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Abstract 

Machine Learning (ML) has demonstrated strong predictive capabilities in healthcare, often 

surpassing human performance in pattern recognition and decision-making. However, many 

high-performing models lack interpretability, which is critical in clinical settings where 

understanding and trusting predictions is essential. To achieve our objective, we proposed a 

Multi-Perspective machine learning framework (MPML) that combines established base 

classifiers with structured perspective-based design and interpretability pipeline. MPML 

organises features into meaningful subsets, or perspectives, enabling both global and 

instance-level interpretability. Unlike traditional ensemble methods such as Bagging, 

Boosting, and Random Forest, MPML delivers significantly higher-quality predictions across 

all evaluation metrics while maintaining a transparent structure. Applied to a heart disease 

dataset, MPML not only improves predictive accuracy but also provides detailed, accessible 

explanations for individual patient outcomes, advancing the potential for practical and ethical 

deployment of ML in healthcare. 
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1. Introduction 

Machine Learning (ML) has become a powerful tool in data-driven domains such as 

healthcare, where accurate predictions and informed decision-making are critical. However, 

many high-performing ML models function as “black boxes,” offering little transparency into 

how predictions are made (Rudin, 2019). This lack of interpretability poses significant 

challenges in domains where trust, accountability, and ethical considerations are paramount. 

To address this gap, we propose Multi-Perspective Machine Learning (MPML). This 

ensemble approach integrates multiple established techniques to achieve both high predictive 

performance and model interpretability. 

Recent efforts to enhance machine learning in healthcare have increasingly focused on 

balancing predictive performance with interpretability, a challenge that traditional ensemble 

methods often fail to address. For example, one author (Topuz et al., 2025) emphasized the 

gap between highly accurate but opaque ensemble models and the need for interpretable AI in 

critical healthcare tasks. To address this, various hybrid frameworks have been proposed. 

Another study (Al-bakri et al., 2025) introduced a meta-learning-based ensemble for 

Alzheimer’s diagnosis, combining predictive strength with transparent decision pathways. 

Work done in another study (Awe et al., 2025) demonstrated the use of LIME within 

ensemble models for malaria diagnosis, enhancing clinician trust in model outputs. Similarly, 

another group of researchers (Acharya et al., 2025) developed a stacking-based XAI 

approach for diabetes classification, improving interpretability without sacrificing accuracy. 

In contrast to these approaches, MPML provides a principled integration of multiple 

perspectives (feature groups formed from statistical correlations and expert knowledge) 

yielding not only higher predictive power but also inherently interpretable model behaviour. 

This allows domain experts to trace predictions back to relevant features and perspectives, 

aligning machine learning outputs with clinical reasoning. 

MPML draws on the principles of multi-view learning (Zhao et al., 2017), which treats 

datasets as having multiple distinct yet complementary perspectives. By using feature 

selection and domain-informed subgrouping, MPML organizes features into meaningful 

subsets, or perspectives. These perspectives form the structural foundation of the ensemble, 

helping to capture diverse aspects of the data and improve predictive accuracy across 

standard ML metrics. 

To support interpretability, MPML’s architecture enables the isolation of feature groups 

and their individual contributions to predictions. This design is inspired by methods such as 

LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHapley Additive 

exPlanations) (Panda & Mahanta, 2023). LIME generates perturbed samples around a given 

instance and analyses the resulting changes in the model’s output and SHAP is a method that 

assigns importance scores to input features. By adapting these ideas within a structured 

ensemble, MPML provides interpretable outputs both at the instance level and across the 

model. 



While MPML offers notable advantages in accuracy and transparency, these come with 

trade-offs. The added complexity of perspective construction and interpretability analysis 

introduces computational overhead and increases training time. Despite these limitations, 

MPML represents a promising step toward creating machine learning systems that are both 

effective and explainable, especially in sensitive, high-stakes environments like healthcare. 

In this work, we make three main contributions. First, we introduce and formalize multi-

perspective machine learning (MPML), a framework that uses domain knowledge to group 

features into clinically meaningful perspectives, each modelled by its own base learner. 

Second, we extend perturbation-based explanation methods to generate consistent feature-

level and perspective-level impact scores for both local (per-patient) and global model 

behavior across all models in the stack. Third, we demonstrate MPML on both a small multi-

source heart-disease dataset and a large cardiovascular dataset, showing that it can match or 

outperform strong ensemble baselines while providing interpretable insights into how each 

perspective contributes to the model’s predictions. 

The remainder of this paper is structured as follows: Section 2 - Related Work reviews 

prior studies relevant to our research. Section 3 - Multi-Perspective Machine Learning 

introduces the proposed MPML approach in detail. Section 4 - Datasets outlines the datasets 

used in our experiments. Section 5 - Experiments and Results presents the performance of 

MPML and other ensemble methods on the datasets, along with interpretability analyses 

using MPML. Section 6 - Discussion and Limitations compares the interpretive findings to 

established research in heart disease diagnosis and addresses the limitations of the study. 

Finally, Section 7 - Conclusion and Future Work summarizes the study’s contributions and 

outlines potential directions for future research. 

2. Related Work 

Explaining machine learning models has become a critical area of research, particularly in 

domains where model transparency and accountability are essential, such as healthcare. A 

wide range of approaches have been proposed to make complex machine learning models 

more interpretable, addressing concerns over their “black-box” nature. Prominent examples 

include LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley 

Additive exPlanations), both of which provide ways to approximate and understand how 

models arrive at specific predictions. These techniques have made significant contributions to 

improving interpretability, particularly for individual predictions in otherwise opaque models. 

In addition to interpretability techniques, ensemble learning methods such as Bagging and 

Boosting have become foundational in building robust and accurate predictive models. 

However, ensemble methods often increase model complexity, further exacerbating the 

challenge of interpretability (Bassan et al., 2025).  

Beyond technical considerations, there is a growing body of work emphasizing the urgent 

need for explainable AI (XAI) in high-stakes domains like healthcare, where decisions can 



directly impact patient outcomes and where regulatory standards increasingly demand 

transparent and trustworthy models (Rudin, 2019). This work introduces MPML, which 

draws from both interpretability research and ensemble learning to address these challenges. 

MPML leverages ensemble principles to enhance performance while incorporating 

interpretability directly into the model’s structure by design, rather than as an afterthought. As 

this section will discuss, MPML is specifically poised to meet the interpretability needs of 

healthcare applications by providing both global and local explanations, offering feature-level 

insights, and ensuring decision-making processes remain transparent without compromising 

predictive accuracy. We review existing work on ensemble methods, interpretability 

approaches, and explainable AI in healthcare, highlighting where MPML builds upon, 

diverges from, and advances these prior efforts. 

Recent work has explored ensemble-based methods for disease prediction, including 

coronary heart disease classification using machine-learning ensembles (Gulati, Guleria, & 

Goyal, 2022), ensemble methods for non-invasive coronary-artery disease detection (Sapra, 

Sandhu, & Goyal, 2021) and stacking-based ensembles for infectious disease prediction 

(Mahajan et al., 2022). These methods typically focus on improving predictive performance 

and may use feature-importance or SHAP-style explanations at the feature level. In contrast, 

MPML organises predictors into clinically motivated perspectives and provides explanations 

at both feature and perspective levels, offering a structured view of how different clinical 

domains contribute to risk. 

