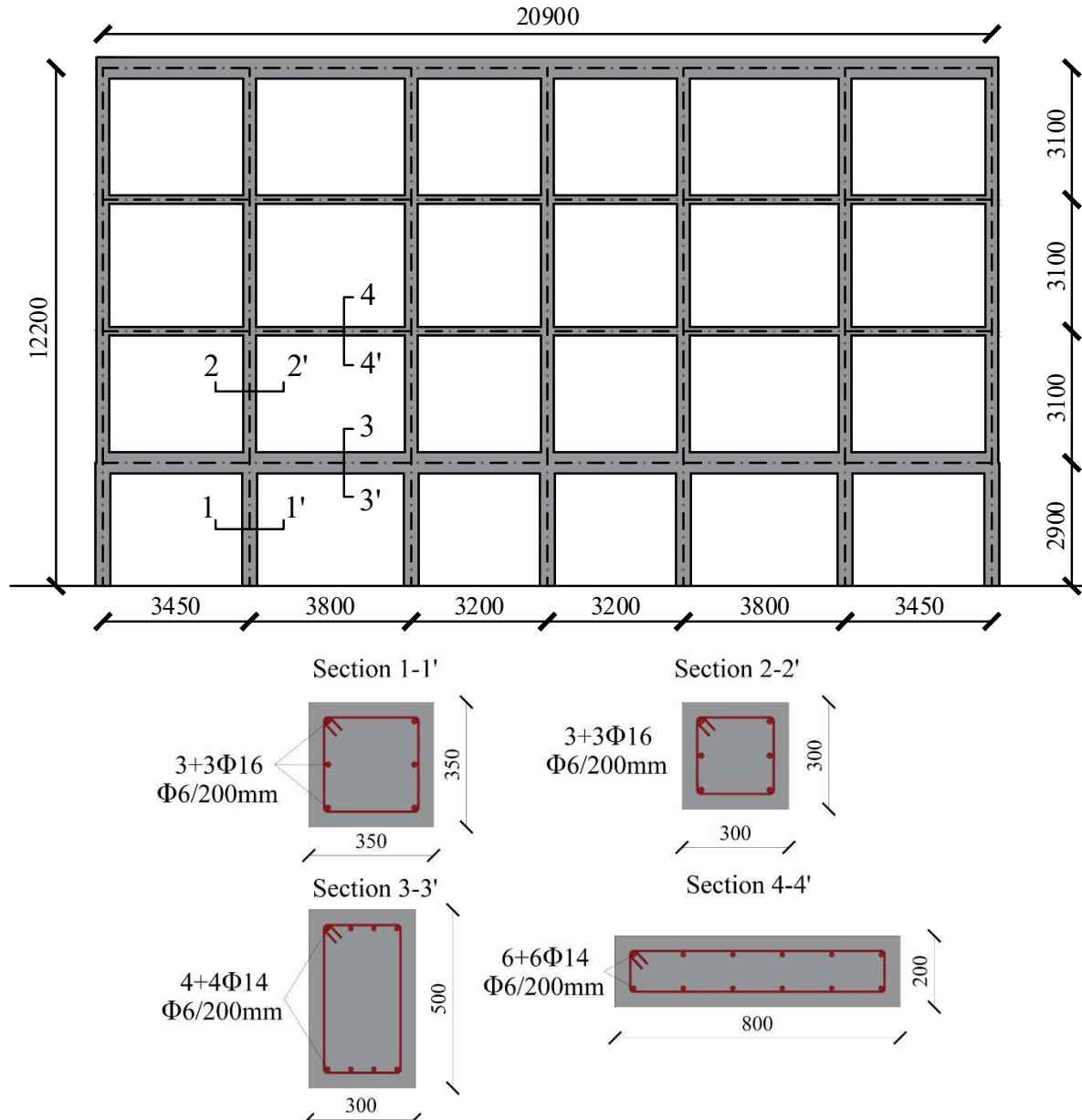
286 **4. Case Study RC frame**

287 A two-dimensional four-storey external RC frame is adopted as a testbed for the fragility
 288 assessment ([Figure 5](#)). Such an external frame represents a typical structural configuration
 289 designed between the 1960s and 1970 in Italy, and it is generally the most exposed to chloride-
 290 induced corrosion compared to internal frames, which are namely protected by infills.

291 The RC frame has a total height of 12.2m with an inter-storey between 2.9m on the ground
 292 floor and 3.1m for the remaining floors. Such an RC frame is composed of squared cross-
 293 section columns with geometrical dimensions 350x350mm on the ground floor and 300x300
 294 mm for the rest of the building. Both are reinforced with 3+3Φ16 longitudinal rebars and Φ6
 295 transversal rebars with a 150mm stirrup spacing. Instead, rectangular cross-sections are used
 296 for beams with geometrical dimensions equal to 300x500mm and 800x200mm, respectively;

297 the 300x500mm beams are symmetrically reinforced with 4+4Φ14, while the 800x200mm
 298 beams with 6+6Φ14 (Figure 5). Both have Φ6 transverse rebars with a 200 mm stirrup spacing.
 299

300



301
 302
 303

304 The concrete class is simulated through a lognormal distribution with a mean resistance of 20
 305 MPa and a coefficient of variation (COV) equal to 0.15 [Jalayer et al. (2015)]. The class of
 306 steel corresponds to a lognormal distribution with a mean yielding strength of 330 MPa and a
 307 COV equal to 0.08, according to past studies available in the literature [e.g., Verderame et al.
 308 (2001)]. Table 4 shows the random parameters of the mechanical and geometrical properties
 309 of the RC building. It is worth noticing that there is zero correlation between the mechanical
 310 and geometrical random variables, and zero correlation among the mechanical properties of
 311 steel reinforcing bars. All parameters in Table 4 are considered independent random variables
 312 (e.g., f_y is not correlated to E_s).

313
314
315
316

Table 4. Statistical mechanical and geometrical properties of RC components (Keys: LN – lognormal distribution, μ and COV for the lognormal distribution are the mean and the coefficient of variation of the associated normal distribution)

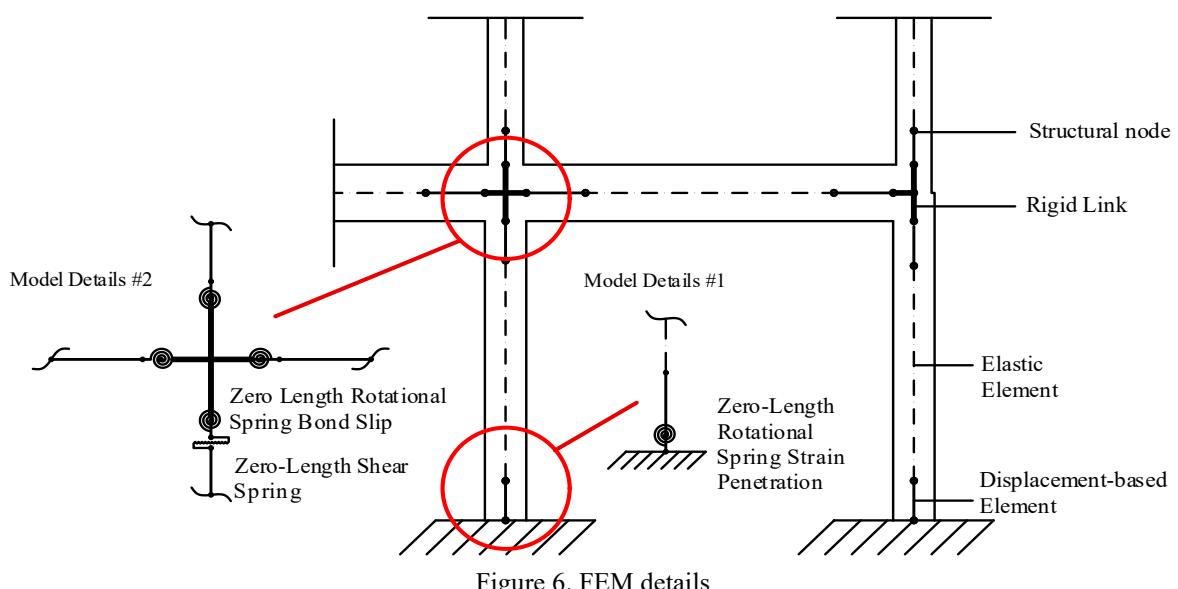
Parameter	Description	Distribution name (μ , COV)	Units	Source
f_c	Concrete Compressive strength	LN (20, 0.15)	MPa	Jalayer et al. (2015)
f_y	Yielding stress of steel bars	LN (330, 0.08)	MPa	Verderame et al. (2001)
E_s	Elastic modulus of steel bars	LN (200000, 0.05)	MPa	Pugliese et al. (2022)
c	Cover	LN (40, 0.20)	mm	Ni Choine et al. (2016)
D_0	Diameter of sound steel bars	LN (variable, 0.035)	mm	Pugliese et al. (2022)

317

318 4.1 Finite element model

319 The non-linearity of columns and beams is modelled using a displacement-based element
320 (DBE) with five Gauss-Lobatto integration points at the end of each RC member. The length
321 of such a DBE is calibrated using experimental tests of RC columns subjected to cycling
322 loadings (section 4.5), while the remaining part of the element is modelled through an elastic
323 beam-column element. The computational advantage of adopting such structural configuration
324 stands in solving quickly the non-linear dynamic equations. DBEs include non-linear fibres for
325 steel and concrete to define RC cross-sections and capture their flexural behaviour. A zero-
326 length spring is added to the element to account for shear failures; the envelope model of Setzler
327 and Sezen (2008) is utilised to define the hysteretic material characteristics (named Hysteretic)
328 available in OpenSees [McKenna (2000)]. Finally, a tri-linear constitutive material through a
329 zero-length section is introduced and implemented in the FE model to simulate the strain
330 penetration in the structural foundation and the bond-slip in beam-column joints. Details of the
331 FE model are shown in Figure 6.

332



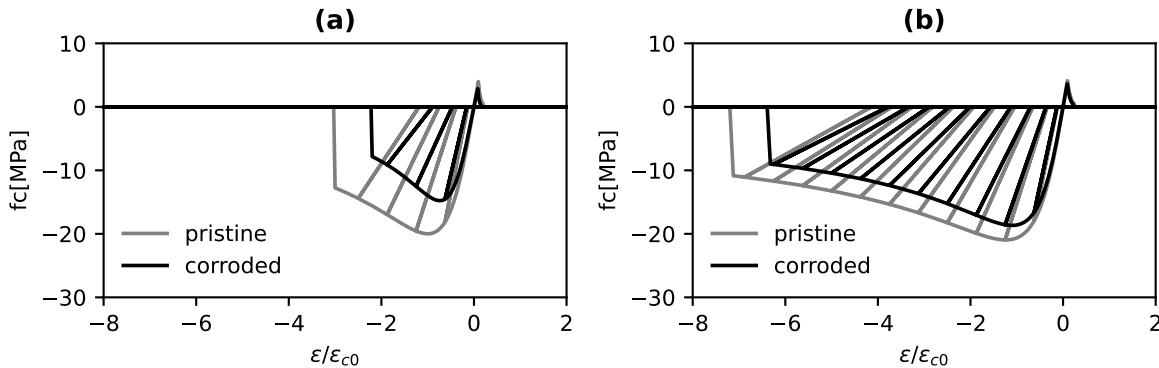
333
334

335 4.2 Constitutive Materials

336 4.2.1 Concrete Model

337 Popovics' model (1973), named Concrete04 in OpenSees [McKenna (2000)], is used in this
338 study to simulate the stress-strain relationship of the concrete. Such a model is purposely

339 chosen as it includes the tensile response of the concrete; otherwise, the model could lead to
 340 convergence issues if the corrosion propagation causes the complete loss of steel reinforcement
 341 area. Concrete04 adopts Karsan-Jirsa (1969) model to account for stiffness degradation during
 342 the loading-unloading in compression, and the secant stiffness in tension; this constitutive
 343 material is implemented in the FE model both in the concrete cover and the confined concrete
 344 core. The confinement parameters for the concrete core are defined with the model developed
 345 by Razvi and Saatcioglu (1999). Using the relationships illustrated in Section 3.2, Figures 7a
 346 and 7b show the stress-stress relationship of the un-corroded/corroded cover and core concrete.



