
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

BotCF: Improving the social bot detection
performance by focusing on the community features

Feng Liu İD , Zhenyu Li İD , Chunfang Yang İD , Daofu Gong İD , Fenlin Liu İD , Rui Ma İD , Adrian G. Bors İD ,
Senior Member, IEEE

Abstract—Various malicious activities performed by social bots
have brought a crisis of trust to online social networks. Existing
social bot detection methods often overlook the significance of
community structure features and effective fusion strategies for
multimodal features. To counter these limitations, we propose
BotCF, a novel social bot detection method that incorporates
community features and utilizes cross-attention fusion for multi-
modal features. In BotCF, we extract community features using
a community division algorithm based on deep autoencoder-like
non-negative matrix factorization. These features capture the
social interactions and relationships within the network, provid-
ing valuable insights for bot detection. Furthermore, we employ
cross-attention fusion to integrate the features of the account’s
semantic content, properties, and community structure. This
fusion strategy allows the model to learn the interdependencies
between different modalities, leading to a more comprehensive
representation of each account. Extensive experiments conducted
on three publicly available benchmark datasets (Twibot20, Twi-
bot22, and Cresci-2015) demonstrate the effectiveness of BotCF.
Compared to state-of-the-art social bot detection models, BotCF
achieves significant improvements in accuracy, with an average
increase of 1.86%, 1.67%, and 0.47% on the respective datasets.
The detection accuracy is boosted to 86.53%, 81.33%, and
98.21%, respectively.

Index Terms—Social Bot Detection, Sybil Detection, Commu-
nity Structure, Graph Convolutional Network.

I. INTRODUCTION

SOCIAL bots are controlled by automated programs or
APIs and perform various malicious activities on so-

cial networks. These accounts are called bot accounts [1–
3], Sybils [4], or fake accounts [5]. The explosive use of
online social networks in marketing, news, public relations,
mass information activities, entertainment, and globally and
nationally significant events has boosted the development of
social bots. During the 2016 U.S. election, bots disrupted
the election by posting a large number of tweets supporting
specific political lines as well as tweets smearing competitors
[6]. It was reported that 50% of the posts about Trump as
a candidate were written by social bots [7]. One statistic

Feng Liu is with the School of Artificial Intelligence, Jilin University,
Changchun 130012, China and the School of Cyber Science and Engineering,
Zhengzhou University, Zhengzhou 450002, e-mail: zzuliufeng@163.com.
Zhenyu Li, Chunfang Yang, Daofu Gong and Fenlin Liu are with Henan Key
Laboratory of Cyberspace Situation Awareness, Zhengzhou Science and Tech-
nology Institute, China, e-mail: {li1989zhenyu,chunfangyang}@126.com,
gongdf@aliyun.com, liufenlin@vip.sina.com. Rui Ma is with the School
of Artificial Intelligence, Jilin University, Changchun 130012, China, e-
mail: ruim@jlu.edu.cn. Adrian G. Bors is with the Department of Computer
Science, University of York, UK, e-mail: adrian.bors@york.ac.uk Zhenyu Li
and Chunfang Yang are the corresponding authors.

found that bot accounts accounted for 15% of Twitter’s ac-
tive accounts in 2017 [8]. Social bots massively posted and
amplified low-credibility messages about COVID-19 on social
networks [9]. In 2020, a study showed that among 200 million
tweets discussing coronavirus, 82% of the top 50 influential
forwarders were bots, and 62% of the top 100 forwards were
bots1. The purposeful behavior of malicious bots on social
networks seriously endangers the trust relationship of users in
online social networks. For example, in Mumbai, social bots
spread rumors on social media that the vaccines were a plot by
the government to sterilize Muslim children, which led to only
50% of those who were expected to be vaccinated actually got
the vaccine [10].

Social platforms and researchers proposed a series of social
bot detection methods to minimize the impact of malicious
social bots, with early success. These detection methods can be
grouped into two categories - account feature-based methods
and graph structure-based methods. Existing feature-based de-
tection methods for social bots use many hand-crafted features
from different categories of information, such as profiles, con-
tent, networks, properties and train machine learning models to
separate the bots from benign users based on the information
extracted. However, many of the existing features are effectless
when facing the manually aided created profile properties
and scheduled activities of social bots generated by complex
stochastic algorithms. For instance, the rapid development of
deep forgery techniques allows social bots to have identical
profile information as normal accounts and automatically
establish social relationships with other accounts, interspersing
small amounts of malicious information with many neutral
ones, which is very different from the traditionally considered
bot behavior [11]. The study on Twitter bots [12] indicates that
current social bots can more delicately disguise themselves
as normal accounts and work in concert to achieve certain
specific purposes, such as spreading rumors, posting advertise-
ments. Existing feature-based methods suffer from three major
limitations: (1) Human limitations and biases may influence
the design of the features. (2) Features are susceptible to the
manipulation of the social bots. (3) The generalization ability
of the model is limited by the wide variations in the properties
of the feature extracted in various online social networks.

Regarding these challenges, several studies used the in-
teractions of accounts in social networks to construct the
social graphs which are then divided into cohesive subgraphs

1Nearly half of the Twitter accounts discussing “Reopening America”
may be bots: https://www.cmu.edu/news/stories/archives/2020/may/twitter-
bot-campaign.html

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7711-0617
https://orcid.org/0000-0002-4852-5055
https://orcid.org/0000-0001-6487-379X
https://orcid.org/0000-0002-7810-2950
https://orcid.org/0000-0001-8019-1713
https://orcid.org/0000-0002-3477-1466
https://orcid.org/0000-0001-7838-0021

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

using graph mining techniques [13–18]. This type of approach
usually considers only leveraging the links of social bots in
online social networks, but misses the automated cues em-
bedded in text, time, and profile information. Therefore, these
methods are unable to detect social bots that have successfully
established enough attack edges (links) with normal users [19].
Faced with this challenge, Feng et al. [12] proposed a social
bot detection method that combines property features and
semantic features. However, they did not consider the impact
of community features and the fusion methods on multimodal
feature integration.

Following the idea of integrating multimodal features for
social bot detection, we design a social bot detection method
focusing on community features, namely BotCF. In the pro-
posed model, the community features are obtained by the
community division algorithm based on deep autoencoder-
like non-negative matrix factorization. Besides the existing
semantic and property features, we also consider commu-
nity features, obtaining a social bot detection model that
simultaneously considers the account’s semantic, property and
community structure information. Specifically, we first extract
and vectorize the semantic features of the accounts’ tweets, the
property and community structure features of the accounts.
Then, we utilize cross-attention fusion to integrate the fea-
tures of these three modalities and embed them in a graph
convolutional network (GCN). The representation vectors of
the accounts that learned during the training of the GCN are
ultimately used for the classification of the accounts.

Objectives: The objective of the study is to overcome two
main challenges faced by the current social bot detection
methods as follows:

• The detection model based on a single type of features
can be easily fooled by bots. For example, building a
sufficient number of attack edges can render a detection
model that relies solely on graph structure features inef-
fective [19].

• The detection models often neglect the fact that social
bots usually work in groups, resulting in sub-optimal
detection performance.

To counter the issues of objectives, we propose a new social
bot detection model that can leverage more types of features
and achieve better performance on various benchmark datasets.

Contributions: The main contributions of the study are as
follows:

• A GCN-based social bot detection model focusing on the
community structure features is proposed.

• The cross-attention mechanism is employed to integrate
multimodal features, and we validate its effectiveness
through ablation experiments.

• Extensive experimental results show that the proposed
model achieves better performance compared to the ex-
isting state-of-the-art models.

The rest of the paper is organized as in the following. In
Section II we discuss the main approaches in bot detection. In
Section III we provide the problem definition and in Section
IV we describe the proposed methodology. In Section V we

present the experimental results while these are discussed in
Section VI. Section VII draws the conclusions of this study.

II. RELATED WORK

The earliest work on social bot detection dates back to 2010
[20], honeypot traps were designed to detect social bots. Over
time, the development of social bot detection technology has
shown two main trends: single-account feature-based social
bot detection and groups-based one. This section introduces
the characteristics of these two categories of methods.

A. Single-account feature-based social bot detection

Early social bot detection methods were mainly based on
the account properties feature extraction and processing, using
traditional classifiers for classification. The work from [21]
filters social bots by analyzing Twitter account profiles. Specif-
ically, it designed sixteen-dimensional features, representing
among others: screen name length, active days, the number of
posted tweets, by analyzing account properties, tweet content,
historical activity, and friend lists. Afterwards, it feeds these
features into a random forest classifier to distinguish bots
from authentic human users, which is one of the foundational
works on social bot detection based on the individual account
features. Many follow-up studies continue to mine more
features from accounts to improve the detection accuracy of
the model [22–25]. Some researchers, considering that social
accounts should not be classified only as bots and non-bots
due to the hijacking of human accounts in social networks,
studied the differences between humans, bots and cyborgs in
terms of tweets (number of tweets, time of posts) and account
properties (external URL ratio, account reputation, etc.) [26].
This work laid down the idea of designing different classifiers
for different types of bots. Cresci et al. [27] designed digital
DNA, a string of characters that encodes the sequence of the
accounts’ action, to train different classifiers to detect different
bots.