1. LIME (Local Interpretable Model-agnostic Explanations) 

LIME is an Explainable AI (XAI) approach designed to provide interpretability for black-

box models by locally approximating the model’s behaviour around a specific prediction 

(Ribeiro et al., 2016). LIME works by generating perturbations of the input data and then 

analysing how these changes impact the model’s predictions (Salih et al., 2024). It builds a 

simple, interpretable model (like a linear regression) to approximate the predictions of a more 

complex, opaque model for a particular instance. This local model allows users to gain 

insights into why the black-box model made a specific decision (Hassija et al., 2024). 

One of the key advantages of LIME is that it is model-agnostic, meaning it can work with 

any machine learning model, regardless of the underlying architecture, whether it be neural 

networks, decision trees, or any other type of model (Ribeiro et al., 2016). Another strength 

of LIME is its ability to provide instance-level explanations. It helps users understand how 

each feature contributes to a specific prediction.  

However, LIME has some limitations. Its primary focus is on providing local 

approximations of the model’s behaviour around a specific instance, which means it doesn’t 

offer a global view of how the model operates overall (Dieber & Kirrane, 2020). This local 

focus can be restrictive when a broader understanding of the model is needed (Saini & 

Prasad, 2022). Another limitation is its instability. Since LIME generates explanations based 



on random perturbations of input data, the explanations can vary from run to run, potentially 

leading to inconsistent insights (Dieber & Kirrane, 2020). Lastly, LIME can be 

computationally expensive to run, particularly for large datasets or complex models, as 

generating multiple perturbations and fitting local models for each prediction can be 

resource-intensive. 

MPML leverages the same fundamental principle as LIME by locally approximating the 

model’s behaviour around a specific prediction. However, MPML offers distinct advantages 

by allowing the interpretable model to be designed from scratch with interpretability built in, 

rather than relying on post-hoc approximation methods like LIME. While LIME constructs a 

simple, interpretable surrogate model for individual instances, MPML provides both local 

and global interpretability. Specifically, MPML delivers global insights into the ensemble’s 

overall behaviour, which LIME does not. Moreover, MPML offers explanations in the form 

of impact scores at each layer of the ensemble, clearly outlining which groups of features had 

the greatest influence on the decision and, if necessary, identifying the specific features that 

contributed most to that outcome. This layered, structured interpretation offers more detailed 

and consistent insights compared to LIME’s often variable, instance-level explanations. 

Nonetheless, both MPML and LIME share a common limitation, the computational overhead 

required to generate these explanations, which can be resource-intensive for complex models 

or large datasets. 

2.  SHAP (SHapley Additive exPlanations) 

SHAP is a method in Explainable AI (XAI) that assigns importance scores to input 

features by using concepts from cooperative game theory, specifically the Shapley values (Li 

et al., 2024). These values represent the marginal contribution of each feature to a model’s 

prediction by considering all possible combinations of feature subsets (Li et al., 2024; 

Merrick & Taly, 2020). SHAP provides a unified approach to interpreting predictions, which 

makes it model-agnostic and applicable to a wide range of machine learning algorithms 

(Aditya & Pal, 2022; Panda & Mahanta, 2023; Rodríguez-Pérez & Bajorath, 2020). 

SHAP supports both global and local interpretability, allowing it to offer insights into 

how features generally affect the model as a whole, as well as explain individual predictions 

for specific instances (Aditya & Pal, 2022). 

One of its major drawbacks is its computational complexity. Calculating Shapley values 

involves evaluating every possible feature combination, which can be computationally 

expensive, particularly for large datasets or complex models. While approximation methods 

exist to reduce the burden, they often come at the expense of precision. Another limitation is 

SHAP’s assumption of feature independence. In real-world datasets, features often interact 

with each other, and SHAP may not fully capture these interactions, leading to potential 

inaccuracies in feature attribution. Lastly, due to the complexity of calculating feature 



contributions, SHAP can be resource-intensive, especially when applied to high-dimensional 

models or large datasets, requiring significant computational power and time. 

MPML, like SHAP, assigns importance scores to input features that represent their 

contribution to a model’s prediction by considering all possible combinations of feature 

subsets. This shared foundation allows both methods to capture complex feature interactions 

and provide detailed insights into model behaviour. Furthermore, both SHAP and MPML 

support global and local interpretability. The major difference however, is that SHAP can be 

applied post-hoc to any machine learning model, offering broad applicability, while MPML 

incorporates interpretability directly into the model’s design.  

Both approaches can be computationally intensive, especially when dealing with large 

feature spaces or complex models, due to the combinatorial nature of evaluating feature 

contributions. MPML’s slight advantage, however, lies in its integration of interpretability 

within the model architecture itself, reducing reliance on external approximations and 

offering layer-wise impact scores that highlight not only individual feature contributions but 

also how groups of features influence decisions at different stages of an ensemble model. 

This structured approach can lead to more consistent and transparent explanations compared 

to SHAP’s purely post-hoc analysis. 

3.  Bootstrap Aggregating 

Bagging, short for Bootstrap Aggregating, is a well-established ensemble learning 

technique designed to improve model stability and predictive accuracy by reducing variance 

through model averaging. Introduced by Breiman (1996), bagging works by generating 

multiple bootstrap samples (random subsets of the original training data obtained with 

replacement) and training a separate model on each subset (Breiman, 1996). The predictions 

from these models are then combined, typically through majority voting for classification 

tasks or averaging for regression, to produce the final ensemble output. This approach 

enhances generalization performance by mitigating overfitting, especially for high-variance 

models like decision trees. 

MPML, while sharing the ensemble philosophy of bagging, differs fundamentally in how 

diversity among ensemble components is introduced. Instead of creating different models by 

training on varying subsets of the data, MPML separates the input features into distinct 

groups, with each group being used to train a single model. This group-based feature 

partitioning emphasizes interpretability rather than relying on randomness in data sampling as 

in bagging. While bagging enhances predictive performance primarily through variance 

reduction and model averaging, MPML distinguishes itself by embedding interpretability 

directly within the ensemble architecture. This design not only improves the transparency of 

the model but also contributes to enhanced predictive accuracy. 



4.  Boosting 

Boosting is a widely used ensemble learning technique designed to convert a collection of 

weak learners, models that perform only marginally better than random guessing, into a 

single strong learner capable of achieving high predictive accuracy (Mienye & Sun, 2022). 

The core principle behind boosting is the sequential training of models, where each 

subsequent model focuses on correcting the errors made by its predecessors. Popular boosting 

algorithms, such as AdaBoost and Gradient Boosting, assign higher weights to misclassified 

instances during the training process, ensuring that difficult examples receive increased 

attention in subsequent iterations (Bühlmann, 2012). Through this iterative error-correction 

mechanism, boosting reduces bias and improves overall model performance, making it highly 

effective for both classification and regression tasks. Despite its success, boosting tends to 

increase model complexity, which can reduce interpretability, particularly in applications 

involving high-dimensional data or intricate feature interactions. 

