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Toward Memristor-like Resonant Sensors:
Observation of Pinched Hysteresis within MEMS
Resonators

Erion Uka, Graduate Student Member, IEEE, Chun Zhao, Senior Member, IEEE

Abstract—Memristors, uniquely characterized by their
pinched hysteresis loop fingerprints, have attracted significant
research interest over the past decade, due to their enormous
potential for novel computation and artificial intelligence applica-
tions. Memristors are widely regarded as the fourth fundamental
electrical component, with voltage and current being their input
and output signals. In broader terms, similar pinched hysteresis
behavior should also exist in other physical systems across
domains (e.g., physical input and electrical output), hence linking
the real physical world with the digital domain (e.g., in the
form of a physical sensor). In this work, we report the first
observation of pinched hysteresis behavior in a micro-electro-
mechanical systems (MEMS) resonator device, showing that
it is viable to create resonant MEMS sensors incorporating
memristor-like properties, i.e., MemReSensor. We envisage that
this will lay the foundations for a new way of fusing MEMS
with artificial intelligence (AI), such as creating in-physical-sensor
computing, as well as in-sensor Al, e.g., multi-mode in-sensor
matrix multiplication across domains.

Index Terms—MEMS, Resonators, Pinched Hysteresis, Para-
metric Modulation, MemReSensor

I. INTRODUCTION

EMRISTORS, since their theoretical prediction in 1971

[1] and demonstration in 2008 [2], are emerging as a
key building block for next-generation high-efficiency brain-
inspired computing [3] and AI hardware [4]. Regardless of
scale, geometry, material choice or design, memristors are de-
fined by a key property, known as the “pinched hysteresis™ [5].
In a broader sense, memcapacitors and meminductors are also
defined based on the pinched hysteresis property [6], as well
as memtransistors [7], which have all shown great promise
in related computation and Al hardware applications [8], [9],
[10]. It is worth pointing out that all of the aforementioned
examples exhibit pinched hysteresis purely in the electrical
domain, i.e., electrical input and electrical output.

Applying the same logic, and expanding on that mentioned
above, it is intriguing whether this pinched hysteresis behavior
can be observed across domains, e.g., physical input and
electrical output. While this idea has been touched upon
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[11], [12], the proposed devices, termed as “memsensors”, are
essentially memristor devices, the pinched hysteresis behavior
of which can be tuned by a physical input, i.e., incident light
intensity. It has yet to be observed whether pinched hysteresis
loops can be formed directly between a physical input and the
corresponding electrical output of a sensor.

To realize this, a natural candidate is MEMS sensors, as
they have been used extensively to transduce physical inputs
into electrical outputs with high sensitivity and resolution [13],
[14], boasting high reliability and low cost per device. Reso-
nant MEMS have also been demonstrated as useful candidates
for other interesting areas of research such as non-reciprocal
devices e.g., isolators and circulators [15], [16], [17]. Despite
this, to date, we have not yet seen any demonstrations of
MEMS-based sensors with the pinched hysteresis behavior.

In this work, we take the first step toward cross-domain
memristor-like behavior, and will demonstrate the first pinched
hysteresis loops observed within a generic silicon-based
MEMS resonator device. This behavior and observation are
enabled by applying parametric modulation signals (PMSs)
to dynamically couple multiple intrinsic vibration modes [18],
[19]. Due to the unique phase properties of the MEMS
resonator with coupled modes, when using a phase-locked
loop (PLL) to lock onto the phase corresponding to resonant
frequencies (in the exact same manner as in practical resonant
sensors [20]), the resonator can switch between multiple
modes with hysteresis. When a single PMS is applied, two
modes are coupled, and we can observe a pinched hysteresis
loop between a stiffness perturbation and the output amplitude.
When two PMSs are applied, three modes are virtually cou-
pled, and a pinched hysteresis loop can be observed between
a stiffness perturbation and the output frequency. We further
extend our approach to apply three PMSs, and we can observe
two pinched intermediate branches in the output frequency and
three pinched hysteresis loops in the output amplitude, i.e.,
multiple pinched hysteresis (MPH) in both the frequency and
amplitude responses. Although the input in this work is still
a stiffness perturbation due to an electrical voltage change,
it has been demonstrated in the literature [21], [22], that the
electrical input essentially acts as a proxy for other stiffness-
related physical inputs, suggesting that our approach can be
easily translated to MEMS sensors with physical inputs.

As far as we are aware, this is the first demonstration of
pinched hysteresis loops within MEMS devices, and so we
have termed it the MemReSensor (memristor-like resonant
sensor). We believe that this discovery will pave the way for
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future generations of in-sensor computing (i.e., edge comput-
ing) [23], neuromorphic computing (e.g., reservoir computing
using hysteresis [24]), and even direct matrix multiplication
from multi-physical-input vectors to electrical outputs.

II. THEORY

A. Parametric Modulation

£

Pump frequency: A
Fu=fi-f i

A Sideband:

Sideband:

Frequency

‘_

Virtual coupling

— =

Virtual coupling

Fig. 1: Ilustration of virtual coupling when using one PMS.

The intra-modal interactions when using a different number

of PMSs can be visualized in the same way, where virtual
coupling generates complex dynamics.