However, over time, bot operators gradually learned about
classical bot detection features and managed to hide their
bot characteristics to evade detection. Continuous changes in
bot design, aiming to avoid detection, have been described in
[11, 12, 22]. In response to this trend, researchers continue to
exploit the individual account features. Yang et al. [22] mined
10 new features from the data, such as account clustering
coefficients, two-way following ratio, and tweet similarity, to
train classifiers against the evolution of bots. Beskow et al.
[23] extracted differentiated account profile features (degree
centrality, K-betweenness centrality, mean eigen centrality,
etc.) and tweet features (mean/max mentions, number of
languages, etc.) from the collected data and used random forest
as the classifier. Subsequent research designed new features to
combat the continuous evolution of bots and achieved good
performance [28, 29]. But it should be noted that the chosen
features depend on the specific properties of social platforms,
which limits the generalization ability of these models.

To overcome the challenge of generalization ability and
design generic social bot detection models, some researchers
designed various classifiers for bots using different datasets

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

and combined these classifiers into ensembles [30]. Botometer-
v3 [31], a social bot detection system that incorporates 1700-
dimensional features to improve generalization, was analyzed
in a series of research works on social bot detection [31–
33]; Some scholars used natural language processing (NLP)
methods to extract semantic differences from account tweets
to detect social bots. For example, the work by [34] proposed
a long short-term memory network (LSTM) based model to
extract content features and temporal features of tweets to
distinguish between bots and people. Pre-training models in
natural language processing are also applied in social bot
detection [1, 12].

The confrontation between bot detectors and operators is a
never-ending race. The properties of a single account are easy
to forge or manipulate. To address this challenge, research has
shifted toward group-based social bot detection methods.

B. Group-based social bot detection

The group-based social bot detection method utilizes the
structural differences between the social graphs generated by
humans and bots. The relationships that used to build the
social graph are usually categorized as friend relationships
[35], following/follower [2, 12], retweet/retweeted [36]. The
detection mechanism is to use the homogeneity of social
networks, in other words, the neighbor nodes of the bot tend
to be other bots, while the neighbor nodes of a human tend to
be humans [2, 13, 37]. A label-enhanced network integrates
labels with social network and uses the defined badness score
based on the random walk of nodes to distinguish the bots from
humans [38]. Wang et al. [13] proposed paired Markov random
field models to estimate the posterior probability of each user
by loopy belief propagation while predicting the user’s label
based on the posterior probability. Moreover, they proposed a
framework to unify random walk and loopy belief propagation
in [14, 37] to counter the limitations of the method [38] that
it cannot utilize the labels of bots and humans, meanwhile,
avoiding the problems of the method [13] that it is not scalable
and does not guarantee convergence. The study from [39]
trained a local classifier to calculate the local trust scores
of nodes and edges, and then the local trust scores used for
prediction are propagated through the global network structure
by a weighted random walk and loopy belief propagation
mechanism.

However, the social bot detection algorithms based on
the social graph usually consider only the local neighbor
features of accounts, while ignoring their community structure
features. Bot2vec [2] proposed by Pham et al. considers both
macro-community structural features and micro-neighborhood
features of accounts, but it ignores accounts’ semantic and
property information.These group-based social bot detection
methods largely improve the generalization of the model
and avoid manual feature engineering. However, this type of
method only utilizes the link information between accounts,
and its detection performance is greatly reduced when enough
attack links are established between accounts [19].

With the rise of graph convolutional network (GCN) [40],
it has been widely used in various occasions, such as for

link prediction, node classification, community division. Re-
searchers introduce GCN to detect social bots, because GCN
can utilize the link information between accounts as well as
lots of other information. Sun et al. [41] designed a GCN with
trust mechanism. First, the method starts a short random walk
from a known real node, and its walk probability is the trust
score of the node. Then, it uses these trust scores as edge
weights, and uses graph convolution operations to aggregate
features from local graph neighborhoods onto a weighted
graph for classification. Alhosseini et al. [42] proposed a GCN-
based spam bot detection model which utilizes both account
property features and neighborhood features. Following this
direction, researchers designed a social bot detection model
using the semantic features and property features of relational
graph convolutional network (RGCN) [12]. First, it vectorizes
the property features and semantic features of the accounts
and then stitch the two types of vectors together. Then, the
spliced semantic vectors are fed into a neural network model
for training to detect social bots. This method achieves state-
of-the-art results on homogeneous graph social bot detection.

III. PROBLEM DEFINITION

In this section, we give the key definitions used in this paper.
Definition 1 (Graph): Let G = (V,E, T) be a directed

graph, where V = {v1, v2, · · · , vn} is the set of nodes. The
social network is viewed as a graph, where each account is
considered as a node. n denotes the number of nodes. E
denotes the set of edges between nodes and the edges denote
the interaction between nodes. T represents the edge type,
which in this paper indicates whether the edge is an outgoing
edge (Following) or an incoming edge (Follower).

Definition 2 (Social bot detection task): For a given social
account U , we consider extracting its semantic features US ,
property features UP and community features UC , and learn a
suitable social bot detection function f , f(US , UP , UC)→ ŷ.
Train the model using account multi-dimensional features so
that the predicted value ŷ is as close to the true value y as
possible to maximize the detection accuracy.

IV. PROPOSED APPROACH

This section presents the framework of the proposed model
which consists of four components: input, preprocessing, node
representation, and output, as shown in Fig. 1. The various
features, especially the community features, describing the
social media accounts are first collected and considered as the
input of the BotCF model. Then, the preprocessing module
vectorizes these features and fusion these vectorized features
to form the initial representation vector of the node, namely,
social media account. The node representation module takes
the initial feature vector and adjacency matrix of the node as
the input to the GCN model. After the training of GCN, the
final representation vector of the node is obtained and used
for classification in the output module. The whole process is
an end-to-end process. Each module is described specifically
in the following subsections.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Fig. 1: The overall framework of the proposed social bot detection model.

A. Input Module

Under the normal situation, humans create their own ac-
counts in social media, where they post information according
to their wishes. Human accounts can be seen as a mapping
of a person’s identity in cyberspace, with multi-dimensional
information being provided, reflecting his/her persona. Social
bots are generated in batches by human manipulated programs
attempting to mimic the property information and activities of
human accounts in social networks. In order to find the flaws
of the social bots, it is reasonable to utilize the social accounts’
information for building the bot detector.

This paper proposes using account semantic features, prop-
erty features, and community structure features to learn ac-
count representations. The semantic features are extracted
from the account’s descriptions and tweets. The account’s
profile, such as account ID, screen name, profile image,
represent the property features. The social graph, where each
edge represents a following or follower relationship between
accounts, is used to extract community structure features.

B. Preprocessing Module

The preprocessing module uses multi-dimensional infor-
mation to represent a set of accounts. First, the accounts’
semantic features, numerical and categorical property features,
and community structure features are encoded as vectors.
Then, these vectors are scaled using a Multi-layer Perceptron
(MLP) to ensure consistent feature dimensionality. The feature
vectors are fused through a cross-attention mechanism to form
the initial representation vector of each account, which serves
as input to the subsequent module. In the following, we explain
how the three types of features are extracted and preprocessed.

1) Semantic Features: Tweets can largely reflect the char-
acteristics of the accounts and are widely used in existing
bot detection methods. We utilize the pre-trained RoBERTa
model from the Hugging Face library, specifically version

3.0.22, to encode account semantic information. This version
provides a fully trained model, including pre-trained weights
and accessible API interfaces for easy integration.

The semantic feature vector U l
S for a given account l

consists of two components: the account description semantic
vector U l

Sd
and the tweet semantic vector U l

St
. The account

description is a short text set by Twitter users to briefly
introduce themselves.

First, it uses RoBERTa to encode each word in the account
description, obtaining a sequence of representation vectors for
the l-th account description, {El

di
}Ll

i=1
,

{El
di
}Ll
i=1 = RoBERTa({di}Ll

i=1), (1)

where di ∈ RDR×1 and {di}Ll
i=1 is the l-th account description

that consists of Ll words and i represents the index of the word
in the description. DR is the embedding dimension which is
predefined in RoBERTa.

