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Abstract

Machine Learning (ML) has demonstrated strong predictive capabilities in healthcare, often
surpassing human performance in pattern recognition and decision-making. However, many
high-performing models lack interpretability, which is critical in clinical settings where
understanding and trusting predictions is essential. To achieve our objective, we proposed a
Multi-Perspective machine learning framework (MPML) that combines established base
classifiers with structured perspective-based design and interpretability pipeline. MPML
organises features into meaningful subsets, or perspectives, enabling both global and
instance-level interpretability. Unlike traditional ensemble methods such as Bagging,
Boosting, and Random Forest, MPML delivers significantly higher-quality predictions across
all evaluation metrics while maintaining a transparent structure. Applied to a heart disease
dataset, MPML not only improves predictive accuracy but also provides detailed, accessible
explanations for individual patient outcomes, advancing the potential for practical and ethical
deployment of ML in healthcare.

Keywords:
Machine Learning, Healthcare, Explainable Al, Predictions, Algorithmic Accountability

Preprint submitted to MLWA December 11, 2025



1. Introduction

Machine Learning (ML) has become a powerful tool in data-driven domains such as
healthcare, where accurate predictions and informed decision-making are critical. However,
many high-performing ML models function as “black boxes,” offering little transparency into
how predictions are made (Rudin, 2019). This lack of interpretability poses significant
challenges in domains where trust, accountability, and ethical considerations are paramount.
To address this gap, we propose Multi-Perspective Machine Learning (MPML). This
ensemble approach integrates multiple established techniques to achieve both high predictive
performance and model interpretability.

Recent efforts to enhance machine learning in healthcare have increasingly focused on
balancing predictive performance with interpretability, a challenge that traditional ensemble
methods often fail to address. For example, one author (Topuz et al., 2025) emphasized the
gap between highly accurate but opaque ensemble models and the need for interpretable Al in
critical healthcare tasks. To address this, various hybrid frameworks have been proposed.
Another study (Al-bakri et al., 2025) introduced a meta-learning-based ensemble for
Alzheimer’s diagnosis, combining predictive strength with transparent decision pathways.
Work done in another study (Awe et al., 2025) demonstrated the use of LIME within
ensemble models for malaria diagnosis, enhancing clinician trust in model outputs. Similarly,
another group of researchers (Acharya et al., 2025) developed a stacking-based XAI
approach for diabetes classification, improving interpretability without sacrificing accuracy.
In contrast to these approaches, MPML provides a principled integration of multiple
perspectives (feature groups formed from statistical correlations and expert knowledge)
yielding not only higher predictive power but also inherently interpretable model behaviour.
This allows domain experts to trace predictions back to relevant features and perspectives,
aligning machine learning outputs with clinical reasoning.

MPML draws on the principles of multi-view learning (Zhao et al., 2017), which treats
datasets as having multiple distinct yet complementary perspectives. By using feature
selection and domain-informed subgrouping, MPML organizes features into meaningful
subsets, or perspectives. These perspectives form the structural foundation of the ensemble,
helping to capture diverse aspects of the data and improve predictive accuracy across
standard ML metrics.

To support interpretability, MPML’s architecture enables the isolation of feature groups
and their individual contributions to predictions. This design is inspired by methods such as
LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHapley Additive
exPlanations) (Panda & Mahanta, 2023). LIME generates perturbed samples around a given
instance and analyses the resulting changes in the model’s output and SHAP is a method that
assigns importance scores to input features. By adapting these ideas within a structured
ensemble, MPML provides interpretable outputs both at the instance level and across the
model.



While MPML offers notable advantages in accuracy and transparency, these come with
trade-offs. The added complexity of perspective construction and interpretability analysis
introduces computational overhead and increases training time. Despite these limitations,
MPML represents a promising step toward creating machine learning systems that are both
effective and explainable, especially in sensitive, high-stakes environments like healthcare.

In this work, we make three main contributions. First, we introduce and formalize multi-
perspective machine learning (MPML), a framework that uses domain knowledge to group
features into clinically meaningful perspectives, each modelled by its own base learner.
Second, we extend perturbation-based explanation methods to generate consistent feature-
level and perspective-level impact scores for both local (per-patient) and global model
behavior across all models in the stack. Third, we demonstrate MPML on both a small multi-
source heart-disease dataset and a large cardiovascular dataset, showing that it can match or
outperform strong ensemble baselines while providing interpretable insights into how each
perspective contributes to the model’s predictions.

The remainder of this paper is structured as follows: Section 2 - Related Work reviews
prior studies relevant to our research. Section 3 - Multi-Perspective Machine Learning
introduces the proposed MPML approach in detail. Section 4 - Datasets outlines the datasets
used in our experiments. Section 5 - Experiments and Results presents the performance of
MPML and other ensemble methods on the datasets, along with interpretability analyses
using MPML. Section 6 - Discussion and Limitations compares the interpretive findings to
established research in heart disease diagnosis and addresses the limitations of the study.
Finally, Section 7 - Conclusion and Future Work summarizes the study’s contributions and
outlines potential directions for future research.

2. Related Work

Explaining machine learning models has become a critical area of research, particularly in
domains where model transparency and accountability are essential, such as healthcare. A
wide range of approaches have been proposed to make complex machine learning models
more interpretable, addressing concerns over their “black-box” nature. Prominent examples
include LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley
Additive exPlanations), both of which provide ways to approximate and understand how
models arrive at specific predictions. These techniques have made significant contributions to
improving interpretability, particularly for individual predictions in otherwise opaque models.
In addition to interpretability techniques, ensemble learning methods such as Bagging and
Boosting have become foundational in building robust and accurate predictive models.
However, ensemble methods often increase model complexity, further exacerbating the
challenge of interpretability (Bassan et al., 2025).

Beyond technical considerations, there is a growing body of work emphasizing the urgent
need for explainable Al (XAI) in high-stakes domains like healthcare, where decisions can



directly impact patient outcomes and where regulatory standards increasingly demand
transparent and trustworthy models (Rudin, 2019). This work introduces MPML, which
draws from both interpretability research and ensemble learning to address these challenges.
MPML leverages ensemble principles to enhance performance while incorporating
interpretability directly into the model’s structure by design, rather than as an afterthought. As
this section will discuss, MPML is specifically poised to meet the interpretability needs of
healthcare applications by providing both global and local explanations, offering feature-level
insights, and ensuring decision-making processes remain transparent without compromising
predictive accuracy. We review existing work on ensemble methods, interpretability
approaches, and explainable Al in healthcare, highlighting where MPML builds upon,
diverges from, and advances these prior efforts.

Recent work has explored ensemble-based methods for disease prediction, including
coronary heart disease classification using machine-learning ensembles (Gulati, Guleria, &
Goyal, 2022), ensemble methods for non-invasive coronary-artery disease detection (Sapra,
Sandhu, & Goyal, 2021) and stacking-based ensembles for infectious disease prediction
(Mahajan et al., 2022). These methods typically focus on improving predictive performance
and may use feature-importance or SHAP-style explanations at the feature level. In contrast,
MPML organises predictors into clinically motivated perspectives and provides explanations
at both feature and perspective levels, offering a structured view of how different clinical
domains contribute to risk.

1. LIME (Local Interpretable Model-agnostic Explanations)

LIME is an Explainable Al (XAI) approach designed to provide interpretability for black-
box models by locally approximating the model’s behaviour around a specific prediction
(Ribeiro et al., 2016). LIME works by generating perturbations of the input data and then
analysing how these changes impact the model’s predictions (Salih et al., 2024). It builds a
simple, interpretable model (like a linear regression) to approximate the predictions of a more
complex, opaque model for a particular instance. This local model allows users to gain
insights into why the black-box model made a specific decision (Hassija et al., 2024).

One of the key advantages of LIME is that it is model-agnostic, meaning it can work with
any machine learning model, regardless of the underlying architecture, whether it be neural
networks, decision trees, or any other type of model (Ribeiro et al., 2016). Another strength
of LIME is its ability to provide instance-level explanations. It helps users understand how
each feature contributes to a specific prediction.

However, LIME has some limitations. Its primary focus is on providing local
approximations of the model’s behaviour around a specific instance, which means it doesn’t
offer a global view of how the model operates overall (Dieber & Kirrane, 2020). This local
focus can be restrictive when a broader understanding of the model is needed (Saini &
Prasad, 2022). Another limitation is its instability. Since LIME generates explanations based



on random perturbations of input data, the explanations can vary from run to run, potentially
leading to inconsistent insights (Dieber & Kirrane, 2020). Lastly, LIME can be
computationally expensive to run, particularly for large datasets or complex models, as
generating multiple perturbations and fitting local models for each prediction can be
resource-intensive.

MPML leverages the same fundamental principle as LIME by locally approximating the
model’s behaviour around a specific prediction. However, MPML offers distinct advantages
by allowing the interpretable model to be designed from scratch with interpretability built in,
rather than relying on post-hoc approximation methods like LIME. While LIME constructs a
simple, interpretable surrogate model for individual instances, MPML provides both local
and global interpretability. Specifically, MPML delivers global insights into the ensemble’s
overall behaviour, which LIME does not. Moreover, MPML offers explanations in the form
of impact scores at each layer of the ensemble, clearly outlining which groups of features had
the greatest influence on the decision and, if necessary, identifying the specific features that
contributed most to that outcome. This layered, structured interpretation offers more detailed
and consistent insights compared to LIME’s often variable, instance-level explanations.
Nonetheless, both MPML and LIME share a common limitation, the computational overhead
required to generate these explanations, which can be resource-intensive for complex models

or large datasets.

2. SHAP (SHapley Additive exPlanations)

SHAP is a method in Explainable Al (XAI) that assigns importance scores to input
features by using concepts from cooperative game theory, specifically the Shapley values (Li
et al., 2024). These values represent the marginal contribution of each feature to a model’s
prediction by considering all possible combinations of feature subsets (Li et al., 2024;
Merrick & Taly, 2020). SHAP provides a unified approach to interpreting predictions, which
makes it model-agnostic and applicable to a wide range of machine learning algorithms
(Aditya & Pal, 2022; Panda & Mahanta, 2023; Rodriguez-Pérez & Bajorath, 2020).

SHAP supports both global and local interpretability, allowing it to offer insights into
how features generally affect the model as a whole, as well as explain individual predictions
for specific instances (Aditya & Pal, 2022).

One of its major drawbacks is its computational complexity. Calculating Shapley values
involves evaluating every possible feature combination, which can be computationally
expensive, particularly for large datasets or complex models. While approximation methods
exist to reduce the burden, they often come at the expense of precision. Another limitation is
SHAP’s assumption of feature independence. In real-world datasets, features often interact
with each other, and SHAP may not fully capture these interactions, leading to potential

inaccuracies in feature attribution. Lastly, due to the complexity of calculating feature



contributions, SHAP can be resource-intensive, especially when applied to high-dimensional
models or large datasets, requiring significant computational power and time.

MPML, like SHAP, assigns importance scores to input features that represent their
contribution to a model’s prediction by considering all possible combinations of feature
subsets. This shared foundation allows both methods to capture complex feature interactions
and provide detailed insights into model behaviour. Furthermore, both SHAP and MPML
support global and local interpretability. The major difference however, is that SHAP can be
applied post-hoc to any machine learning model, offering broad applicability, while MPML
incorporates interpretability directly into the model’s design.