Parametric modulation is an operating scheme that generates
periodic stiffness modulation in resonant MEMS devices using
dynamic PMSs. As opposed to the recently proposed blue-
sideband excitation [25], [26], [27], here we focus on red-
detuned parametric modulation [18], [19] - where the pump
frequency is close to the difference between two modes of
interest (see Eq. 2). This generates virtual coupling between
the two modes [28] (see Fig. 1). The equations of motion
describing the dynamics of an electrostatically transduced
clamped-clamped (C-C) type MEMS resonator have been
derived previously [29]. These equations can also be used to
describe the behavior of the electrostatically transduced DETF-
type resonator used in this work. The generalized form of the
equations of motion, which are suitable to describe dynamical
systems under multiple PMSs, can be written as:

midi(t) + ciu'i(t) + (kz + ke,i)ui(t) =F COS(Qﬂ'fdrivet)

Linear equation of motion of the ith mode

ke u; (t)l

n

2

j=1
i

Linear coupling terms

cos(2m 7 t) <)\;’jui(t) + T u; (t)> ]

Coupling terms due to parametric modulation
1

where my, ¢;, ki, ke, ui(t), F; and farive are the effective
mass, damping, mechanical stiffness, electrostatic stiffness,
deflection in time, driving force amplitude, and frequency of
the drive signal, respectively. The number of modes (n) relates

to the number of PMSs (n — 1), e.g., one PMS couples two
modes. k%7 is the linear coupling term between the ith and jth
modes. f/7, ;7 and T/ are the frequency of the PMS used to
couple the ith and jth modes, and the intra-modal and inter-
modal pumping coefficient due to the resulting interactions
between the ith and jth modes, respectively [18].

An offset voltage (vofsser) 1S used here to introduce a stiffness
perturbation in k.; (see Eq. 1). In this work, this acts as
a proxy for the stiffness perturbation caused by external
physical inputs in resonant sensors, e.g., acceleration in reso-
nant MEMS accelerometers [20] or magnetic field strength in
resonant MEMS magnetometers [13].

Following [29], the theoretical equivalent stiffness change
to the first mode (f1) per volt can be calculated using the
following equation: 2¢1 Vy;as€otl/ d3, where ¢ is a coefficient
required to modify the electrostatic stiffness for parallel plate,
since the gap between the moving beam and the electrode is
mode shape dependent. Substituting in Vp;es = 30V, ¢ = 25
pm, [ = 384 pm (the length of the electrode), d = 2 um,
and ¢; = 0.197 for the first mode [29] gives Akc 1/AVgfret
~ 0.126 N/m/V. This agrees well with the estimation based on
experimental data, which is 0.121 N/m/V. This is calculated
based on Ak/2k; ~ Af/fi [21], then substituting in values
for k1 =~ 99 N/m obtained from COMSOL simulation, and
Af =~ 63 Hz (for 1 V of Vg change) and f; ~ 103.352
kHz obtained from experiments.

B. Simulated behavior of a one PMS system

Considering the complexity of modeling the behavior of
a slotted DETF resonator, we have extracted the following
parameters based on a combination of experimental data and
numerical estimations (see Tab. I), which are considered a
good representation of the parameters in the experiment.
Using these parameters and Eq. 1, the dynamic behavior of
the system, concerning the first and the third mode, with 1
PMS signal (wj® = 2 f)®) applied, has been numerically
simulated using the Harmonic Balance Method (HBM) [30].
The simulated results are shown in Fig. 2a and 2b. It is worth
pointing out that the computational demand scales rapidly with
increased system complexity (e.g., increased number of PMSs
and coupled modes or increased n), therefore only the 1 PMS
case has been simulated in this work.

TABLE I: The values used to simulate the 1 PMS case

Parameter Value Parameter Value
mi 2.17 x 10710 A2 0.38
ms3 9.06 x 10~ 10 At 0.42
1 9.16 x 108 r,? —0.33
s 2.12 x 1077 it —0.33
k1 99.01 a1 2.82 x 10~10
ks 4983.70 F3 3.09 x 10710
kL3 0.22 fo 2.67 x 105
ke 1 7.53 Q1 1.60 x 103
ke3 8.39 Q2 1.00 x 104
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Fig. 2: The simulated (a) frequency - single hysteresis loop,
and (b) amplitude - pinched hysteresis loop, when exploring
the virtual coupling between f; and f3 with 1 PMS applied,
using the values for the device as listed in Tab. I

III. EXPERIMENTAL SETUP
A. Device Design

The device-under-test (DUT) is a generic (slotted) double-
ended tuning-fork (DETF) MEMS resonator of beam length
780 um, width 15pm and thickness 25pm, which was fab-
ricated using the SOIMUMPS process [31], [32] (as shown
in Fig. 4). The DUT is actuated electrostatically and sensed
capacitively [33]. The beams are slotted to reduce the ther-
moelastic damping of the resonator [34]. In order to reduce
air damping the device is kept under low-vacuum conditions
(~10~! mbar) throughout testing and characterization using a
custom-built vacuum chamber. The resonant modes of interest
are the flexural modes f7 =~ 103.352 kHz, f; ~ 105.093 kHz,
f3 =~ 373.001 kHz and f; =~ 378.898 kHz, with Q-factor of
~1.6k, ~1.8k, ~10k and ~11k, respectively (as shown in Fig.
3). Despite the vacuum conditions, the Q-factors are believed
to be limited by air damping, and can be further improved by
reducing the vacuum levels to below 1072 mbar. The vacuum
chamber cavity temperature is kept constant at 20(+0.01)°C
using a Thorlabs TEC4015 temperature controller to minimize
unwanted temperature-dependent stiffness perturbation [35].
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(b) Frequency sweeps for modes f3 and fa.

Fig. 3: Frequency sweeps showing the modes of interest
(fi—4) when a drive signal of amplitude vgie = 20 mV
is used, alongside finite-element-analysis simulations of their
respective mode shapes. It can be observed that there is
negligible feedthrough on mode f; (which is the key mode
of interest), and minimal Duffing nonlinearity with the drive
amplitude.