Then, the representation vector U l
Sd

of the account descrip-
tion is as follows,

U l
Sd

= σ(Wd ·
1

Ll

Ll∑
i=1

El
di

+ bd), (2)

where El
di

is derived according to Eq. (1), Wd and bd are
learnable parameters. U l

Sd
∈ RDM×1, DM is the dimension

of the output vector of the MLP. σ is the activation function.
Here, Leaky-ReLU [43] is used as the activation function.
Compared with Sigmoid/tanh, ReLU has faster convergence
and calculation speed, and Leaky-ReLU can further solve
the parameter updating problem caused by negative input of
ReLU.

Meanwhile, it uses similar method to encode each word in
the tweet, obtaining the representation vectors of the tweet,
{Etij

}Hj

i=1
,

{Ewi
j
}Hj

i=1
= RoBERTa({wi

j}
Hj

i=1), (3)

2https://huggingface.co/transformers/v3.0.2/main_classes/pipelines.html

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

where wi
j ∈ RDR×1 and {wi

j}
Hj

i=1
is the i-th word of the j-th

tweet, and the tweet length is H .
The representation vector Etj for each tweet of an account

is as follows,

Etj =
1

Hj

Hj∑
i=1

Ewi
j
, (4)

where Etj ∈ RDR×1 and Ewi
j

is derived from Eq. (3).
The tweet semantic vector U l

St
of the l-th account is the

average of the representation vectors of all its tweets, as
follows,

U l
St

= σ(Wt ·
1

Ml

Ml∑
j=1

Etj + bt), (5)

where U l
St
∈ RDM×1 and Ml is the number of tweets from

the l-th account. Wt and bt are learnable parameters.
Combing the two parts obtained above, we can get the

semantic feature vector of the l-th account, namely, U l
S =

[U
¯
l
Sd
,U l

St
],U l

S ∈ R2DM×1.
2) Property Features: The properties of accounts are di-

vided into statistical features (e.g., number of followers, likes,
retweets) and category features (e.g., whether the account
is authenticated, whether it uses default profile information,
whether it displays location information).

All the property features used for account representation
are shown in Table I, including two novel features proposed
in this paper, retweets and semantic vector distance. Retweets
feature is calculated as the number of retweet tweets (‘RT @’)
in the latest 200 tweets per account (in the Twibot-20 dataset
and the Twibot-22 dataset, each account has 200 tweets). Bots
usually work collaboratively in social networks, so they would
retweet more tweets than humans to amplify their influence.

The semantic vector distance (“distance”) corresponding
to each account reflects the variety of the content of the
account’s tweets. Since the social bots are controlled by
specific software, the diversity of the content of their tweets is
rather limited, resulting in the fact that their semantic vector
distances would be probably smaller than those of humans.
The average semantic vector distance can reflect the semantic
discreteness of each account’s tweets. For example, tweets
from human accounts are more diverse, so they have a greater
average semantic vector distance. Regarding the l-th account,
the distance between the semantic vector of k-th tweet and the
averaged semantic vector of all tweets is first calculated using
the Manhattan distance as follows,

sv_disk(U l
St

k , U
l
St
) =

n∑
h=1

|xk
h − x̄h|, (6)

where U l
St

k = (xk
1 , x

k
2 , · · · , xk

n) is the semantic vector of the
k-th tweet for the l-th account, U l

St
= (x̄1, x̄2, · · · , x̄n) is

the averaged semantic vector of the l-th account. Then, the
semantic vector distance corresponding to the l-th account,
SV _DIS(U l), is the average of the semantic vector distances
of all its tweets, namely,

SV _DIS(U l) =
1

M

M∑
k=1

(sv_disk(U l
St

k , U
l
St
)), (7)

where M represents the total number of tweets for an
account.

In order to justify the two proposed property features, we
visualize the differences between the features from the human
account and bot account. We randomly select 1000 human
accounts and 1000 bot ones from the TwiBot-20 dataset. Fig.2a
and Fig.2b show the distribution of the number of retweet
and semantic vector distance of the selected social accounts,
respectively. From Fig.2a we can see that the retweets of
most of the human account is less than 100, but quite a lot
bot account retweets more than that. In addition, it can be
observed from Fig.2b that the semantic vector distance of the
bot account is usually less than 0.6, while, that of the human
account is much more uniformly distributed. So it is reasonable
to use these two features as part of the property features for
the account representation.

(a) Retweets (b) Semantic vector distance

Fig. 2: Validity evaluation of the proposed property features
on the TwiBot-20 dataset.

With respect of vectorization of the property features, we
use Z-Score normalization for the numerical features and One-
hot encoding for the category features.

On one hand, in the case of numerical features, we first
normalize the i-th numerical feature of an account’s properties,
pin, as follows,

p̂i
n =

pin −mean(pin)

std(pin)
, (8)

where mean(·) is the average operation and std(·) is the
standard deviation operation.

The representation vector of the numerical property features
of the l-th account, U l

Pn
, can be derived from Eq.(9).

U l
Pn

= σ(WPn
· [p̂1n; p̂2n; · · · ; p̂rn] + bPn

), (9)

where U l
Pn
∈ RDM×1, and WPn

and bPn
are learnable

parameters. r is the total number of the numerical feature.
On the other hand, in the case of category features, the i-th

category feature in the properties of an account, pi
c, is obtained

as follows,

pi
c =

{
1, pi

c = True
0, pi

c = False
(10)

Then, the representation vector of the category features in
the property features of the l-th account, U l

Pc
, is derived by

Eq.(11),

U l
Pc

= σ(WPc
· [p1c ; p2c ; · · · ; ptc] + bPc

), (11)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

where U l
Pc
∈ RDM×1, and WPc

and bPc
are learnable

parameters. t is the total number of the category feature.
Finally, the property feature vector U l

P for the l-th account
is combined as U l

P = [U l
Pn

,U l
Pc
],U l

P ∈ R2DM×1.
3) Community Structure Feature: It was studied that bot

accounts in online social networks work in cooperation to
achieve certain purposes [12], indicating the existence of
community aggregation of bot accounts. Inspired by this,
besides semantic and property features, we consider using
the community structure features as well for the account
representation. The community structure features of accounts
are obtained using the community division algorithm based
on deep autoencoder-like non-negative matrix factorization
(DANMF) [44]. The DANMF community detection algorithm
can achieve good results in non-overlapping communities and
is also applicable to overlapping communities.

The DANMF social community division algorithm uses
encoders and decoders to optimize the probability of nodes
belonging to each community and it provides a probability
vector of each node belonging to each community. Specifically,
it decomposes the adjacency matrix into p + 1 non-negative
factor matrices, see Eq. (12):

A ≈M1M2 · · ·MpHp, (12)

where, A represents the adjacency matrix of the graph G,
which defines the relationships between nodes in the graph.
In the experimental process, both the adjacency matrix of
the graph generated by the training set, Atrain, and that of
the testing set, Atest, are decomposed in the same way. A
lot of studies have shown that a 2-layer GCN (or shallow
GCN) yields the best performance. However, the receptive
field of a 2-layer GCN is limited to 2-hop neighbors, allowing
it to capture only local structural features and preventing it
from extracting features from a more macro-level perspective.
Community detection algorithms, on the other hand, can
extract features from a more global community perspective.
In other words, using H enables the GCN to capture macro-
structural features. Community detection algorithms, on the
other hand, can extract features from a more global community
perspective. Therefore, using H enables the GCN to capture
macro-structural features. In the experimental process, we
incorporate the community structural features H extracted
by the detection algorithms into Uinit as one of the three
feature types, compensating for the shallow GCN’s limitation.
Mi is the i-th layer’s mapping matrix and each column of
M denotes the description of a community. Hp is the p-th
layer’s community member matrix and each column of H
represents the association relationship of a node to different
communities. The DANMF [44] algorithm suggests setting
p = 2 for optimal performance. Therefore, in our experiments,
we have set p = 2.

The community representation vector of the l-th account,
U l

C , is obtained after the MLP transformation as follows,

U l
C = σ(Wc ·H·l + bc), (13)

where U l
c ∈ R2DM×1 and H·l represents the association

relationship of the l-th node to different communities. Wc and
bc are learnable parameters.

Ultimately, the initial feature representation vector of ac-
count l can be expressed as U l

init = fusion(U l
S ,U

l
P ,U

l
C),

U l
init ∈ R6DM×1. fusion(·) is the fusion function. We

compared four fusion methods (concatenation, summation,
self-attention and cross- attention), and their specific settings
are as Section V-D.

Concatenation and summation are the most commonly
used feature fusion methods in the early days, which are
characterized by their simplicity, but cannot distinguish the
degree of contribution of different features to the downstream
task and cannot capture the interactions between different
modal features. With the rise of Transformer, more and more
attention-based fusion methods have been focused on. Self-
attention distinguishes the contribution of different features
to the downstream task by weighting the features, and cross-
attention can model the interactions between different modal
features. Specific ablation experiments have also demonstrated
the superiority of the cross-attention fusion approach for
multimodal social bot detection tasks (see Section V-D).