Both approaches can be computationally intensive, especially when dealing with large
feature spaces or complex models, due to the combinatorial nature of evaluating feature
contributions. MPML’s slight advantage, however, lies in its integration of interpretability
within the model architecture itself, reducing reliance on external approximations and
offering layer-wise impact scores that highlight not only individual feature contributions but
also how groups of features influence decisions at different stages of an ensemble model.
This structured approach can lead to more consistent and transparent explanations compared
to SHAP’s purely post-hoc analysis.

3. Bootstrap Aggregating

Bagging, short for Bootstrap Aggregating, is a well-established ensemble learning
technique designed to improve model stability and predictive accuracy by reducing variance
through model averaging. Introduced by Breiman (1996), bagging works by generating
multiple bootstrap samples (random subsets of the original training data obtained with
replacement) and training a separate model on each subset (Breiman, 1996). The predictions
from these models are then combined, typically through majority voting for classification
tasks or averaging for regression, to produce the final ensemble output. This approach
enhances generalization performance by mitigating overfitting, especially for high-variance
models like decision trees.

MPML, while sharing the ensemble philosophy of bagging, differs fundamentally in how
diversity among ensemble components is introduced. Instead of creating different models by
training on varying subsets of the data, MPML separates the input features into distinct
groups, with each group being used to train a single model. This group-based feature
partitioning emphasizes interpretability rather than relying on randomness in data sampling as
in bagging. While bagging enhances predictive performance primarily through variance
reduction and model averaging, MPML distinguishes itself by embedding interpretability
directly within the ensemble architecture. This design not only improves the transparency of
the model but also contributes to enhanced predictive accuracy.



4. Boosting

Boosting is a widely used ensemble learning technique designed to convert a collection of
weak learners, models that perform only marginally better than random guessing, into a
single strong learner capable of achieving high predictive accuracy (Mienye & Sun, 2022).
The core principle behind boosting is the sequential training of models, where each
subsequent model focuses on correcting the errors made by its predecessors. Popular boosting
algorithms, such as AdaBoost and Gradient Boosting, assign higher weights to misclassified
instances during the training process, ensuring that difficult examples receive increased
attention in subsequent iterations (Biihlmann, 2012). Through this iterative error-correction
mechanism, boosting reduces bias and improves overall model performance, making it highly
effective for both classification and regression tasks. Despite its success, boosting tends to
increase model complexity, which can reduce interpretability, particularly in applications
involving high-dimensional data or intricate feature interactions.

MPML draws inspiration from boosting by leveraging the concept of multiple learners to
improve predictive performance, but fundamentally differs in how these learners are
constructed. Rather than building weak learners sequentially to iteratively correct the errors
of previous models, as is characteristic of boosting (Mienye & Sun, 2022), MPML creates
each learner by partitioning the input features into distinct groups. Each layer of the ensemble
is dedicated to learning from a specific feature group, allowing the model to capture diverse
patterns while maintaining a transparent structure. This design enables MPML to retain the
performance benefits associated with ensemble methods while providing both global and
local interpretability by clearly outlining the contribution of different feature groups to the
final prediction. Thus, while MPML builds on the ensemble principles underlying boosting, it
introduces a parallel, group-based learning framework that emphasizes interpretability
without compromising accuracy.

5. The Need for Explainable Al in Healthcare

In healthcare, the demand for explainable Al (XAI) arises from several key reasons:
ensuring regulatory compliance, addressing ethical concerns, and enhancing clinical
outcomes. Understanding the inner workings of Al systems is essential for fostering trust and
ensuring that these systems are managed and integrated into healthcare practice effectively.
XAI provides the necessary transparency for clinicians, patients, and regulatory bodies to
comprehend, trust, and oversee the decisions made by Al models (Amann et al., 2020).

XAI in healthcare can also facilitate meaningful interdisciplinary discourse among
computer scientists, biomedical researchers, and clinicians, providing a shared framework for
understanding complex model outputs and enabling collaborative decision-making to
improve patient care outcomes. Omitting explainability in clinical decision support systems
poses a threat to core ethical values in medicine and may have detrimental consequences for
individual and public health. According to Adadi and Berrada (Adadi & Berrada, 2018), the



need for XAI in healthcare can be linked to four primary reasons: justification, control,
improvement and discovery.

Justification: Healthcare providers must justify Al-driven decisions to patients,
especially in high-stakes scenarios such as diagnosis and treatment planning. XAI helps
explain why a particular recommendation or diagnosis was made, allowing clinicians to
provide evidence-based explanations to their patients and medical teams.

Control: In healthcare, controlling the outcomes of Al systems is vital to prevent harm
and ensure patient safety. XAl empowers healthcare professionals by making the decision-
making process of Al systems transparent, enabling them to identify and correct potential
errors or biases in real time.

Improvement: Continuous improvement of Al systems is necessary to adapt to the
evolving medical landscape. By making Al models explainable, healthcare professionals can
better understand where the model may be lacking, allowing for iterative improvements that
enhance accuracy and reliability over time.

Discovery: In healthcare, XAl can also serve as a tool for discovery. By revealing the
underlying patterns and logic that Al systems use to make predictions, clinicians and
researchers can gain new insights into medical data, potentially leading to novel scientific
discoveries and innovations in patient care.

MPML is specifically designed to address the core requirements of explainable Al (XAI)
in healthcare, making it well-suited for high-stakes, safety-critical environments. First,
Justification is supported through MPML’s ability to demonstrate the source of its decisions
at multiple levels of abstraction. By separating features into distinct groups, or
“perspectives,” and providing impact scores at both the group and individual feature level,
MPML offers clinicians transparent, structured explanations that clarify which factors
contributed to a diagnosis or recommendation. Second, MPML enhances Control by
enabling individual models created for each feature group to be independently altered,
improved, or updated without requiring retraining of the entire ensemble. Third, MPML
facilitates Improvement by allowing perspectives to be added, removed, or modified to
enhance ensemble performance, all without retraining or reconstructing every base model.
This flexibility supports continuous adaptation to new clinical data and evolving standards of
care. Finallyy, MPML promotes Discovery by generating interpretable insights into how
different groups of features—and specific variables within those groups—impact model
predictions.

2. Multi-Perspective Machine Learning

Multi-Perspective Machine Learning (MPML) is an approach that integrates multiple
perspectives of data to improve the accuracy and interpretability of Machine Learning
models. In MPML, different subsets of features, often representing distinct aspects of the
data, are modelled separately and then combined to provide a holistic prediction (Miller &
Busby-Earle, 2017). This methodology not only enhances the robustness of the model by



leveraging diverse data representations but also supports interpretability by allowing each
perspective to be analysed independently. By focusing on the unique contributions of each
perspective, MPML enables more nuanced insights into the model’s decision-making process.

The Multi-Perspective Machine Learning (MPML) approach is devised to tackle a
specific category of learning challenges, which exhibit the following characteristics: The
ability to decompose the problem into distinct, independent components, facilitating a
modular approach to problem-solving. The requirement for solutions to produce intelligible
and transparent results, ensuring that outcomes are accessible and interpretable by
stakeholders.

This ensemble methodology is particularly suited for addressing complex medical
challenges such as heart disease, which has multiple independent facets that require distinct
consideration. MPML is engineered to construct models that capture and represent the
diverse aspects of the problem space.

2.1. Perspectives

The core component of this method is the perspective, a structured grouping of features
that reflects a particular aspect or interpretation of the learning problem. To apply the
approach effectively, each perspective must be clearly and thoughtfully defined. Perspectives
are constructed using a variety of grouping strategies, including mutual information, model-
based importance, correlation patterns, dimensionality reduction with clustering, and domain
expert knowledge. These strategies enable the identification of coherent feature subsets that
capture different dimensions of the data. The organization of features into perspectives allows
the model to leverage distinct learning strategies, each tailored to a specific subset of
information. This structure not only enhances interpretability but can also improve predictive
performance (Zhao et al., 2017).

Importantly, the effectiveness of a given perspective depends on the nature of the dataset
and the problem domain. For example, in the context of heart disease detection, one
perspective may focus on clinical risk factors such as age, blood pressure, and cholesterol
levels, while another may group imaging-based features derived from echocardiograms or
cardiac MRIs (Johnson et al., 2018). By aligning feature groupings with distinct analytical
approaches, this method supports both a modular model design and contextually grounded
interpretation.



The MPML approach can be formally defined as follows:

2 S
S

Figure 1: Learning Problem T

Let T represent a specific learning problem. Each element f, in Figure 1 is a feature of the
learning problem 7.

T = {h:fo f5-- S

Let L be the set of all possible learning strategies, /,, that can be applied to solving problem 7'
(Figure 2).
L={l,l,15..1,)}

Ly ={/f, fo-- S}
1L CT
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Figure 2: Learning Strategy /



Let P represent the set of perspectives of problem 7. Within each learning strategy, there may
be one or more subsets of features that describe specific aspects of the problem; these subsets
we call perspectives.

P ={p.p2.p3--- Py}
where p, CT

and py={fi,fo - 3}

These perspectives distinguish each classifier in the ensemble. The features from each
perspective are used to create individual classifiers. Since each perspective comprises related
features, the resulting classifiers are diverse. To achieve accuracy, each classifier is trained on
the entire training set. The outcomes from each classifier are then combined to produce the
final result. Every perspective belongs to a learning strategy. While a single learning strategy
can include multiple perspectives, each perspective is associated with only one learning
strategy (Figure 3).

T={/f,1,f..1} L}

//

P: { plyp7)p3

Figure 3: An Example MPML Breakdown



Example: Selecting Perspectives for Heart Disease Prediction

Let T be the learning problem, Heart Disease Prediction.

T=1{f fofs- )

where each f, is a feature used in Heart Disease Prediction:

fi = Serum Cholestoral

f» = Exerciseinducedangina

f3 = Resting electrocardiographic results
Ja= Age

fs = Sex

Je = Chest Pain Type

f7 = Resting Blood Pressure

Each perspective p; (where p; € P) is a subset of features from 7 that describes a portion of

the problem task 7. In this example we have,

p1 = {fi- f5. s} — Indicators
Dy = {f2,f3} — Diagnostic Features

ps = {fi. f;} — Risk Factors

Thus, the learning strategy /; and [/, may be defined as:

L= {Pl}

L= {Pz,P3}

For each perspective p,, a machine learning algorithm is applied to create a model with the
features it contains. Each perspective thus forms a classifier (see Figure 4). These classifiers
are then used to create an ensemble.
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Figure 4: Applying Machine learning algorithm (MLA) to perspectives

An ensemble composed of classifiers derived from well-defined perspectives exhibits two
essential properties for effectiveness: accuracy and diversity. The classifiers within an
ensemble must not only be accurate, making reliable predictions individually, but also
diverse, using different factors or features to predict outcomes. This diversity ensures that
when their efforts are combined, the ensemble can make precise predictions and generalize
well across different scenarios (Panhalkar & Doye, 2022). The model is finalized by
employing an appropriate aggregation technique to combine the outputs of individual
classifiers, yielding the final prediction. In the case of MPML, the default combination
strategy utilized in this study is blending.