B. System Setup

The measurement setup (as shown in Fig. 4) consists of
a DC power supply which generates the bias voltage (Vpias
= 30 V), a transimpedance amplifier (TIA) (green-dashed
box) which converts and amplifies the output motional current
(fmotional) iNto a voltage signal (with a gain of ~6 M(2), and a
Zurich Instruments MFLI lock-in amplifier (blue-dashed box)
which is used for open-loop and closed-loop characterizations.
In addition, the linear actuation signal is generated by Oscil-
lator 4 (see Fig. 4) (farve ~ f1, With vgie = 20 mV, which
is below the critical linear drive amplitude, as no obvious
Duffing nonlinearity is observed). Under this testing setup, the
maximum amplitudes in the hysteresis experiments (see Fig.
8b, Fig. 10b, and Fig. 12b) did not exceed ~20 mV. These
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Fig. 4: A block diagram of the experimental setup used for characterization of the DUT, with an optical image of the DUT
included. The DC power supply provides the bias voltage (kept constant at 30 V throughout) and the TIA converts and amplifies
the motional current (with a gain of ~6 M{2). The closed-loop (PID/PLL) mechanism is shown, with the phase set-point (¢q)
as an input, and is used to track the mode of interest (f;) which is driven at vgie = 20 mV throughout (oscillator 4). The
PMSs are generated by oscillators 1-3, which have controllable frequency and amplitude (i.e., A fr}vj and Avll)'fj for j = 2,3,

and 4, respectively).

amplitudes are below the maximum linear amplitude of the
resonator (without any parametric modulation), of 25 mV (at
which point no obvious Duffing nonlinearity was present for
f1), as shown in Fig. 2. Therefore, it is believed that the effect
of Duffing nonlinearity is at a minimum in this work.

The impact of capacitive feedthrough has also been con-
sidered in the experimental setup. By selecting actuation
and sense electrodes which are located on either side of
the resonator (with the resonator being biased with a DC
voltage, Vyias), so the direct AC current path between the
two electrodes is minimized. In addition, we have ensured
grounding connections both on the top structural and substrate
layers of the device, again minimizing a feedthrough current
path between the drive and sense electrodes. Finally, we have
chosen a large bias voltage (30 V) to increase the ratio
between the motional current signal and the feedthrough. In
the experiments, the feedthrough is minimal, especially near
the mode of interest, ~ f1, as evidenced in the amplitude and
phase responses shown in Figs. 3a, 7, 9 and 11.

By fully utilizing the “Multi-demodulator Option” on the
MFLI, we also generate three additional PMSs ( f;’z - Oscilla-
tor 1, pr?’ - Oscillator 2, and f;"‘ - Oscillator 3) needed in this
experiments. The PMSs used have frequencies determined as
follows, and A fz}’j (J = 2,3, and 4) are the control parameters
in the experiments:

L2 =fa—fi+Af?
P =f = h+ ALY 2
t=f—-h+An"
The amplitudes of the PMSs (v} (j = 2,3, and 4)) are also
parameters in the experiments, which can also be controlled
via the GUI of the MFLI. For the closed-loop configuration,

the PLL and proportional-integral-derivative (PID) controller
modules on the MFLI are used to track the frequencies

corresponding to the phase set-point (¢0=90°). The MFLI
is able to determine the phase difference between the drive
and sense signals via a demodulator embedded within, and
the PID function within the MFLI automatically corrects the
frequency so that the phase difference between the drive and
sense signals equal to the ¢g, hence locking onto the frequency
corresponding to . This function of MFLI has been widely
used and reported in various MEMS resonant sensors in the
community [19], [20].

The frequency response behavior in the vicinity of f, i.e.,
to change the amplitude ratios between the modes as well as
the frequency split between the modes [19], can be altered
by adding small detuning terms (i.e., A f;*j ) or by changing
the amplitude of the PMSs (i.e., vy7) (for j = 2,3,4). The
PLL/PID phase set-point is arbitrarily chosen to be the phase
associated with the peak resonance at f; in the linear case
(vo = 90°). Changing these PMS parameters provides the
possibility to tune the hysteresis behavior that is discussed
in the experimental results section, however, this is not the
focus of this paper, and will be covered in future work.

For the hysteresis loop characterizations, we introduced a
slowly-varying (10 mHz) AC offset voltage (vofrset) (added to
the MFLI output), which is well below the PLL bandwidth
of 20 Hz, as perturbation. The same sinusoidal (10 mHz)
Voffset Signal is used throughout as the stiffness perturbation.
This allows sufficient time for the PLL to respond and is
considered a good representation of a static/quasi-static re-
sponse of the system. Both the perturbation signal (vogfser)
and the demodulated frequency (and amplitude) responses
of the DUT are recorded simultaneously (see Fig. 5a). The
frequency (amplitude) responses are plotted against Avggge; (OT
the theoretical equivalent Ak, 1), with one example shown in
Fig. 5b.



IV. EXPERIMENTAL RESULTS
A. Single Parametric Modulation Signal

1) Explanation of hysteresis: As explained in Section II-A,
and reported in previous work, when a PMS (f}/) is applied,
a virtual coupling is created between the first mode and the
sideband of the other (higher-order) mode (e.g., j = 2, 3,4).
This creates a typical two-mode coupling behavior near the
mode of interest (f1). With respect to phase, this creates an
additional bump/undulation in the phase transition from 180°
to 0° compared to the conventional phase transition observed
in linear systems (see insets of Fig. 6).
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Fig. 5: The (a) sinusoidal/quasi-static (10 mHz) wvggse; SWeEP
(purple) with the frequency response of the DUT about f;
(orange) plotted against time, and (b) the relationship between
the frequency response and v (Or theoretical equivalent
stiffness perturbation Ak, 1).

As a stiffness perturbation is introduced, the open-loop
phase response around the mode of interest (f;) shifts (see
insets of Fig. 6) - obtained by sweeping the frequency around
f1. More specifically, it is observed that the number of times
the phase response (black lines in insets) intersect the phase
set-point, (¢ (red dotted lines in insets) changes as we sweep
across a range of stiffness (vofrser) Values. The locations of
these phase crossing points are indicated (blue crosses in
insets) for v values of -1 V, 0 V and 1 V to demonstrate
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Fig. 6: The open-loop (black) and closed-loop (orange) fre-
quency responses when changing the offset voltage (sinusoidal
wave, 10 mHz) (or equivalent theoretical stiffness change),
where the crosses (blue) show the locations where the open-
loop frequency response intersects the phase set-point ().
The phase responses corresponding to three offset voltages
are inset, which show the phase crossing points.

this, showing the corresponding frequencies of these phase
crossings. These phase crossing/intersection points are mapped
onto the open-loop response (black/black-dashed lines) (see
Fig. 6). The occurrence of this behavior can be explained by
the linear dynamics of a two-mode-coupled resonator [36].