C. Node Representation Module

This subsection describes the process of obtaining the
final representation vector of nodes. The initial representation
vector of each node is the output of the preprocessing module.
Then, the directed graph is constructed using the following-
follower relationship, and the node’s neighbor information and
initial features are aggregated using the GCN message passing
mechanism. The final representation vectors are the output
of the GCN model. The detailed learning process for node
representation vectors is as follows.

First, the initial hidden vector of the i-th node in the graph,
l
(0)
i , can be expressed as Eq. (14),

l
(0)
i = σ(W1 · U i

init + b1), (14)

where l
(0)
i ∈ RD×1 and D is the dimension of the output

embedding vector of the GCN model. U i
init is the i-th node’s

initial feature representation vector. W1 and b1 are learnable
parameters.

Then, after applying RGCN to the constructed directed
graph, the aggregation of k-th layer of RGCN can be for-
mulated as Eq. (15),

l
(k+1)
i = σ

 ∑
r∈[Nf ,Nt]

∑
j∈Nr(i)

1

Nr(i)
Wr

klj
(k) +W0

kli
(k)

 ,

(15)
where r represents the relationship type (following or fol-
lower). Nr(i) denotes the set of r-relational type neighbors of
node i. Nf is following and Nt is follower. W k

0 and W k
r are

the self-1oop projection matrix and the relational projection
matrix, respectively, both of which are learnable parameters.
k is the index of the layer of GCN.

Meanwhile, the node representation vector of the i-th node
produced by the k-th layer of the GCN, U i

k, is obtained after
the MLP processing as follows:

U i
k = σ(Wkl

(k)
i + bk), (16)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE I: Property features used in our model.

Feature Name Description

followers The number of followers.

followings The number of accounts that the account
follows.

favorites The number of favorites or likes a account
receives.

statuses The number of statuses a account posts.

active days The number of days from the account’s
registration to present.

screen name length The length of the account’s current screen
name

protected Whether the account is currently protected.
is translator Whether there is a translator or not.
is translation enabled Whether translation is available or not.
geo enabled Whether the account is geo enabled or not.

profile background tile Whether the account uses a background tile.

profile background image Whether the account uses a background image.

has extended profile Whether the account has extended profile or
not.

default profile Whether the account uses a default profile.

default profile image Whether the account uses a default profile
image or not.

verified Whether the account is verified or not.

retweets The number of retweets in the latest 200
tweets for this account.

semantic vector distance (“distance”)
The distance between the semantic vector of
each tweet of the account and the tweet vector
of the account

where Wk and bk are learnable parameters. σ is the Leaky-
ReLU activation function.

The final node representation vector of the i-th node, U i,
is the output of the GCN network after multiple iterations of
aggregation (Eq. (15) and MLP processing (Eq. (16)).

D. Output Module

The node representation vector U i is obtained based on the
processing described in the previous subsection, and our model
classifies node i as a social bot or human by the softmax layer
(see Eq. (17)).

ŷi = softmax(WoU
i + bo), (17)

where ŷ is the prediction of the label, Wo and bo are the
learnable parameters of the softmax layer.

The loss function used in the training of the model is the
cross-entropy loss function. (see Eq. (18)).

Loss = −
∑
i∈U

[yilog(ŷi) + (1− yi)log(1− ŷi)] + λ
∑
ω∈Ω

ω2,

(18)
where U stands for the set of labeled users, ŷ is the prediction
of the label and y is the ground truth. Ω represents the set of
all learnable parameters in the model.

Thus, the final optimization objective function can be writ-
ten as:

min
W,b
L = −

∑
i∈U

[yi log(ŷi) + (1− yi) log(1− ŷi)] + λ
∑
ω∈Ω

ω2

(19)

Algorithm 1: BotCF
Input: Social network: G = (V,E, T),

Semantic information: US = {USd
, USt},

Property information: UP = {UPn
, UPc

}
Output: Node representation vector: U

1 initialization Uinit, US, UP,UC ;
2 //Pre-processed
3 for U l ∈ V do
4 Ul

S ←− RoBERTa(U l
S);

5 Ul
Pn
←− Z-Score Normalization(U l

Pn
);

6 Ul
Pc
←− One-hot Encoding(U l

Pc
);

7 Ul
C ←− DANMF (G);

8 Ul
init = fusion((Ul

S ,U
l
Pn ,U

l
Pc ,U

l
C));

9 //Node Representation
10 while RGCN has not converged do
11 for U l ∈ V do
12 Loss(Ul)←− RGCN(Ul

init, G)

13 Update: U←− BackPropagate(Loss(Ul));

14 return U;

where, W and b represent the set of learnable parameters,
which are updated iteratively through multiple rounds of
training.

The proposed model is named as BotCF and its pseudo-code
is given in Algorithm 1.

V. EXPERIMENTS

In this section, we perform extensive experiments on three
benchmark datasets to validate the performance of the pro-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

posed model. All experiments are conducted on a server with
Intel (R) Xeon (R) Gold 6234 CPU (4× 8 cores, 128 GB, 3.3
GHz) and RTX 3090 (2×24 GB) GPU running Ubuntu 20.04
(64-bit).

A. Datasets

The experiments are based on three different publicly
available datasets, namely, the Cresci-2015 dataset [45], the
TwiBot-20 dataset [46] and the TwiBot-22 dataset [47]. The
Cresci-2015 dataset is a social bot detection dataset intro-
duced in 2015 by Cresci et al. [45]. It contains five sub-
datasets, named E13, TFP, INT, FSF, and TWT. A total of
574 accounts were collected in the TFP (The Fake Project)
dataset, of which 469 were verified as human accounts. The
E13 (Election 2013) dataset was validated by social scientists
to identify 1,481 human accounts. FSF, TWT, and INT are bot
datasets purchased from three different websites (Intertwitter,
Fastfollowerz, and Twittertechnology, respectively), and were
crawled again after purchase, getting 1169, 845, and 1337
bot accounts, respectively. The TwiBot-20 dataset is a social
bot dataset made public by Feng et al. [46] in 2020, which
includes 229,573 Twitter users, 33,488,192 tweets, 8,723,736
user property items and 455,958 following relationships. The
TwiBot-22 dataset is a larger social bot dataset made public
by Feng et al. [47] in 2022, which includes 1,000,000 Twit-
ter users (human: 860,057, bot: 139,943), 86,764,167 tweets
and 170,185,937 following relationships. An overview of the
datasets is presented in Table II.

TABLE II: Overview of the benchmark dataset.

Datasets Account
Count Bot Count Human

Count

Cresci-2015 [38] 5301 3351 1950
TwiBot-20 [39] 229573 5273 6589
TwiBot-22 [40] 1,000,000 139,943 860,057

B. Baseline methods

In this section, we give a brief introduction of the baseline
bot detection models compared with our model.

Miller et al. [33]: Miller et al. extract 107 features from
the tweets and property information of accounts and utilizes
an improved stream clustering algorithm to identify Twitter
bots.

Deepwalk [48]: Deepwalk is considered to be the first
method combining graph embedding with word embedding,
which uses unbiased random walk to learn the neighbor infor-
mation of nodes. It is widely used for graph node classification
and other tasks.

Node2vec [49]: Node2vec is an improved version based on
Deepwalk. It uses a depth-first search strategy (DFS) and a
breadth-first search strategy (BFS) to protect the structural
equivalence and homogeneity of the network nodes. Pham
et al. [2] used Node2vec combined with traditional machine
learning models for social bot detection.

GCN [40]: GCN is a graph representation model proposed
by Kipf et al. that can efficiently utilize graph neighbor

structure data. It has been widely used for tasks such as node
classification, link prediction.

GAT [50]: GAT model introduces an attention mechanism
that considers different weights when aggregating neighboring
nodes. Similar to GCN, it is also widely used for downstream
tasks such as link prediction, node classification and graph
clustering.

Dropedge [51]: Dropedge is a method proposed by Rong
et al., which mitigates the oversmoothing and overfitting
problems that exist in deep neural networks by randomly
deleting edges from the original graph during model training,
and is often used for node classification tasks. We chose the
combination of JK-NET [52] + Dropedge for our specific
experiments.

Bot2vec [2]: Bot2vec is an improved social bot detection
algorithm based on Node2vec proposed by Pham et al. It
combines a community detection algorithm and a graph rep-
resentation learning algorithm for social bot detection.

SATAR [1]: SATAR is a self-supervised Twitter account
representation model combining account semantic informa-
tion, property information and neighbor information proposed
by Feng et al. It achieved very good results in the task of
detecting novel bots.

BotRGCN [12]: BotRGCN is an RGCN-based social bot
detection model proposed by Feng et al. It embeds account
semantic information and property information into RGCN for
social bot detection.