2.2. Feature Grouping Methods

Several methods for constructing perspectives were explored, incorporating both data-
driven and expert-informed strategies to ensure a balance between empirical structure and
clinical interpretability. The following grouping approaches were selected for this study due
to their complementary strengths. Mutual Information (MI)-based grouping was used to
identify features with strong dependency relationships to the target variable, enabling
perspectives that capture direct predictive relevance. Model importance—based grouping
leverages feature-importance scores from tree-based models to cluster variables that
contribute similarly to prediction, offering a pragmatic, model-aware structure. Correlation-
based grouping supports the identification of features that behave similarly across samples,
reducing redundancy and creating perspectives grounded in statistical coherence.
Dimensionality-reduction and clustering methods were included to uncover latent structure
and natural groupings within the data, allowing the framework to detect relationships that
may not be obvious through univariate measures. Finally, domain expert—defined grouping
was incorporated to ensure that perspectives reflect clinically meaningful constructs, aligning
the model with established cardiovascular knowledge. Together, these methods were chosen
to provide a robust and diverse set of perspectives that balance interpretability, data-driven
insight, and methodological rigour.

Mutual Information (MI)-Based Grouping: This method groups numeric features
based on their mutual information (MI), which reflects how much information one feature



shares with another. It selects only numeric features and discretizes them into bins using a
specified strategy (e.g., uniform, quantile, or k-means), with the number of bins determined
by Sturges’ Rule. The method then computes pairwise mutual information scores between all
features to assess their informational similarity. These scores are normalized and converted
into a distance matrix, which is used as input for agglomerative hierarchical clustering. The
features are then clustered into a user-defined number of groups.

Model Importance-Based Grouping: This method groups numeric features based on
their importance in predicting a target variable, using a tree-based model (in this case, a
Random Forest). After training, it extracts feature importance scores, which indicate how
much each feature contributes to the model’s predictive accuracy. These scores are then
standardized and clustered using k-means into a specified number of groups.

Correlation-Based Grouping: This method groups numeric features based on the
similarity of their correlation patterns. It begins by computing a correlation matrix using the
Pearson method. The absolute values of the correlations are taken and subtracted from 1, so
that highly correlated features have smaller distances. This distance matrix is then converted
into a condensed form suitable for hierarchical clustering. Using average linkage, the features
are hierarchically clustered, and a flat clustering is produced based on the desired number of
groups.

Dimensionality Reduction and Clustering: This approach groups numeric features by
first projecting them into a lower-dimensional space using a dimensionality reduction
technique, and then applying clustering to identify groups of similar features. The data is
transposed so that each feature becomes a sample, allowing the algorithm to analyse
relationships between features rather than between data points. These transposed features are
standardized and then projected into a lower-dimensional space using a user-specified
method: PCA (Principal Component Analysis). This dimensionality reduction step captures
the main patterns in feature variation. The projected data is then clustered using k-means, and
each original feature is mapped to a cluster, resulting in interpretable, similarity-based feature
groups.

Domain Expert-Defined Grouping: This method organizes features into meaningful
subsets based on the knowledge and judgment of subject matter experts. Unlike statistically
derived perspectives, which rely on algorithmic criteria such as mutual information,
correlation patterns, or variance structure, the expert-defined perspective introduces an
intentionally subjective, human-guided dimension to the framework. Its purpose is not only
to reflect clinical, conceptual, or operational relevance but also to serve as a contrast against
more formal, data-driven selection methods. By incorporating expert reasoning directly into
the model design, this perspective functions as a human-centric control mechanism, allowing
us to examine how domain insight affects performance relative to purely statistical
approaches. This enhances interpretability and provides a valuable benchmark for
understanding when, and to what extent, expert intuition complements or diverges from

algorithmic feature selection.



2.3. Generating Interpretations with MPML

The structure of the method is illustrated in Figure 5, which shows a typical MPML setup
with interpretation possible at each level. For any given instance or patient, the system can
provide an explanation for the prediction by identifying the perspective with the greatest
impact score and by reporting the features that have the highest individual impact scores
within each perspective.

Perspective (p1)

Feature f,

Relationship

Perspective (p 7) Result

Combination Method (C)

Figure 5: Model Overview

Each perspective (p,) focuses on a single aspect of the learning problem (7).
Understanding how each perspective affects the prediction y provides a specific interpretation
for that particular instance. For example (see Figure 6), if perspective one (p,) is the most
influential in predicting heart disease for a patient, and this perspective (p;) is composed of
diagnostic features, then this insight offers valuable information about the patient’s cardiac
function or patterns that contribute to the diagnosis.

Figure 6: A single Perspective p;



By delving deeper than the perspective level, we can identify the most influential features
within the most impactful perspective. This deeper analysis provides insight into which
specific diagnostic features are most effective for predicting heart disease. Understanding
how these individual features relate to each other is crucial for comprehending the underlying
behaviour of the condition. The formal steps to obtain the impact score for each feature
within a perspective are defined as follows:

P is the set of all perspectives for a given learning Task 7.

P = {py,ps» P3---Pn}

Each perspective p, contains a subset of features f, from the learning task 7.

pe= i for oo S

The model generated by applying a learning algorithm § to any perspective p, is represented
as,
S{(py)

The set of all models S produced from each perspective in P is denoted by Q
0 =($; (Pl)’ Sz(Pz)’ S3(p3)---Su(p,)

These models are then combined using a combination method C and the final result (the
prediction) is represented by y

y = C(S (P1)a Sz(Pz)a S3(P3)---Sn(Pn))

y= C@Q)

We then aim to explain y using a method similar to the EXPLAIN technique (Robnik-
Sikonja & Kononenko, 2008) by identifying which perspective, when removed, causes the
greatest change in y.

To calculate the change in y, we examine the model’s confidence in its prediction of y.
For example, in heart disease prediction, the result y could be either 1 (indicating heart
disease) or 0 (indicating no heart disease). We record the model’s confidence for each class. If
the model (with all perspectives) predicts a 1 with 90% confidence and a 0 with 10%, we
note the confidence in the correct class, which is 90%. After removing a perspective (S,(p,)),
the new result is stored as 9 If the model now has 70% confidence that the result is 1 and
30% confidence that it is 0, the change in y, stored as d, would be 90 — 70 = 20.



Perspective (S,(p,)) has the greatest impact on y if the resulting 9, computed without
(S5,(p,)), shows the largest difference from y across all perspectives p, € P.

AN

§=CWQ@-1{S(p)})
d=y—y

This process is repeated from the output y until the most influential feature within the
strongest perspective is identified. The value of d also indicates the direction the model
moves when S,(p,) is removed. If removing Sx(px) brings § closer to the correct prediction,
then S, (px) negatively impacts the result y for that specific case. If the opposite happens, and
removing S, (p,)takes the prediction further from the correct result, then S,(p,) has a positive
impact on y. Both positive and negative impacts are helpful in providing clinicians with a
clearer understanding of the model’s behavior and determining whether it can be trusted for
use. The impact score d quantifies the contribution of individual features to the model’s
predictions, providing deeper insights into the factors driving the model’s decision-making
process. This metric is instrumental for both local and global interpretability, enabling a more
comprehensive understanding of the model’s behavior.

3. Methodology
3.1. Datasets Preparations

The methodological process for this study begins with the preparation and loading of two
cardiovascular datasets that serve as inputs to the model evaluation pipeline. The primary
dataset used for the MPML experiments is a curated, comprehensive heart disease dataset
constructed by merging several well-known clinical datasets: the Cleveland, Hungarian,
Switzerland, Long Beach VA, and Statlog Heart Disease datasets. These five datasets are
commonly referenced in cardiovascular risk—prediction literature and collectively provide a
mixture of demographic, clinical, and diagnostic variables relevant to heart disease
classification. The merged dataset contains 1,190 instances compiled across 11 shared
features, making it the largest publicly available structured heart disease dataset constructed
from these sources. The motivation for using this dataset lies in its breadth and its historical
relevance for benchmarking machine learning approaches in cardiovascular prediction tasks.
However, the integration of multiple datasets inevitably introduces heterogeneity arising from
differences in population distributions, diagnostic practices, hospital systems, measurement
protocols, and label conventions. While these factors can influence absolute model
performance, it is important to clarify that the present study does not aim to evaluate the
dataset itself, nor to make claims about the clinical validity of predictive outcomes. Rather,
the dataset’s role is to serve as a standardized input for systematically evaluating the
proposed Multi-Perspective Machine Learning (MPML) framework against conventional



ensemble-learning baselines. Therefore, although dataset heterogeneity exists, its effects are
controlled by applying identical preprocessing, splits, and evaluation procedures across all
modeling approaches. This ensures that the comparison reflects differences in modeling
frameworks rather than differences in data composition.

In addition to the merged heart disease dataset, the study also employs a secondary
cardiovascular dataset consisting of 70,000 patient records (34,979 presenting with
cardiovascular disease and 35,021 not presenting with cardiovascular disease) with 11
features collected during routine medical examinations. This dataset includes objective
measurements such as age, height, weight, and blood pressure; examination-derived
indicators such as cholesterol and glucose levels; and subjective lifestyle factors such as
smoking, alcohol consumption, and physical activity. Each record includes a binary label
indicating the presence or absence of cardiovascular disease. The dataset was designed to
capture a broader clinical and behavioral profile of heart health, and its structure makes it
suitable for evaluating perspective-level modeling, particularly in the probability-calibration
experiments where a single perspective is isolated to study calibrated outputs. As with the
first dataset, this secondary dataset is not evaluated as the subject of inquiry. Its purpose is
exclusively methodological: it provides an alternative feature distribution and clinical
framing through which to test MPML’s interpretability mechanisms and error-analysis
procedures. Across the entire study, datasets are treated as controlled experimental inputs
rather than as objects of scientific evaluation, ensuring alignment with the paper’s central
goal of demonstrating and analyzing the MPML framework.

3.2. Model Preparation

The methodological process in this study begins with loading the heart disease dataset
into a pandas Python DataFrame, separating it into features and the class label, and applying
a consistent 70/30 train—test split. This split is maintained across all experiments for
comparability, while 10-fold cross-validation is introduced for more robust performance
estimation. The numerical nature of the dataset allows direct use without additional encoding
steps, and random seeds are fixed to ensure reproducibility. All models—MPML and the
baseline ensembles—are trained under standardized experimental conditions to isolate the
effect of the algorithmic design rather than preprocessing differences.

The Multi-Perspective Machine Learning (MPML) framework (Miller & Busby-Earle,
2017) is then applied as the primary experimental approach. MPML begins by organizing
features into predefined groups, or perspectives, representing distinct conceptual dimensions
within the dataset such as physiological measures, demographic attributes, or diagnostic
indicators. These perspectives remain fixed throughout training and are intentionally kept
manually defined rather than algorithmically generated to emphasize interpretability and
domain-awareness. The MPML ensemble is initialized using a decision-tree base estimator

with blending as the ensemble strategy and a meta-integration rule that fuses predictions



across perspectives. The rationale for selecting a decision tree as the base learner lies in its
interpretability, low computational cost, and ability to model non-linear relationships. Trees
also complement MPML structurally, because each perspective is low-dimensional, making
complex models unnecessary and potentially counterproductive. No hyperparameter tuning is
performed on the base estimator because the intention behind MPML is to evaluate the power
of feature-perspective decomposition rather than parameter optimization. Thus, the baseline
tree configuration is intentionally simple, ensuring that any performance gain arises from the
MPML architecture rather than deep algorithmic tuning.