347
 348 Figure 7. Cyclic response of the concrete: (a) concrete cover and (b) concrete core
 349

350 The results in Figures 7a and 7b illustrate how the effects of corrosion are more significant on
 351 the concrete cover than the concrete core, both in terms of strength and ductility.
 352

353 4.2.2 Steel Reinforcement Model

354 In this study, a hysteretic material is adopted to simulate the effects of the inelastic buckling
 355 on the stress-strain behaviour of steel reinforcement bars. The model parameters of such
 356 constitutive material are computed using the formulations given in Di Sarno et al. (2021). They
 357 used a genetic algorithm and Bayesian updating to optimise the model parameters for three of
 358 the most adopted constitutive materials for steel bars. Once the parameters were defined, a
 359 comprehensive parametric study was conducted and formulations provided as a function of the
 360 slenderness ratio (L/d). The effects of the inelastic buckling on the hardening strain are
 361 calculated as follows:

$$\frac{\varepsilon_{bh}}{\varepsilon_y} = 1 + \left[\left(\frac{\varepsilon_h}{\varepsilon_y} - 1 \right) \left(0.125 \frac{L}{d} \right)^{-5.62} \right] \quad (12)$$

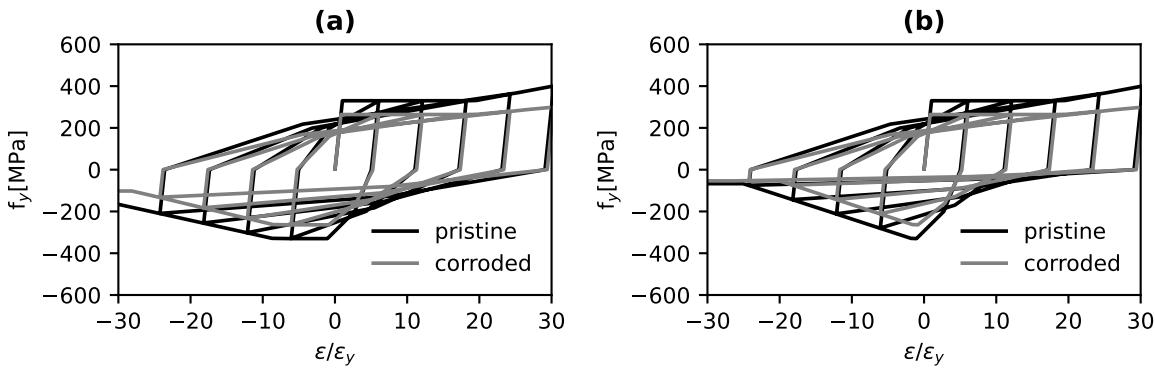
362 In Eq. (12), ε_{bh} indicates the onset of buckling, ε_h the hardening strain from the tensile response
 363 and ε_y the yielding strain. Since the investigation of the post-buckling compressive response
 364 of smooth bars from the parametric study indicated that all curves tend to a horizontal
 365 asymptote (f_{as}) for infinite values of strains, the following formulation can be used:

$$f_{as} = 11.88 f_y \left(\frac{L}{d} \right)^{-1.53} \quad (13)$$

366 Figures 8a and 8b show the results of the steel bar constitutive model for columns and beams.
 367 The effects of corrosion are included using the approach described in Section 3. The onset of
 368 buckling is reached on beams earlier than columns because of the higher slenderness ratio. The

369 advantages of using such a hysteretic model stand in: (a) a straightforward implementation in
 370 a FE model, (b) capacity of predicting the pinching due to open/closure of cracking during
 371 cyclic loadings and (c) accurately capturing the post-elastic effects of steel reinforcement on
 372 the global behaviour of RC members under seismic loadings.

373



374

375 Figure 8. Hysteretic material: (a) columns with $L/d = 9.4$ and (b) beams with $L/d = 14.3$

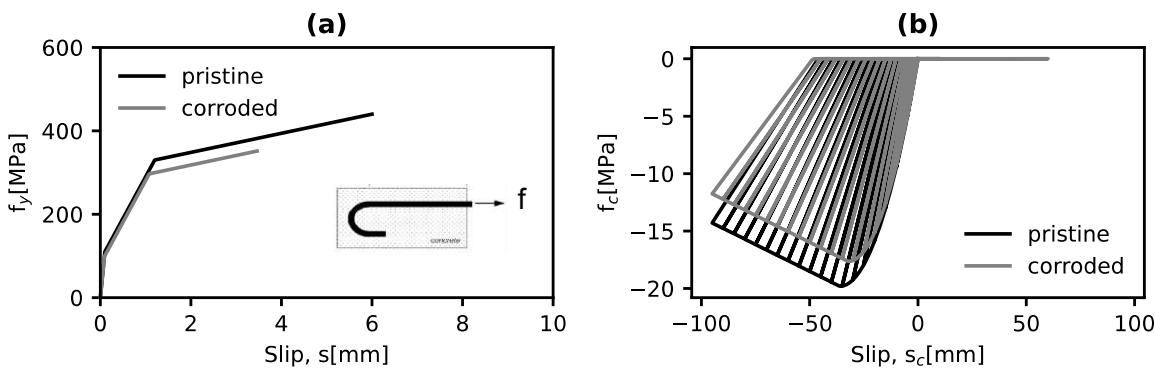
376

377 4.3 Bond-Slip Model

378 Based on the experimental results of [Fabbrocino et al. \(2005\)](#), a multilinear model approach
 379 for the bond-slip is herein adopted. Such an approach is modified according to the formulations
 380 given in [Eq. \(8\), \(9\) and \(10\)](#) to account for corrosion.

381 The envelope of the trilinear model, herein implemented through a hysteretic material, consists
 382 of (a) an initial branch where there is no stiffness loss and almost zero-slipage with a stress
 383 value equal to one-third the yielding stress of steel reinforcement, (b) yielding of steel rebars
 384 with an average slip taken from experimental tests and (c) complete loss of bond.

385 According to [Berry and Eberhard \(2008\)](#), bond-slip can be modelled with a zero-length section
 386 element; such a rotational spring includes the trilinear model ([Figure 9a](#)) introduced above for
 387 steel reinforcement and [Kent-Park \(1971\)](#) model (Concrete01 in Opensees [[McKenna \(2000\)](#)])
 388 for concrete. Unlike common stress-strain concrete constitutive models implemented for RC
 389 sections, the rotational spring includes a stress-slip relationship; specifically, concrete slip is
 390 computed multiplying the strain for an assumed depth over which the compressive strains act
 391 ([Figure 9b](#)).



392

393

394

Figure 9. Bond Slip Models: (a) Steel bars and (c) Concrete

395 **4.4 Shear model for RC columns**

396 There are primarily two different ways to model the shear failure that can be coupled to the
397 flexural response of RC cross-sections: (a) a section aggregator with a force-displacement
398 constitutive model and (b) an additional spring working in the perpendicular direction to the
399 element axis. Both lead to the same result and are based on the force-displacement model of
400 [Setzler and Sezen \(2008\)](#). In this study, the section aggregator has been used as it has the
401 specific advantage of reducing the number of nodes in the FE model.

402 The shear model of [Setzler and Sezen \(2008\)](#) consists of (a) maximum shear and corresponding
403 displacement, (b) onset of shear degradation and corresponding displacement and (c) shear at
404 the axial loading failure.

405 However, evaluating the shear response of uncorroded and corroded RC sections is highly
406 complex; in fact, there are many formulations for the shear strength of RC cross-sections in the
407 literature, but they mainly refer to pristine sections. Thus, using the same formulation for
408 corroded sections could lead to inaccurate results as they were built upon comprehensive
409 experimental campaigns of RC sections with un-corroded steel rebars.

410 Hence, the response surface of the modelling uncertainties is adopted as a surrogate model.
411 Such a surrogate model can combine adequately and reliably the soundness of a numerical
412 approach and the effectiveness of an analytical method. Particularly, the numerical approach is
413 built upon the modified compression field theory introduced by [Vecchio and Collins \(1986\)](#)
414 and uses the software Response 2000 ([Bentz, 2000](#)).

415 The shear strength depends primarily on three different contributions: (a) concrete, (b)
416 transverse rebars and (c) size aggregate. Yet, the size aggregate has a small influence on the
417 total shear, thus, only the categories (a) and (b) are considered in this study.

418

$$V = f(f_c, f_y A_v) \quad (14)$$

419
420 In Eq. (14) A_v is the steel area of transversal bars.

421 Using the probabilistic approach described in Section 3 and the random variables in Table 4,
422 Monte Carlo simulations are performed to apply the pitting corrosion on RC column cross-
423 sections. First of all, the random variables in Table 4 and Eq. (1) are used to generate the
424 mechanical and geometrical properties and, the time to corrosion initiation for the examined
425 RC section. Then, the values of x_0 and R are sampled from the lognormal and generalised
426 extreme value distributions depicted in Figures 2a and 2b, and employed in Eq. (3) for the time
427 to cracking initiation. The uniform and the lognormal distributions compute the severe cracking
428 and the cracking for the concrete spalling. Thus, both values are inserted into Eq. (2) for the
429 corresponding times.

430 The cracking widths and the corresponding times are therefore interpolated at 0, 25 and 50
431 years, respectively. At each time step (e.g., 0, 25 and 50 years), Eq. (4)-to-(7) calculate the
432 reduction of the area for steel reinforcing transverse and longitudinal bars, and Eq. (8)-to-(10)
433 define the reduction of the tensile stresses and the ultimate strain to characterise the constitutive
434 relationship of the steel bars. Eq. (11) describes, instead, the decrease in the compressive
435 strength of the concrete at each time interval. Gravity analyses (via Monte Carlo simulations)
436 are also performed to calculate the median values of the axial loadings (N) acting on the

437 examined pristione RC columns, which are assumed to be constant for the corroded RC frame.
 438 Once all parameters are defined, they can be employed in the software Response 2000
 439 (f_c, f_y, A_v) to calculate the corresponding shear and displacement of the examined RC cross-
 440 sections. Table 5 shows an example of a simulation for the 300x300mm and 350x350mm RC
 441 column cross-sections.

442
 443

Table 5. Numerical values for the shear capacity and corresponding displacement of RC columns

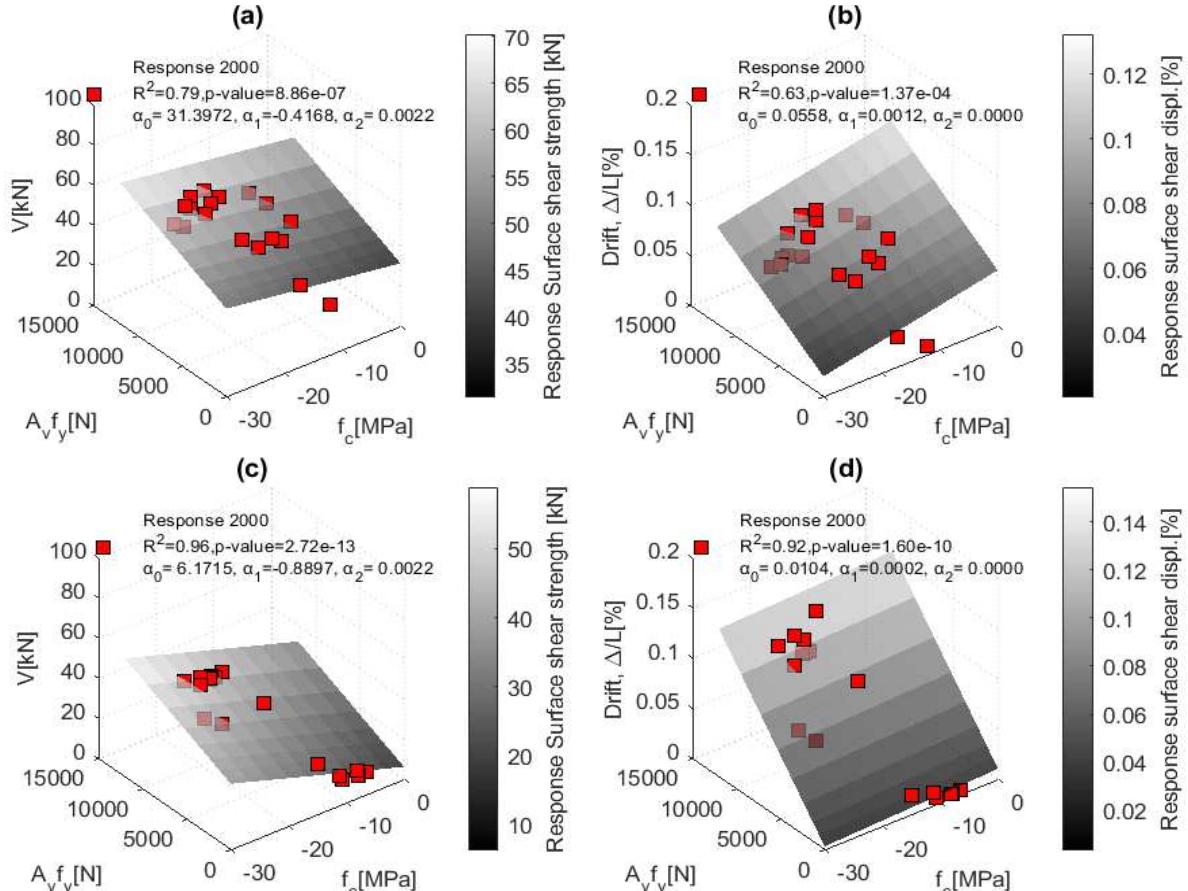
300x300mm RC Column						
Time[years]	f_c [MPa]	f_y [MPa]	A_v [mm ²]	N[kN]	V[kN]	Δ/L [%]
0	24.32	238.97	28.27	161	38.10	0.65
25	22.74	234.57	24.53	161	36.90	0.57
50	14.95	172.85	0.00	161	24.90	0.19
350x350mm RC Column						
Time[years]	f_c [MPa]	f_y [MPa]	A_v [mm ²]	N[kN]	V[kN]	Δ/L [%]
0	23.07	301.74	28.27	286	59.46	0.72
25	21.83	297.67	25.94	286	58.20	0.70
50	18.73	273.34	14.03	286	49.20	0.66

444
 445

The numerical values are then replaced by an analytical first-order polynomial formulation:

$$V = \alpha_0 + \alpha_1 f_c + \alpha_2 f_y A_v \quad (15)$$

446 The results of the response surface for the RC columns with squared section 350x350 mm and
 447 300x300 mm are shown in Figure 10.