C. Implementation details

We conducted the experiments based on the source code
provided by the authors. For model-specific parameters, we
used the default configuration of the code, and we tried our
best to ensure that the common parameters have the same
configuration. The parameter configuration of all models in
the experiments is shown in Table III. The source code for
these models can be found in the original paper as well as in
TwiBot-223.

D. Experimental results

Comparative Experiments: To evaluate the model perfor-
mance, we use 70% of the data in the dataset as the training
set, 20% of the data as the validation set, and the remaining
10% as the testing set. Accuracy, F1-Score and Precision are
used as evaluation metrics and experiments are conducted
on three benchmark datasets. The experimental results are
shown in Table IV, each result is the average of three repeated
experiments. where the best results are in bold.

From the results shown in Table IV, it is evident that
on the latest datasets, TwiBot-20 and TwiBot-22, the per-
formance of GCN-based social bot detection models (GCN,
GAT, SATAR, BotRGCN, and our model BotCF) improves
after incorporating features from other dimensions. The model
performance shows improvements compared with the model
only using the property features alone (Miller et. al [33])
or graph structure alone (Deepwalk [48], Node2vec [49] and

3https://github.com/LuoUndergradXJTU/TwiBot-22

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE III: Overview of models’ parameter configuration.

Parameter Miller Deepwalk Node2vec Bot2vec GCN GAT Dropedge SATAR BotRGCN Ours

Network Layers - - - - 2 2 4 1 2 2
Dropout value - - - - 0.3 0.3 0.3 0.6 0.3 0.3
Embedding size - 128 128 128 128 128 128 128 128 128
Learning rate - - - - 0.001 0.001 0.001 0.01 0.001 0.001
Weight decay - - - - 0.005 0.005 0.005 0 0.005 0.005
Optimizer - - - - AdamW AdamW AdamW SGD AdamW AdamW
Epochs - - - - 100 100 100 100 100 100
Number_Cluster 30 - - - - - - - - -
Window Size - 7 7 7 - - - - - -
Negative Sampling - 5 5 5 - - - - - -
Walk Length - 30 30 30 - - - - - -
Number of walks - 20 20 20 - - - - - -
Return Parameter - - 1 1 - - - - - -
In–out Parameter - - 1 1 - - - - - -

TABLE IV: Performance comparison of multiple social bot detection models on three benchmark datasets.

Cresci-2015 Twitbot-20 TwiBot-22

Model Acc F1 Pre Acc F1 Pre Acc F1 Pre

Miller 0.7549 0.8372 0.7213 0.6447 0.7472 0.6073 0.3037 0.4529 0.2946
Deepwalk 0.9358 0.9473 0.8871 0.5631 0.6113 0.5327 0.5187 0.3794 0.4917
Node2vec 0.9705 0.9734 0.9321 0.6066 0.6605 0.5923 0.5711 0.3927 0.5597
Bot2vec 0.9774 0.9801 0.9462 0.6328 0.7147 0.6318 0.5914 0.4108 0.5726
GCN 0.9537 0.9617 0.9459 0.7973 0.8047 0.7659 0.7239 0.4480 0.7119
GAT 0.9617 0.9714 0.9488 0.8348 0.8521 0.8131 0.7836 0.5586 0.7223
Dropedge 0.9643 0.9737 0.9508 0.8371 0.8574 0.8133 0.7842 0.5587 0.7281
SATAR 0.9631 0.9748 0.9497 0.8402 0.8607 0.8150 0.7871 0.5710 0.7407
BotRGCN 0.9652 0.9770 0.9551 0.8467 0.8707 0.8379 0.7966 0.5750 0.7481

Ours 0.9821 0.9883 0.9679 0.8653 0.8835 0.8567 0.8133 0.5827 0.7618
(0.0047↑) (0.0082↑) (0.0128↑) (0.0186↑) (0.0128↑) (0.0188↑) (0.0167↑) (0.0077↑) (0.0137↑)

Bot2vec [2]), indicating that property features and structural
features can complement each other. Compared with the GCN-
based social bot detection models (GCN [40], GAT [50],
SATAR [1], and BotRGCN [12]), Node2vec and Bot2vec
perform better on the Cresci-2015 dataset, which may be
because our experiments on the Cresci-2015 dataset only use
the structural features of the account. It shows that Node2vec
and Bot2vec are better at extracting the structural features
of nodes, which may be because they can not only extract
the neighbor features of nodes, but also extract the structural
features of nodes [2, 53].Our model BotCF also performs well
on the Cresci-2015 dataset, reflecting the fact that embedding
community structure information can compensate for the loss
of some structural features when GCN extracts node structure
information. On the Cresci-2015 dataset, all models achieved
good results, while on the TwiBot-20 or TwiBot-22 datasets,
the performance of each model decreased more significantly,
which may be due to the fact that after five years (both
TwiBot-20 and TwiBot-22 are 2020 datasets) of development,
the bots have evolved to be more indistinguishable from
real users (some studies have shown that bots are constantly
evolving [11, 12]). In general, embedding account property
features, semantic features, and community structure features
can improve the performance of the model. The experimental
results on three benchmark datasets validate the accuracy,
generalization and scalability of our model detection.

We also consider the t-SNE 2D visualization technique
to visualize the embedding vectors and the corresponding

homogeneity score obtained by each model on the TwiBot-
20 dataset, and the results are illustrated in Fig. 4 and Fig. 3.
The t-SNE visualization results can reflect the quality of model
training to a certain extent [1, 2]. A higher homogeneity score
means the samples are better clustered. It can be observed
from Fig. 4 and Fig. 3 that our model achieves the highest
homogeneity score and that the embedding vector obtained
from our model training is more beneficial for the social bot
detection task.

Model Selection Study: We study the impact when using
different GNN training models, embedding different dimen-
sion features, and embedding community structure features
on the performance of the proposed model. Taking TwiBot-
20 [46] as the experiment dataset, GCN [40], GAT [50],
GraphSAGE [54], and RGCN [55] are considered as the GNN
training models in the node representation model, respectively.
Fig. 5 shows the detection performance of the models when
considering the GNN training module with various models
when the number of layers is 2. The results show that RGCN
works better on TwiBot-20, which is probably because RGCN
is more powerful in handling heterogeneous relationships.
GAT and GraphSAGE have similar performance, but both
work better than using the original GCN. This may be due to
the fact that both GraphSAGE and GAT are improved versions
of GCN. They improve the aggregation of nodes and introduce
the attention mechanism, respectively.

Fig. 6 shows the changing trend of detection performance
of our model, BotRGCN, GCN, GAT and DropEdge when the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

(a) Deepwalk (1.129× 10−3) (b) Node2vec (2.559× 10−3) (c) Bot2vec (2.371× 10−2)

(d) GCN (1.609× 10−1) (e) GAT (1.851× 10−1) (f) Dropedge (1.937× 10−1)

(g) SATAR (1.973× 10−1) (h) BotRGCN (2.356× 10−1) (i) Ours (3.812× 10−1)

Fig. 3: Visualization of human-bot user representations of the TwiBot-20 dataset by various models via t-SNE 2D projections
and the corresponding homogeneity score.

number of network layers increases. In Fig. 6a, Fig. 6b and
Fig. 6c, the X-axis represents the number of network layers,
while Y-axis represents the values of Accuracy, F1-Score, and
Precision, respectively. As the number of layers increases, the
overall performance of all models tends to increase initially
and afterwards decrease. When the number of layers is equal
to five, the performance of the BotRGCN and our model
decreases significantly. To explain this phenomenon, we refer
to [56] that the propagation operation in GCNs is essentially a
Laplace smoothing, and thus the propagation operation makes
the node embedding in deep GCNs indistinguishable, leading
to a degradation of model performance. From Fig. 6, it can be
observed that with the increase in the number of GCN layers,
the overall performance decline of Dropedge is gradual. Our
method shows a slightly faster decline in performance with
the increase in layers compared to it. However, overall, after
incorporating community structure features into our model,
there is indeed a mitigation in the performance decline trend

when compared to baselines like BotRGCN. Looking from
another angle, performance degradation is mitigated by the
proposed model compared to BotRGCN, which indicates that
embedding community structure features may alleviate the
over-smoothing problem to some extent.

Ablation experiment on features: In the following we
test how the proposed features can work with novel bot. We
investigate the effects of various combinations of the features,
including neighbor features (N), semantic features (S), prop-
erty features (P) and community structure features (C), on the
detection performance of social bot. For example, the RGCN
model that only uses the neighbor feature is denoted as “N”.
“N+P ” represents the scenario using both neighbor feature
and property feature for the training of the classifier. The
detection performance is consistently evaluated by Accuracy,
F1-Score and Precision on the TwiBot-20 dataset. We consider
two layers in the network structure.