The described behavior, shown in Fig. 6 (black lines), is
similar to the well-known Duffing nonlinearity, in the sense
that one input value can be mapped onto one to three output
values [37]. In Duffing nonlinearity, the input value is the drive
frequency, and the output value is the amplitude, whereas in
this case, the input value is the stiffness perturbation (Ak. 1)
or Vofrset, and the output is the frequency (or the amplitude).

In a closed-loop configuration a PLL is used to track the
frequency of the phase crossings, as we sweep the value
of stiffness perturbation (via vogrer). This sweeping process
is again comparable to frequency sweeps of resonators with
Duffing nonlinearity, which also create hysteresis loops. In
a similar manner to Duffing nonlinearity, discontinuities will
also occur here when the degeneracy of phase crossing points
occurs, i.e., when the number of phase crossing points reduces
from three to one in two instances (around 0.3 V and —0.3
V) (see Fig. 6). It is worth pointing out that, when the
discontinuity occurs, the PLL automatically switches to the
other coupled mode through the virtual coupling generated by
the parametric modulation operating scheme employed (e.g.,
from red to the nearby blue arrow, or vice versa, near f in
Fig. 1), therefore a discontinuity in frequency occurs.

2) Two-mode coupling behavior: An example open-loop
frequency sweep showing a representative two-mode coupling
behavior, with 1 PMS applied, is shown in Fig. 7. The
mode-splitting generates two separate peaks in the amplitude
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sweeping the offset (sinusoidal wave, 10 mHz) for vy? = 4
V and Af;’?’ =0 Hz.

response, and a more complex phase transition compared to
the linear case (i.e., no PMS employed). This is similar to the

two-mode coupling behavior previously reported in [29].

3) Hysteresis loop in stiffness perturbation-frequency
space: The measured hysteresis loop in the frequency re-
sponse when vzl,’?’ =4V and Af;’?’ = 0 Hz is shown in
Fig. 8a. It is observed that as v 1S increased (i.e., swept
upwards), the frequency increases following the red arrows.
When vosec 1S approximately 1 V, a sharp upward transition
(discontinuity) is observed. Conversely, when vogset 1S swept
downwards, the frequency response follows the blue arrows
where another discontinuity (downward transition) is observed
when vfrser 1S approximately —0.75 V. The results agree well
with the simulation results shown in Fig. 2a.

4) Pinched hysteresis in stiffness perturbation-amplitude
space: It should be pointed out that discontinuity also exists
in the stiffness perturbation (vofsset) - amplitude space. The
output amplitude response with v)® = 4 V and Af)? =0
Hz is shown in Fig. 8b. This is commensurate with theoretical
calculations shown in Fig. 2b. The path again follows the
red arrows for the upward sweep and the blue arrows for
the downward sweep. It is observed that these paths cross
when v 1 approximately 0 V. Despite crossing, the path
of the response does not switch branches and will continue
along the same branch until a discontinuity occurs at Uofsset
is approximately 1 V or —0.75 V (for the upward or down-
ward branches, respectively), as described for the frequency
response. As defined in [5], this is a pinched hysteresis that
has branches which cross paths, however, transitions between
branches cannot occur at these branch crossing locations.
This also shows that the response of the resonator to an
external stimulus, e.g., sensitivity to stiffness perturbation (cf.
resistance in memristors), can be switched between two states
i.e., following the red or blue arrows, depending on whether
the past input value has triggered a state shift. This implies
that the sensor has a form of memory [38], albeit a volatile
type of memory at this stage.

The change in amplitude before a discontinuity can be
explained by the theory of mode localization [39], where the
amplitude is a function of changes in stiffness (Vofsser). The
discontinuity/state shift is due to mode switching resulting
from the phase crossing degeneracy, as described -earlier.
Hence, the difference in the upward and downward sweep
curves is due to the different amplitude responses of the modes
to changes in stiffness (vVoser) [39]-

B. Two Parametric Modulation Signals

1) Three-mode coupling behavior: An example open-loop
amplitude and phase response when two PMSs are employed
is shown in Fig. 9, where mode-splitting is observed in the
amplitude response (i.e., three separate peaks) and a more
complex phase response in the phase transition from 180°
to 0° is observed due to the three-mode coupling behavior.
As in the single PMS case, the frequency locations and
subsequent number of phase crossings will change as the
stiffness perturbation (vore) as a result of the virtual coupling,
as discussed in Section IV-A.

2) Pinched hysteresis in stiffness perturbation-frequency
space: Using a closed-loop configuration with two PMSs ( f;’Z
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Fig. 9: The output amplitude and phase responses when
sweeping around f; using two PMSs, showing three resonance
peaks in the region. The PMSs operating parameters used
were: Af;’2 = 100 Hz, Af;’?’ = (0 Hz and U;’Q = vzl,’?’ = 3V.

and fz}*?’) employed, a pinched hysteresis is observed in the
frequency response, where the red (blue) arrows indicate the
direction of the upward (downward) sweep (as shown in Fig.
10a). Here, discontinuities/transitions once again occur for
distinct vgser Values depending on the previous PLL frequency.