448

449
 450
 451

Figure 10. Response Surface for Shear strength and Drift ratio of RC columns: (a-b) 350x350 mm and (c-d) 300x300 mm

452
453
454
455
456
457
458

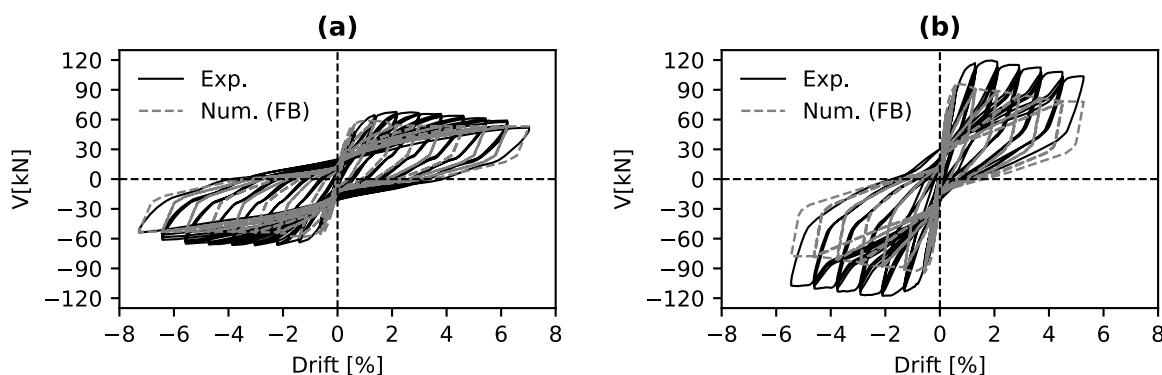
The response surface, through the function "regress" in MATLAB (["https://it.mathworks.com/help/stats/regress.html"](https://it.mathworks.com/help/stats/regress.html)), can analytically reproduce with good accuracy the maximum shear and its corresponding drift ratio. The analytical formulation can be implemented in the model and, shear strength and corresponding drift are calculated at each step of the Monte Carlo simulation.

459 **4.5 Response validation of RC columns under cycling loadings**

460 Since numerical methods include many uncertainties, they need to be validated and calibrated
461 against experimental results to reproduce accurate and reliable numerical outcomes [e.g.,
462 [Castaldo et al. \(2020\)](#)]

463 Experimental test results of RC columns under cycling loading are herein collected from [Di
464 [Ludovico et al. \(2013\)](#)] as a reference to validate the FE model illustrated above. They used
465 eight full-scale concrete columns (square and rectangular) reinforced with plain and deformed
466 rebars, and designed according to provisions and construction materials enforced for the time
467 span 1940-1970. The mean cylindrical compressive strength of the concrete was equal to
468 18.85MPa, and the yield and ultimate tensile strength of steel rebars were 330MPa and
469 445MPa, respectively. The slenderness ratio (L/d) for the inelastic buckling model was 12.5.
470 In this study, columns with plain rebars and two different geometrical configurations are
471 investigated: (a) rectangle column (300x500mm) with the strong axis perpendicular to the
472 cyclic loading and (c) rectangle column (500x300mm) with the strong axis parallel to the cyclic
473 loading.

474 The numerical validation is based on different FE model configurations: (a) one force-based
475 element over the whole height of the columns (FB), (b) one displacement-based element over
476 the whole height of the columns (DB1), (c) four displacement-based elements over the whole
477 height of the columns(DB4), (d) one displacement-based element with a length equal to the
478 width of the column cross-section plus an elastic element for the remaining part of the column
479 (DBb) and (e) one displacement-based element with a length equal to the height of the column
480 cross-section plus an elastic element for the remaining part of the column (DBh). All the FE
481 configurations include a zero-length section for the strain penetration and the section
482 aggregator accounting for potential shear failures.



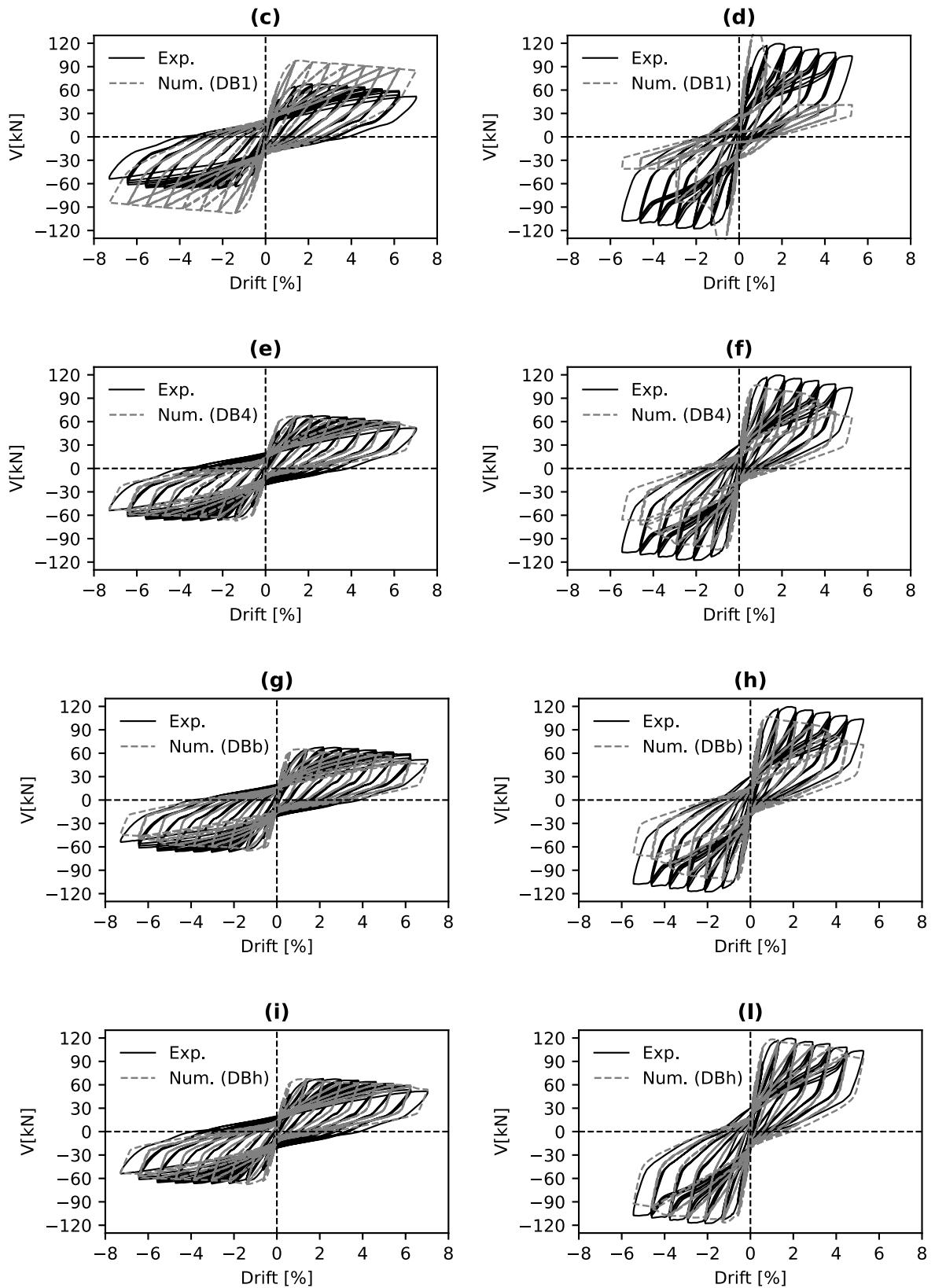


Figure 11. RC columns under cycling loading: (a)-(c)-(e)-(g)-(i) 300x500 and (b)-(d)-(f)-(h)-(l) 500x300 RC sections

486 The results of the numerical methods in [Figures 11](#) show that the FE model with one
 487 displacement-based element plus the elastic element can capture better the cyclic behaviour of
 488 RC columns with plain rebars with good accuracy, in terms of strength, ductility and energy
 489 dissipation. [Table 6](#) and [Table 7](#) summarises the comparisons between the experimental and
 490 numerical results.

491
 492 Table 6. Finite Element model vs experimental result comparisons (RC columns with cross-section 300x500mm)

Model	Peak (Positive) (kN)	Peak (Negative) (kN)	Error (%)
Experimental	67.7	-66.7	-
FB	58.8	-58.8	20.8
DB1	98.2	-98.2	51.2
DB4	66.8	-66.8	18.8
DBb	65.1	-64.9	22.7
DBh	67.4	-64.4	19.0

493
 494 Table 7. Finite Element model vs experimental result comparisons (RC columns with cross-section 500x300mm)

Model	Peak (Positive) (kN)	Peak (Negative) (kN)	Error (%)
Experimental	119.5	-117.7	-
FB	95.7	-94.3	25.0
DB1	139.8	-139.8	49.3
DB4	108.9	-106.3	19.7
DBb	107.1	-104.4	21.5
DBh	118.31	-116.7	14.8

495
 496 The error is computed as follows:

$$Error(\%) = \sqrt{\frac{\sum_i (V_{exp} - V_{num})^2}{\sum_i V_{exp}^2}} \quad (16)$$

497 In Eq. (16) V_{exp} and V_{num} are the shear from the experimental and numerical results,
 498 respectively.

500 5. Fragility Analysis

501 In this section, the fragility assessment of the testbed RC frame is conducted. Fragility curves
 502 are built upon nonlinear time history analyses using the Cloud Analysis and the Incremental
 503 Dynamic Analysis (IDA), and relate the vulnerability of a structure with the probability of
 504 exceeding a specified limit state [e.g., [Kwon and Elnashai \(2006\)](#)].

505 5.1 Ground Motion Selection

506 The Cloud analysis depends on nonlinear time history analyses of un-scaled records. To be
 507 consistent with the engineering demand parameter (EDP) chosen for the fragility assessment,
 508 the un-scaled records should cover a wide range of seismic intensity measures (IM). This
 509 observation is necessary to reduce the uncertainty in evaluating the logarithmic regression
 510 slope. To this end, at least 30-to-40% of un-scaled records should exceed the probability of the
 511 specified limit state. Conversely, the IDA involves nonlinear time histories analyses of scaled
 512 ground motions. Specifically, a ground motion record is applied to the structure and scaled up
 513 and down until reaching the imminent collapse; this latter coincides with the inter-storey drift
 514

ratio reaching the onset of a specific limit state. Usually, 8-to-12 scaling points should be enough to reach the desired performance and prevent excessive scaling which could affect ground motion features. The sets of ground motions presented in [FEMA P695 \(2009\)](#) are herein used for the fragility assessment of the sample RC frame. Such a set of records include fifty ground motions, which can be grouped as (a) twenty-five far-field (*FF*) motions, (b) fifteen near-field no-pulse motions (*NFNP*) and (c) thirteen near-field pulse-like (*NFPL*) motions. [Table 8](#) shows some details of the earthquake name, the station where it was recorded and the type of ground motions. Since this study deals with a two-dimensional FE model, only one horizontal as-recorded signal is collected from the [PEER-Database](#) corresponding to the maximum peak ground acceleration between the two horizontal components.

[Figure 12](#) illustrates the elastic response spectra (ERS) with damping equal to 5% of all unscaled ground motions, along with the percentile 16th, 50th and 84th.