MPML draws inspiration from boosting by leveraging the concept of multiple learners to 

improve predictive performance, but fundamentally differs in how these learners are 

constructed. Rather than building weak learners sequentially to iteratively correct the errors 

of previous models, as is characteristic of boosting (Mienye & Sun, 2022), MPML creates 

each learner by partitioning the input features into distinct groups. Each layer of the ensemble 

is dedicated to learning from a specific feature group, allowing the model to capture diverse 

patterns while maintaining a transparent structure. This design enables MPML to retain the 

performance benefits associated with ensemble methods while providing both global and 

local interpretability by clearly outlining the contribution of different feature groups to the 

final prediction. Thus, while MPML builds on the ensemble principles underlying boosting, it 

introduces a parallel, group-based learning framework that emphasizes interpretability 

without compromising accuracy. 

5.  The Need for Explainable AI in Healthcare 

In healthcare, the demand for explainable AI (XAI) arises from several key reasons: 

ensuring regulatory compliance, addressing ethical concerns, and enhancing clinical 

outcomes. Understanding the inner workings of AI systems is essential for fostering trust and 

ensuring that these systems are managed and integrated into healthcare practice effectively. 

XAI provides the necessary transparency for clinicians, patients, and regulatory bodies to 

comprehend, trust, and oversee the decisions made by AI models (Amann et al., 2020).  

XAI in healthcare can also facilitate meaningful interdisciplinary discourse among 

computer scientists, biomedical researchers, and clinicians, providing a shared framework for 

understanding complex model outputs and enabling collaborative decision-making to 

improve patient care outcomes. Omitting explainability in clinical decision support systems 

poses a threat to core ethical values in medicine and may have detrimental consequences for 

individual and public health. According to Adadi and Berrada (Adadi & Berrada, 2018), the 



need for XAI in healthcare can be linked to four primary reasons: justification, control, 

improvement and discovery.  

Justification: Healthcare providers must justify AI-driven decisions to patients, 

especially in high-stakes scenarios such as diagnosis and treatment planning. XAI helps 

explain why a particular recommendation or diagnosis was made, allowing clinicians to 

provide evidence-based explanations to their patients and medical teams. 

Control: In healthcare, controlling the outcomes of AI systems is vital to prevent harm 

and ensure patient safety. XAI empowers healthcare professionals by making the decision-

making process of AI systems transparent, enabling them to identify and correct potential 

errors or biases in real time. 

Improvement: Continuous improvement of AI systems is necessary to adapt to the 

evolving medical landscape. By making AI models explainable, healthcare professionals can 

better understand where the model may be lacking, allowing for iterative improvements that 

enhance accuracy and reliability over time. 

Discovery: In healthcare, XAI can also serve as a tool for discovery. By revealing the 

underlying patterns and logic that AI systems use to make predictions, clinicians and 

researchers can gain new insights into medical data, potentially leading to novel scientific 

discoveries and innovations in patient care. 

MPML is specifically designed to address the core requirements of explainable AI (XAI) 

in healthcare, making it well-suited for high-stakes, safety-critical environments. First, 

Justification is supported through MPML’s ability to demonstrate the source of its decisions 

at multiple levels of abstraction. By separating features into distinct groups, or 

“perspectives,” and providing impact scores at both the group and individual feature level, 

MPML offers clinicians transparent, structured explanations that clarify which factors 

contributed to a diagnosis or recommendation. Second, MPML enhances Control by 

enabling individual models created for each feature group to be independently altered, 

improved, or updated without requiring retraining of the entire ensemble. Third, MPML 

facilitates Improvement by allowing perspectives to be added, removed, or modified to 

enhance ensemble performance, all without retraining or reconstructing every base model. 

This flexibility supports continuous adaptation to new clinical data and evolving standards of 

care. Finally, MPML promotes Discovery by generating interpretable insights into how 

different groups of features—and specific variables within those groups—impact model 

predictions. 

2. Multi-Perspective Machine Learning 

Multi-Perspective Machine Learning (MPML) is an approach that integrates multiple 

perspectives of data to improve the accuracy and interpretability of Machine Learning 

models. In MPML, different subsets of features, often representing distinct aspects of the 

data, are modelled separately and then combined to provide a holistic prediction (Miller & 

Busby-Earle, 2017). This methodology not only enhances the robustness of the model by 



leveraging diverse data representations but also supports interpretability by allowing each 

perspective to be analysed independently. By focusing on the unique contributions of each 

perspective, MPML enables more nuanced insights into the model’s decision-making process. 

The Multi-Perspective Machine Learning (MPML) approach is devised to tackle a 

specific category of learning challenges, which exhibit the following characteristics: The 

ability to decompose the problem into distinct, independent components, facilitating a 

modular approach to problem-solving. The requirement for solutions to produce intelligible 

and transparent results, ensuring that outcomes are accessible and interpretable by 

stakeholders. 

This ensemble methodology is particularly suited for addressing complex medical 

challenges such as heart disease, which has multiple independent facets that require distinct 

consideration. MPML is engineered to construct models that capture and represent the 

diverse aspects of the problem space. 

2.1. Perspectives 

The core component of this method is the perspective, a structured grouping of features 

that reflects a particular aspect or interpretation of the learning problem. To apply the 

approach effectively, each perspective must be clearly and thoughtfully defined. Perspectives 

are constructed using a variety of grouping strategies, including mutual information, model-

based importance, correlation patterns, dimensionality reduction with clustering, and domain 

expert knowledge. These strategies enable the identification of coherent feature subsets that 

capture different dimensions of the data. The organization of features into perspectives allows 

the model to leverage distinct learning strategies, each tailored to a specific subset of 

information. This structure not only enhances interpretability but can also improve predictive 

performance (Zhao et al., 2017). 

Importantly, the effectiveness of a given perspective depends on the nature of the dataset 

and the problem domain. For example, in the context of heart disease detection, one 

perspective may focus on clinical risk factors such as age, blood pressure, and cholesterol 

levels, while another may group imaging-based features derived from echocardiograms or 

cardiac MRIs (Johnson et al., 2018). By aligning feature groupings with distinct analytical 

approaches, this method supports both a modular model design and contextually grounded 

interpretation. 



The MPML approach can be formally defined as follows: 

 

Figure 1: Learning Problem  

Let  represent a specific learning problem. Each element  in Figure 1 is a feature of the 

learning problem . 

 

Let  be the set of all possible learning strategies, , that can be applied to solving problem  

(Figure 2). 

 

 

 

 

Figure 2: Learning Strategy  
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Let  represent the set of perspectives of problem . Within each learning strategy, there may 

be one or more subsets of features that describe specific aspects of the problem; these subsets 

we call perspectives. 

 

 

 

These perspectives distinguish each classifier in the ensemble. The features from each 

perspective are used to create individual classifiers. Since each perspective comprises related 

features, the resulting classifiers are diverse. To achieve accuracy, each classifier is trained on 

the entire training set. The outcomes from each classifier are then combined to produce the 

final result. Every perspective belongs to a learning strategy. While a single learning strategy 

can include multiple perspectives, each perspective is associated with only one learning 

strategy (Figure 3). 

 

Figure 3: An Example MPML Breakdown 
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Example: Selecting Perspectives for Heart Disease Prediction 

Let  be the learning problem, Heart Disease Prediction. 