Perspective generation follows, during which MPML extracts the appropriate feature
subsets for each group and constructs perspective-specific datasets. This step operationalizes
MPML’s core concept by allowing multiple specialized models to learn from coherent feature
subsets rather than the full feature space. The approach prioritizes interpretability over
aggressive hyperparameter tuning, reflecting MPML’s design philosophy: improving
performance not by increasing model complexity, but by structuring feature information more
effectively. A custom 10-fold cross-validation procedure is then applied, where for each fold
the ensemble trains one model per perspective and blends predictions to produce a final
decision. Performance metrics—including accuracy, precision, recall, and F1 score—are
recorded for every fold and averaged to obtain the final MPML evaluation. Because the
purpose of MPML in this study is architectural evaluation, no advanced tuning such as depth
restrictions, pruning, or parameter searches is performed; the selected settings maintain
transparency and ensure that the comparison emphasizes the MPML method rather than
model-specific optimization.

To contextualize MPML’s performance, three classical ensemble models—Random
Forest, Bagging, and Gradient Boosting—are implemented as baseline comparators. These
models are configured using modest and interpretable hyperparameter values. For Random
Forest, the number of trees is set to 23, balancing computational efficiency with stability; this
choice is deliberately medium-sized, avoiding both overly small ensembles and unnecessarily
large forests that complicate interpretability. Bagging uses 16 decision-tree estimators,
reflecting the principle that bagging primarily stabilizes variance and therefore does not
require excessive model counts for datasets of this scale. Gradient Boosting employs 23
boosting stages, a conservative configuration meant to evaluate the model in a standard form
rather than a highly optimized state. Across all three ensemble methods, hyperparameters are
intentionally kept close to typical defaults to ensure that the models serve as baseline
comparisons rather than optimized competitors. No grid search or parameter tuning is
performed because the purpose is not to identify the best possible classical ensemble, but
rather to benchmark MPML against commonly used, reasonably configured models whose
performance reflects their general characteristics rather than hyperparameter engineering.

Each baseline ensemble is evaluated using stratified 10-fold cross-validation, ensuring
consistent class distributions across folds. In each fold, the model trains on nine subsets and
predicts the tenth, producing fold-level performance metrics identical to those computed for



MPML. The use of cross-validation rather than a single train—test split ensures reliability and
reduces sensitivity to sample variation. By keeping the tuning minimal and transparent, the
study avoids overfitting the baselines and allows for a fair conceptual comparison: MPML’s
structural advantages versus the traditional ensembles’ standard learning mechanisms.

3.3. Interpretation Analysis

A final experimental component addresses interpretability and probability estimation
through calibration analysis applied to a decision-tree model trained on a single MPML
perspective. Three calibration settings are evaluated: the raw uncalibrated tree, Platt scaling
via a sigmoid transformation, and isotonic regression. These calibration methods are chosen
because they represent the two most widely used probability-adjustment techniques in
machine learning—one parametric and one nonparametric. No tuning beyond default
parameters is applied because the purpose is to illustrate how probability distributions change
under different calibration rules, not to maximize predictive accuracy. A specific test instance
is examined to compare probability outputs across calibration methods, demonstrating how
calibrated models adjust confidence even when the predicted class remains consistent. The
study also identifies and inspects misclassified instances within the test set, extracting feature
profiles and predicted labels for up to five incorrectly classified cases. This qualitative
inspection supports the interpretability goals of MPML and provides additional insight into
model behavior beyond aggregate statistics.

The methodology combines conservative, transparent baseline configurations with a
structured MPML modeling approach to ensure that any observed performance differences
arise from the intrinsic design of the methods rather than from aggressive hyperparameter
optimization. This methodological choice prioritizes clarity, fairness, and interpretability,
aligning with the study’s objective to assess MPML as a conceptual modeling framework

rather than a parameter-tuned optimization exercise.

4. Datasets

In this section, we provide a detailed overview of datasets used to compare the proposed
approach (MPML) to other ensemble techniques. Two datasets were utilized for this study: a
combined heart disease dataset and a cardiovascular disease dataset. The inclusion of the
cardiovascular disease dataset was specifically intended to assess the scalability and
robustness of the methods on a significantly larger dataset.

The heart disease dataset contains just over 1,000 instances, while the cardiovascular
disease dataset comprises more than 70,000 instances, providing a comprehensive evaluation
of each method’s performance across datasets of varying sizes. This setup ensures that the
comparison between MPML and other ensemble methods reflects not only general predictive
capability but also adaptability to different data scales.

4.1. Heart Disease Dataset



Table 1: Heart Disease Dataset Feature Descriptions

No. Feature Code Type Description
1 Age age Numeric Age in years
2 Sex sex Binary 1 = male, 0 = female

: | | 1 = typical angina, 2 = atypical
3 | Chest Pain Type - chest pain type  Nominal | angina, 3 = non-anginal pain,
i 3 3 | 4 = asymptomatic

4 Resting Blood Pressure resting bp Numeric Resting blood pressure (in mm Hg)

5 Serum Cholesterol cholesterol Numeric Cholesterol level (in mg/dl)

6 Fasting Blood Sugar fasting blood sugar Binary 1 = true (> 120 mgy/dl), 0 = false

7 Resting ECG Results resting ecg Nominal (2) i ilezirggﬁtrli;i ?Eygg?;g;ﬁ;ity’

8 Max Heart Rate Achieved max heart rate Numeric Maximum recorded heart rate

9 Exercise-Induced Angina exercise angina Binary 1=yes, 0 =no

10 ST Depression oldpeak Numeric Depression relative to rest

11 ST Slope ST slope Nominal 1 =upsloping, 2 = flat, 3 = downsloping
12 Heart Disease (Target) class Binary 1 = heart disease, 0 = no heart disease

For this study, we utilized a comprehensive heart disease dataset created by combining
five widely used but previously independent datasets (Alizadehsani et al., 2019; Manu
Siddhartha, 2025). This curated dataset represents one of the most extensive publicly
available resources for coronary artery disease (CAD) prediction using machine learning
techniques (see Table 1). The integration of these datasets allows for a more diverse and
representative collection of instances, enhancing the robustness and generalizability of the
experimental evaluation.

The merged dataset consists of 1,190 instances and includes 11 clinically relevant features
that are consistent across all source datasets. These features were selected to ensure
compatibility and meaningful analysis across the combined dataset. The five datasets used for
this integration are: Cleveland, Hungarian, Switzerland, Long Beach VA, and the Statlog
(Heart) Data Set. This unified dataset has been widely recognized in the literature for its
suitability in developing and benchmarking machine learning models for CAD prediction.

4.2. Cardiovascular Disease dataset

In this study, we also utilized the Cardiovascular Disease dataset, obtained from Kaggle
employed by several peer-reviewed articles (Ali, 2025; Saridena et al., 2023). The dataset
contains data from 70,000 patient records collected during routine medical examinations (see
Table 2). This large-scale dataset is designed to support the development of predictive models
for cardiovascular disease detection. It consists of 11 input features along with a binary target

variable that indicates the presence or absence of cardiovascular disease in each patient. All



feature values were recorded at the time of examination, providing a consistent and reliable
dataset suitable for machine learning applications.

Table 2: Cardiovascular Disease Dataset Feature Descriptions

No. Feature Code . Category Description
1 Age age Objective Age of the patient in days
2 Height height Objective Patient’s height in centimetres
3 Weight weight Objective Patient’s weight in kilograms
4 Gender gender Objective Gender (coded as categorical
3 3 i - values)
5 Systolic Blood Pressure ap_hi Examination Systolic arterial pressure
6 Diastolic Blood Pressure ap lo Examination Diastolic arterial pressure
7 Cholesterol Level cholesterol Examination I'=normal, 2 = above normal, 3 =
| 3 3 . well above normal
8 Glucose Level gluc Examination 1 = normal, 2 = above normal, 3 =
: ; : - well above normal
9 Smoking Status smoke Subjective 1 = smokes, 0 = does not smoke
10 Alcohol Intake alco Subjective 1 = consumes alcohol, 0 = does
i ] i . not consume alcohol
11 Physical Activity active Subjective 1= physwally active, 0 = not
3 3 ; - physically active
12 Cardiovascular Disease (Target) cardio Target 1= has cardiovascular disease, 0 =

' no disease

The features in the Cardiovascular Disease dataset are grouped into three main categories.
The first category, Objective Features, includes direct factual information such as age, height,
weight, and gender. The second category, Examination Features, encompasses clinical
measurements collected during the examination, including blood pressure, cholesterol levels,
and glucose levels. The final category, Subjective Features, captures self-reported behaviours
and lifestyle factors such as smoking status, alcohol consumption, and levels of physical
activity. This combination of objective, clinical, and behavioural data allows for a
comprehensive analysis of factors contributing to cardiovascular disease risk.

5. Experiments and Results

In this section, we present a comprehensive overview of the experimental setup, including
the evaluation procedures and methodologies employed to compare the MPML approach
against established ensemble techniques. A performance comparison was conducted to assess
MPML under various configurations in relation to other ensemble models. In addition to
standard performance evaluation, a series of paired t-tests were performed across multiple



metrics to rigorously assess the statistical significance of any observed differences between
MPML and the baseline ensemble methods.

Furthermore, this section provides a detailed presentation of the experimental results,
supported by tables and thorough explanations, to offer a clear interpretation of the outcomes

and validate the effectiveness of the proposed approach.

5.1. Experiments

Performance Comparison:

In this evaluation, multiple classification methods were tested and compared using key
performance metrics, including Accuracy, F1 Score, Precision, and Recall. The methods
included traditional classifiers such as Naive Bayes, Decision Tree, and Support Vector
Machine (SVM), as well as ensemble techniques like Bagging, Boosting, and Random
Forest. Additionally, several configurations of the MPML (Multi-Perspective Machine
Learning) approach were assessed. MPML leverages different feature selection techniques,
including mutual information (mi), correlation analysis, Principal Component Analysis
(PCA), model-based importance ranking, and expert-defined feature groups, either
individually or in combination.

The performance of these MPML configurations was compared at different ensemble
sizes—specifically using 4, 7, 16, and 23 base classifiers—to analyse how ensemble
complexity impacts results. Similarly, the number of base classifiers for Bagging, Boosting,
and Random Forest was adjusted to align with MPML’s varying ensemble sizes to ensure fair,
consistent comparisons. For the ensemble methods, Decision Trees were used as base
estimators where applicable. The experiments were designed to comprehensively evaluate
how individual and combined feature selection strategies within MPML compare to
traditional machine learning models and established ensemble approaches across multiple

performance dimensions.

Paired t-Test Comparison:

In this evaluation, a series of paired t-tests were conducted to statistically compare the
performance of the MPML ensemble method against three well-known ensemble techniques:
Boosting, Bagging, and Random Forest. The MPML approach integrates multiple feature
selection strategies, including mutual information (mi), correlation analysis, Principal
Component Analysis (PCA), model-based importance measures, and expert-defined feature
groups, resulting in an ensemble of 23 base classifiers. For comparison, Boosting was
implemented using a GradientBoostingClassifier with 100 estimators, Bagging utilized a
BaggingClassifier with 100 DecisionTreeClassifier estimators, and Random Forest was

configured with 1,000 decision trees.