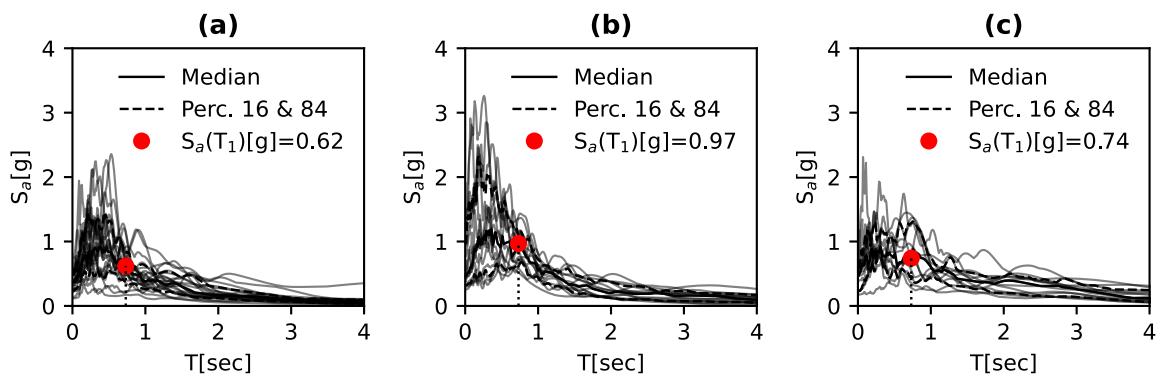


Figure 12. ERS: (a) Far-Field,(b) Near-Field and (c) Pulse-Like (Keynotes: Percentile – Perc.)

527
528

Table 8. Sets of Ground Motions (FEMA P695)

Record Number	Earthquake	Station	Type	Record Number	Earthquake	Station	Type
1	San Fernando	LA-Hollywood Stor FF	FF	26	Nahanni, Canada	Site 1	NFNP
2	Friuli	Tolmezzo	FF	27	Nahanni, Canada	Site 2	NFNP
3	Imperial Valley-06	Delta	FF	28	Loma Prieta	BRAN	NFNP
4	Imperial Valley-06	ElCentro Array #11	FF	29	Loma Prieta	Corralitos	NFNP
5	Superstition Hills-02	El Centro Imp. Co. Cent	FF	30	Erzican, Turkey	Erzican	NFNP
6	Superstition Hills-02	Poe Road	FF	31	Cape Mendocino	Cape Mendocino	NFNP
7	Loma Pieta	Capitola	FF	32	Northridge-01	LA-Sepulveda VA Hospital	NFNP
8	Loma Pieta	Gilroy Array #3	FF	33	Northridge-01	Northridge-17645 Saticoy St	NFNP
9	Cape Mendocino	Fortuna Blvd	FF	34	Kocaeli, Turkey	Yarimca	NFNP
10	Landers	Coolwater	FF	35	Chi-Chi, Taiwan	TCU067	NFNP
11	Landers	Yermo Fire Station	FF	36	Chi-Chi, Taiwan	TCU084	NFNP
12	Northridge-01	Beverly Hills-Mulhol	FF	37	Denali, Alaska	TAPS Pump Station #10	NFNP
13	Northridge-01	C. Country-W Lost Cany	FF	38	Imperial Valley-06	El Centro Array #6	NFPL
14	Kobe, Japan	Nishi-Akashi	FF	39	Imperial Valley-06	El Centro Array #7	NFPL
15	Kobe, Japan	Shin-Osaka	FF	40	Irpinia, Italy	Sturno (STN)	NFPL
16	Kocaeli, Turkey	Arcelik	FF	41	Superstition Hills-02	Parachute Test Site	NFPL
17	Kocaeli, Turkey	Duzce	FF	42	Loma Prieta	Saratoga - Aloha Ave	NFPL
18	Chi-Chi, Taiwan	CHY101	FF	43	Cape Mendocino	Petrolia	NFPL
19	Chi-Chi, Taiwan	TCU045	FF	44	Landers	Lucerne	NFPL
20	Duzce, Turkey	Bolu	FF	45	Northridge-01	Rinaldi Receiving Sta	NFPL
21	Manjil, Iran	Abbar	FF	46	Northridge-01	Sylmar-Olive View Med FF	NFPL
22	Hector Mine	Hector	FF	47	Kocaeli, Turkey	Izmit	NFPL
23	Gazli, USSR	Karakyr	NFNP	48	Chi-Chi, Taiwan	TCU065	NFPL
24	Imperial Valley-06	Bonds Corner	NFNP	49	Chi-Chi, Taiwan	TCU102	NFPL
25	Imperial Valley-06	Chihuahua	NFNP	50	Duzce, Turkey	Duzce	NFPL

531 The first natural period of the RC sample building (0.72sec) falls to the right of spectral
 532 acceleration peaks for far-fields, while close to the peaks for near-field and pulse-like motions.
 533 It can be noted that the median values for near-field and pulse-like motions produce greater
 534 acceleration responses than far-fields.

535

536 **5.2 Limit states**

537 Due to the lack of time-dependent performance demand parameters in technical standards, the
 538 limit states (LS) are herein calculated by running nonlinear static analyses with different lateral
 539 loading configurations [EN8 – Part 3 (2005)] and various corrosion conditions. Performance
 540 points are defined according to Di Sarno and Pugliese (2020) for each LS (limited Damage –
 541 DL, Severe Damage – DS, Near-Collapse – NC); such values determine a set of points on the
 542 capacity curve, from which the ones that produce the smallest are collected. The LSs are the
 543 structural capacity that refers herein as maximum inter-story drift ratios (IDR).

544 The median values across one-thousand Monte Carlo simulations for all LSs and for each time
 545 step (0,25 and 50 years) are illustrated in Table 9.

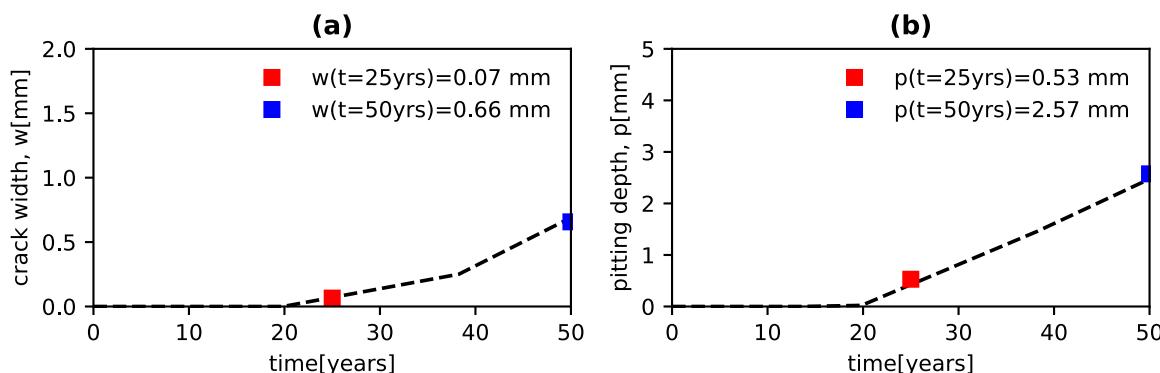
546

547 Table 9. Limit states over time.

Time [years]	DL [%]	DS [%]	NC [%]
0	0.80	1.62	2.75
25	0.72	1.31	2.53
50	0.57	1.10	1.89

548

549 The decrease of the LSs in Table 9 agrees with the occurrence time of each corrosion phase.
 550 The last observation can be found running the deterioration modelling described in Section 3
 551 across 50,000 Monte Carlo simulations and computing the median values for crack width (w)
 552 and pitting depth (p) (Figures 13a and 13b).



553

554 Figure 13. (a) cracking width and (b) pitting depth over time

555

556 The crack width and pitting depth values are rather small at 25 years; conversely, the building
 557 appears to be suffering significant and very high damage at 50 years.

558

559 **5.3 Fragility curves based on Cloud and IDA**

560

561 The maximum inter-story drift ratio (IDR) from each nonlinear dynamic analysis is divided by
 562 a specified limit state LS in Table 9 to determine the demand-to-capacity ratios ($DC_{LS,i} =$
 IDR_i/LS_i). DC_{LS} is used as the structural performance variable herein. It has been shown that

563 its use facilitates the determination of the onset of a specified limit state (when $DC_{LS} = 1$, the
 564 onset of the LS is reached, [Jalayer et al. \(2007\)](#)).

565 For the Cloud-based fragility, the pairs of the spectral acceleration at the first natural period of
 566 the RC structure $S_a(T_1)_i$ and $DC_{LS,i}$ for each ground motion are interpolated using a power-law
 567 relationship that becomes a linear regression in light of a logarithmic homoscedastic model
 568 (constant variance). Such a linear regression (in log scale) determines the conditional median
 569 ($\eta_{DC_{LS}|S_a(T_1)}$) of DC_{LS} for a given level of the $S_a(T_1)$.

$$\ln \eta_{DC_{LS}|S_a(T_1)} = \ln a_1 + a_2 \ln S_a(T_1) \quad (17)$$

570 where a_1 and a_2 are the regression parameters. The conditional logarithmic standard deviation
 571 $\beta_{DC_{LS}|S_a(T_1)}$ given $S_a(T_1)$ can be calculated as:

$$\beta_{DC_{LS}|S_a(T_1)} = \sqrt{\frac{\sum_{i=1}^n (\ln DC_{LS,i} - \ln \eta_{DC_{LS}|S_a(T_1)_i})^2}{N - 2}} \quad (18)$$

572 The structural fragility is then evaluated assuming a lognormal distribution as follows:

$$P(DC_{LS} > 1|S_a(T_1)) = \Phi\left(\frac{\ln \eta_{DC_{LS}|S_a(T_1)}}{\beta_{DC_{LS}|S_a(T_1)}}\right) \quad (19)$$

573 where Φ is the normal standard distribution.

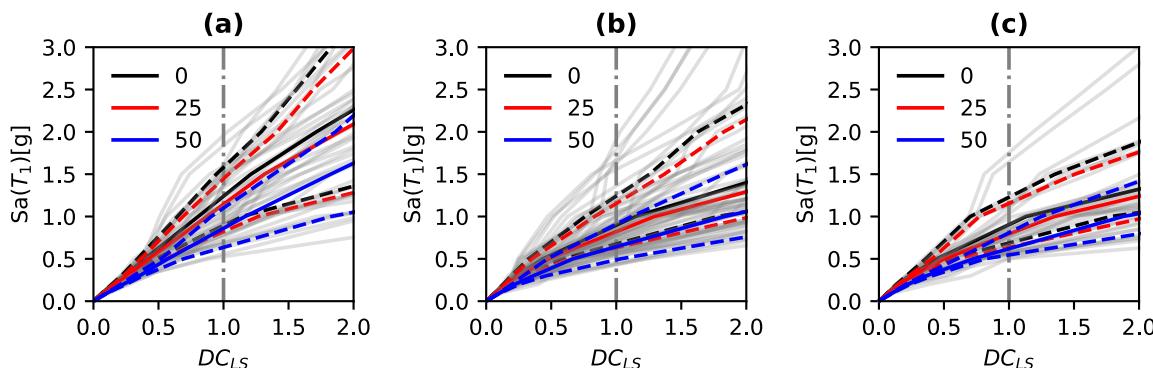
574 As for IDA, the fragility curves can be defined as the cumulative distribution of the $S_a(T_1)_i$
 575 that attain the specified LS. The best-fitting is expressed as:

$$P(DC_{LS} > 1|S_a(T_1)) = \Phi\left(\frac{\ln S_a(T_1) - \ln \eta_{DC_{LS}|S_a(T_1)}}{\beta_{DC_{LS}|S_a(T_1)}}\right) \quad (20)$$

576 Unlike the probability of failure defined for the Cloud analysis in Eq. (17), $\eta_{DC_{LS}|S_a(T_1)}$ and
 577 $\beta_{DC_{LS}|S_a(T_1)}$ Eq. (18) represents the median and standard deviation of the $S_a(T_1)$ defined by
 578 each ground motion record that reaches the onset of the LS, respectively.

580 5.4 Discussion and Comparisons

581 The IDA was performed using the NFN, FF and NFPL earthquake records and considering
 582 all the LSs. For the sake of clarity, only the limit state of NC is plotted in [Figure 14](#), while
 583 [Table 10](#) and [Table 11](#) illustrates the median and the logarithmic standard deviation values for
 584 each LS. The light grey lines in [Figure 14](#) represent the IDA curves acquired for each ground
 585 motion record, while black, red and blue lines describe the percentile 16th, 50th and 84th for the
 586 whole set of motions at 0, 25 and 50 years, respectively.