Most importantly, the best detection performance is

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Fig. 4: Overview of homogeneity score obtained by various
social bot detection models.

Fig. 5: Performance (%) comparison of social bot detection
using various GNN training models on the Twibot-20 dataset.

achieved by “N+S+P+C”, which validates that all three types
of features are necessary for social bot detection. More specif-
ically, when comparing using “N” with “N+S”, “N+P”, and
“N+C” in Fig. 7, it can be seen that the semantic, property
and community structure features can complement the neigh-
bor feature in the social bot detection task. “N+P” achieves
better performance than “N+S” and “N+C”, indicating that
the property features are more beneficial than the semantic
features and community structure ones. This is because some
of the property features have very strong distinguishability,
for instance, for identifying whether the account is verified
or not. Furthermore, by comparing (“N”, “N+C”), (“N+P”,
“N+P+C”) and (“N+S”,“N+S+C”), respectively, the detection
performance is improved after adding the community struc-
ture feature. This observation indicates that the community
structure feature is necessary and adding community structure
features can compensate for the loss of some structural features
extracted by a shallow GCN model.

In addition, we also conducted community structure feature
ablation experiments for each GNN model, and the specific
results are shown in Table V. Each result is the average
of three repeated experiments. We added property features
and semantic features to the original model, after which we

added community structure features to observe the changes in
Accuracy across models. From Table V, we can see that the
accuracy of each base model is improved after adding commu-
nity structure features. Among them, our base model is based
on BotRGCN with the addition of the cross-attention module.
Considering the good performance of property features in the
previous feature ablation experiments, in the cross-attention
fusion part of our method, in the case without community
feature, we set Q and K as the semantic feature matrix,
and V as the property feature matrix. However, in the case
when community structure features are included, we set Q as
the community structure feature matrix, K as the community
structure feature matrix, and V as the property feature matrix.

Ablation experiment on fusion: To explore the impact
of feature fusion methods on the detection accuracy, we
compared four different approaches: concatenation (Cat), sum-
mation (Sum), self-attention-based (SA) fusion and cross-
attention-based (CA) fusion. Specifically, we scale the features
of three modalities - property, semantic, and community
structure - to a consistent dimension using an MLP. Then,
we perform summation, concatenation, self-attention-based
fusion, and cross-attention-based fusion, respectively. In the
self-attention-based fusion method, we set Q, K, and V as
matrices formed by concatenating the features of the three
modalities. In the cross-attention-based fusion method, the
setting of Q, K, and V matrices remains the same as mentioned
in the previous paragraph when community structure features
are included. The experimental results are shown in Table VI,
each result is the average of three repeated experiments. It
can be observed that the cross-attention-based fusion method
achieves the best performance.

Therefore, through the ablation experiments on community
structure features and fusion methods, we have validated the
effectiveness of community structure features and the cross-
attention fusion method in the proposed approach.

Complexity analysis: Our model demonstrates a slight
increase in complexity compared to traditional GCN-based
methods. This is primarily due to the integration of community
structure features and the application of cross-attention mecha-
nisms. Specifically, we follow a similar approach to BotRGCN
for incorporating community structure features. In our model,
the increase in feature dimension is modest, going from 128
(RN×128) to 160 (RN×160) dimensions. With cross-attention,
the dimensions for semantic, property, and community struc-
ture features are uniformly set at 64 (RN×64). Post-fusion,
the output dimension remains at RN×64, leading to an added
time complexity of N × 642, where N represents the number
of accounts. Overall, this results in a time complexity increase
that is linear, or O(N).

VI. DISCUSSION

This section discusses the significance and effects of the
research results provided in this paper. The investigation in
[11] and extensive experimental results in Section V show
that the evolution of social bots made social bot detection
methods using only a single type of feature less effective in
detecting novel bots. Existing social bot detection methods

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

(a) Accuracy (b) F1-Scores (c) Precision

Fig. 6: The values of Accuracy, F1-Score and Precision obtained by various models on the Twibot-20 dataset when the network
layer increases.

TABLE V: Testing accuracy (%) comparisons on different
backbones w and w/o community feature.

Backbones Twibot-20 Twibot-22

Original Add “C” Original Add “C”

GCN 77.53 79.27 72.39 73.47
GAT 83.27 83.97 78.36 79.11
Dropedge 83.71 84.16 78.42 79.73
BotRGCN 84.61 85.97 79.66 80.67
Ours 85.67 86.53 79.97 81.33

TABLE VI: Testing accuracy (%) comparisons on different
fusion methods.

Dataset Fusion Methods

Sum Cat SA CA

Twibot-20 85.89 86.27 85.98 86.53
Twibot-22 79.98 81.07 80.34 81.33

Fig. 7: Illustration of Accuracy, F1-Score and Precision when
using various combination of the features for the training of
RGCN model on the Twibot-20 dataset. The features used are
accounts’ neighbor information (N), semantic information (S),
property information (P) and community structure information
(C).

using multiple types of features have yielded promising re-
sults in detecting novel bot tasks, but they ignore the novel
macro-community structure features of the accounts [1, 12].
The ablation experiments in Section V verify that property
features, semantic features and community structure features
can complement each other, and the simultaneously leverage
of them is beneficial to the detection of novel social bots.
At the same time, it also verifies the effectiveness of adding
community structure features to the GCN-based model for
social bot detection.

The most significant difference between our model and the
existing models is the first model simultaneously leverage
of accounts’ semantic features, property features, community
structure features and neighborhood features for social bot
detection. Besides, we also improved the method of multi-
modal feature fusion. To explicitly compare with the detection
models, we present an overview of the account features used
by each model in Table VII. The social bot detection method
proposed by Miller et al. [33] utilizes only the property fea-
tures of the account. Deepwalk [48] and Node2vec [49] utilize
the local neighborhood structure features of the account, and
Bot2vec [2] utilizes the local neighborhood structure features
and macro community features of the account. GCN [40], GAT
[50], Dropedge [51], SATAR [1] and BotRGCN [12] all exploit
the semantic features, property features, and neighbor features
of the account. However, our model additionally considers the
community structure features of the account as well.

Although Bot2vec takes into account the community struc-
ture features, the way we extract and utilize community
structure features is different from it. Firstly, the methods of
community division used by Bot2vec and BotCF are different.
Bot2vec uses Louvain for community division, while our
method employs the more advanced community detection
method based on Non-negative Matrix Factorization, DANMF
[44], for community division. Compared to Louvain, DANMF
exhibits better performance in community detection. Secondly,
the detected communities play different roles in the two
methods. In Bot2vec, the step of community division is to
control the direction of the random walk, increasing the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

attention weight among nodes within the same community.
In our method, the detected community serves as one of the
multimodal features and supplements the structural features.
The purpose is to prevent the graph neural network from
excessively focusing on the features of neighbor nodes while
ignoring the features of nodes with high similarity in the macro
structure.

The improvement obtained by simultaneously using more
types of features is quite obvious. By taking the results
obtained on the TwiBot-20 dataset provided in Table IV as
an example, our model improves the detection accuracy by
22.06% compared to the model ([33]) that only uses property
features, and improves by 23.25% over the model, Bot2vec,
that only uses structural features. Compared with the state-of-
the-art model, BotRGCN, that uses multi-type features except
community structure features, the detection accuracy of our
model is improved by 1.86%.

In general, the benefits achieved by adding accounts’ com-
munity structure features to the GCN-based social bot de-
tection model may result from the following reason. It may
circumvent the problem of shallow GCN that ignores the
structural similarity of nodes, meanwhile, mitigate the effects
of over-smoothing in deep GCN. It should be noted that the
proposed model is a general social bot detection framework,
which is applicable for further more meaningful features. It
can also adjust the features dynamically according to the
development of the social bots, which has great potential for
industrial applications.

TABLE VII: Overview of account information used by the
compared models.

Model Semantic Property Neighbor Community

Miller et. al ✓
Deepwalk ✓
Node2vec ✓
Bot2vec ✓ ✓

GCN ✓ ✓ ✓
GAT ✓ ✓ ✓

Dropedge ✓ ✓ ✓
SATAR ✓ ✓ ✓

BotRGCN ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓

VII. CONCLUSION

In this paper, we propose a social bot detection method
that further considers the community features, namely BotCF.
In the proposed model, the community features are ob-
tained by the community division algorithm based on a deep
autoencoder-like non-negative matrix factorization. Besides
the existing semantic and property features, two new prop-
erty features, retweets and semantic vector distance, are pro-
posed for social bot detection, forming a social bot detection
model that simultaneously considers the account’s semantic,
property and community structure information. Further, we
also consider the fusion of multimodal features using the
cross-attention mechanism to fuse multimodal features. The
experimental results on the three benchmark datasets show
that the proposed model achieves better performance than the

SOTA method. The investigative experiments indicate that the
proposed model mitigates the effects of over-smoothing in
deep GCNs, as well as circumvents the problem of shallow
GCNs that ignore the structural similarity of nodes. In the
future, we will further mine additional account information
sources and explore the construction of heterogeneous graphs
to detect social bots using accounts in social networks with
multiple types of activity relationships.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and
Development Program of China (No.2022YFB3102904), the
National Natural Science Foundation of China (Grant
Nos.62002387, 62472440, U1804263) and Science
and Technology Research Project of Henan Province
(No.222102210075), China.