For instance, for the upward sweep (red arrows) the PLL
frequency increases approximately linearly along the lower
branch from a starting point of vygger = -2.5 V until vygpee; =
-1.25 V, where an upward discontinuity/transition is observed
as the mode that the PLL is tracking switches. Continuing to
sweep up, the PLL frequency increases approximately linearly
again until vefer = 0 V, where another upward discontinu-
ity/transition occurs as the mode that the PLL is tracking
switches again. Continuing the upward sweep reveals another
linear region of the response. Similarly, for the downward
sweep (blue arrows) the PLL frequency decreases approxi-
mately linearly along the upper branch from voger = 0.5 V
until vesser = -1 V, where a downward discontinuity/transition
is observed as the mode that the PLL is tracking switches.
Continuing to sweep down, the PLL frequency decreases
approximately linearly until veger = -2 V, where another
downward discontinuity/transition occurs as the mode that
the PLL is tracking switches again. This brings the response
back to the starting point of v = -2.5 V after another
linear region of the response. It should be noted that the
intermediate branch (see Fig. 10a) can be accessed via the
upward or downward sweep, and that once on this branch
the response is approximately linear. The sweep may continue
upward (red arrows) or downwards (blue arrows) from here
until reaching a discontinuity/transition at vegeer = 0 V or
Vofset = -2 V, respectively. As such, this system can be viewed
as a three branch system (the lower, upper and intermediate
branches), corresponding to the three modes shown in Fig. 9,
thus creating two hysteresis loops i.e. one hysteresis loop due
to the jumping between the first and the second mode, and
the second hysteresis loop due to the jumping between the
second and the third mode. When the parameters of the PMSs
are chosen in such a way that the two hysteresis loops are
separated from each other (i.e., distinct), the phenomenon that
satisfies the definition of pinched hysteresis [5] occurs, even
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Fig. 10: The (a) frequency response - pinched hysteresis and
(b) amplitude response - two distinct pinched hysteresis loops,
when sweeping the offset (sinusoidal wave, 10 mHz) for
1)11)’2 = 1)11;3 =3V, Af;’2 = 0 Hz and Af;’?’ = 100 Hz.

though a pinched intermediate branch, rather than a crossing,
exists. In the experiments, we noticed that this behavior can be
tuned by changing the value of v} and v)®. We will leave
detailed discussions regarding the tunability of the pinched
hysteresis behavior for a follow-up paper.

3) Multiple pinched hysteresis loops in stiffness
perturbation-amplitude space: For the output amplitude
response MPH are observed (see Fig. 10b), where transitions
occur at the same v amplitudes as the frequency response
described above. In this case, two distinct branch crossing
locations exist at approximately vorser = -1.5 V and voggser =
-0.5 V, which is evidence of two distinct pinched hysteresis
loops within the system. As in the one PMS case, transitions
between branches cannot occur at these crossing locations.
An intermediate branch also exists, which can be accessed
from either the upward (red arrows) or downward (blue
arrows) sweep. The system will remain on the intermediate
branch until reaching a discontinuity/transition at vefser = 0
V or vegreer = -2 'V, respectively. For instance, for the upward



sweep (red arrows) the output amplitude decreases from a
starting point of Vofrser = -2.5 V until vogrer = -1.25 V, where
an upward discontinuity/transition is observed as the mode
that the PLL is tracking switches. Continuing to sweep up, the
output amplitude decreases until v = O V, where another
upward discontinuity/transition occurs as the mode that the
PLL is tracking switches again. Continuing the upward sweep
reveals a region of the response which increases in amplitude.
Similarly, for the downward sweep (blue arrows) the output
amplitude decreases from vogrsee = 0.5 V until vygeey = -1 'V,
where an upward discontinuity/transition is observed as the
mode that the PLL is tracking switches. Continuing to sweep
down, the output amplitude decreases until Vo = -2 'V,
where another upward discontinuity/transition occurs as the
mode that the PLL is tracking switches again. This brings
the response back to the starting point of vy = -2.5 V after
another increasing region of the response. It should be noted
that the intermediate branch (see Fig. 10b) can be accessed
via the upward or downward sweep, and that once on this
branch the response can be swept upward or downward
towards to next discontinuity/transition. The distinction from
the frequency response (see Fig. 10a) is that the crossing
points (at vofrser = -1.5 V and vofrser = -0.5 V) form multiple
pinched hysteresis, rather than the intermediate branch. As
mentioned previously, once in the intermediate branch the
response can be swept upward or downward towards to
next discontinuity/transition, however, transitions between
branches cannot occur at the crossing points. Essentially,
transitions between branches occur only at discontinuities,
not at crossings.

C. Three Parametric Modulation Signals

1) Four-mode coupling behavior: Four-mode coupling be-
havior is evident from the example open-loop output amplitude
and phase response for a three PMS system (see Fig. 11),
where mode-splitting generates four separate peaks in the
amplitude response, and a more complex phase transition from
180° to 0°.
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Fig. 11: The output amplitude and phase responses when
sweeping around f; using three PMSs, showing four resonance
peaks in the region. The PMSs operating parameters used
were: Af}? = 100 Hz, Af)® = 0 Hz, Af}* = —70 Hz
andv12—v13—v14—3V
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Fig. 12: The (a) frequency response - pinched hysteresis with
two pinched intermediate branches, and (b) amplitude response
- three distinct pinched hysteresis loops with their own pinched
crossings, when sweeping the offset (sinusoidal wave, 10
mHz) for v)? = v)® = U14 =3V, where Af)? = 97 Hz,
Afp® = — 41 Hz and A fy* =—20 Hz are arbltrarlly chosen.