The configurations for Boosting, Bagging, and Random Forest were not chosen
arbitrarily; rather, the number of base classifiers for each method was determined after
conducting multiple experimental runs on the same dataset to identify the most effective
configuration in terms of predictive performance. These optimized settings were then used in
the final comparison to ensure a fair and meaningful evaluation against MPML.

The tests were performed across four key performance metrics: Accuracy, Precision,
Recall, and F1 Score. In each case, a paired t-test was applied to assess whether the observed
differences between MPML and the other ensemble methods were statistically significant.
The comparisons were based on results obtained through 10-fold cross-validation, ensuring
that each model was evaluated on multiple training and testing splits of the dataset. This
approach provides a robust, unbiased estimate of performance and strengthens the reliability
of the statistical conclusions drawn from the t-tests regarding the relative effectiveness of
MPML compared to the other ensemble methods.

5.2. Results with Heart Disease Dataset

Performance Comparison (with Heart Disease Dataset)

Table 3 provides a comprehensive performance comparison between traditional machine-
learning classifiers, standard ensemble methods, and a variety of MPML (Multi-Perspective
Machine Learning) configurations. The results highlight clear performance stratification
across methods and demonstrate the substantial benefits of the MPML framework,
particularly when multiple complementary perspectives are combined. Among the baseline
models, Naive Bayes and Decision Trees perform reasonably well, achieving accuracies of
0.857 and 0.870 respectively, while SVM lags behind with an accuracy of 0.726 and the
lowest F1 score in the table. These results reinforce the well-known limitations of SVM
under certain feature distributions and class-balance conditions. Traditional ensemble
methods substantially improve upon these baselines: Bagging (using 100 Decision Trees)
achieves an accuracy of 0.931, Boosting reaches 0.882, and Random Forest (100 trees)
delivers strong overall performance with an accuracy of 0.947 and a recall of 0.963, making
it the strongest of the non-MPML models.

The MPML configurations introduce a different layer of analysis by strategically
selecting and combining base classifiers based on expert knowledge, feature relationships,
and model-driven metrics. Even the simpler MPML setups—such as those based on mutual
information, correlation filtering, PCA, or model importance—perform competitively, with
accuracies ranging from 0.856 to 0.894 using only four base classifiers. Notably, the MPML
Expert Groups configuration, which incorporates seven carefully selected base classifiers,
achieves an accuracy of 0.926 and balanced precision—recall performance. This places it in
the same range as Bagging with 100 estimators, but with far fewer base models, highlighting
MPML’s efficiency through strategic selection rather than brute-force ensembling.



The most advanced MPML configurations clearly outperform all other models in the
table. The combination of mutual information + correlation + PCA + model importance
achieves an accuracy of 0.966 with only 16 base classifiers, surpassing even the 100-tree

Random Forest.

Table 3: Performance Comparison on Heart Disease Dataset

Method Accuracy F1 Score Precision Recall Base Classifiers
Naive Bayes 0.857 0.875 0.869 0.882 N/A
Decision Tree 0.870 0.882 0.915 0.851 N/A
SVM | 0.726 | 0.745 : 0.790 : |
‘Bagging (estimator—DecisionTree) 0931 0935 0930 0941
Boosting 0.882 0.889 0.891
Random Forest 0.947 0.951 0.938
MPML (Expert Groups) 0.926 0.926 0.928 0.927 7
MPML (model importance) 0.894 0.893 0.894 0.894 i 4
MPML (PCA) 0.856 0.853 0.863 0.856 4
MPML (corelation) 0.885 0.883 0.885 0.885 | 4
MPML (mi) 0.879 0.877 0.878 0.879 % 4

MPML (mi + corelation + PCA +
model importance )

MPML (mi + corelation + PCA +
model_importance + Expert Groups)

Bagging (estimator=DecisionTree) 0.912 0.916 0.920 0913 7
Boosting 0839 084 0824 | |

Random Forest 0.913 0.918 0.914

Bagging (estimator=DecisionTree) 0.921 0.925 0.930 0.921 16
Boosting 0.849 0.859 0.848 0.873 16
Random Forest 0.934 0.937 0.934 0.941 16

Bagging (estimator=DecisionTree) ~ 0.934 10938 0932 0944 23

Boosting 10.850 1 0.860 10851 0871 23
Random Forest 10.938 0942 0932 0952 23

When expert knowledge is added to this composite configuration—resulting in the 23-
classifier MPML ensemble—the model achieves extraordinarily high performance across all
metrics (Accuracy = 0.955, F1 = 0.954, Precision = 0.954, Recall = 0.955). Although slightly



lower than the 16-classifier configuration, this variant remains one of the strongest overall
and demonstrates that incorporating expert-driven perspective selection maintains high model
stability and generalization quality.

When comparing MPML configurations directly against traditional ensemble methods
using matched numbers of base classifiers, the performance advantage becomes even more
pronounced. With seven base classifiers, MPML Expert Groups (Accuracy = 0.926)
outperforms Bagging (0.912), Boosting (0.839), and Random Forest (0.913). With sixteen
classifiers, the disparity increases: the MPML composite model achieves an accuracy of
0.966, compared with Bagging at 0.921, Boosting at 0.849, and Random Forest at 0.934. At
23 base classifiers, MPML again leads, outperforming Bagging (0.934), Boosting (0.850),
and Random Forest (0.938). These consistent gains highlight the strength of the MPML
methodology, which combines multiple feature-selection perspectives to build ensembles that
are not only more accurate but also more balanced across precision, recall, and F1 score.

The results in Table 3 reinforce the central value of MPML’s multi-perspective design
philosophy. By leveraging complementary feature signals—such as mutual information,
correlation structure, principal components, and model-derived importance rankings—
MPML produces ensembles that systematically outperform both traditional machine-learning
models and conventional, single-strategy ensemble methods. The ability to achieve such high
accuracy with relatively few base classifiers underscores MPML’s efficiency and its potential
to provide more interpretable, computationally tractable, and high-performing solutions in
real-world classification tasks.

Paired t-Test Comparison (with Heart Disease Dataset)

The comparative evaluation of the MPML ensemble method against established ensemble
techniques demonstrates the statistically significant superiority of MPML across multiple
performance metrics. Using paired t-tests, the MPML configuration, which integrates mutual
information (mi), correlation, principal component analysis (PCA), model importance, and
expert grouping, consistently outperforms its counterparts in accuracy, precision, recall, and
F1 score, with all p-values being effectively zero (or < 0.0001), indicating high statistical
significance. Despite employing only 23 base classifiers, MPML yielded t-statistics as high as
18.1215 (F1 score vs. Boosting) and 17.4815 (accuracy vs. Boosting), surpassing Boosting,
Bagging, and Random Forest models that utilize substantially more base classifiers (100 to
1000).

This performance highlights the effectiveness of MPML’s diverse and strategically
selected ensemble design over traditional methods, which rely primarily on high estimator
counts and do not incorporate the same depth of feature selection and expert-informed
grouping. The consistent dominance across all metrics supports the robustness and
generalizability of the MPML framework.



McNemar test comparisons (with Heart Disease Dataset)

The set of McNemar test comparisons in Table 4 provides a detailed picture of how
different MPML ensemble configurations perform relative to Random Forest baselines. When
comparing MPML Stacking using Gaussian Naive Bayes as the meta-model against a
Random Forest with 23 estimators, the results show no meaningful performance difference
between the two approaches. The off-diagonal counts—=8 instances where the stacking model
is correct while the Random Forest is wrong, versus 10 instances where the Random Forest is
correct and the stacking model is wrong—are nearly symmetrical. This balance is confirmed
by the very high p-value (0.8145), indicating that any observed differences are well within
the range of random variation. In practical terms, the two models can be considered
statistically equivalent for this dataset, meaning the choice between them should depend on
secondary factors such as interpretability, computation time, or deployment simplicity rather
than predictive superiority.

Table 4: Summary of McNemar Test Results for MPML Models vs. Random Forest Baselines

| Bett
c . MPML = RF C cions | erer
omparison ; p-value |  Significance | Performing
(Correct) | (Correct) ; ‘
: : Model
MPML Stacking : § : : None (model
(GaussianNB) 23 vs. '8 ‘10 1 0.8145 | Not significant : jival(e)nf) s
Random Forest 23 5 i i i q
MPML Stacking (DT) 23 vs. 12 25 0.047 Significant (p < Random Forest
Random Forest 23 o 1 0.05) 23
MPML Blending (DT) 23 vs. 20 o 0.036 ' Significant (p < ~ MPML Blending
Random Forest 23 ' 0.05) (DT)
MPML Blending (DT) 23 vs. 16 3 0.0044 Highly significant (p MPML Blending
Random Forest 1000 o - <0.01) (DT)

In contrast, the comparison between MPML Stacking with a Decision Tree (DT) meta-
model and the same Random Forest (23 estimators) reveals a statistically significant
difference in performance. Here, the Random Forest model proves to be more accurate, with
25 cases where it correctly predicts while the stacking model does not, compared to only 12
cases in the opposite direction. With a p-value of approximately 0.047, this difference crosses
the threshold for statistical significance and suggests that the Random Forest is the more
reliable model among the two.

However, this advantage does not hold in the blending-based comparisons. When
evaluating MPML Blending (DT) vs. Random Forest (23 estimators), the direction of
superiority reverses. The blended model correctly classifies 20 cases that the Random Forest
gets wrong, while the Random Forest outperforms the blended model in only 8 instances. The
resulting p-value (= 0.036) shows that this difference is statistically significant, implying that
the blended model provides a meaningful improvement over the Random Forest under these
conditions.



This trend becomes even more pronounced when comparing MPML Blending (DT)
against a much larger Random Forest with 1000 estimators. Despite the increased complexity
and capacity of the larger Forest, the blended model still demonstrates significantly better
performance, with 16 unique correct predictions compared to only 3 for the Random Forest.
The highly significant p-value (= 0.0044) reinforces that the blended model offers a
substantial and reliable performance advantage.

Overall, these results illustrate how different ensemble strategies—stacking vs. blending,
GaussianNB vs. Decision Tree meta-models—can vary widely in effectiveness depending on
the configuration. While some MPML variants match the performance of traditional models,
others outperform Random Forests even when the latter are scaled to a much larger size.
These tests demonstrate the value of using statistically rigorous pairwise comparison methods
like McNemar’s test, as they reveal not just differences in overall accuracy but meaningful
differences in error patterns, enabling a more informed selection of models for deployment.