REFERENCES

[1] S. Feng, H. Wan, N. Wang, J. Li, and M. Luo, “SATAR:
A self-supervised approach to Twitter account representa-
tion learning and its application in bot detection,” in Pro-
ceedings of the 30th ACM International Conference on
Information & Knowledge Management (CIKM), 2021,
pp. 3808–3817.

[2] P. Pham, L. T. Nguyen, B. Vo, and U. Yun, “Bot2vec:
a general approach of intra-community oriented repre-
sentation learning for bot detection in different types
of social networks,” Information Systems, vol. 103, p.
101771, 2022.

[3] S. Kudugunta and E. Ferrara, “Deep neural networks for
bot detection,” Information Sciences, vol. 467, pp. 312–
322, 2018.

[4] X. Zhang, H. Xie, P. Yi, and J. C. Lui, “Enhanc-
ing sybil detection via social-activity networks: A ran-
dom walk approach,” IEEE Transactions on Depend-
able and Secure Computing, 2022, published online,
DOI:10.1109/TDSC.2022.3151701.

[5] K. K. Bharti and S. Pandey, “Fake account detection in
Twitter using logistic regression with particle swarm op-
timization,” Soft Computing, vol. 25, no. 16, pp. 11 333–
11 345, 2021.

[6] H.-C. H. Chang, E. Chen, M. Zhang, G. Muric, and
E. Ferrara, “Social bots and social media manipulation in
2020: the year in review,” in Handbook of Computational
Social Science, Volume 1. Routledge, 2021, pp. 304–
323.

[7] P. N. Howard, B. Kollanyi, and S. Woolley, “Bots and
automation over Twitter during the U.S. Election,” Com-
putational propaganda project: Working paper series,
vol. 21, no. 8, 2016.

[8] O. Varol, E. Ferrara, C. Davis, F. Menczer, and A. Flam-
mini, “Online human-bot interactions: Detection, esti-
mation, and characterization,” in Proceedings of the
international AAAI conference on web and social media,
vol. 11, no. 1, 2017, pp. 280–289.

[9] K.-C. Yang, C. Torres-Lugo, and F. Menczer, “Preva-
lence of low-credibility information on Twitter during the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

COVID-19 outbreak,” in Proceedings of the international
AAAI conference on web and social media, 2020, pp.
224–228.

[10] J. Donovan, “Stuck: How vaccine rumors start-and why
they don’t go away,” Nature, vol. 583, no. 7818, pp. 680–
681, 2020.

[11] S. Cresci, “A decade of social bot detection,” Communi-
cations of the ACM, vol. 63, no. 10, pp. 72–83, 2020.

[12] S. Feng, H. Wan, N. Wang, and M. Luo, “BotRGCN:
Twitter bot detection with relational graph convolutional
networks,” in Proceedings of the 2021 IEEE/ACM In-
ternational Conference on Advances in Social Networks
Analysis and Mining, 2021, pp. 236–239.

[13] B. Wang, N. Z. Gong, and H. Fu, “GANG: Detecting
fraudulent users in online social networks via guilt-by-
association on directed graphs,” in 2017 IEEE Interna-
tional Conference on Data Mining (ICDM). IEEE, 2017,
pp. 465–474.

[14] B. Wang, J. Jia, L. Zhang, and N. Z. Gong, “Structure-
based sybil detection in social networks via local rule-
based propagation,” IEEE Transactions on Network Sci-
ence and Engineering, vol. 6, no. 3, pp. 523–537, 2018.

[15] N. El-Mawass, P. Honeine, and L. Vercouter, “Simil-
catch: Enhanced social spammers detection on Twitter
using markov random fields,” Information processing &
management, vol. 57, no. 6, p. 102317, 2020.

[16] S. Noekhah, N. binti Salim, and N. H. Zakaria, “Opin-
ion spam detection: Using multi-iterative graph-based
model,” Information Processing & Management, vol. 57,
no. 1, p. 102140, 2020.

[17] A. Abou Daya, M. A. Salahuddin, N. Limam, and
R. Boutaba, “Botchase: Graph-based bot detection using
machine learning,” IEEE Transactions on Network and
Service Management, vol. 17, no. 1, pp. 15–29, 2020.

[18] Z. Qu, C. Lyu, and C.-H. Chi, “Mush: Multi-stimuli
hawkes process based sybil attacker detector for user-
review social networks,” IEEE Transactions on Network
and Service Management, vol. 19, no. 4, pp. 4600–4614,
2022.

[19] M. Fazil, A. K. Sah, and M. Abulaish, “DeepSBD: a
deep neural network model with attention mechanism for
socialbot detection,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 4211–4223, 2021.

[20] S. Yardi, D. Romero, G. Schoenebeck et al., “Detecting
spam in a twitter network,” First monday, vol. 15, pp.
1–4, 2010.

[21] K. Lee, B. Eoff, and J. Caverlee, “Seven months with the
devils: A long-term study of content polluters on Twit-
ter,” in Proceedings of the international AAAI conference
on web and social media, vol. 5, no. 1, 2011, pp. 185–
192.

[22] C. Yang, R. Harkreader, and G. Gu, “Empirical eval-
uation and new design for fighting evolving Twitter
spammers,” IEEE Transactions on Information Forensics
and Security, vol. 8, no. 8, pp. 1280–1293, 2013.

[23] D. M. Beskow and K. M. Carley, “Bot conversations are
different: leveraging network metrics for bot detection in
Twitter,” in 2018 IEEE/ACM International Conference

on Advances in Social Networks Analysis and Mining.
IEEE, 2018, pp. 825–832.

[24] K.-C. Yang, O. Varol, P.-M. Hui, and F. Menczer, “Scal-
able and generalizable social bot detection through data
selection,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 34, no. 01, 2020, pp. 1096–
1103.

[25] J. Pastor-Galindo, M. Zago, P. Nespoli, S. L. Bernal,
A. H. Celdrán, M. G. Pérez, J. A. Ruipérez-Valiente,
G. M. Pérez, and F. G. Mármol, “Spotting political social
bots in twitter: A use case of the 2019 spanish general
election,” IEEE Transactions on Network and Service
Management, vol. 17, no. 4, pp. 2156–2170, 2020.

[26] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, “De-
tecting automation of Twitter accounts: Are you a human,
bot, or cyborg?” IEEE Transactions on dependable and
secure computing, vol. 9, no. 6, pp. 811–824, 2012.

[27] S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and
M. Tesconi, “Social fingerprinting: detection of spam-
bot groups through DNA-inspired behavioral modeling,”
IEEE Transactions on Dependable and Secure Comput-
ing, vol. 15, no. 4, pp. 561–576, 2017.

[28] J. Rodríguez-Ruiz, J. I. Mata-Sánchez, R. Monroy,
O. Loyola-González, and A. López-Cuevas, “A one-class
classification approach for bot detection on Twitter,”
Computers & Security, vol. 91, p. 101715, 2020.

[29] R. De Nicola, M. Petrocchi, and M. Pratelli, “On the
efficacy of old features for the detection of new bots,”
Information Processing & Management, vol. 58, no. 6,
p. 102685, 2021.

[30] M. Sayyadiharikandeh, O. Varol, K.-C. Yang, A. Flam-
mini, and F. Menczer, “Detection of novel social bots by
ensembles of specialized classifiers,” in Proceedings of
the 29th ACM international conference on information &
knowledge management (CIKM), 2020, pp. 2725–2732.

[31] K.-C. Yang, E. Ferrara, and F. Menczer, “Botometer 101:
Social bot practicum for computational social scientists,”
Journal of Computational Social Science, pp. 1–16, 2022.

[32] C. A. Davis, O. Varol, E. Ferrara, A. Flammini, and
F. Menczer, “BotOrNot: A system to evaluate social
bots,” in Proceedings of the 25th international conference
companion on world wide web, 2016, pp. 273–274.

[33] Z. Miller, B. Dickinson, W. Deitrick, W. Hu, and A. H.
Wang, “Twitter spammer detection using data stream
clustering,” Information Sciences, vol. 260, pp. 64–73,
2014.

[34] H. Ping and S. Qin, “A social bots detection model
based on deep learning algorithm,” in 2018 IEEE 18th
international conference on communication technology
(ICCT). IEEE, 2018, pp. 1435–1439.