587
 588 Figure 14. IDA curves: (a) NFN, (b) FF and (c) NFPL. (Keynote: straight-line percentile 50, dashed lines
 589 percentile 16 and 84)

590

591 Table 10. Median values ($\eta_{DC_{LS}|IM}$) from IDA curves for each given LS

Limit State	NFNP			FF			NFPL		
	$t = 0$	$t = 25$	$t = 50$	$t = 0$	$t = 25$	$t = 50$	$t = 0$	$t = 25$	$t = 50$
Limited Damage (DL)	0.37	0.33	0.26	0.36	0.32	0.26	0.35	0.32	0.26
Severe Damage (DS)	0.74	0.60	0.51	0.61	0.523	0.44	0.60	0.51	0.42
Near Collapse (NC)	1.23	1.14	0.86	0.89	0.82	0.64	0.90	0.80	0.62

592

593 Table 11. Logarithmic Standard deviation values ($\beta_{DC_{LS}|IM}$) from IDA curves for each given LS

Limit State	NFNP			FF			NFPL		
	$t = 0$	$t = 25$	$t = 50$	$t = 0$	$t = 25$	$t = 50$	$t = 0$	$t = 25$	$t = 50$
Limited Damage (DL)	0.10	0.10	0.10	0.22	0.22	0.19	0.15	0.14	0.13
Severe Damage (DS)	0.22	0.18	0.15	0.29	0.27	0.25	0.23	0.22	0.20
Near Collapse (NC)	0.29	0.28	0.26	0.34	0.33	0.29	0.30	0.30	0.22

594

595 According to [Figure 14](#) and [Table 10](#), corrosion has significant effects on the seismic
 596 performance of the testbed building as the median values are decreasing over time. Moreover,
 597 the seismic performance reduction is fully compliant with the increase of the crack width and
 598 pitting depth over the structure lifetime ([Figure 13](#)). The results illustrate a decrease in the
 599 median values by 9% at 25 years and almost 30% at 50 years, which tend to fluctuate a bit for
 600 the various limit states. Similarly, the logarithmic standard deviation values are slightly
 601 decreasing with the increase of the corrosion rate for each limit state.

602 [Figure 15](#) plots the regression analysis for the LS of NC in the logarithmic scale of the cloud
 603 data based on unscaled ground motion records at 0, 25 and 50 years. Finally, [Table 12](#) and
 604 [Table 13](#) show the values of median and standard deviation of the IMs obtained for each given
 605 LS.

606

607 Table 12. Median values ($\eta_{DC_{LS}|IM}$) from Cloud data for each given LS

Limit State	NFNP			FF			NFPL		
	$t = 0$	$t = 25$	$t = 50$	$t = 0$	$t = 25$	$t = 50$	$t = 0$	$t = 25$	$t = 50$
Limited Damage (LD)	0.16	0.12	0.06	0.31	0.27	0.20	0.29	0.25	0.17
Severe Damage (DS)	0.62	0.39	0.24	0.66	0.51	0.40	0.59	0.46	0.42
Near Collapse (NC)	1.69	1.43	0.76	1.16	1.05	0.73	1.03	0.93	0.63

608

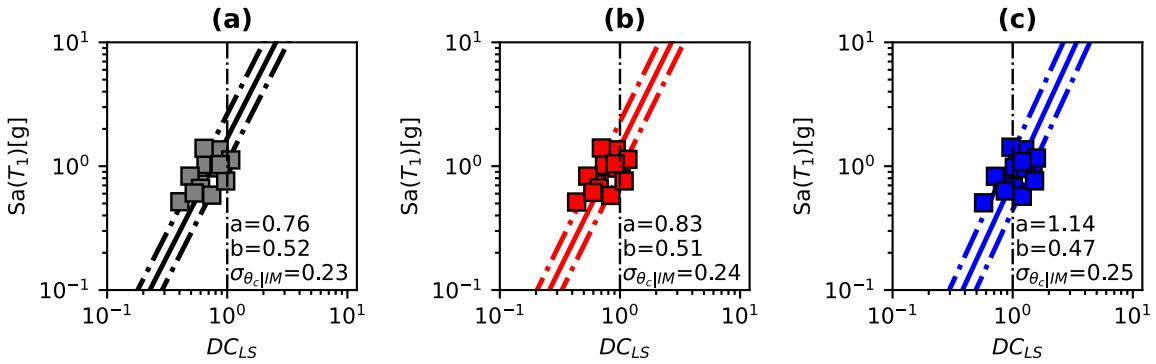
609 Table 13. Logarithmic Standard deviation values ($\beta_{DC_{LS}|IM}$) from Cloud data curves for each given LS

Limit State	NFNP			FF			NFPL		
	$t = 0$	$t = 25$	$t = 50$	$t = 0$	$t = 25$	$t = 50$	$t = 0$	$t = 25$	$t = 50$
Limited Damage (LD)	0.23	0.24	0.25	0.33	0.33	0.33	0.33	0.33	0.30
Severe Damage (DS)	0.23	0.24	0.25	0.33	0.33	0.33	0.33	0.33	0.30
Near Collapse (NC)	0.23	0.24	0.25	0.33	0.33	0.33	0.33	0.33	0.30

610

611 As a matter of comparisons with IDA features, the median values of the cloud analysis
 612 determine the same effects on the structural seismic performance over time, that is, a slight
 613 reduction at 25 years and a more significant decrease at 50 years, while the standard deviations

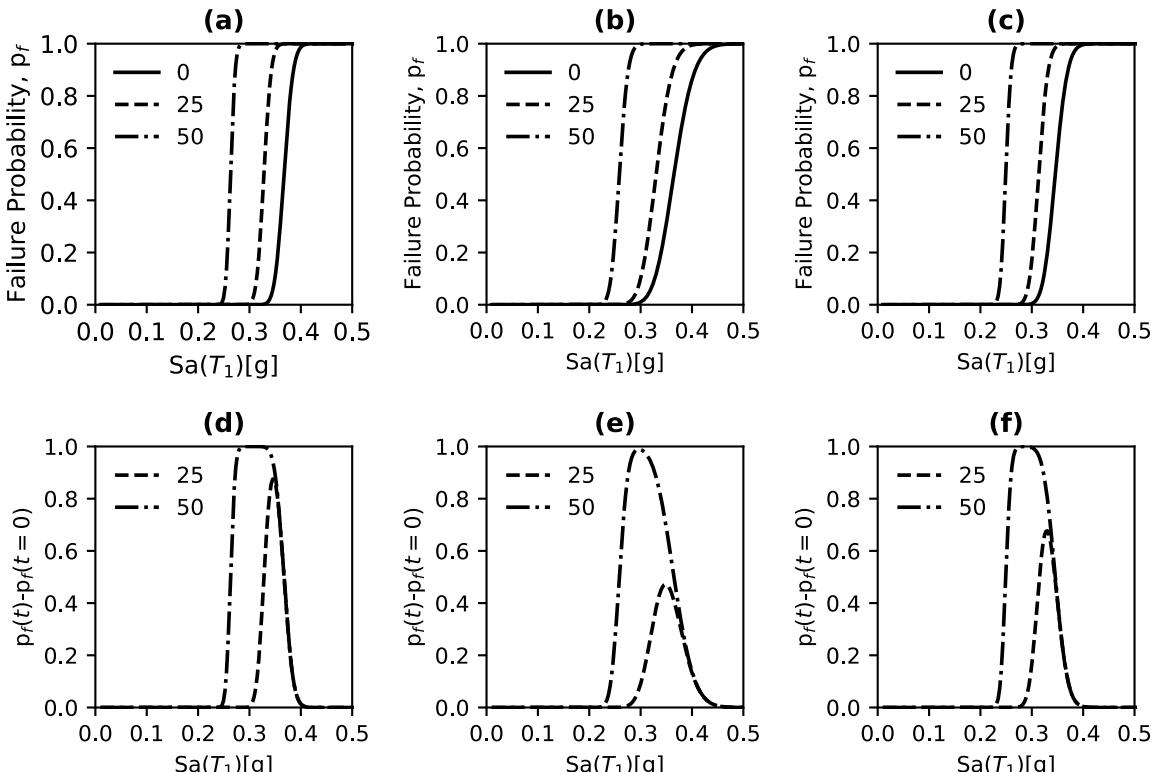
614 are slightly increasing over time and remain constant regardless of the limit state. Unlike the
 615 IDAs, the cloud analysis shows that NFNPs and NFPLs are more destructive than FFs.
 616 NFNPs shows the highest reduction in terms of seismic performance as the decrease is around
 617 26% at 25 years and more than 60% at 50 years. On the other hand, NFPLs and FFs determine
 618 lesser reduction, between 15% and 40%, at 25 and 50 years, respectively.



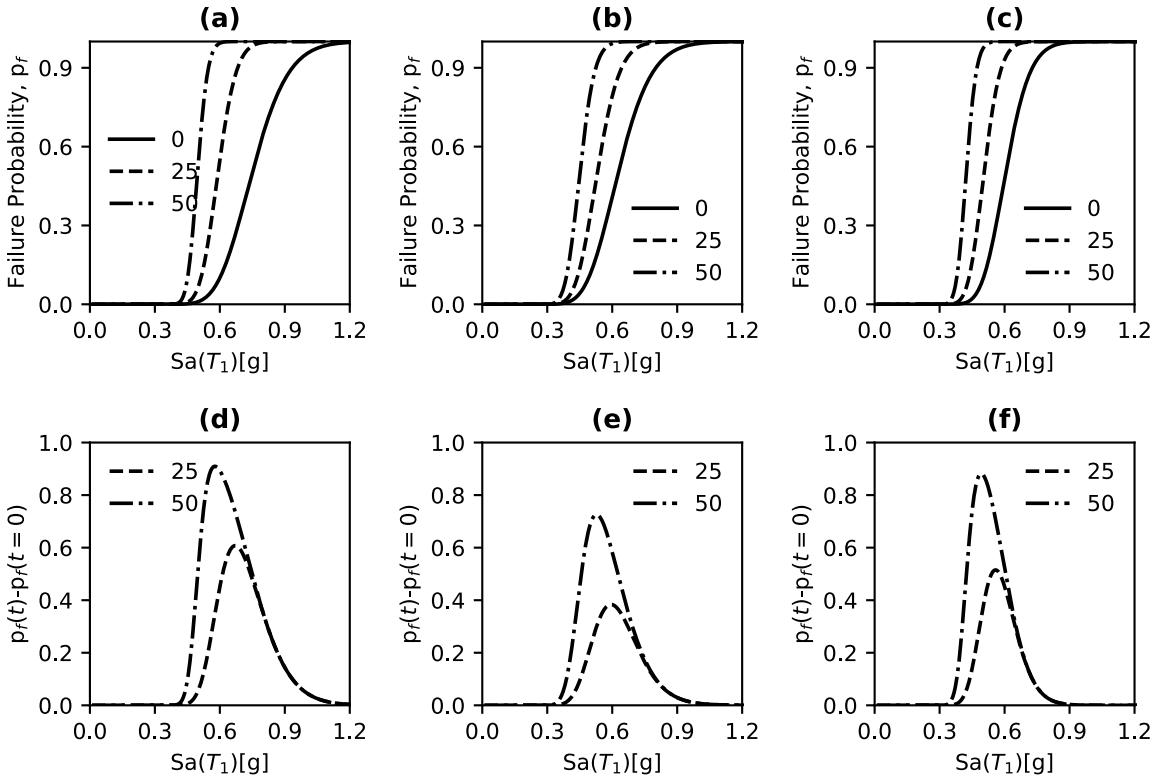
619
 620 Figure 15. Cloud Analysis for near-fields for the limit state NC. (a) $t = 0$ years, (b) $t = 25$ years and (c) $t = 50$
 621 years
 622

623 5.4.1 IDA Fragility Curves

624 Figures 16, 17 and 18 show the fragility curves calculated for all the LSs. Moreover, the failure
 625 probability difference (t refers to as a general time, e.g., $t = 25, 50$ years, while $t = 0$ refers
 626 to the pristine structure at the time of construction), using the pristine condition as a benchmark,
 627 is also provided. This latter gives relevant indications, compared with the pristine structural
 628 condition, on the increase in the failure probability of the RC case-study frame subjected to the
 629 corrosion effects.