 

where each  is a feature used in Heart Disease Prediction: 

 

 

 

 

 

 

 

Each perspective  (where ) is a subset of features from  that describes a portion of 

the problem task . In this example we have, 

Thus, the learning strategy  may be defined as: 

For each perspective , a machine learning algorithm is applied to create a model with the 

features it contains. Each perspective thus forms a classifier (see Figure 4). These classifiers 

are then used to create an ensemble. 
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Figure 4: Applying Machine learning algorithm (MLA) to perspectives 

An ensemble composed of classifiers derived from well-defined perspectives exhibits two 

essential properties for effectiveness: accuracy and diversity. The classifiers within an 

ensemble must not only be accurate, making reliable predictions individually, but also 

diverse, using different factors or features to predict outcomes. This diversity ensures that 

when their efforts are combined, the ensemble can make precise predictions and generalize 

well across different scenarios (Panhalkar & Doye, 2022). The model is finalized by 

employing an appropriate aggregation technique to combine the outputs of individual 

classifiers, yielding the final prediction. In the case of MPML, the default combination 

strategy utilized in this study is blending. 

2.2. Feature Grouping Methods 

Several methods for constructing perspectives were explored, incorporating both data-

driven and expert-informed strategies to ensure a balance between empirical structure and 

clinical interpretability. The following grouping approaches were selected for this study due 

to their complementary strengths. Mutual Information (MI)–based grouping was used to 

identify features with strong dependency relationships to the target variable, enabling 

perspectives that capture direct predictive relevance. Model importance–based grouping 

leverages feature-importance scores from tree-based models to cluster variables that 

contribute similarly to prediction, offering a pragmatic, model-aware structure. Correlation-

based grouping supports the identification of features that behave similarly across samples, 

reducing redundancy and creating perspectives grounded in statistical coherence. 

Dimensionality-reduction and clustering methods were included to uncover latent structure 

and natural groupings within the data, allowing the framework to detect relationships that 

may not be obvious through univariate measures. Finally, domain expert–defined grouping 

was incorporated to ensure that perspectives reflect clinically meaningful constructs, aligning 

the model with established cardiovascular knowledge. Together, these methods were chosen 

to provide a robust and diverse set of perspectives that balance interpretability, data-driven 

insight, and methodological rigour. 

Mutual Information (MI)-Based Grouping: This method groups numeric features 

based on their mutual information (MI), which reflects how much information one feature 



shares with another. It selects only numeric features and discretizes them into bins using a 

specified strategy (e.g., uniform, quantile, or k-means), with the number of bins determined 

by Sturges’ Rule. The method then computes pairwise mutual information scores between all 

features to assess their informational similarity. These scores are normalized and converted 

into a distance matrix, which is used as input for agglomerative hierarchical clustering. The 

features are then clustered into a user-defined number of groups. 

Model Importance-Based Grouping: This method groups numeric features based on 

their importance in predicting a target variable, using a tree-based model (in this case, a 

Random Forest). After training, it extracts feature importance scores, which indicate how 

much each feature contributes to the model’s predictive accuracy. These scores are then 

standardized and clustered using k-means into a specified number of groups. 

Correlation-Based Grouping: This method groups numeric features based on the 

similarity of their correlation patterns. It begins by computing a correlation matrix using the 

Pearson method. The absolute values of the correlations are taken and subtracted from 1, so 

that highly correlated features have smaller distances. This distance matrix is then converted 

into a condensed form suitable for hierarchical clustering. Using average linkage, the features 

are hierarchically clustered, and a flat clustering is produced based on the desired number of 

groups. 

Dimensionality Reduction and Clustering: This approach groups numeric features by 

first projecting them into a lower-dimensional space using a dimensionality reduction 

technique, and then applying clustering to identify groups of similar features. The data is 

transposed so that each feature becomes a sample, allowing the algorithm to analyse 

relationships between features rather than between data points. These transposed features are 

standardized and then projected into a lower-dimensional space using a user-specified 

method: PCA (Principal Component Analysis). This dimensionality reduction step captures 

the main patterns in feature variation. The projected data is then clustered using k-means, and 

each original feature is mapped to a cluster, resulting in interpretable, similarity-based feature 

groups. 

Domain Expert-Defined Grouping: This method organizes features into meaningful 

subsets based on the knowledge and judgment of subject matter experts. Unlike statistically 

derived perspectives, which rely on algorithmic criteria such as mutual information, 

correlation patterns, or variance structure, the expert-defined perspective introduces an 

intentionally subjective, human-guided dimension to the framework. Its purpose is not only 

to reflect clinical, conceptual, or operational relevance but also to serve as a contrast against 

more formal, data-driven selection methods. By incorporating expert reasoning directly into 

the model design, this perspective functions as a human-centric control mechanism, allowing 

us to examine how domain insight affects performance relative to purely statistical 

approaches. This enhances interpretability and provides a valuable benchmark for 

understanding when, and to what extent, expert intuition complements or diverges from 

algorithmic feature selection. 



2.3. Generating Interpretations with MPML 

The structure of the method is illustrated in Figure 5, which shows a typical MPML setup 

with interpretation possible at each level. For any given instance or patient, the system can 

provide an explanation for the prediction by identifying the perspective with the greatest 

impact score and by reporting the features that have the highest individual impact scores 

within each perspective. 

 
Figure 5: Model Overview 

Each perspective ( ) focuses on a single aspect of the learning problem ( ). 

Understanding how each perspective affects the prediction  provides a specific interpretation 

for that particular instance. For example (see Figure 6), if perspective one ( ) is the most 

influential in predicting heart disease for a patient, and this perspective ( ) is composed of 

diagnostic features, then this insight offers valuable information about the patient’s cardiac 

function or patterns that contribute to the diagnosis. 

 

Figure 6: A single Perspective  
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By delving deeper than the perspective level, we can identify the most influential features 

within the most impactful perspective. This deeper analysis provides insight into which 

specific diagnostic features are most effective for predicting heart disease. Understanding 

how these individual features relate to each other is crucial for comprehending the underlying 

behaviour of the condition. The formal steps to obtain the impact score for each feature 

within a perspective are defined as follows: 

 is the set of all perspectives for a given learning Task . 

 

Each perspective  contains a subset of features  from the learning task . 

 

The model generated by applying a learning algorithm  to any perspective  is represented 

as, 

 

The set of all models  produced from each perspective in  is denoted by  

 

These models are then combined using a combination method  and the final result (the 

prediction) is represented by  

 

 

We then aim to explain  using a method similar to the EXPLAIN technique (Robnik-

Sikonja & Kononenko, 2008) by identifying which perspective, when removed, causes the 

greatest change in . 

To calculate the change in , we examine the model’s confidence in its prediction of . 

For example, in heart disease prediction, the result  could be either 1 (indicating heart 

disease) or 0 (indicating no heart disease). We record the model’s confidence for each class. If 

the model (with all perspectives) predicts a 1 with 90% confidence and a 0 with 10%, we 

note the confidence in the correct class, which is 90%. After removing a perspective ( ), 

the new result is stored as . If the model now has 70% confidence that the result is 1 and 

30% confidence that it is 0, the change in , stored as , would be . 

P T

P = {p1, p2, p3…pn}

px fx T

px = {f1, f2, f3… fn}

S px

Sx(px)

S P Q

Q = (S1(p1),  S2(p2),  S3(p3)…Sn(pn)

C

y

y =  C(S1(p1),  S2(p2),  S3(p3)…Sn(pn))

y =  C(Q)

y

y

y y

y

Sx(px)

ŷ
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Perspective ( ) has the greatest impact on  if the resulting , computed without 

( ), shows the largest difference from  across all perspectives . 