[35] I. Karpov and E. Glazkova, “Detecting automatically
managed accounts in online social networks: Graph
embeddings approach,” in International Conference on
Analysis of Images, Social Networks and Texts. Springer,
2020, pp. 11–21.

[36] J. Zhang, R. Zhang, J. Sun, Y. Zhang, and C. Zhang,
“TrueTop: A sybil-resilient system for user influence
measurement on Twitter,” IEEE/ACM Transactions on

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

Networking, vol. 24, no. 5, pp. 2834–2846, 2015.
[37] B. Wang, L. Zhang, and N. Z. Gong, “SybilSCAR: Sybil

detection in online social networks via local rule based
propagation,” in IEEE INFOCOM 2017-IEEE Confer-
ence on Computer Communications. IEEE, 2017, pp.
1–9.

[38] J. Jia, B. Wang, and N. Z. Gong, “Random walk based
fake account detection in online social networks,” in
2017 47th annual IEEE/IFIP international conference on
dependable systems and networks (DSN). IEEE, 2017,
pp. 273–284.

[39] P. Gao, B. Wang, N. Z. Gong, S. R. Kulkarni, K. Thomas,
and P. Mittal, “SybilFuse: Combining local attributes
with global structure to perform robust sybil detection,”
in 2018 IEEE conference on communications and net-
work security (CNS). IEEE, 2018, pp. 1–9.

[40] M. Welling and T. N. Kipf, “Semi-supervised classifica-
tion with graph convolutional networks,” in International
Conference on Learning Representations (ICLR), 2017.

[41] Y. Sun, Z. Yang, and Y. Dai, “TrustGCN: enabling
graph convolutional network for robust sybil detection
in OSNs,” in 2020 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, 2020, pp. 1–7.

[42] S. Ali Alhosseini, R. Bin Tareaf, P. Najafi, and C. Meinel,
“Detect me if you can: Spam bot detection using induc-
tive representation learning,” in Companion Proceedings
of The 2019 World Wide Web Conference, 2019, pp. 148–
153.

[43] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical eval-
uation of rectified activations in convolutional network,”
arXiv preprint arXiv:1505.00853, 2015.

[44] F. Ye, C. Chen, and Z. Zheng, “Deep autoencoder-like
nonnegative matrix factorization for community detec-
tion,” in Proceedings of the 27th ACM international
conference on information and knowledge management
(CIKM), 2018, pp. 1393–1402.

[45] S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and
M. Tesconi, “Fame for sale: Efficient detection of fake
Twitter followers,” Decision Support Systems, vol. 80,
pp. 56–71, 2015.

[46] S. Feng, H. Wan, N. Wang, J. Li, and M. Luo, “TwiBot-
20: A comprehensive Twitter bot detection benchmark,”
in Proceedings of the 30th ACM International Confer-
ence on Information & Knowledge Management (CIKM),
2021, pp. 4485–4494.

[47] S. Feng, Z. Tan, H. Wan, N. Wang, Z. Chen, B. Zhang,
Q. Zheng, W. Zhang, Z. Lei, S. Yang et al., “TwiBot-
22: Towards graph-based Twitter bot detection,” arXiv
preprint arXiv:2206.04564, 2022.

[48] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk:
Online learning of social representations,” in Proceedings
of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014, pp. 701–
710.

[49] A. Grover and J. Leskovec, “node2vec: Scalable feature
learning for networks,” in Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-

ery and data mining, 2016, pp. 855–864.
[50] P. Veličković, G. Cucurull, A. Casanova, A. Romero,

P. Liò, and Y. Bengio, “Graph attention networks,”
in International Conference on Learning Representa-
tions(ICLR), 2018.

[51] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge:
Towards deep graph convolutional networks on node
classification,” in International Conference on Learning
Representations, 2020.

[52] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi,
and S. Jegelka, “Representation learning on graphs with
jumping knowledge networks,” in International confer-
ence on machine learning. PMLR, 2018, pp. 5453–
5462.

[53] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo,
“struc2vec: Learning node representations from structural
identity,” in Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and
data mining, 2017, pp. 385–394.

[54] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive rep-
resentation learning on large graphs,” Advances in neural
information processing systems, vol. 30, 2017.

[55] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg,
I. Titov, and M. Welling, “Modeling relational data with
graph convolutional networks,” in European semantic
web conference. Springer, 2018, pp. 593–607.

[56] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph
convolutional networks for semi-supervised learning,” in
Thirty-Second AAAI conference on artificial intelligence,
2018, pp. 3538–3545.

Feng Liu received the B.S. degree in informa-
tion and computing sciences from Shenyang uni-
versity of chemical technology, Shenyang, China, in
2018, the M.S. degree in Cyberspace Security from
Zhengzhou University, Zhengzhou, China, in 2023.
He is currently working toward the PhD degree with
School of Artificial Intelligence, Jilin University,
Changchun, China. His research interest includes
include social bot detection and deep learning.

Zhenyu Li received the B.S. degree in infor-
mation computing sciences from Hefei University
of Technology, Hefei, China, in 2011, the M.S.
degree in computer application technology from
Zhengzhou Information Science and Technology In-
stitute, Zhengzhou, China, in 2014, and the Ph.D.
degree in computer science from University of York,
York, UK, in 2018. He is currently an associate
professor with Henan Provincial Key Laboratory
of Cyberspace Situation Awareness. His research
interests include social bot detection, multimedia

security and machine learning.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

Chunfang Yang received the MA and PhD de-
grees in computer science and technology from
Zhengzhou Information Science and Technology In-
stitute, Zhengzhou, China, in 2008 and 2012, re-
spectively. He is currently an associate professor
of Henan Key Laboratory of Cyberspace Situation
Awareness. His research interest includes network
and information security.

Daofu Gong received the B.S. degree, the M.S. de-
gree, and the Ph.D. degree from Zhengzhou Informa-
tion Science and Technology Institute, Zhengzhou,
China, in 2006, 2009, and 2013, respectively. He is
currently an associate professor with Henan Provin-
cial Key Laboratory of Cyberspace Situation Aware-
ness. His research interests include machine learn-
ing, network security situation awareness, and social
network analysis.

Fenlin Liu received the B.S. degree from Zhengzhou
Information Science and Technology Institute in
1986, the M.S. degree from the Harbin Institute
of Technology in 1992, and the Ph.D. degree from
Northeast University in 1998. He is currently a
professor with Henan Provincial Key Laboratory
of Cyberspace Situation Awareness. His research
interests include digital image forensics, information
hiding, and recommender systems.

Rui Ma is an associate professor in School of Artifi-
cial Intelligence, Jilin University, China. He obtained
his PhD from School of Computing Science, Simon
Fraser University, Canada and his MSc and BSc
from School of Mathematics, Jilin University, China.
His research is in computer graphics, computer vi-
sion and artificial intelligence, with special interests
in intelligent analysis, creation and application of
visual content.

Adrian G. Bors (Senior Member, IEEE) received
the MSc degree in electronics engineering from
the Polytechnic University of Bucharest, Bucharest,
Romania, in 1992, and the PhD degree in informatics
from the University of Thessaloniki, Thessaloniki,
Greece, in 1999. In 1999 he joined the Department
of Computer Science, Univ. of York, U.K., where he
is currently an associate professor. He was a research
scientist with the University of Tampere, Finland,
and held visiting positions with the University of
California at San Diego (UCSD), the University of

Montpellier, France and with the MBZ University of Artificial Intelligence,
Abu Dhabi, UAE. He was an associate editor for IEEE Transactions on Image
Processing from 2010 to 2014 and IEEE Transactions on Neural Networks
from 2001 to 2009. He was also a co-guest editor for special issues for
the International Journal for Computer Vision in 2018 and the Journal of
Pattern Recognition in 2015. He has authored and coauthored more than
180 research papers, including 50 in journals. His research interests include
machine learning, computer vision, pattern recognition, and image processing.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3600474

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of York. Downloaded on August 24,2025 at 16:49:54 UTC from IEEE Xplore. Restrictions apply.

	I Introduction
	II Related Work
	II-A Single-account feature-based social bot detection
	II-B Group-based social bot detection

	III Problem Definition
	IV Proposed Approach
	IV-A Input Module
	IV-B Preprocessing Module
	IV-B1 Semantic Features
	IV-B2 Property Features
	IV-B3 Community Structure Feature

	IV-C Node Representation Module
	IV-D Output Module

	V Experiments
	V-A Datasets
	V-B Baseline methods
	V-C Implementation details
	V-D Experimental results

	VI Discussion
	VII Conclusion
	Biographies
	Feng Liu
	Zhenyu Li
	Chunfang Yang
	Daofu Gong
	Fenlin Liu
	Rui Ma
	Adrian G. Bors (Senior Member, IEEE)