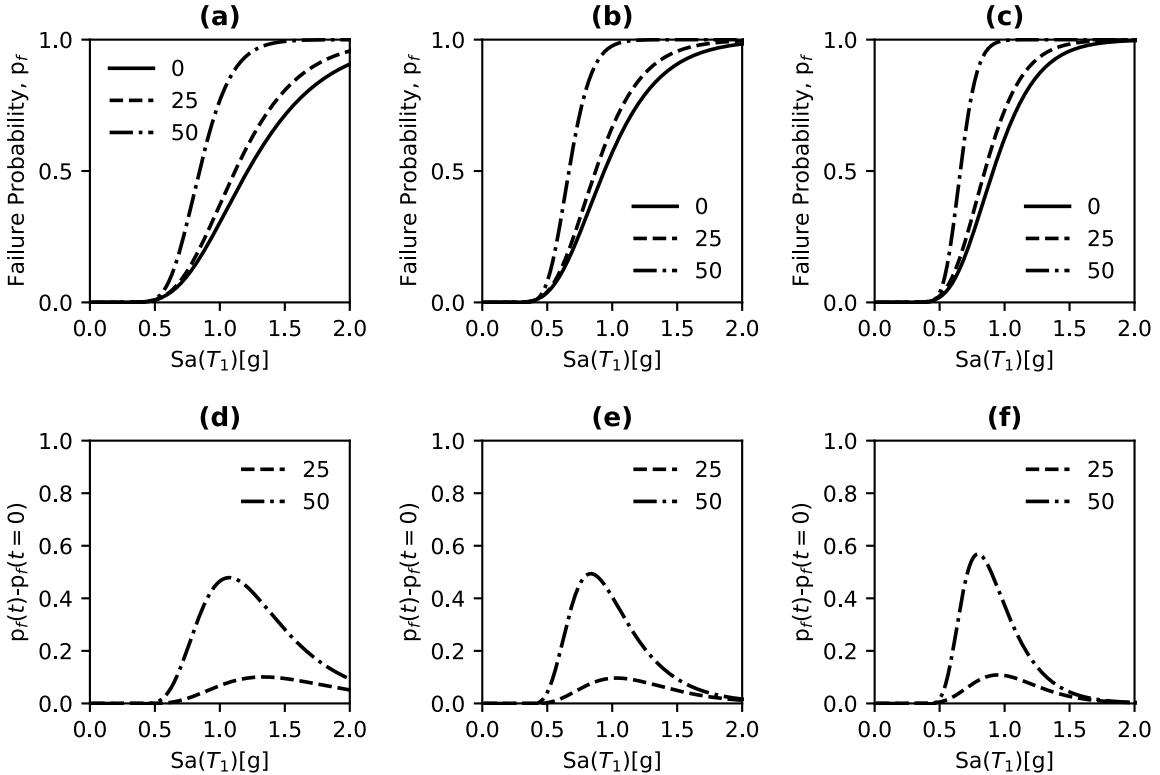


630
 631 Figure 16. Fragility curves and their difference for the LS of DL. (a-d) NFNPs, (e-f) FF and (c-f) NFPL



632
633

Figure 17. Fragility curves and their difference for the LS of DS. (a-d) NFNP, (b-e) FF and (c-f) NFPL



634
635
636

Figure 18. Fragility curves and their difference for the LS of NC. (a-d) NFNP, (b-e) FF and (c-f) NFPL

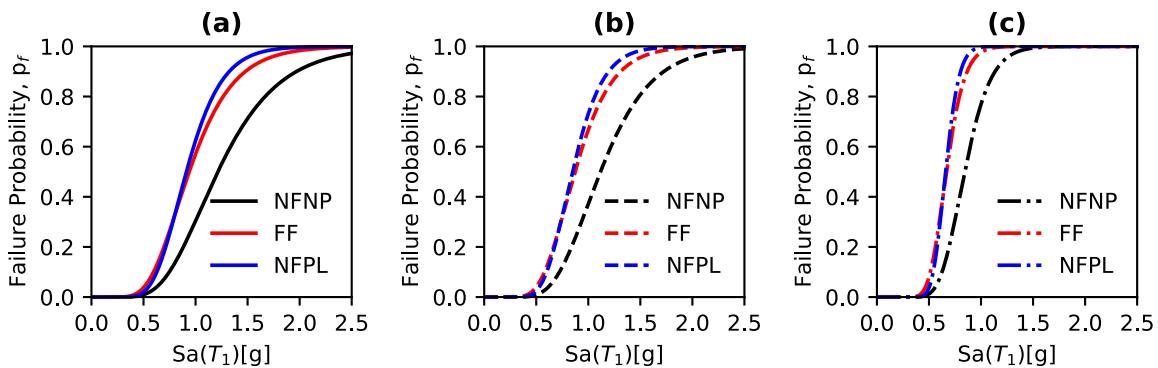
637 The fragility curves have been derived, as previously mentioned, using the spectral acceleration
638 at the first natural period of the structure, $S_a(T_1)$, and critical damping of 5%. It is worth

639 noticing that corrosion does affect the elastic properties of the structure; as a result, modal
 640 analyses were performed at each specified time interval to calculate the first natural frequency
 641 of the testbed building.

642 As it is expected, highly corrosive environments have a significant impact on the seismic
 643 vulnerability of the RC frame over time. Specifically, the limit state of DL presents the highest
 644 difference in the failure probability in comparison with the other LSs. This observation can be
 645 found in the effect of corrosion on the initial stiffness of the structure. Since DL occurs almost
 646 in the elastic region, the structural damage due to non-uniform corrosion is more relevant for
 647 NFNP and NFPL than FF ground motions. This latter seems to be following the results
 648 produced by the spectral acceleration at the first natural period on the median elastic spectrum
 649 of the fifty signal records (Figure 12). The plateau in Figures 16d and 16e for NFNPs and
 650 NFPLs determine 100% of reaching the limit state in an interval between 0.3g and 0.4g;
 651 conversely, there is no plateau for FFs, which attain the specified LS at 0.3g. At 25 years,
 652 NFNPs reduce the seismic vulnerability by almost 90%, while 45% and 62% for FFs and
 653 NFPLs, respectively.

654 The limit state of DS produces lower failure probabilities compared to DL as characterized by
 655 higher IDRs, yet exhibiting a very similar trend to DL in terms of failure probability
 656 differences; particularly, the structure subjected to NFNPs experiences the highest damage due
 657 to corrosion with a decrease by 63% and 90% at 25 and 50 years, respectively. Instead, FFs
 658 and NFPLs exhibited a maximum reduction of the seismic vulnerability equal to 39% and 52%
 659 at 25 years, and 73% and 87% at 50 years.

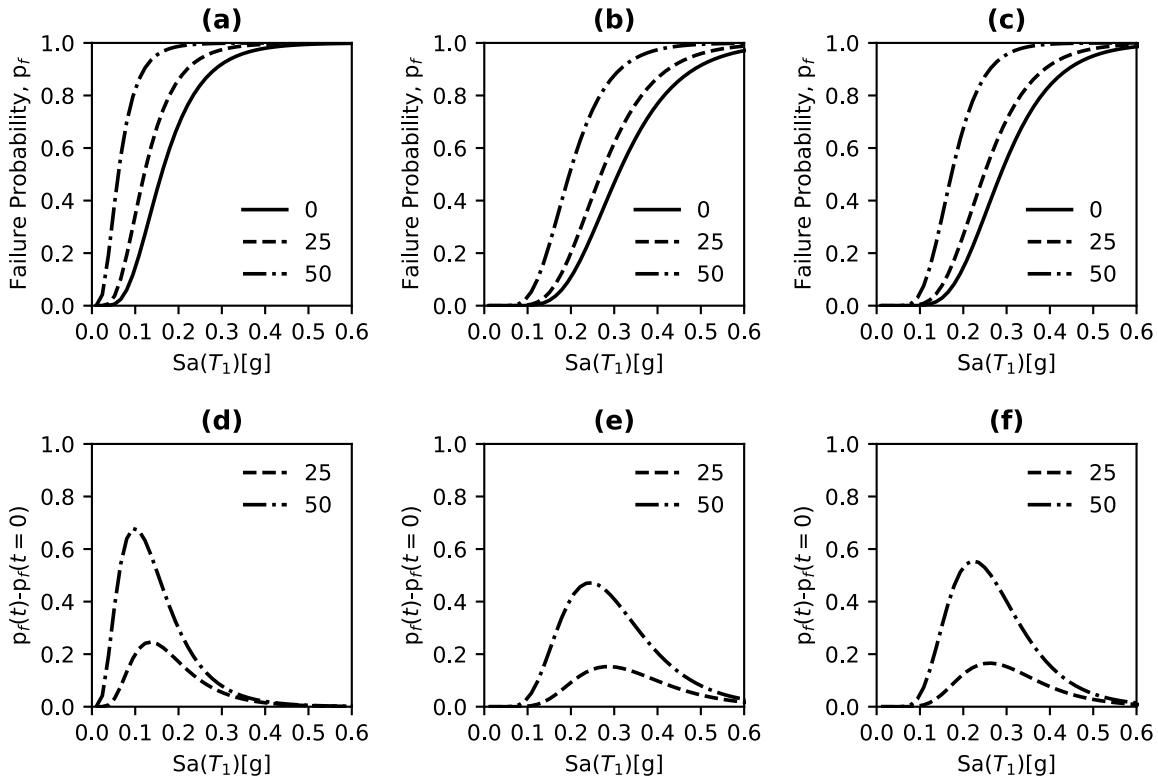
660 The results of the fragility analysis for the limit state of NC suggests that NFPL ground motions
 661 have a larger influence on the failure probability of the RC frame, compared to FFs and NFNPs.
 662 The last observation can be found in the $S_a(T_1)$ values that imply imminent collapse (intended
 663 here as the attainment of the specified limit state), which are 0.9g, 1.1g and 1.5g for NFPLs,
 664 FFs and NFNPs, respectively. In contrast with FFs and NFNPs, NFPL earthquake excitations
 665 induce a more relevant decrease in the structural vulnerability when corrosion occurs; the
 666 difference in the failure probability is equal to 59% for NFPLs, while 55% and 50% for FFs
 667 and NFNPs at 50 years. The outcomes in Figures 16, 17 and 18 and those presented in Table 6
 668 reveal that NFPLs are the most destructive earthquakes for such a type of RC structure. On the
 669 contrary, the building seems to be more vulnerable to FFs than NFNPs. These observations
 670 indicate that often the information obtained from the elastic response spectrum do not reflect
 671 the nonlinear behaviour of the structure subjected to scaled natural records; thus, such
 672 information should be taken cautiously (Figure 19).



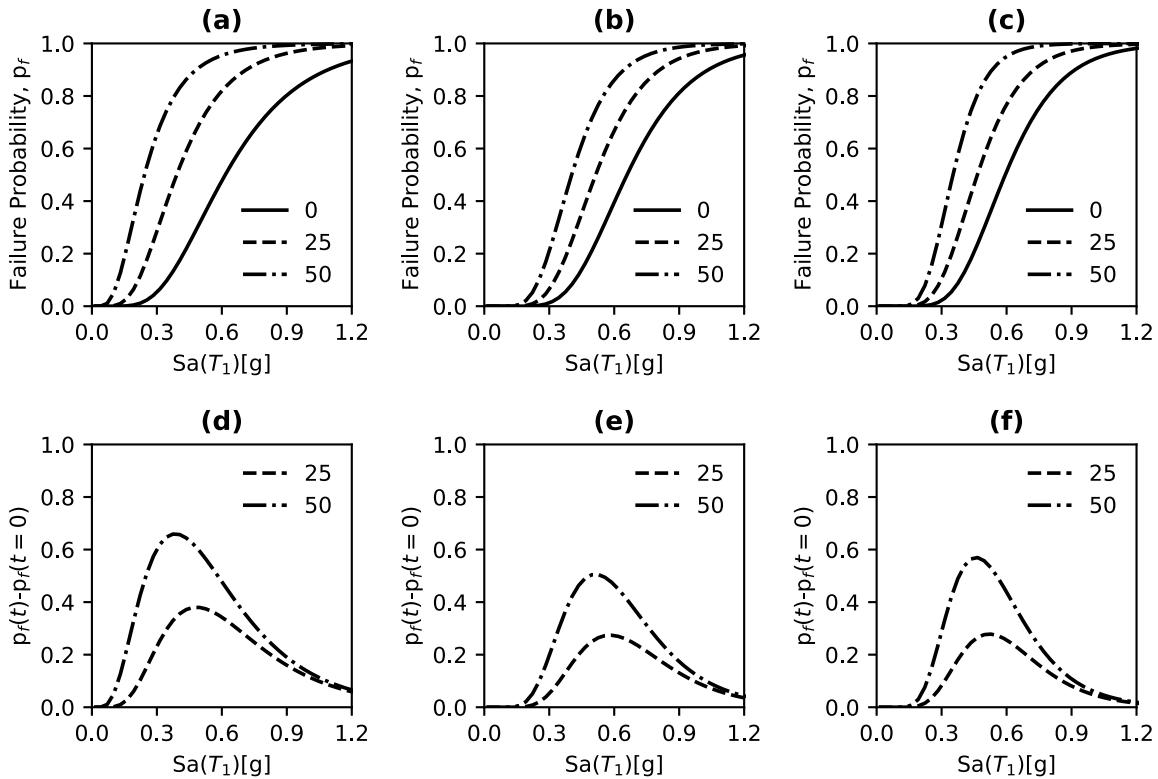
673
 674 Figure 19. Comparison of IDA fragility curves for NFNP, FF and NFPL. (a) t=0, (b) t=25 and (c) t=50 years