 

 

This process is repeated from the output  until the most influential feature within the 

strongest perspective is identified. The value of  also indicates the direction the model 

moves when  is removed. If removing  brings closer to the correct prediction, 

then negatively impacts the result  for that specific case. If the opposite happens, and 

removing takes the prediction further from the correct result, then  has a positive 

impact on . Both positive and negative impacts are helpful in providing clinicians with a 

clearer understanding of the model’s behavior and determining whether it can be trusted for 

use. The impact score  quantifies the contribution of individual features to the model’s 

predictions, providing deeper insights into the factors driving the model’s decision-making 

process. This metric is instrumental for both local and global interpretability, enabling a more 

comprehensive understanding of the model’s behavior. 

3. Methodology 

3.1. Datasets Preparations  

The methodological process for this study begins with the preparation and loading of two 

cardiovascular datasets that serve as inputs to the model evaluation pipeline. The primary 

dataset used for the MPML experiments is a curated, comprehensive heart disease dataset 

constructed by merging several well-known clinical datasets: the Cleveland, Hungarian, 

Switzerland, Long Beach VA, and Statlog Heart Disease datasets. These five datasets are 

commonly referenced in cardiovascular risk–prediction literature and collectively provide a 

mixture of demographic, clinical, and diagnostic variables relevant to heart disease 

classification. The merged dataset contains 1,190 instances compiled across 11 shared 

features, making it the largest publicly available structured heart disease dataset constructed 

from these sources. The motivation for using this dataset lies in its breadth and its historical 

relevance for benchmarking machine learning approaches in cardiovascular prediction tasks. 

However, the integration of multiple datasets inevitably introduces heterogeneity arising from 

differences in population distributions, diagnostic practices, hospital systems, measurement 

protocols, and label conventions. While these factors can influence absolute model 

performance, it is important to clarify that the present study does not aim to evaluate the 

dataset itself, nor to make claims about the clinical validity of predictive outcomes. Rather, 

the dataset’s role is to serve as a standardized input for systematically evaluating the 

proposed Multi-Perspective Machine Learning (MPML) framework against conventional 
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ensemble-learning baselines. Therefore, although dataset heterogeneity exists, its effects are 

controlled by applying identical preprocessing, splits, and evaluation procedures across all 

modeling approaches. This ensures that the comparison reflects differences in modeling 

frameworks rather than differences in data composition. 

In addition to the merged heart disease dataset, the study also employs a secondary 

cardiovascular dataset consisting of 70,000 patient records (34,979 presenting with 

cardiovascular disease and 35,021 not presenting with cardiovascular disease) with 11 

features collected during routine medical examinations. This dataset includes objective 

measurements such as age, height, weight, and blood pressure; examination-derived 

indicators such as cholesterol and glucose levels; and subjective lifestyle factors such as 

smoking, alcohol consumption, and physical activity. Each record includes a binary label 

indicating the presence or absence of cardiovascular disease. The dataset was designed to 

capture a broader clinical and behavioral profile of heart health, and its structure makes it 

suitable for evaluating perspective-level modeling, particularly in the probability-calibration 

experiments where a single perspective is isolated to study calibrated outputs. As with the 

first dataset, this secondary dataset is not evaluated as the subject of inquiry. Its purpose is 

exclusively methodological: it provides an alternative feature distribution and clinical 

framing through which to test MPML’s interpretability mechanisms and error-analysis 

procedures. Across the entire study, datasets are treated as controlled experimental inputs 

rather than as objects of scientific evaluation, ensuring alignment with the paper’s central 

goal of demonstrating and analyzing the MPML framework. 

3.2. Model Preparation 

The methodological process in this study begins with loading the heart disease dataset 

into a pandas Python DataFrame, separating it into features and the class label, and applying 

a consistent 70/30 train–test split. This split is maintained across all experiments for 

comparability, while 10-fold cross-validation is introduced for more robust performance 

estimation. The numerical nature of the dataset allows direct use without additional encoding 

steps, and random seeds are fixed to ensure reproducibility. All models—MPML and the 

baseline ensembles—are trained under standardized experimental conditions to isolate the 

effect of the algorithmic design rather than preprocessing differences. 

The Multi-Perspective Machine Learning (MPML) framework (Miller & Busby-Earle, 

2017) is then applied as the primary experimental approach. MPML begins by organizing 

features into predefined groups, or perspectives, representing distinct conceptual dimensions 

within the dataset such as physiological measures, demographic attributes, or diagnostic 

indicators. These perspectives remain fixed throughout training and are intentionally kept 

manually defined rather than algorithmically generated to emphasize interpretability and 

domain-awareness. The MPML ensemble is initialized using a decision-tree base estimator 

with blending as the ensemble strategy and a meta-integration rule that fuses predictions 



across perspectives. The rationale for selecting a decision tree as the base learner lies in its 

interpretability, low computational cost, and ability to model non-linear relationships. Trees 

also complement MPML structurally, because each perspective is low-dimensional, making 

complex models unnecessary and potentially counterproductive. No hyperparameter tuning is 

performed on the base estimator because the intention behind MPML is to evaluate the power 

of feature-perspective decomposition rather than parameter optimization. Thus, the baseline 

tree configuration is intentionally simple, ensuring that any performance gain arises from the 

MPML architecture rather than deep algorithmic tuning. 

Perspective generation follows, during which MPML extracts the appropriate feature 

subsets for each group and constructs perspective-specific datasets. This step operationalizes 

MPML’s core concept by allowing multiple specialized models to learn from coherent feature 

subsets rather than the full feature space. The approach prioritizes interpretability over 

aggressive hyperparameter tuning, reflecting MPML’s design philosophy: improving 

performance not by increasing model complexity, but by structuring feature information more 

effectively. A custom 10-fold cross-validation procedure is then applied, where for each fold 

the ensemble trains one model per perspective and blends predictions to produce a final 

decision. Performance metrics—including accuracy, precision, recall, and F1 score—are 

recorded for every fold and averaged to obtain the final MPML evaluation. Because the 

purpose of MPML in this study is architectural evaluation, no advanced tuning such as depth 

restrictions, pruning, or parameter searches is performed; the selected settings maintain 

transparency and ensure that the comparison emphasizes the MPML method rather than 

model-specific optimization. 

To contextualize MPML’s performance, three classical ensemble models—Random 

Forest, Bagging, and Gradient Boosting—are implemented as baseline comparators. These 

models are configured using modest and interpretable hyperparameter values. For Random 

Forest, the number of trees is set to 23, balancing computational efficiency with stability; this 

choice is deliberately medium-sized, avoiding both overly small ensembles and unnecessarily 

large forests that complicate interpretability. Bagging uses 16 decision-tree estimators, 

reflecting the principle that bagging primarily stabilizes variance and therefore does not 

require excessive model counts for datasets of this scale. Gradient Boosting employs 23 

boosting stages, a conservative configuration meant to evaluate the model in a standard form 

rather than a highly optimized state. Across all three ensemble methods, hyperparameters are 

intentionally kept close to typical defaults to ensure that the models serve as baseline 

comparisons rather than optimized competitors. No grid search or parameter tuning is 

performed because the purpose is not to identify the best possible classical ensemble, but 

rather to benchmark MPML against commonly used, reasonably configured models whose 

performance reflects their general characteristics rather than hyperparameter engineering. 