2) Multiple pinched hysteresis loops: Extending this ap-
proach, now employing three PMSs ( f;’g, f;’?’ and fz}A)’
allows MPH to be observed in both the frequency response and
output amplitude response. Following on from the two PMSs
case, two intermediate branches are now observed (pinched
intermediate branches in the frequency case), which can sim-
ilarly be accessed and exited in either direction following red
(blue) arrows in the upward (downward) direction (as shown
in Fig. 12a & 12b). Discontinuities in the upward sweeps can
be observed at vyggser Of approximately -2.25 V, -1.25 V and 0.2
V, while in downward sweeps are found at approximately -3 V,
-1.75 V and 0.1 V, once again dependent on the previous PLL
frequency. It is worth noting that the upward and downward
discontinuities in the vicinity of veer = 0 V (see insets of
Fig. 12a & 12b) is comparatively small (0.1 V between the
discontinuity points) compared to those observed previously
(e.g., one PMS and two PMSs cases) as well as the other



discontinuities observed in the three PMSs system discussed
here. In the experiments, we noticed that this behavior can be
tuned by the PMS parameters, especially the PMS amplitude
v};j (increasing the PMS amplitude can enlarge the hysteresis
loops), which controls the virtual coupling strength between
the modes, and hence the frequency difference between the
modes [18], [19]. Even so, the focus of this paper is on
presenting the observation of pinched hysteresis, rather than
the tunability of the system behavior. This will be investigated
in detail in future work.

In the stiffness perturbation-amplitude space, MPH are also
observed. Several pinched crossings are observed in the output
amplitude response, at approximately -2.5 V, -1.5 V and 0.15
V, solidifying the claim that MPH can be observed in such
systems.

V. CONCLUSION

In this work, we have reported for the first time the
existence of pinched hysteresis behavior in a MEMS resonator
device, demonstrating the viability of creating resonant MEMS
sensors which incorporate cross-domain (e.g., physical input
and electrical output) memristor-like properties, i.e., MemRe-
Sensor. The dynamics of complex virtual coupling generated
by the parametric modulation based operating scheme are
described and characterized experimentally. MPH systems
have also been observed using the same generic (slotted)
DETF type MEMS device as the DUT, between a stiffness
perturbation input and an electrical output, suggesting that the
pinched hysteresis, and MPH, can exist in practical resonant
Sensors.

Similar to the ways memristors with pinched hysteresis
can be used in unconventional computing and Al [40], we
anticipate the applications of the reported device and approach
in similar settings. The first key observation of this work is
that, employing the reported approach, a MEMS sensor can
have memory of past input. For example, the sensitivity, i.e.,
slopes of output amplitude change over input change, can
switch from negative to positive or vice versa depending on
the past values, as shown in Fig. 8b. Considering the fact
that MEMS resonators with nonlinearity and hysteresis can be
readily used for reservoir computing, a type of neuromorphic
computing that can execute temporal data pattern recognition
and classification tasks [24], [41], we now expect MEMS
resonators to be able to integrate memory, sensing, and compu-
tation all in one device. This can potentially lead to powerful
edge computation devices. The second key observation is that
the resonant sensor can have multiple sensitivity values (cf.
conductance in memristors), which can be positive, negative,
or zero valued depending on the branches (e.g., the slope can
be zero on the intermediate branches) and the past values,
as shown in Figs. 10b and 12b. This means that we can
potentially program the relationship between the physical input
and the output. In a similar way to constructing a memristor
crossbar array for matrix multiplication [42], we envisage a
similar matrix multiplication device is viable by incorporating
our approach. The main differences with this MEMS device
array are that: (1) the input vector can be composed of multiple

physical inputs, rather than voltages, making cross-domain
matrix multiplication possible; and (2) the matrix coefficient
values, i.e., sensitivity, can be programmed from negative
to positive values (including zero), making the matrix more
flexible.

Further research will explore the tunability of the pinched
hysteresis and MPH presented here, examining whether the
locations of discontinuities and pinched crossings, as well as
the size of hysteresis loops, can be adjusted for different tar-
get application requirements, and whether further memristor-
like characteristics, such as spike-timing-dependent plasticity
[43] and nociceptor-like behavior [44], can be identified. In
addition, we plan to investigate MEMS sensor designs with
higher degrees of freedom [45], with the aim of revealing
further interesting dynamics and discovering whether multi-
modal sensor switching responses can be observed. Future
work will also explore the implementation of the observed
pinched hysteresis behavior in (multi-)functional sensors to
realize a practical cross-domain MemReSensor, as well as their
application to in-sensor computing and cross-domain matrix
multiplication.

ACKNOWLEDGMENT

We would like to thank the Henry Royce Institute for access
to the Leeds Nanotechnology Cleanroom at the University
of Leeds through the Researcher Equipment Access Scheme
(EPSRC Grant Number EP/P022464/1). We would also like to
thank Ms. Jinggian Xi from Huazhong University of Science
and Technology for the useful discussions and insights.

REFERENCES

[1] L. Chua, “Memristor-the missing circuit element,” /EEE Transactions
on circuit theory, vol. 18, no. 5, pp. 507-519, 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80-83, 2008.

[3] Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao, W. Song, Y. Zhuo,
X. Zhang, M. Cui, L. Shen et al, “Brain-inspired computing with
memristors: Challenges in devices, circuits, and systems,” Applied
Physics Reviews, vol. 7, no. 1, 2020.

[4] Y. Huang, T. Ando, A. Sebastian, M.-F. Chang, J. J. Yang, and Q. Xia,
“Memristor-based hardware accelerators for artificial intelligence,” Na-
ture Reviews Electrical Engineering, pp. 1-14, 2024.

[5] L. Chua, “If it’s pinched it’s a memristor,” Semiconductor Science and
Technology, vol. 29, no. 10, p. 104001, 2014.

[6] Z. Yin, H. Tian, G. Chen, and L. O. Chua, “What are memristor,
memcapacitor, and meminductor?” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 62, no. 4, pp. 402-406, 2015.

[71 V. K. Sangwan, H.-S. Lee, H. Bergeron, 1. Balla, M. E. Beck, K.-
S. Chen, and M. C. Hersam, “Multi-terminal memtransistors from
polycrystalline monolayer molybdenum disulfide,” Nature, vol. 554, no.
7693, pp. 500-504, 2018.

[8] K.-U. Demasius, A. Kirschen, and S. Parkin, “Energy-efficient memca-
pacitor devices for neuromorphic computing,” Nature Electronics, vol. 4,
no. 10, pp. 748-756, 2021.