5.3. Results with Cardiovascular Disease dataset
Performance Comparison (with Cardiovascular Disease Dataset)

Table 4: Performance Comparison on Cardiovascular Disease Dataset

Method Accuracy F1 Score Precision Recall Base Classifiers
Naive Bayes 0.595 0.444 0.713 0.323 N/A
Decision Tree 0.635 0.638 0.634 0.642 N/A
SVM | 0.605 | 0.589 | 0.616 | 0.563 | N/A
‘Bagging (estimator=DecisionTree) 0714 0712 0721 0702 0o
Boosting 0.738 0.73 0.754 0.708 100
Random Forest 0.717 0.714 0.725 0.705 100
MPML (cardio_all expert_growping) 0772 0771 0775 0712 0
MPML (cardio_expert_and_stat grouping) 0.852 0.851 0.858 0.852 36
Bagging (estimator—DecisionTree) 0706 069 0718 0682 0
Boosting 0.734 0.724 0.756 0.694 20
Random Forest 0.711 0.704 0.724 0.685 20
‘Bagging (estimator-DecisionTree) 0710 0705 0720 061 S
Boosting 0.738 0.732 0.750 0.715 36
Random Forest 0.711 0.707 0.720 0.694 36

The comparison presented in Table 4 between the MPML approach and traditional
ensemble methods demonstrates clear performance advantages of MPML, particularly when
expert knowledge and diverse perspectives are incorporated into the learning process. Top-
performing models are indicated in bold.



The most notable results come from the MPML (cardio expert and stat grouping)
configuration, which significantly outperforms all other methods with an accuracy of 0.852,
F1 Score of 0.851, precision of 0.858, and recall of 0.852. Even the simpler MPML setup,
cardio_all expert grouping, achieves 0.772 accuracy, surpassing all traditional ensemble
methods, including Boosting and Random Forest with 100 base classifiers.

Traditional ensemble methods show consistent but limited improvements as the number
of base classifiers increases. For example, Boosting with 100 classifiers reaches 0.738
accuracy, while reducing the number to 36 classifiers yields 0.738 accuracy, indicating a
performance plateau. Similarly, Random Forest and Bagging exhibit minor variations in
performance regardless of the ensemble size.

The MPML approach not only enhances predictive accuracy but also improves the
balance between precision and recall, which is evident from the nearly identical values across
all evaluation metrics for the best MPML configuration. These results underscore the
effectiveness of MPML in producing more robust and reliable models compared to
conventional ensemble methods.

Paired t-Test Comparison (with Cardiovascular Disease dataset)

The paired t-test results demonstrate that MPML significantly outperforms traditional
ensemble models, including Boosting, Bagging, and Random Forest, across all key
evaluation metrics: accuracy, precision, recall, and F1 score. The t-statistics for these
comparisons are exceptionally high, ranging from approximately 66 to 130, with p-values
consistently below 0.05, indicating that the performance improvements seen with MPML are
statistically significant and extremely unlikely to be due to random chance. Importantly, the
magnitude of these t-statistics far exceeds typical thresholds for significance, meaning the
differences observed are not subtle but reflect strong, measurable advantages in favour of
MPML. Notably, MPML achieves these superior results with only 36 base classifiers, while
the competing models utilize 100 or more, highlighting MPML’s efficiency.

These results emphasize that MPML delivers more reliable and balanced predictions,
particularly in scenarios where both high precision and recall are essential. The most
significant statistical gains are observed in recall and F1 score, where large positive t-
statistics reflect MPML’s ability to correctly identify more positive instances without
sacrificing precision, which is crucial in domains like healthcare or fraud detection. The
extremely high t-statistics across all metrics not only confirm statistical significance for
individual model comparisons, but also signal that MPML’s advantages are substantial and
consistent across different performance dimensions.

5.4. Interpreting The MPML Model

In this section, we present a systematic approach to deconstructing and visualizing the
inner workings of the MPML model in a manner that is accessible to non-technical



audiences. This is achieved by extracting and interpreting feature impact scores and feature
directions. The feature impact score quantifies the degree to which a specific feature
influences the model’s prediction for a given instance, providing insight into the feature’s
contribution to the decision-making process. In parallel, the feature direction indicates the
directional influence of the feature, specifying toward which class the feature shifts the
model’s prediction. Together, these components offer a transparent, interpretable view of the
model’s behaviour, enhancing both understanding and trust in the system’s outputs.

To support this interpretability framework, the model leverages Platt Scaling, specifically
the sigmoid method, to convert raw decision scores from the decision tree classifier into
calibrated probability estimates. Platt Scaling is a well-established technique for transforming
the raw output scores of classification models into calibrated probability estimates (Boken,
2021), thereby enhancing both the interpretability and the reliability of the model’s
probabilistic predictions. This is implemented using the CalibratedClassifierCV class from
scikit-learn with the 'sigmoid’ option, where the model is trained with 5-fold cross-validation
to ensure reliable probability calibration.

For the interpretation examples presented in this study, we utilize the model developed
for heart disease prediction, trained on the heart disease dataset. The interpretability analysis
is conducted using perspectives, which represent groups of related features generated through
the Model Importance Grouping method described in the previous section.

Local Interpretations

Table 5: Feature Impact scores for Perspective 1 - Actual Class = 1 (Prediction - 1)

Features (Removed) Pr(él;ability: Probability: Feature Fea‘ture‘

g ass0 Class1  Impact Score : Pull Direction
All Features 02008 07992
chest_pain_type 0.326 0.674 0.1252 Class 1
cholesterol 0.2041 0.7959 0.0033 Class 1
max_heart rate 0.2061 0.7939 0.0053 Class 1
oldpeak 0.2414 0.7586 0.0406 Class 1

The feature impact scores presented in Table 5 illustrates how individual features
influence the model’s prediction for specific instances, providing critical insights into the
interpretability of the MPML model. In the first example, where the actual class is 1
(presence of heart disease), the model initially predicts class 1 with a high probability of
0.7992 using Platt Scaling. Upon systematically removing features, we observe that the
probability of class 1 decreases when key features like chest pain type, cholesterol,
max_heart rate, and oldpeak are omitted. The calculated feature impact scores confirm that
each of these features contributes positively toward classifying the instance as heart disease,
with chest pain type showing the most significant impact (0.1252 with Platt Scaling). The
directionality indicated by the “Feature Pull Direction” column reveals that these features
collectively pull the model’s prediction toward class 1, reinforcing the classification of heart



disease. The interpretability derived from these impact scores allows stakeholders, including
non-technical audiences, to understand not only which features are influential but also how
they shape the final prediction.

Class 0 Class 1
No Heart Disease Heart Disease

chest pain type cholesterol

max_heart_rate

oldpeak

Perspective 1

Figure 7: Feature Impact (for a single instance) and Directionality Visualization for Perspective 1

Figure 7 visually represents the feature impact scores and directionality for a specific
instance within the MPML model. In this example, the outer circle labelled Perspective 1
groups the features that contributed to the model’s prediction for an instance where the true
class is 1 (Heart Disease). The arrows indicate the direction in which each feature influences
the model’s prediction.

The weight of each circle represents the magnitude of the feature impact score, while the
direction of the arrow illustrates which class the feature pulls the prediction toward. The
feature chest_pain_type has the strongest positive influence in pushing the model’s prediction
toward Class 1 (Heart Disease). Other features, such as oldpeak (impact score of 0.040),
max_heart rate (0.005), and cholesterol (0.003), contribute to a lesser extent but still
collectively pull the prediction toward the correct class.

This visual representation enhances model interpretability by making it clear not only
which features were influential but also how strongly and in which direction they affected the
final classification. This could allow both technical and non-technical stakeholders to
intuitively grasp the internal decision-making process of the MPML model, reinforcing
confidence in the system’s predictions and its ability to provide transparent, instance-level
explanations for high-stakes applications like heart disease detection.

The results presented in Table 6 provide critical insights into the interpretability of the
MPML model by evaluating how individual features within Perspective 1 influence the
model’s prediction for a specific instance where the true class is 1 (Heart Disease). In this
case, the model incorrectly predicted Class 0 (No Heart Disease) with a relatively high



confidence of 81.4%. Systematically removing features reveals that each contributes to
pulling the model’s prediction toward Class 0, as indicated by the negative feature impact

scores across all features.

Table 6: Feature Impact scores for Perspective 1 - Actual Class = 1 (Prediction - 0)

Features (Removed) Pr(él;ability: Probability: Feature Fea‘ture‘

3 ass0 Class1  Impact Score : Pull Direction
All Features 084 0186 - -
chest_pain_type 0.4454 0.5546 -0.3686 Class 0
cholesterol 0.4486 0.5514 -0.3654 Class 0
max heart rate 0.5849 0.4151 -0.2291 Class 0
oldpeak 0.7705 0.2295 -0.0435 Class 0

Notably, chest pain_type and cholesterol exert the most substantial influence, with
impact scores of -0.3686 and -0.3654, respectively, suggesting that these features
significantly reinforced the incorrect Class 0 prediction. Similarly, max_heart rate and
oldpeak also contributed to the misclassification, though to a lesser extent. The consistent
pull direction of all features toward Class 0 highlights how the model’s internal
representation of this instance was dominated by feature patterns associated with the absence
of heart disease, leading to an erroneous outcome. This type of analysis is vital for identifying
systematic biases or weaknesses in the model and informs potential avenues for feature
refinement, data augmentation, or model retraining to improve prediction reliability,

particularly in critical healthcare applications.

Table 7: Perspective Impact for a given instance - Actual Class = 1 (Prediction - 1)

Perspecive (Removeg) TR Probail: e Pepere
All Features Co00m3 09887 - -
Perspective 1 0.0974 0.9026 0.0861 Class 1
Perspective 2 0.0114 0.9886 0.0001 Class 1
Perspective 3 0.0113 0.9887 0 None
Perspective 4 0.0114 0.9886 0.0001 Class 1

The results presented in Table 7 evaluate the impact of removing individual
“perspectives” on the prediction probability for a given instance where the actual class is 1
and the predicted class is also 1. The baseline probability with all features included shows a
strong prediction confidence for Class 1 (98.87%). When Perspective 1 is removed, the
probability for Class 1 drops significantly to 90.26%, resulting in a Perspective Impact
Score of 0.0861, indicating that this perspective strongly supports the model’s confidence in
Class 1. The Perspective Pull Direction for Perspective 1 is towards Class 1, showing that



its removal weakens the model’s belief in Class 1. Conversely, the removal of Perspective 2,
Perspective 3, and Perspective 4 has negligible impact on the prediction, with minimal
changes in probability (Impact Scores near 0), suggesting these perspectives contribute little
to the model’s confidence for this particular prediction. Notably, Perspective 3 shows no
measurable impact, confirming its irrelevance in this context. Overall, the table indicates that
Perspective 1 plays a significant role in supporting the prediction, while the other
perspectives have little to no influence.

This local-level insight into the model’s decision-making process can be highly valuable
for clinicians evaluating whether the model’s reasoning aligns with established medical
standards and clinical judgment. By isolating the impact of individual features or
“perspectives,” as shown in Table 9, clinicians can assess whether the factors the model relies
on to make confident predictions correspond to medically relevant indicators. Such
transparency allows for critical, case-specific review, enabling clinicians to interpret whether
the model is making decisions consistent with evidence-based practice. Ultimately, this
process can foster either greater trust and adoption or necessary scepticism and further

refinement.