Each baseline ensemble is evaluated using stratified 10-fold cross-validation, ensuring 

consistent class distributions across folds. In each fold, the model trains on nine subsets and 

predicts the tenth, producing fold-level performance metrics identical to those computed for 



MPML. The use of cross-validation rather than a single train–test split ensures reliability and 

reduces sensitivity to sample variation. By keeping the tuning minimal and transparent, the 

study avoids overfitting the baselines and allows for a fair conceptual comparison: MPML’s 

structural advantages versus the traditional ensembles’ standard learning mechanisms. 

3.3. Interpretation Analysis 

A final experimental component addresses interpretability and probability estimation 

through calibration analysis applied to a decision-tree model trained on a single MPML 

perspective. Three calibration settings are evaluated: the raw uncalibrated tree, Platt scaling 

via a sigmoid transformation, and isotonic regression. These calibration methods are chosen 

because they represent the two most widely used probability-adjustment techniques in 

machine learning—one parametric and one nonparametric. No tuning beyond default 

parameters is applied because the purpose is to illustrate how probability distributions change 

under different calibration rules, not to maximize predictive accuracy. A specific test instance 

is examined to compare probability outputs across calibration methods, demonstrating how 

calibrated models adjust confidence even when the predicted class remains consistent. The 

study also identifies and inspects misclassified instances within the test set, extracting feature 

profiles and predicted labels for up to five incorrectly classified cases. This qualitative 

inspection supports the interpretability goals of MPML and provides additional insight into 

model behavior beyond aggregate statistics. 

The methodology combines conservative, transparent baseline configurations with a 

structured MPML modeling approach to ensure that any observed performance differences 

arise from the intrinsic design of the methods rather than from aggressive hyperparameter 

optimization. This methodological choice prioritizes clarity, fairness, and interpretability, 

aligning with the study’s objective to assess MPML as a conceptual modeling framework 

rather than a parameter-tuned optimization exercise. 

4. Datasets 

In this section, we provide a detailed overview of datasets used to compare the proposed 

approach (MPML) to other ensemble techniques. Two datasets were utilized for this study: a 

combined heart disease dataset and a cardiovascular disease dataset. The inclusion of the 

cardiovascular disease dataset was specifically intended to assess the scalability and 

robustness of the methods on a significantly larger dataset.  

The heart disease dataset contains just over 1,000 instances, while the cardiovascular 

disease dataset comprises more than 70,000 instances, providing a comprehensive evaluation 

of each method’s performance across datasets of varying sizes. This setup ensures that the 

comparison between MPML and other ensemble methods reflects not only general predictive 

capability but also adaptability to different data scales. 

4.1. Heart Disease Dataset 



Table 1: Heart Disease Dataset Feature Descriptions 

For this study, we utilized a comprehensive heart disease dataset created by combining 

five widely used but previously independent datasets (Alizadehsani et al., 2019; Manu 

Siddhartha, 2025). This curated dataset represents one of the most extensive publicly 

available resources for coronary artery disease (CAD) prediction using machine learning 

techniques (see Table 1). The integration of these datasets allows for a more diverse and 

representative collection of instances, enhancing the robustness and generalizability of the 

experimental evaluation. 

The merged dataset consists of 1,190 instances and includes 11 clinically relevant features 

that are consistent across all source datasets. These features were selected to ensure 

compatibility and meaningful analysis across the combined dataset. The five datasets used for 

this integration are: Cleveland, Hungarian, Switzerland, Long Beach VA, and the Statlog 

(Heart) Data Set. This unified dataset has been widely recognized in the literature for its 

suitability in developing and benchmarking machine learning models for CAD prediction. 

4.2. Cardiovascular Disease dataset 

In this study, we also utilized the Cardiovascular Disease dataset, obtained from Kaggle 

employed by several peer-reviewed articles (Ali, 2025; Saridena et al., 2023). The dataset 

contains data from 70,000 patient records collected during routine medical examinations (see 

Table 2). This large-scale dataset is designed to support the development of predictive models 

for cardiovascular disease detection. It consists of 11 input features along with a binary target 

variable that indicates the presence or absence of cardiovascular disease in each patient. All 

No. Feature Code Type Description

1 Age age Numeric Age in years

2 Sex sex Binary 1 = male, 0 = female

3 Chest Pain Type chest pain type Nominal
1 = typical angina, 2 = atypical 
angina, 3 = non-anginal pain, 
4 = asymptomatic

4 Resting Blood Pressure resting bp Numeric Resting blood pressure (in mm Hg)

5 Serum Cholesterol cholesterol Numeric Cholesterol level (in mg/dl)

6 Fasting Blood Sugar fasting blood sugar Binary 1 = true (> 120 mg/dl), 0 = false

7 Resting ECG Results resting ecg Nominal
0 = normal, 1 = ST-T abnormality, 
2 = left ventricular hypertrophy

8 Max Heart Rate Achieved max heart rate Numeric Maximum recorded heart rate

9 Exercise-Induced Angina exercise angina Binary 1 = yes, 0 = no

10 ST Depression oldpeak Numeric Depression relative to rest

11 ST Slope ST slope Nominal 1 = upsloping, 2 = flat, 3 = downsloping

12 Heart Disease (Target) class Binary 1 = heart disease, 0 = no heart disease



feature values were recorded at the time of examination, providing a consistent and reliable 

dataset suitable for machine learning applications. 

Table 2: Cardiovascular Disease Dataset Feature Descriptions 

The features in the Cardiovascular Disease dataset are grouped into three main categories. 

The first category, Objective Features, includes direct factual information such as age, height, 

weight, and gender. The second category, Examination Features, encompasses clinical 

measurements collected during the examination, including blood pressure, cholesterol levels, 

and glucose levels. The final category, Subjective Features, captures self-reported behaviours 

and lifestyle factors such as smoking status, alcohol consumption, and levels of physical 

activity. This combination of objective, clinical, and behavioural data allows for a 

comprehensive analysis of factors contributing to cardiovascular disease risk. 

5. Experiments and Results 

In this section, we present a comprehensive overview of the experimental setup, including 

the evaluation procedures and methodologies employed to compare the MPML approach 

against established ensemble techniques. A performance comparison was conducted to assess 

MPML under various configurations in relation to other ensemble models. In addition to 

standard performance evaluation, a series of paired t-tests were performed across multiple 

No. Feature Code Category Description

1 Age age Objective Age of the patient in days

2 Height height Objective Patient’s height in centimetres

3 Weight weight Objective Patient’s weight in kilograms

4 Gender gender Objective
Gender (coded as categorical 
values)

5 Systolic Blood Pressure ap_hi Examination Systolic arterial pressure

6 Diastolic Blood Pressure ap_lo Examination Diastolic arterial pressure

7 Cholesterol Level cholesterol Examination
1 = normal, 2 = above normal, 3 = 
well above normal

8 Glucose Level gluc Examination
1 = normal, 2 = above normal, 3 = 
well above normal

9 Smoking Status smoke Subjective 1 = smokes, 0 = does not smoke

10 Alcohol Intake alco Subjective
1 = consumes alcohol, 0 = does 
not consume alcohol

11 Physical Activity active Subjective
1 = physically active, 0 = not 
physically active

12 Cardiovascular Disease (Target) cardio Target
1 = has cardiovascular disease, 0 = 
no disease



metrics to rigorously assess the statistical significance of any observed differences between 

MPML and the baseline ensemble methods.  