[91 F. Z. Wang, “Beyond memristors: Neuromorphic computing using
meminductors,” Micromachines, vol. 14, no. 2, p. 486, 2023.

[10] X. Yan, J. H. Qian, V. K. Sangwan, and M. C. Hersam, “Progress and
challenges for memtransistors in neuromorphic circuits and systems,”
Advanced Materials, vol. 34, no. 48, p. 2108025, 2022.

[11] A. Chiolerio, I. Roppolo, V. Cauda, M. Crepaldi, S. Bocchini, K. Bejtka,
A. Verna, and C. Pirri, “Ultraviolet mem-sensors: Flexible anisotropic
composites featuring giant photocurrent enhancement,” Nano Research,
vol. 8, pp. 1956-1963, 2015.

[12] A. Vahl, J. Carstensen, S. Kaps, O. Lupan, T. Strunskus, R. Adelung,
and F. Faupel, “Concept and modelling of memsensors as two termi-
nal devices with enhanced capabilities in neuromorphic engineering,”
Scientific Reports, vol. 9, no. 1, p. 4361, 2019.



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Y. Wang, X. Song, J. Xi, F. Li, L. Xu, H. Liu, C. Wang, S. Kuang, L.-C.
Tu, M. Kraft et al., “A resonant lorentz-force magnetometer exploiting
blue sideband actuation to enhance sensitivity and resolution,” Journal
of Microelectromechanical Systems, vol. 31, no. 3, pp. 402-407, 2022.
M. Pandit, C. Zhao, G. Sobreviela, X. Zou, and A. Seshia, “A high
resolution differential mode-localized MEMS accelerometer,” Journal
of Microelectromechanical Systems, vol. 28, no. 5, pp. 782-789, 2019.
M. M. Torunbalci, T. J. Odelberg, S. Sridaran, R. C. Ruby, and S. A.
Bhave, “An fbar circulator,” IEEE Microwave and Wireless Components
Letters, vol. 28, no. 5, pp. 395-397, 2018.

Y. Yu, G. Michetti, A. Kord, M. Pirro, D. L. Sounas, Z. Xiao, C. Cas-
sella, A. Alu, and M. Rinaldi, “Highly-linear magnet-free microelec-
tromechanical circulators,” Journal of Microelectromechanical Systems,
vol. 28, no. 6, pp. 933-940, 2019.

L. Shao, W. Mao, S. Maity, N. Sinclair, Y. Hu, L. Yang, and M. Loncar,
“Non-reciprocal transmission of microwave acoustic waves in nonlinear
parity—time symmetric resonators,” Nature Electronics, vol. 3, no. 5, pp.
267-272, 2020.

X. Zhou, C. Zhao, D. Xiao, J. Sun, G. Sobreviela, D. D. Gerrard,
Y. Chen, I. Flader, T. W. Kenny, X. Wu et al., “Dynamic modulation of
modal coupling in microelectromechanical gyroscopic ring resonators,”
Nature communications, vol. 10, no. 1, p. 4980, 2019.

C. Zhao, X. Zhou, M. Pandit, G. Sobreviela, S. Du, X. Zou, and
A. Seshia, “Toward high-resolution inertial sensors employing paramet-
ric modulation in coupled micromechanical resonators,” Physical Review
Applied, vol. 12, no. 4, p. 044005, 2019.

A. Mustafazade, M. Pandit, C. Zhao, G. Sobreviela, Z. Du, P. Steinmann,
X. Zou, R. T. Howe, and A. A. Seshia, “A vibrating beam MEMS
accelerometer for gravity and seismic measurements,” Scientific reports,
vol. 10, no. 1, p. 10415, 2020.

P. Thiruvenkatanathan, J. Yan, J. Woodhouse, and A. A. Seshia, “En-
hancing parametric sensitivity in electrically coupled MEMS resonators,”
Journal of Microelectromechanical Systems, vol. 18, no. 5, pp. 1077—
1086, 2009.

M. De Laat, H. P. Garza, J. Herder, and M. Ghatkesar, “A review on in
situ stiffness adjustment methods in MEMS,” Journal of Micromechanics
and Microengineering, vol. 26, no. 6, p. 063001, 2016.

F. Zhou and Y. Chai, “Near-sensor and in-sensor computing,” Nature
Electronics, vol. 3, no. 11, pp. 664-671, 2020.

C. Caremel, Y. Kawahara, and K. Nakajima, “Hysteretic reservoir,”
Physical Review Applied, vol. 22, no. 6, p. 064045, 2024.

L. Xu, J. Xi, L. Gao, F. Li, J. Pi, C. Li, K. Wang, X. Xiong, Y. Wang,
H. Liu et al, “A closed-loop system for resonant MEMS sensors
subject to blue-sideband excitation,” Journal of Microelectromechanical
Systems, vol. 31, no. 4, pp. 690-699, 2022.

J. Xi, L. Xu, Y. Wang, H. Liu, X. Xiong, X. Zou, C. Li, F. Hu, C. Wang,
M. Kraft et al., “Multiple parameter decoupling for resonant MEMS
sensors exploiting blue sideband excitation,” Journal of Microelectrome-
chanical Systems, vol. 32, no. 5, pp. 426-436, 2023.

E. Uka, C. Zhao, C. Lin, and J. Chen, “PT1. 41-On the tunability
of resonant MEMS sensor subject to blue sideband excitation,” in
EUROSENSORS XXXVI, Debrecen, Hungary, 2024, pp. 225-226, doi:
10.5162/EUROSENSORSXXXVI/PT1.41.

H. Zhang, D. Chen, M. Pandit, J. Sun, C. Zhao, and A. Seshia,
“Amplitude-modulated resonant accelerometer employing parametric
pump,” Applied Physics Letters, vol. 117, no. 16, 2020.