675 **5.4.2 Cloud Fragility Curves**

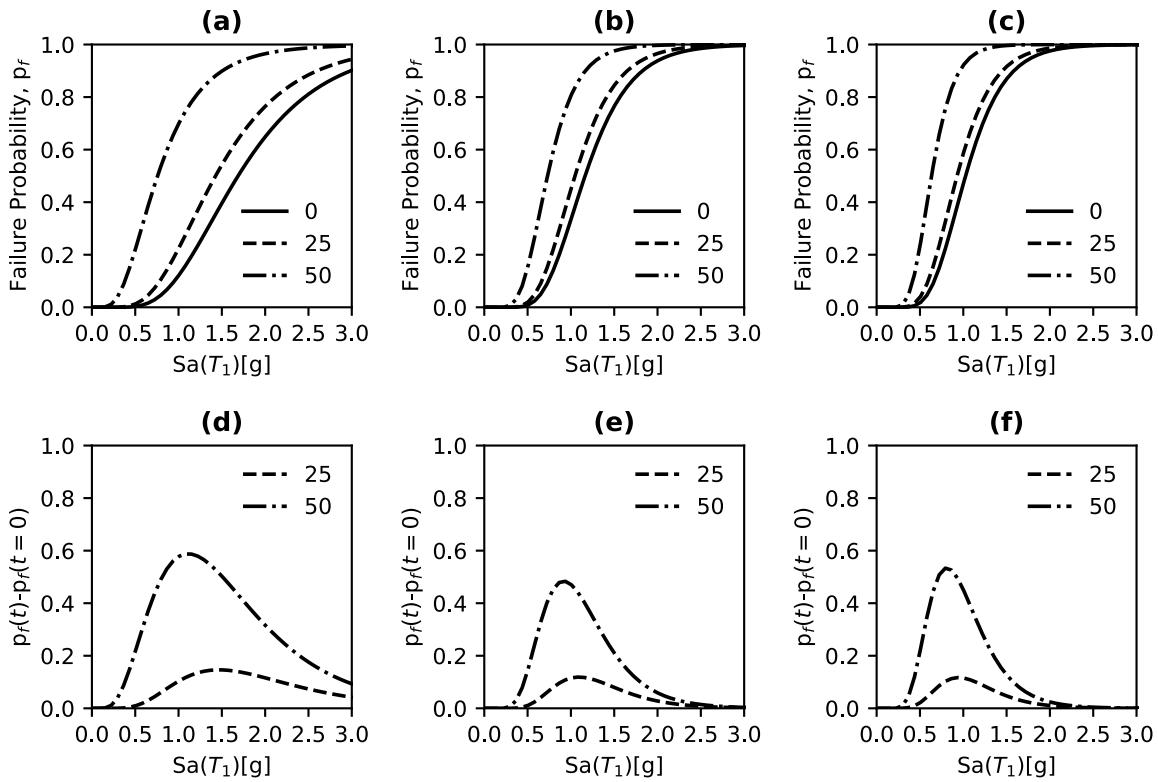
676 Figures 20, 21 and 22 show the results of the fragility assessment of the sample building using
 677 the Cloud data for each LS.



678
 679 Figure 20. Fragility curves and their difference for the LS of DL. (a-d) NFNP, (b-e) FF and (c-f) NFPL



680
 681 Figure 21. Fragility curves and their difference for the LS of DS. (a-d) NFNP, (b-e) FF and (c-f) NFPL



682
683 Figure 22.Fragility curves and their difference for the LS of NC. (a-d) NFNP, (b-e) FF and (c-f) NFPL
684

685 As for the IDAs, the cloud-based fragility curves determine a significant decrease in the seismic
686 performance of the structure over time, regardless of the considered limit state.

687 According to the results in Figure 20, the limit state of DL shows that NFNPs are more
688 destructive than FFs and NFPLs. Such observation agrees with the elastic response spectrum
689 median values presented in Figure 12. The reduction in the seismic vulnerability is equal to
690 22% for NFNPs, while 16% both for FFs and NFPLs at 25 years. On the other hand,
691 the RC frame experience a decrease of 67% for NFNPs, 47% for FFs and 58% for NFPLs at
692 50 years. The maximum failure probability (equal to 100%) is reached at 0.2g for NFNPs,
693 0.38g for NFPLs and 0.5 for FFs at a lifetime of 50 years.

694 The results for the limit state of DS illustrates similar trends in comparison with DL. The
695 structure suffers more significant damage when subjected to NFNPs and NFPLs motions. The
696 latter observation can also be found when corrosion occurs; specifically, the seismic
697 performance decreases by 65% at 50 years, in contrast with 52% and 59% for FF and NFPL
698 motions at 50 years. The imminent collapse, referred to a failure probability of 100% for the
699 limit state of SD, is achieved at 0.85g, 0.95g and 0.82g for NFNPs, FFs and NFPLs,
700 respectively.

701 In contrast with DL and DS, the limit state of NC shows different results in the fragility curves.
702 The structure experiences more damage and deterioration when subjected to FFs and NFPLs
703 than NFNPs. The values of $S_a(T_1)$ at 50 years and for a failure probability of 50% are 1.03g,
704 1.16g and 1.68g for NFPL, FF and NFNPs ground motions, which indicate the strong effects of
705 the first two sets of earthquakes on the sample building. However, the difference in the failure
706 probability implies that NFNPs ground motions have more relevant effects on the global seismic

707 performance of the building when subjected to corrosion. In particular, there is a decrease by
708 60% compared to 50% and 54% for FFs and NFPLs. Such a reduction becomes quite similar
709 at a lifetime of 25 years, that is, around 15-to-20%.

710

711 **6. Conclusions**

712 This paper investigates the seismic performance of a typical four-storey RC frame with plain
713 rebars designed in the 1960s-1970s exposed to chloride-induced corrosion and subjected to
714 near-field and far-field earthquakes. A three-fold probabilistic approach is used to simulate the
715 corrosion phases including cracking initiation, severe cracking and spalling of the concrete
716 cover. The finite element model accounts for complex phenomena such as the bond between
717 concrete and steel bars, shear failure of RC columns and inelastic buckling of steel
718 reinforcement bars. From the comprehensive numerical study, the following conclusions can
719 be drawn:

720

- 721 - The threefold probabilistic approach is deemed accurate to simulate the corrosion stages
722 in RC members. Specifically, the lognormal distribution, based on a homoscedastic
723 model, for the cracking initiation seems to accurately predict the crack width in the
724 early stage of corrosion. Severe cracking is simulated through a uniform distribution to
725 account for the uncertainties stated in technical codes. The experimental results for the
726 crack width inducing cover spalling can be modelled by a lognormal distribution. The
727 latter adds a relevant step in evaluating the time to the spalling of the concrete cover
728 and its consequence to the seismic performance of RC structures;
- 729 - The surrogate model for the shear strength of corroded RC components, based on the
730 modified compressive field theory, showed that such a methodology can be used to
731 predict the maximum shear and its corresponding drift ratio; besides, it also has
732 relevance to be utilized as a practical analytical tool;
- 733 - The proposed finite element model of RC members under cycling can accurately predict
734 the experimental response of typical RC columns designed according to previous low-
735 seismic oriented technical standards. Such a model includes a trilinear model for
736 simulating the bonding in the beam-column joints and the post-elastic response of steel
737 reinforcement due to the inelastic buckling. It is demonstrated that the use of a
738 displacement-based element with a length equal to the maximum of the RC cross-
739 section geometrical dimensions can simulate both strength and ductility;
- 740 - The response of the seismic fragility of RC structure cannot be predicted based on the
741 overall information given by the elastic properties of the ground motions (i.e., the
742 elastic response spectrum). The behaviour of the structure to earthquake excitation is
743 largely affected by the scaling involved in the IDA. Only for high-scaling whereas the
744 structure mainly responds into the elastic region, the fragility curves seems to agree
745 with the overall information obtained by the elastic response spectra.
- 746 - Corrosion has significant effects on the seismic performance of RC buildings over time,
747 both IDA-based and Cloud-based.
- 748 - According to the fragility analysis through the IDA, the NFPLs are more destructive
749 than FFs and NFPLs. The limit states of LD presented the highest failure probability
750 difference. Specifically, there was a seismic performance reduction equal to 100%

751 between 0.3g and 0.4g for NFNPs and NFPLs, while 0.3g for FFs. Similar trends were
752 obtained for the limit state of DS. Particularly, NFNPs exhibited an increase in the
753 seismic vulnerability by 63% and 90% at 25 and 50 years, while to 39% and 52% at 25
754 years, and 73% and 87% at 50 years for FFs and NFPLs, respectively.

755 Conversely, NFPLs seems to be more destructive for the limit state of NC, exhibiting
756 an imminent collapse at 0.9g, while 1.1 and 1.5g for FF and NFNPs ground motions.
757 The comparison of the fragility curves (IDA-based) illustrates that the sample building
758 was, in general, more vulnerable to NFPLs than FFs and NFNPs.

- 759 - In comparison with IDA-based fragility, the Cloud-based fragility curves for the limit
760 states of DL and DS show lower reductions in the seismic performance of the building.
761 For instance, NFNPs motions determined a decrease by 22% and 67% at 25 and 50 years,
762 while 16% and 47% for FFs, considering the limit state of DL; such a reduction was
763 observed to be more than 50% for all the motion records for the limit state of DS.
764 Instead, the limit state of NC showed that the structure exhibited more damage and
765 deterioration when subjected to NFPLs and FFs. Specifically, the imminent collapse
766 related to the attainment of the specified limit state was reached much earlier for NFPL
767 and FF (1.3g and 1.7g, respectively) motions than NFNPs earthquakes (2.5g); This study
768 indicates that future studies should investigate the effects of corrosion on the inelastic
769 buckling and bond strength of smooth rebars;
- 770 - Further experimental studies should be conducted on the effects of corrosion on the
771 bond strength and the inelastic buckling of smooth rebars.

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

795 **Acknowledgements**

796 The first author is supported by the EPSRC and ESRC Centre for Doctoral Training on Quantification and
797 Management of Risk and Uncertainty in Complex Systems Environments Grant No. (EP/L015927/1). Moreover,
798 the authors would like to kindly mention that the data of the RC columns with plain rebars under cyclic loading
799 were collected from the experimental work developed by Professor Di Ludovico and co-workers within the
800 research activities of the Laboratories University Network of Seismic Engineering - ReLUIIS (Research Line 8)
801 funded by the Italian Department of Civil Protection - Executive Project 2010–2013.

802 **References**

804 Abou-Zeid, M., Fowler, D. W., Nawy, E. G., Allen, J. H., Halvorsen, G. T., Poston, R. W., . . . others. (2001).
805 Control of cracking in concrete structures. *Report, ACI Committee*, 224, 12–16.

806 Akkaya, Y., Guner, S., & Vecchio, F. J. (2019). Constitutive model for inelastic buckling behavior of reinforcing
807 bars. *ACI Structural Journal*, 116, 195–10.

808 Alonso, C., Andrade, C., Rodriguez, J., & Diez, J. M. (1998). Factors controlling cracking of concrete affected by
809 reinforcement corrosion. *Materials and structures*, 31, 435–441.

810 Augenti, N., & Parisi, F. (2010). Learning from construction failures due to the 2009 L'Aquila, Italy, earthquake.
811 *Journal of Performance of Constructed Facilities*, 24, 536–555.

812 Bazzurro, P., Cornell, C. A., Shome, N., & Carballo, J. E. (1998). Three proposals for characterizing MDOF
813 nonlinear seismic response. *Journal of Structural Engineering*, 124, 1281–1289.

814 Bentz, E. C. (2000). *Sectional analysis of reinforced concrete members*. University of Toronto Toronto.

815 Berry, M. P., & Eberhard, M. O. (2008). Performance Modeling Strategies for Modern Reinforced Concrete
816 Bridge. *University of California, Berkeley*.

817 Bhandari, M., Bharti, S. D., Shrimali, M. K., & Datta, T. K. (2019). Seismic fragility analysis of base-isolated
818 building frames excited by near-and far-field earthquakes. *Journal of Performance of Constructed
819 Facilities*, 33, 04019029.

820 Box, G. E., & Wilson, K. B. (1951). On the Experimental Attainment of Optimum Conditions. *Journal of the
821 Royal Statistical Society: Series B (Methodological)*, 13, 1-38. doi:<https://doi.org/10.1111/j.2517-6161.1951.tb00067.x>

823 Braga, F., Gigliotti, R., & Laterza, M. (2009). R/C existing structures with smooth reinforcing bars: experimental
824 behaviour of beam-column joints subject to cyclic lateral loads. *The Open Construction and Building
825 Technology Journal*, 3.

826 Cairns, J. (2021). Local bond-slip model for plain surface reinforcement. *Structural Concrete*, 22, 666–675.

827 Cardone, D. (2016). Fragility curves and loss functions for RC structural components with smooth rebars.
828 *Earthquakes and Structures*, 10, 1181–1212.

829 Castaldo, P., Gino, D., Bertagnoli, G., & Mancini, G. (2020). Resistance model uncertainty in non-linear finite
830 element analyses of cyclically loaded reinforced concrete systems. *Engineering Structures*, 211, 110496.

831 Code, P. (2005). Eurocode 8: Design of structures for earthquake resistance-Part 3: Assessment and retrofitting
832 of buildings.

833 Colajanni, P., Recupero, A., & Spinella, N. (2015). Shear strength degradation due to flexural ductility demand
834 in circular RC columns. *Bulletin of Earthquake Engineering*, 13, 1795–1807.