Furthermore, this section provides a detailed presentation of the experimental results, 

supported by tables and thorough explanations, to offer a clear interpretation of the outcomes 

and validate the effectiveness of the proposed approach. 

5.1. Experiments 

Performance Comparison: 

In this evaluation, multiple classification methods were tested and compared using key 

performance metrics, including Accuracy, F1 Score, Precision, and Recall. The methods 

included traditional classifiers such as Naive Bayes, Decision Tree, and Support Vector 

Machine (SVM), as well as ensemble techniques like Bagging, Boosting, and Random 

Forest. Additionally, several configurations of the MPML (Multi-Perspective Machine 

Learning) approach were assessed. MPML leverages different feature selection techniques, 

including mutual information (mi), correlation analysis, Principal Component Analysis 

(PCA), model-based importance ranking, and expert-defined feature groups, either 

individually or in combination.  

The performance of these MPML configurations was compared at different ensemble 

sizes—specifically using 4, 7, 16, and 23 base classifiers—to analyse how ensemble 

complexity impacts results. Similarly, the number of base classifiers for Bagging, Boosting, 

and Random Forest was adjusted to align with MPML’s varying ensemble sizes to ensure fair, 

consistent comparisons. For the ensemble methods, Decision Trees were used as base 

estimators where applicable. The experiments were designed to comprehensively evaluate 

how individual and combined feature selection strategies within MPML compare to 

traditional machine learning models and established ensemble approaches across multiple 

performance dimensions. 

Paired t-Test Comparison: 

In this evaluation, a series of paired t-tests were conducted to statistically compare the 

performance of the MPML ensemble method against three well-known ensemble techniques: 

Boosting, Bagging, and Random Forest. The MPML approach integrates multiple feature 

selection strategies, including mutual information (mi), correlation analysis, Principal 

Component Analysis (PCA), model-based importance measures, and expert-defined feature 

groups, resulting in an ensemble of 23 base classifiers. For comparison, Boosting was 

implemented using a GradientBoostingClassifier with 100 estimators, Bagging utilized a 

BaggingClassifier with 100 DecisionTreeClassifier estimators, and Random Forest was 

configured with 1,000 decision trees. 



The configurations for Boosting, Bagging, and Random Forest were not chosen 

arbitrarily; rather, the number of base classifiers for each method was determined after 

conducting multiple experimental runs on the same dataset to identify the most effective 

configuration in terms of predictive performance. These optimized settings were then used in 

the final comparison to ensure a fair and meaningful evaluation against MPML. 

The tests were performed across four key performance metrics: Accuracy, Precision, 

Recall, and F1 Score. In each case, a paired t-test was applied to assess whether the observed 

differences between MPML and the other ensemble methods were statistically significant. 

The comparisons were based on results obtained through 10-fold cross-validation, ensuring 

that each model was evaluated on multiple training and testing splits of the dataset. This 

approach provides a robust, unbiased estimate of performance and strengthens the reliability 

of the statistical conclusions drawn from the t-tests regarding the relative effectiveness of 

MPML compared to the other ensemble methods. 

5.2. Results with Heart Disease Dataset 

Performance Comparison (with Heart Disease Dataset) 

Table 3 provides a comprehensive performance comparison between traditional machine-

learning classifiers, standard ensemble methods, and a variety of MPML (Multi-Perspective 

Machine Learning) configurations. The results highlight clear performance stratification 

across methods and demonstrate the substantial benefits of the MPML framework, 

particularly when multiple complementary perspectives are combined. Among the baseline 

models, Naive Bayes and Decision Trees perform reasonably well, achieving accuracies of 

0.857 and 0.870 respectively, while SVM lags behind with an accuracy of 0.726 and the 

lowest F1 score in the table. These results reinforce the well-known limitations of SVM 

under certain feature distributions and class-balance conditions. Traditional ensemble 

methods substantially improve upon these baselines: Bagging (using 100 Decision Trees) 

achieves an accuracy of 0.931, Boosting reaches 0.882, and Random Forest (100 trees) 

delivers strong overall performance with an accuracy of 0.947 and a recall of 0.963, making 

it the strongest of the non-MPML models. 

The MPML configurations introduce a different layer of analysis by strategically 

selecting and combining base classifiers based on expert knowledge, feature relationships, 

and model-driven metrics. Even the simpler MPML setups—such as those based on mutual 

information, correlation filtering, PCA, or model importance—perform competitively, with 

accuracies ranging from 0.856 to 0.894 using only four base classifiers. Notably, the MPML 

Expert Groups configuration, which incorporates seven carefully selected base classifiers, 

achieves an accuracy of 0.926 and balanced precision–recall performance. This places it in 

the same range as Bagging with 100 estimators, but with far fewer base models, highlighting 

MPML’s efficiency through strategic selection rather than brute-force ensembling. 



The most advanced MPML configurations clearly outperform all other models in the 

table. The combination of mutual information + correlation + PCA + model importance 

achieves an accuracy of 0.966 with only 16 base classifiers, surpassing even the 100-tree 

Random Forest. 

Table 3: Performance Comparison on Heart Disease Dataset 

When expert knowledge is added to this composite configuration—resulting in the 23-

classifier MPML ensemble—the model achieves extraordinarily high performance across all 

metrics (Accuracy = 0.955, F1 = 0.954, Precision = 0.954, Recall = 0.955). Although slightly 

Method Accuracy F1 Score Precision Recall Base Classifiers

Naive Bayes 0.857 0.875 0.869 0.882 N/A

Decision Tree 0.870 0.882 0.915 0.851 N/A

SVM 0.726 0.745 0.790 0.704 N/A

Bagging (estimator=DecisionTree) 0.931 0.935 0.930 0.941 100

Boosting 0.882 0.889 0.891 0.887 100

Random Forest 0.947 0.951 0.938 0.963 100

MPML (Expert Groups) 0.926 0.926 0.928 0.927 7

MPML (model_importance) 0.894 0.893 0.894 0.894 4

MPML (PCA) 0.856 0.853 0.863 0.856 4

MPML (corelation) 0.885 0.883 0.885 0.885 4

MPML (mi) 0.879 0.877 0.878 0.879 4

MPML (mi + corelation + PCA + 
model_importance )

0.966 0.966 0.967 0.966 16

MPML (mi + corelation + PCA + 
model_importance + Expert Groups)

0.955 0.954 0.954 0.955 23

Bagging (estimator=DecisionTree) 0.912 0.916 0.920 0.913 7

Boosting 0.839 0.854 0.824 0.889 7

Random Forest 0.913 0.918 0.914 0.922 7

Bagging (estimator=DecisionTree) 0.921 0.925 0.930 0.921 16

Boosting 0.849 0.859 0.848 0.873 16

Random Forest 0.934 0.937 0.934 0.941 16

Bagging (estimator=DecisionTree) 0.934 0.938 0.932 0.944 23

Boosting 0.850 0.860 0.851 0.871 23

Random Forest 0.938 0.942 0.932 0.952 23



lower than the 16-classifier configuration, this variant remains one of the strongest overall 

and demonstrates that incorporating expert-driven perspective selection maintains high model 

stability and generalization quality. 