C. Li, J. Xi, Y. Wang, F. Li, L. Gao, H. Liu, C. Zhao, and L.-C. Tu, “On
enhancing the sensitivity of resonant thermometers based on parametric
modulation,” Journal of Microelectromechanical Systems, vol. 30, no. 4,
pp. 539-549, 2021.

N. Kacem, S. Baguet, S. Hentz, and R. Dufour, “Computational and
quasi-analytical models for non-linear vibrations of resonant MEMS and
NEMS sensors,” International journal of non-linear mechanics, vol. 46,
no. 3, pp. 532-542, 2011.

A. Duwel, R. N. Candler, T. W. Kenny, and M. Varghese, “Engineering
MEMS resonators with low thermoelastic damping,” Journal of micro-
electromechanical systems, vol. 15, no. 6, pp. 1437-1445, 2006.

V. Zega, A. Frangi, A. Guercilena, and G. Gattere, “Analysis of fre-
quency stability and thermoelastic effects for slotted tuning fork MEMS
resonators,” Sensors, vol. 18, no. 7, p. 2157, 2018.

A. S. Algamili, M. H. M. Khir, J. O. Dennis, A. Y. Ahmed, S. S.
Alabsi, S. S. Ba Hashwan, and M. M. Junaid, “A review of actuation
and sensing mechanisms in MEMS-based sensor devices,” Nanoscale
research letters, vol. 16, pp. 1-21, 2021.

R. Lifshitz and M. L. Roukes, “Thermoelastic damping in micro-and
nanomechanical systems,” Physical review B, vol. 61, no. 8, p. 5600,
2000.

(35]

[36]

(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

E. J. Ng, V. A. Hong, Y. Yang, C. H. Ahn, C. L. Everhart, and T. W.
Kenny, “Temperature dependence of the elastic constants of doped
silicon,” Journal of microelectromechanical systems, vol. 24, no. 3, pp.
730-741, 2014.

X. Zhou, X. Ren, D. Xiao, J. Zhang, R. Huang, Z. Li, X. Sun, X. Wu,
C.-W. Qiu, F. Nori et al., “Higher-order singularities in phase-tracked
electromechanical oscillators,” Nature Communications, vol. 14, no. 1,
p. 7944, 2023.

A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. A.
Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening
and hardening in folded-MEMS comb drive resonators,” Journal of
Microelectromechanical Systems, vol. 20, no. 4, pp. 943-958, 2011.

L. Chua, “Resistance switching memories are memristors,” Handbook
of memristor networks, pp. 197-230, 2019.

C. Zhao, M. H. Montaseri, G. S. Wood, S. H. Pu, A. A. Seshia,
and M. Kraft, “A review on coupled MEMS resonators for sensing
applications utilizing mode localization,” Sensors and Actuators A:
Physical, vol. 249, pp. 93-111, 2016.

A. Mehonic, A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki, and
A. J. Kenyon, “Memristors—f{rom in-memory computing, deep learning
acceleration, and spiking neural networks to the future of neuromorphic
and bio-inspired computing,” Advanced Intelligent Systems, vol. 2,
no. 11, p. 2000085, 2020.

X. Guo, W. Yang, X. Xiong, Z. Wang, and X. Zou, “MEMS reservoir
computing system with stiffness modulation for multi-scene data pro-
cessing at the edge,” Microsystems & Nanoengineering, vol. 10, no. 1,
p. 84, 2024.

J. Li, S.-g. Ren, Y. Li, L. Yang, Y. Yu, R. Ni, H. Zhou, H. Bao, Y. He,
J. Chen et al., “Sparse matrix multiplication in a record-low power self-
rectifying memristor array for scientific computing,” Science Advances,
vol. 9, no. 25, p. eadf7474, 2023.

T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri,
and B. Linares-Barranco, “STDP and STDP variations with memristors
for spiking neuromorphic learning systems,” Frontiers in neuroscience,
vol. 7, p. 2, 2013.

J. H. Yoon, Z. Wang, K. M. Kim, H. Wu, V. Ravichandran, Q. Xia, C. S.
Hwang, and J. J. Yang, “An artificial nociceptor based on a diffusive
memristor,” Nature communications, vol. 9, no. 1, p. 417, 2018.

C. Zhao, G. S. Wood, J. Xie, H. Chang, S. H. Pu, and M. Kraft, “A three
degree-of-freedom weakly coupled resonator sensor with enhanced stiff-
ness sensitivity,” Journal of Microelectromechanical Systems, vol. 25,
no. 1, pp. 38-51, 2015.



BIOGRAPHY

Erion Uka received the M.Eng. degree in elec-
tronic engineering with nanotechnology from the
University of York, York, U.K. in 2022. He is
currently pursuing the Ph.D. degree in electronic
engineering with the School of Physics, Engineering
and Technology, University of York, York, U.K. His
research interests include resonant MEMS devices,
high sensitivity MEMS sensors and unconventional
MEMS dynamics, with a focus on new sensing
paradigms and application areas.

Chun Zhao (S’14 - M’16 - SM’20) is currently a
Lecturer (Assistant Professor) in Microengineering
at the University of York, UK. He received B.Eng.
degree from the Huazhong University of Science and
Technology, Wuhan, China, in 2009; M.Sc. degree
from Imperial College London, London, U.K., in
2011; and Ph.D. degree from the University of
Southampton, Southampton, U.K., in 2016.

Prior to joining the University of York in 2022,
he was a Research Scientist with Sharp Laboratories
of Europe, Oxford, UK (2015-2016), a Research
Associate in MEMS at the University of Cambridge, UK (2016-2018), and
an Associate Professor with the School of Physics, Huazhong University of
Science and Technology, Wuhan, China (2018-2021). Dr. Zhao is currently
serving as an Associate Editor for IEEE Sensors Journal, and has served in the
Technical Program Committee for MEMS 24’ and 25°. His research interests
include MEMS resonators, high resolution MEMS sensors, unconventional
materials and physics for MEMS (e.g. modal interactions and nonlinear
effects).

11