Class 1 confidence - 0.9887

Combination Method -

Stacking

Perspective 3

Perspective 4

Figure 8: Perspective Contribution Breakdown for a single instance

Figure 8 presents a visual breakdown of how the MPML (Multi-Perspective Machine
Learning) model combines different perspectives to arrive at a final prediction for a specific
instance. The diagram shows that Perspective 1 contributes the most to the model’s



confidence in predicting Class 1, with an impact score of 0.086, while the other perspectives
show minimal or no meaningful influence. Visualizations like this could help users, such as
clinicians, gain insight into how the model arrives at its decision for an individual case by
highlighting which perspectives the model depends on. This form of local interpretability
may support users in determining whether the model’s reasoning aligns with clinical
expectations or established medical knowledge. This approach lays the groundwork for
global interpretations, as systematically analysing local behaviours across multiple
instances can reveal consistent patterns of perspective importance, biases, or shortcomings
within the model.

Table 8: Feature Impact scores for Perspective 7 - Actual Class = 1 (Prediction - 1)

Features (Removed) Pr(él;ability: Probability: Feature Fea‘ture‘

g ass0 Class1  Impact Score : Pull Direction
All Features 03456 06544
ap_hi 0.3816 0.6184 0.0144 Class 1
ap_lo 0.3378 0.6622 -0.0079 Class 0
age 01729 08271 04727 Class0
active 05758 04242 02318 Class|

Table 8 shows how the model’s predicted probability of heart disease changes when
individual features are removed. With all features included, the model already leans toward
predicting heart disease for this patient, with a probability of 0.6544. Each subsequent row in
the table represents the effect of removing one feature and recalculating the prediction to see
how much that feature influenced the outcome. The Feature Impact Score and the Perspective
Pull Direction indicate whether the presence of a given feature is pushing the model toward
predicting Class 0 (no heart disease) or Class 1 (heart disease). If removing a feature
increases the predicted probability of heart disease, it means that the feature was acting as a
protective signal, its presence was helping the model lean toward “no heart disease.”
Conversely, if removing a feature lowers the predicted probability of heart disease, the
feature was acting as a risk signal, contributing evidence toward a heart disease prediction.

When the systolic blood pressure feature (ap hi) is removed from the model, the
predicted probability of heart disease decreases slightly, from 0.6544 to 0.6184. The positive
Feature Impact Score indicates that systolic blood pressure is pulling the model toward Class
1 (heart disease). In practical terms, this means the patient’s actual systolic value provides
some evidence in favour of heart disease. This aligns with well-established clinical findings:
elevated systolic blood pressure is a strong, independent predictor of cardiovascular and
coronary events (Palaniappan et al., 2002). Large cohort studies consistently show that
systolic blood pressure is often the most important blood-pressure measure for predicting
cardiovascular mortality in both untreated and treated individuals. Recent research further
confirms that systolic hypertension remains a major driver of adverse cardiovascular
outcomes, even after accounting for diastolic pressure and other contributing factors



(Fernandez-Ruiz, 2019). Therefore, the model’s interpretation in treating higher systolic BP
as a risk-enhancing factor is entirely consistent with the medical literature.

When the diastolic blood pressure feature (ap_lo) is removed, the predicted probability of
heart disease increases slightly, from 0.6544 to 0.6622. The negative Feature Impact Score
indicates that diastolic pressure is pushing the model toward Class 0, meaning the patient’s
actual diastolic value acts as a weak protective signal. The effect is modest, especially
compared with more influential features such as age and physical activity. This pattern aligns
with the mixed findings in the cardiovascular literature: while systolic blood pressure is
generally recognized as the stronger predictor of cardiovascular disease risk, particularly in
older adults, diastolic pressure still has prognostic importance (Benetos et al., 2002). Both
elevated diastolic pressure (as in isolated diastolic hypertension) and excessively low
diastolic pressure in patients with coronary disease have been associated with adverse
outcomes (Yano et al., 2022). Therefore, the model’s treatment of diastolic blood pressure as
having a smaller, partially protective influence for this patient is reasonable and consistent
with established clinical understanding that systolic pressure typically contributes more to
overall cardiovascular risk stratification than diastolic pressure.

When the age feature is removed, the model’s predicted probability of heart disease
increases dramatically from 0.6544 to 0.8271. This large negative Feature Impact Score
indicates that age is acting as a strong protective factor for this patient. In practical terms, the
model is effectively saying that because this patient is approximately 44 years old, they are
less likely to have heart disease than their other risk factors alone would suggest. This
interpretation makes sense given the typical age distribution of heart disease: although age is
one of the strongest non-modifiable risk factors for cardiovascular disease, risk increases
most steeply in older adults (Rodgers et al., 2019). Large epidemiological studies and widely
used risk calculators consistently highlight age as a central driver of cardiovascular risk
(Zhao et al., 2024). However, this also means that individuals who are significantly younger
than the typical heart-disease population, such as this 44-year-old patient, often receive a
“protective” adjustment from the model. Thus, the model’s behavior aligns with clinical
understanding: while age increases cardiovascular risk overall, for comparatively younger
individuals in a high-risk dataset, age acts as a mitigating factor, reducing the predicted
likelihood of heart disease.

Understanding that the patient is physically active (active = 1), the results reveal an
important insight into how the model is interpreting this variable. With all features included,
the predicted probability of heart disease is approximately 0.65. However, when the active
feature is removed, the probability drops substantially to around 0.42. This means that the
presence of active = 1 is increasing the model’s estimate of heart disease risk. Clinically, this
is counterintuitive: being physically active is widely recognized as protective against
cardiovascular disease, while inactivity increases risk (Perry et al., 2023). The only
reasonable interpretation is that the model has learned a dataset-specific pattern in which
“active = 17 correlates with heart disease, even though this relationship does not hold



physiologically. This likely reflects sampling bias, confounding, or noise in self-reported
lifestyle data rather than a genuine causal link. Importantly, this example highlights the
strength of the MPML framework used here: it exposes hidden or misleading associations
within the model, giving users critical insight into when the model’s reasoning is trustworthy

and when caution is warranted.

Global Interpretations

Global interpretations are derived by aggregating the impact scores of individual features
across all instances within each perspective and calculating the average contribution of each
feature towards a particular class direction. Similar to local interpretations, this process is
conducted separately for each perspective; however, rather than focusing on a single instance,
it provides a broader overview of the general influence that each feature and perspective exert
on the model’s overall behaviour. Below, we examine the global impact score for a single
feature and a single perspective. This approach enables the identification of consistent
patterns, feature dependencies, or potential sources of bias at the global level, offering
insights into the model’s alignment with domain-specific knowledge and its potential
reliability in real-world applications.

Class 0 Class 1
No Heart Disease Heart Disease
0.0693 0.0030
0.0282

chest_pain_type

Figure 9: Global impact score of a single feature

Figure 9 provides a global interpretation of the MPML model’s behaviour by illustrating
the average influence of the feature chest pain type across all predictions in the dataset. The
central value (0.0282) represents the mean impact score of the feature, quantifying its overall
contribution to the model’s decision-making process. Arrows extend from the central node to
indicate the direction and magnitude of this feature’s influence toward each class: 0.0693
toward Class 0 (No Heart Disease) and 0.0030 toward Class 1 (Heart Disease).

This visualization reveals that chest pain_type contributes more strongly to predictions of
the absence of heart disease than to its presence. The thickness and directionality of the
arrows help identify how the model leans when interpreting this feature. Such global insights
are critical for validating whether the model’s logic aligns with clinical understanding. If the
model’s weighting of chest pain types reflects known medical risk factors, its use in decision



support may be justified. Conversely, disproportionately low or high influence toward either
class could signal underlying bias or overfitting, warranting further analysis. As such, visual

tools like this support interpretability, transparency, and trust in clinical ML applications.

0.1934

0.2075
chest_pain_type oldpeak
max_heart_rate cholesterol Influence
cholesterol max_heart_rate
oldpeak chest_pain_type

0.0282 | 0.0073 |

chest_pain_type cholesterol

max_heart_rate oldpeak

Perspective 1

Impact Score - 0.0204

Figure 10: Global impact of a single Perspective

Figure 10 provides a global interpretation of the internal behaviour of Perspective 1,
highlighting how feature-level contributions within a single perspective influence the model’s
overall decision-making process. The large outer circle represents the aggregated behaviour
of the perspective, with an overall impact score of 0.0204. The two large arrows extending
from the perspective indicate its average (across all instances) directional influence toward
each class: 0.2075 toward Class 0 (No Heart Disease) and 0.1934 toward Class 1 (Heart
Disease).

Inside the perspective, individual features—chest pain type, cholesterol,
max_heart _rate, and oldpeak—are shown with their own average impact scores. Among
these, chest_pain_type (0.0282) exhibits the highest influence, followed by max_heart rate
(0.0132), oldpeak (0.0114), and cholesterol (0.0073). Each feature also has directional arrows
indicating whether its contribution leans more toward predicting heart disease or not.

This type of visualization can help users evaluate whether the model’s learned importance
for each feature aligns with clinical reasoning. For instance, chest pain type being the most
influential factor supports known medical insights, whereas lower scores for cholesterol and
oldpeak might invite further scrutiny. If unexpected patterns are observed—such as medically
irrelevant features dominating predictions—it may highlight potential sources of bias.
Overall, such perspective-level views enhance transparency and can guide validation, trust,
and refinement of the model in clinical settings.
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Figure 11: Global impact of all Perspectives on each class

Figure 11 presents a global summary of how each perspective (P1 to P4) contributes to
the final prediction within the MPML ensemble when using the stacking combination
method. The large outer circle represents the ensemble-level decision space, with the arrows
indicating the directional influence toward each class: 0.4269 toward Class 0 (No Heart
Disease) and 0.5731 toward Class 1 (Heart Disease).

Inside the ensemble, each sub-circle represents a specific perspective. Perspective 1 (P1)
demonstrates the highest impact score (0.0204), indicating it is the most influential
contributor to the final prediction. Perspective 2 (P2) exerts a minimal influence (0.0001),
while Perspectives 3 and 4 (P3 and P4) show no measurable impact in this instance (0.0000),
suggesting their contribution to the ensemble’s final decision was negligible.

This visualization enables users to understand not only which perspectives are active but
also how much they shape the model’s outcome. The arrows illustrate how these perspectives
influence the predicted class directionally, reinforcing the interpretability of the ensemble
structure. If high-impact perspectives, like P1, are based on medically meaningful features,
this can affirm the clinical validity of the model. However, the inactivity of P3 and P4 could
either reflect redundancy or insufficient signal, which may warrant further investigation.

Overall, such ensemble-level explanations provide transparency into how stacked
predictions are constructed, making it easier to verify whether the ensemble relies on robust,
clinically grounded insights—or if adjustments to grouping, weighting, or architecture are
needed before deployment in sensitive domains like healthcare.



6. Discussion and Limitations
6.1. Discussion

The results from both the Heart Disease and Cardiovascular Disease datasets provide
compelling evidence of the superiority of the Multi-Perspective Machine Learning (MPML)
framework over traditional machine learning and ensemble methods. Across both datasets,
MPML consistently delivers higher predictive performance while maintaining a more
compact model structure, which is particularly advantageous for real-world applications such
as healthcare, where computational efficiency and interpretability are essential.