835 Cornell, C. A., Jalayer, F., Hamburger, R. O., & Foutch, D. A. (2002). Probabilistic Basis for 2000 SAC Federal
836 Emergency Management Agency Steel Moment Frame Guidelines. *Journal of Structural Engineering*,
837 128, 526-533. doi:10.1061/(ASCE)0733-9445(2002)128:4(526)

838 Coronelli, D., & Gambarova, P. (2004). Structural assessment of corroded reinforced concrete beams: modeling
839 guidelines. *Journal of structural engineering*, 130, 1214–1224.

840 Cosenza, E., & Prota, A. (2006). Experimental behaviour and numerical modelling of smooth steel bars under
841 compression. *Journal of Earthquake Engineering*, 10, 313–329.

842 Council, A. T., & Agency, U. S. (2009). *Quantification of building seismic performance factors*. US Department
843 of Homeland Security, FEMA.

844 Cui, F., Zhang, H., Ghosn, M., & Xu, Y. (2018). Seismic fragility analysis of deteriorating RC bridge substructures
845 subject to marine chloride-induced corrosion. *Engineering Structures*, 155, 61–72.

846 Dadashi, R., & Nasserasadi, K. (2015). Seismic damages comparison of low-rise moderate reinforced concrete
847 moment frames in the near-and far-field earthquakes by a probabilistic approach. *International Journal
848 of Advanced Structural Engineering (IJASE)*, 7, 171–180.

849 De Risi, M. T., Ricci, P., & Verderame, G. M. (2017). Modelling exterior unreinforced beam-column joints in
 850 seismic analysis of non-ductile RC frames. *Earthquake Engineering & Structural Dynamics*, 46, 899–
 851 923.

852 De Risi, R., Di Sarno, L., & Paolacci, F. (2017). Probabilistic seismic performance assessment of an existing RC
 853 bridge with portal-frame piers designed for gravity loads only. *Engineering Structures*, 145, 348–367.

854 Di Ludovico, M., Verderame, G. M., Prota, A., Manfredi, G., & Cosenza, E. (2014). Cyclic behavior of
 855 nonconforming full-scale RC columns. *Journal of Structural Engineering*, 140, 04013107.

856 Di Sarno, L., & Pugliese, F. (2020). Numerical evaluation of the seismic performance of existing reinforced
 857 concrete buildings with corroded smooth rebars. *Bulletin of Earthquake Engineering*, 18, 4227–4273.

858 Di Sarno, L., Pugliese, F., & De Risi, R. (2021). Non-linear finite element optimization for inelastic buckling
 859 modelling of smooth rebars. *Engineering Structures*, 240, 112378.

860 DuraCrete. (2000). Statistical quantification of the variables in the limit state functions. *The European Union-
 861 Brite EuRam III-Contract BRPR-CT95-0132-Project BE95-1347/R9*.

862 El Alami, E., Fekak, F.-E., Garibaldi, L., & Elkhalfi, A. (2021). A numerical study of pitting corrosion in
 863 reinforced concrete structures. *Journal of Building Engineering*, 102789.

864 En, B. S. (1992). 1-1: 2004 Eurocode 2: Design of concrete structures. *General rules and rules for buildings*, 3.

865 Fabbrocino, G., Verderame, G. M., & Manfredi, G. (2005). Experimental behaviour of anchored smooth rebars
 866 in old type reinforced concrete buildings. *Engineering Structures*, 27, 1575–1585.

867 Fragiadakis, M., Vamvatsikos, D., Karlaftis, M. G., Lagaros, N. D., & Papadrakakis, M. (2015). Seismic
 868 assessment of structures and lifelines. *Journal of Sound and Vibration*, 334, 29–56.

869 Furtado, A., Rodrigues, H., Arêde, A., & Varum, H. (2021). A Review of the Performance of Infilled RC
 870 Structures in Recent Earthquakes. *Applied Sciences*, 11, 5889.

871 Gorai, S., & Maity, D. (2019). Seismic response of concrete gravity dams under near field and far field ground
 872 motions. *Engineering Structures*, 196, 109292.

873 Jalayer F, Franchin P, Pinto PE. A scalar damage measure for seismic reliability analysis of RC frames. *Earthq
 874 Eng Struct* 2007;36(13):2059–2079.

875 Jalayer, F., De Risi, R., & Manfredi, G. (2015). Bayesian Cloud Analysis: efficient structural fragility assessment
 876 using linear regression. *Bulletin of Earthquake Engineering*, 13, 1183–1203.

877 Karsan, I. D., & Jirsa, J. O. (1969). Behavior of concrete under compressive loadings. *Journal of the Structural
 878 Division*, 95, 2543–2564.

879 Kashani, M. M., Crewe, A. J., & Alexander, N. A. (2013). Use of a 3D optical measurement technique for
 880 stochastic corrosion pattern analysis of reinforcing bars subjected to accelerated corrosion. *Corrosion
 881 Science*, 73, 208–221.

882 Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. *Journal of the Structural Division*, 97,
 883 1969–1990.

884 Kwon, O.-S., & Elnashai, A. (2006). The effect of material and ground motion uncertainty on the seismic
 885 vulnerability curves of RC structure. *Engineering structures*, 28, 289–303.

886 Li, C., Song, L., Qu, F., Li, X., & Zhao, S. (2021). Study on Sectional Nonuniform Corrosion and Bond Strength
 887 of Plain Rebar Embedded in Concrete. *KSCE Journal of Civil Engineering*, 25, 3031–3040.

888 Li, R.-H., Li, H.-N., & Li, C. (2018). Seismic performance assessment of RC frame structures subjected to far-
 889 field and near-field ground motions considering strain rate effect. *International Journal of Structural
 890 Stability and Dynamics*, 18, 1850127.

891 McKenna, F., Fenves, G. L., Scott, M. H., & others. (2000). Open system for earthquake engineering simulation.
 892 *University of California, Berkeley, CA*.

893 Melo, J., Rossetto, T., & Varum, H. (2015). Experimental study of bond–slip in RC structural elements with plain
 894 bars. *Materials and Structures*, 48, 2367–2381.

895 Melo, J., Varum, H., & Rossetto, T. (2015). Cyclic behaviour of interior beam–column joints reinforced with plain
 896 bars. *Earthquake Engineering & Structural Dynamics*, 44, 1351–1371.

897 Miano, A., Jalayer, F., Ebrahimian, H., & Prota, A. (2018). Cloud to IDA: Efficient fragility assessment with
 898 limited scaling. *Earthquake Engineering & Structural Dynamics*, 47, 1124–1147.

899 Moniri, H. (2017). Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field
 900 earthquakes. *International Journal of Advanced Structural Engineering*, 9, 13–25.

901 Moreno, J. D., Pellicer, T. M., Adam, J. M., & Bonilla, M. (2018). Exposure of RC building structures to the
 902 marine environment of the Valencia coast. *Journal of Building Engineering*, 15, 109–121.

903 Mosleh, A., Razzaghi, M. S., Jara, J., & Varum, H. (2016). Seismic fragility analysis of typical pre-1990 bridges
 904 due to near-and far-field ground motions. *International Journal of Advanced Structural Engineering*
 905 (*IJASE*), 8, 1–9.

906 Nabid, N., Hajirasouliha, I., & Petkovski, M. (2021). Simplified method for optimal design of friction damper slip
 907 loads by considering near-field and far-field ground motions. *Journal of Earthquake Engineering*, 25,
 908 1851–1875.

909 Ni Choine, M., Kashani, M. M., Lowes, L. N., O' Conner, A. , Crewe, A. J., Alexander, N. A., & Padgett, J. E.
 910 (2016). Nonlinear dynamic analysis and seismic fragility assessment of a corrosion damaged integral
 911 bridge. *International Journal of Structural Integrity*, 7(2), 227- 239. <https://doi.org/10.1108/IJSI-09-2014-0045>

913 O'Reilly, G. J., & Sullivan, T. J. (2019). Modeling techniques for the seismic assessment of the existing Italian
 914 RC frame structures. *Journal of Earthquake Engineering*, 23, 1262–1296.

915 Park, H.-G., Yu, E.-J., & Choi, K.-K. (2012). Shear-strength degradation model for RC columns subjected to
 916 cyclic loading. *Engineering Structures*, 34, 187–197.

917 Popovics, S. (1973). A numerical approach to the complete stress-strain curve of concrete. *Cement and concrete*
 918 *research*, 3, 583–599.

919 Prota, A., De Cicco, F., & Cosenza, E. (2009). Cyclic behavior of smooth steel reinforcing bars: experimental
 920 analysis and modeling issues. *Journal of Earthquake Engineering*, 13, 500–519.

921 Pugliese, F., De Risi, R. and Di Sarno, L. (2022). Reliability assessment of existing RC bridges with spatially-
 922 variable pitting corrosion subjected to increasing traffic demand, *Reliability Engineering & System*
 923 *Safety*, Volume 218, Part A, 108137, ISSN 0951-8320. <https://doi.org/10.1016/j.ress.2021.108137>.

924 Qu, F., Li, W., Dong, W., Tam, V. W., & Yu, T. (2020). Durability performance deterioration of concrete under
 925 marine environment from material to structure: A critical review. *Journal of Building Engineering*,
 926 102074.

927 Razvi, S., & Saatcioglu, M. (1999). Confinement model for high-strength concrete. *Journal of Structural*
 928 *Engineering*, 125, 281–289.

929 Ricci, P., De Luca, F., & Verderame, G. M. (2011). 6th April 2009 L'Aquila earthquake, Italy: reinforced concrete
 930 building performance. *Bulletin of earthquake engineering*, 9, 285–305.

931 Robuschi, S., Lundgren, K., Fernandez, I., & Flansbjer, M. (2020). Anchorage of naturally corroded, plain
 932 reinforcement bars in flexural members. *Materials and Structures*, 53, 1–21.

933 Robuschi, S., Sumearll, J., Fernandez, I., & Lundgren, K. (2021). Bond of naturally corroded, plain reinforcing
 934 bars in concrete. *Structure and Infrastructure Engineering*, 17, 792–808.

935 Rodriguez, J., Ortega, L. M., & Casal, J. (1997). Load carrying capacity of concrete structures with corroded
 936 reinforcement. *Construction and building materials*, 11, 239–248.

937 Setzler, E. J., & Sezen, H. (2008). Model for the lateral behavior of reinforced concrete columns including shear
 938 deformations. *Earthquake Spectra*, 24, 493–511.

939 Stewart, M. G., & Al-Harthy, A. (2008). Pitting corrosion and structural reliability of corroding RC structures:
 940 Experimental data and probabilistic analysis. *Reliability engineering & system safety*, 93, 373–382.

941 Thoft-Christensen, P. (2000). Stochastic modeling of the crack initiation time for reinforced concrete structures.
 942 In *Advanced technology in structural engineering* (pp. 1–8).

943 Torres-Acosta, A. A., & Martínez-Madrid, M. (2003). Residual life of corroding reinforced concrete structures
 944 in marine environment. *Journal of Materials in Civil Engineering*, 15, 344–353.

945 Val, D. V., & Melchers, R. E. (1997). Reliability of deteriorating RC slab bridges. *Journal of structural*
 946 *engineering*, 123, 1638–1644.

947 Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. *Earthquake engineering & structural*
 948 *dynamics*, 31, 491–514.

949 Vamvatsikos, D., & Cornell, C. A. (2004). Applied incremental dynamic analysis. *Earthquake spectra*, 20, 523–
 950 553.

951 Vecchio, F. J., & Collins, M. P. (1986). The modified compression-field theory for reinforced concrete elements
 952 subjected to shear. *ACI J.*, 83, 219–231.

953 Verderame, G. M., De Carlo, G., Ricci, P., & Fabbrocino, G. (2009). Cyclic bond behaviour of plain bars. Part II:
 954 Analytical investigation. *Construction and building Materials*, 23, 3512–3522.

955 Verderame, G. M., Stella, A., & Cosenza, E. (2001). Le proprietà meccaniche degli acciai impiegati nelle strutture
 956 in calce realizzate negli anni '60. *X Congresso Nazionale L'ingegneria Sismica in Italia, Potenza-Matera*,
 957 (pp. 9–13).

958 Vidal, T., Castel, A., & François, R. (2004). Analyzing crack width to predict corrosion in reinforced concrete.
959 *Cement and concrete research*, 34, 165–174.

960 Xing, G., Zhou, C., Wu, T., & Liu, B. (2015). Experimental study on bond behavior between plain reinforcing
961 bars and concrete. *Advances in Materials Science and Engineering*, 2015.

962 Yu, L., Francois, R., Dang, V. H., L'Hostis, V., & Gagne, R. (2015). Distribution of corrosion and pitting factor
963 of steel in corroded RC beams. *Construction and Building Materials*, 95, 384–392.

964 Zhao, Z., & Fu, L. (2018). The probability distribution of pitting for accelerated corrosion reinforcement. *Case
965 Studies in Construction Materials*, 9, e00193.

966 Zimos, D. K., Mergos, P. E., & Kappos, A. J. (2018). Modelling of R/C members accounting for shear failure
967 localisation: Finite element model and verification. *Earthquake Engineering & Structural Dynamics*, 47,
968 1631–1650.

969

970