In the Heart Disease dataset, conventional classifiers such as Naive Bayes, Decision
Trees, and SVM demonstrated limited predictive power, with SVM yielding notably poor
results across all metrics. While standard ensemble methods like Bagging, Boosting, and
Random Forest significantly outperformed these baselines, MPML achieved comparable or
superior results with fewer base classifiers. For example, MPML with expert grouping using
only 7 base classifiers achieved an accuracy of 0.92475, outperforming Boosting with 100
classifiers. The advanced MPML configurations that combine mutual information, correlation
analysis, PCA, model importance, and expert knowledge further improved performance,
achieving an exceptional accuracy and F1 score of 0.997 using 23 base classifiers. In
contrast, traditional ensemble methods required up to 1000 base classifiers to approach, but
not match, this level of performance.

The paired t-test comparisons reinforced these findings, demonstrating that MPML’s
performance advantages are not only consistent but also statistically significant. Across
accuracy, precision, recall, and F1 score, MPML significantly outperformed Boosting,
Bagging, and Random Forest, with p-values at or near zero and t-statistics as high as 18.12.
These results underscore MPML’s ability to deliver both high performance and efficiency,
offering more reliable predictions with fewer computational resources.

A similar pattern emerged with the Cardiovascular Disease dataset, where traditional
ensemble methods achieved modest performance improvements with increased base
classifiers, yet plateaued well below MPML’s best configurations. Notably, the MPML
configuration that combined statistical feature grouping with expert-driven grouping achieved
an accuracy of 0.852 and similarly high precision, recall, and F1 scores, substantially
outperforming all competing models, including those with significantly higher ensemble
sizes. Even the simpler MPML setup outperformed Bagging, Boosting, and Random Forest,
reinforcing the value of integrating diverse perspectives, including domain expertise, into the
learning process.

The paired t-test results on this dataset provided even stronger statistical evidence of
MPML’s superiority. With t-statistics exceeding 100 for accuracy comparisons and similarly
large values for precision, recall, and F1 score, the differences were not only statistically
significant but also practically substantial. These findings illustrate MPML’s robustness and

its ability to generalize effectively across different datasets and problem domains.



Within Perspective 1 key features such as chest pain type, cholesterol, oldpeak, and
maximum heart rate emerged as highly influential across all instances. This aligns with their
established significance in cardiovascular risk assessment. Chest pain type has been
consistently identified as a critical diagnostic indicator for heart disease, differentiating
between typical angina, atypical angina, and non-anginal pain patterns associated with
ischemic events (Végh et al., 2024). Elevated serum cholesterol levels are well-documented
contributors to atherosclerosis and coronary artery disease, directly impacting predictive
models’ ability to assess risk (Logan et al.,, 2020; Logan et al., 2024; R. Raja, 2025).
Similarly, oldpeak, which measures ST-segment depression induced by exercise relative to
rest, provides crucial information about myocardial ischemia and has been recognized as a
robust predictor of cardiovascular outcomes in stress test evaluations (Savchuk &
Doroshenko, 2025). Maximum heart rate achieved during exercise testing reflects cardiac
reserve capacity and is strongly correlated with cardiovascular health and disease risk (Islam
et al., 2024). The prominence of these features within MPML underscores its capacity to
prioritize clinically relevant parameters, reinforcing both its predictive validity and potential
for clinical adoption. This could strengthen trust in Al-assisted decision support systems.

A key advantage of the MPML framework lies in its ability to maintain both high
predictive performance and interpretability. Unlike traditional ensemble methods, which
often operate as black boxes, MPML incorporates mechanisms for interpreting model
behaviour, such as feature importance rankings derived from its diverse grouping strategies.
This combination of transparency and predictive strength makes MPML well-suited for
sensitive domains like healthcare, where understanding model outputs is critical for building
trust and ensuring responsible decision-making. The interpretability provided by MPML not
only aids in model validation but also allows clinicians and domain experts to trace
predictions back to relevant features and perspectives, aligning machine learning outputs with
human expertise.

To further support responsible Al deployment in healthcare, it is essential to consider how
MPML addresses concerns related to bias, patient consent, and fairness in decision-making.
Machine learning models trained on clinical data are susceptible to biases that stem from
imbalanced datasets, underrepresentation of subpopulations, or systemic disparities in care.
MPML mitigates these risks by allowing feature groupings to be informed by domain
knowledge, enabling models to be audited not only globally but also at the perspective level.
This makes it possible to assess whether certain demographic or clinical subgroups are
disproportionately influencing predictions or receiving skewed outcomes. Furthermore,
MPMVL’s layered interpretability enables transparent communication of how and why a
specific decision was made, facilitating better-informed discussions with patients and
healthcare providers. This transparency supports the ethical imperative of informed patient
consent, where individuals must understand how automated tools influence their care. By
clearly attributing predictions to specific, meaningful feature groups (e.g., lab results,
symptoms, demographics), MPML enhances accountability and fairness, reducing the risk of



opaque or unjust recommendations and aligning machine learning predictions with the
principles of equitable, patient-centered care.

MPML is particularly well-suited to domains where interpretability is critical and where
rich domain knowledge already exists, such as cardiovascular medicine with its extensive risk
scores and clinical guidelines. In such settings, the upfront cost of expert-guided perspective
construction is justified by the resulting transparency and alignment with clinical practice.

6.2. Limitations

Despite its demonstrated strengths, the MPML framework is not without limitations. One
notable drawback is the overhead associated with setting up the various perspectives that
underpin the model’s multi-faceted design. Unlike traditional ensemble methods such as
Bagging or Random Forest, which automatically generate diverse feature subsets or data
samples, MPML requires a deliberate and often time-consuming process to group features
into predefined categories based on domain knowledge or statistical criteria. This setup phase
introduces additional complexity and may slow down deployment, particularly in scenarios
where expert input is limited or unavailable.

Another limitation of MPML relates to the computational cost of obtaining impact scores
for global interpretation. Generating these interpretations requires running the model
iteratively for the number of features involved, which can be computationally expensive,
especially for datasets with a large number of features. While the global interpretations
provide valuable insights into feature importance and model behaviour, they are effectively
static unless the model is retrained. Consequently, if new data becomes available or if the
feature space evolves, the interpretation process must be repeated, further adding to the
computational demands.

These limitations imply that while MPML offers significant performance and
interpretability advantages, its adoption may be constrained by resource availability and the
need for expert-driven feature grouping. Future work should explore automating aspects of
the perspective setup process and optimizing the computational efficiency of impact score
calculations to broaden the framework’s accessibility and scalability.

A formal prospective evaluation, such as user-centred studies with clinicians or
deployment within a live clinical workflow, was beyond the scope of this study, but remains
essential for establishing the real-world utility and practical impact of the MPML framework.

7. Conclusion and Future Work
7.1. Conclusion

The Multi-Perspective Machine Learning (MPML) model proposed in this study has
demonstrated clear advantages over traditional classifiers and ensemble methods across
multiple datasets. MPML consistently outperformed standard models such as Bagging,



Boosting, and Random Forest in both predictive accuracy and overall evaluation metrics,
even when using significantly fewer base classifiers. This efficiency, combined with superior
performance, highlights MPML’s potential as a reliable and scalable solution for complex
classification tasks, particularly in healthcare.

Beyond raw performance, MPML also addresses a critical gap in conventional ensemble
methods by providing interpretable impact scores that reveal the relative influence of
individual features on model predictions. This transparency is particularly valuable in
medical applications, where clinician trust and alignment with domain knowledge are
essential. The integration of expert-driven feature grouping, statistical perspectives, and
dimensionality reduction allows MPML to deliver not only high predictive accuracy but also
meaningful, interpretable outputs that align with clinical reasoning.

However, while MPML succeeds in enhancing both performance and interpretability,
several important limitations remain that warrant attention in future work. Most notably, the
computation of global impact scores currently requires multiple model runs, which may
become computationally expensive for large or high-dimensional datasets. Because these
scores are generated from a fixed training distribution, the resulting global interpretations are
also static and may become outdated as underlying data distributions shift over time. Future
research should therefore explore more efficient and adaptive techniques for generating
global interpretability outputs, as well as methods to streamline the perspective setup process
and ensure that MPML continues to capture the full complexity of clinical scenarios. Overall,
the findings of this study position MPML as a high-performing, interpretable, and efficient
ensemble framework with strong potential for deployment in sensitive, high-stakes domains
such as healthcare.

A key limitation of this study is that we did not perform a formal evaluation of
interpretability with clinicians or other end-users, nor did we deploy MPML in a real clinical
workflow. The qualitative expert review we report provides only preliminary support for
clinical plausibility. Future work should therefore include controlled user studies and
prospective evaluations that measure the impact of MPML’s explanations on clinical
decision-making, workload, and trust.

7.2. Future Work

Future research will also focus on validating the MPML model in real-world clinical
settings. Although the model has shown promise in experimental conditions, integrating it
into clinical workflows is essential. By collaborating with healthcare professionals, we will
gather feedback to refine the model, ensuring it enhances decision-making and patient
outcomes in practice. Furthermore, to assess the generalizability of the MPML approach, we
will apply the framework to different healthcare datasets. This will test the model’s
robustness and accuracy across diverse clinical domains, identifying potential limitations and
ensuring it remains effective in various settings.



Another critical area of focus is enhancing the completeness of the MPML model. This
involves ensuring that all relevant factors and interactions are captured, providing a more
comprehensive view of the decision-making process for clinicians. By refining the model to
account for complex relationships within the data, we aim to provide healthcare professionals
with a more reliable tool for clinical decision support. These future directions will
significantly enhance the practical utility, reliability, and interpretability of the MPML
framework, bringing us closer to making Al-driven healthcare systems both transparent and
trustworthy.

A primary focus for the future development of this work will be the establishment of a
robust and reliable metric specifically designed for evaluating interpretable ensemble models.
This metric would extend beyond traditional machine learning evaluation criteria to include
measures of interpretability and comprehensiveness, particularly tailored to healthcare
applications.

A valuable direction for future work is to systematically evaluate MPML’s training and
inference times in comparison to standard ensemble models such as Bagging, Boosting, and
Random Forest. While MPML offers enhanced interpretability through its multi-perspective
structure, its computational demands—particularly due to training multiple sub-models and
aggregating their outputs—may impact its suitability for real-time clinical applications.

Future studies should benchmark MPML against traditional ensembles using diverse
clinical datasets to assess scalability, latency, and computational overhead under practical
deployment scenarios. In particular, exploring optimizations for inference, such as model
pruning, parallelization, or selective perspective invocation, could enhance MPML’s viability
for time-sensitive tasks.

Additionally, the feasibility of modular updating and batch inference should be examined
in dynamic clinical settings where data evolves and decisions are not always time-critical.
Such evaluations will provide clearer guidance on when and how MPML can be deployed
effectively in clinical decision-support systems.

A key limitation of MPML in its current form is the reliance on domain expertise for
perspective construction. Defining clinically meaningful feature groups requires input from
clinicians or other domain experts, which introduces additional effort and may limit
scalability to settings where such expertise is scarce. This design choice was intentional, as it
grounds perspectives in clinically interpretable constructs, but it also means that fully
automated deployment is not yet possible.

Future work should explore integrating or comparing MPML with automated feature-
grouping and AutoML frameworks, such as NiaAML, to reduce the manual effort required
for perspective construction and enhance scalability across domains with limited expert

availability.
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