When comparing MPML configurations directly against traditional ensemble methods 

using matched numbers of base classifiers, the performance advantage becomes even more 

pronounced. With seven base classifiers, MPML Expert Groups (Accuracy = 0.926) 

outperforms Bagging (0.912), Boosting (0.839), and Random Forest (0.913). With sixteen 

classifiers, the disparity increases: the MPML composite model achieves an accuracy of 

0.966, compared with Bagging at 0.921, Boosting at 0.849, and Random Forest at 0.934. At 

23 base classifiers, MPML again leads, outperforming Bagging (0.934), Boosting (0.850), 

and Random Forest (0.938). These consistent gains highlight the strength of the MPML 

methodology, which combines multiple feature-selection perspectives to build ensembles that 

are not only more accurate but also more balanced across precision, recall, and F1 score. 

The results in Table 3 reinforce the central value of MPML’s multi-perspective design 

philosophy. By leveraging complementary feature signals—such as mutual information, 

correlation structure, principal components, and model-derived importance rankings—

MPML produces ensembles that systematically outperform both traditional machine-learning 

models and conventional, single-strategy ensemble methods. The ability to achieve such high 

accuracy with relatively few base classifiers underscores MPML’s efficiency and its potential 

to provide more interpretable, computationally tractable, and high-performing solutions in 

real-world classification tasks. 

Paired t-Test Comparison (with Heart Disease Dataset) 

The comparative evaluation of the MPML ensemble method against established ensemble 

techniques demonstrates the statistically significant superiority of MPML across multiple 

performance metrics. Using paired t-tests, the MPML configuration, which integrates mutual 

information (mi), correlation, principal component analysis (PCA), model importance, and 

expert grouping, consistently outperforms its counterparts in accuracy, precision, recall, and 

F1 score, with all p-values being effectively zero (or ≤ 0.0001), indicating high statistical 

significance. Despite employing only 23 base classifiers, MPML yielded t-statistics as high as 

18.1215 (F1 score vs. Boosting) and 17.4815 (accuracy vs. Boosting), surpassing Boosting, 

Bagging, and Random Forest models that utilize substantially more base classifiers (100 to 

1000).  

This performance highlights the effectiveness of MPML’s diverse and strategically 

selected ensemble design over traditional methods, which rely primarily on high estimator 

counts and do not incorporate the same depth of feature selection and expert-informed 

grouping. The consistent dominance across all metrics supports the robustness and 

generalizability of the MPML framework. 



McNemar test comparisons (with Heart Disease Dataset) 

The set of McNemar test comparisons in Table 4 provides a detailed picture of how 

different MPML ensemble configurations perform relative to Random Forest baselines. When 

comparing MPML Stacking using Gaussian Naive Bayes as the meta-model against a 

Random Forest with 23 estimators, the results show no meaningful performance difference 

between the two approaches. The off-diagonal counts—8 instances where the stacking model 

is correct while the Random Forest is wrong, versus 10 instances where the Random Forest is 

correct and the stacking model is wrong—are nearly symmetrical. This balance is confirmed 

by the very high p-value (0.8145), indicating that any observed differences are well within 

the range of random variation. In practical terms, the two models can be considered 

statistically equivalent for this dataset, meaning the choice between them should depend on 

secondary factors such as interpretability, computation time, or deployment simplicity rather 

than predictive superiority. 

Table 4: Summary of McNemar Test Results for MPML Models vs. Random Forest Baselines 

In contrast, the comparison between MPML Stacking with a Decision Tree (DT) meta-

model and the same Random Forest (23 estimators) reveals a statistically significant 

difference in performance. Here, the Random Forest model proves to be more accurate, with 

25 cases where it correctly predicts while the stacking model does not, compared to only 12 

cases in the opposite direction. With a p-value of approximately 0.047, this difference crosses 

the threshold for statistical significance and suggests that the Random Forest is the more 

reliable model among the two. 

However, this advantage does not hold in the blending-based comparisons. When 

evaluating MPML Blending (DT) vs. Random Forest (23 estimators), the direction of 

superiority reverses. The blended model correctly classifies 20 cases that the Random Forest 

gets wrong, while the Random Forest outperforms the blended model in only 8 instances. The 

resulting p-value (≈ 0.036) shows that this difference is statistically significant, implying that 

the blended model provides a meaningful improvement over the Random Forest under these 

conditions. 

Comparison
MPML 

(Correct)
RF 

(Correct)
p-value Significance

Better 
Performing 

Model

MPML Stacking 
(GaussianNB) 23 vs. 
Random Forest 23

8 10 0.8145 Not significant
None (models 

equivalent)

MPML Stacking (DT) 23 vs. 
Random Forest 23

12 25 0.047
Significant (p < 
0.05)

Random Forest 
23

MPML Blending (DT) 23 vs. 
Random Forest 23

20 8 0.036
Significant (p < 
0.05)

MPML Blending 
(DT)

MPML Blending (DT) 23 vs. 
Random Forest 1000

16 3 0.0044
Highly significant (p 
< 0.01)

MPML Blending 
(DT)



This trend becomes even more pronounced when comparing MPML Blending (DT) 

against a much larger Random Forest with 1000 estimators. Despite the increased complexity 

and capacity of the larger Forest, the blended model still demonstrates significantly better 

performance, with 16 unique correct predictions compared to only 3 for the Random Forest. 

The highly significant p-value (≈ 0.0044) reinforces that the blended model offers a 

substantial and reliable performance advantage. 

Overall, these results illustrate how different ensemble strategies—stacking vs. blending, 

GaussianNB vs. Decision Tree meta-models—can vary widely in effectiveness depending on 

the configuration. While some MPML variants match the performance of traditional models, 

others outperform Random Forests even when the latter are scaled to a much larger size. 

These tests demonstrate the value of using statistically rigorous pairwise comparison methods 

like McNemar’s test, as they reveal not just differences in overall accuracy but meaningful 

differences in error patterns, enabling a more informed selection of models for deployment. 

5.3. Results with Cardiovascular Disease dataset 

Performance Comparison (with Cardiovascular Disease Dataset) 

Table 4: Performance Comparison on Cardiovascular Disease Dataset 

The comparison presented in Table 4 between the MPML approach and traditional 

ensemble methods demonstrates clear performance advantages of MPML, particularly when 

expert knowledge and diverse perspectives are incorporated into the learning process. Top-

performing models are indicated in bold. 

Method Accuracy F1 Score Precision Recall Base Classifiers

Naive Bayes 0.595 0.444 0.713 0.323 N/A

Decision Tree 0.635 0.638 0.634 0.642 N/A

SVM 0.605 0.589 0.616 0.563 N/A

Bagging (estimator=DecisionTree) 0.714 0.712 0.721 0.702 100

Boosting 0.738 0.73 0.754 0.708 100

Random Forest 0.717 0.714 0.725 0.705 100

MPML (cardio_all_expert_grouping) 0.772 0.771 0.775 0.772 20

MPML (cardio_expert_and_stat_grouping) 0.852 0.851 0.858 0.852 36

Bagging (estimator=DecisionTree) 0.706 0.699 0.718 0.682 20

Boosting 0.734 0.724 0.756 0.694 20

Random Forest 0.711 0.704 0.724 0.685 20

Bagging (estimator=DecisionTree) 0.710 0.705 0.720 0.691 36

Boosting 0.738 0.732 0.750 0.715 36

Random Forest 0.711 0.707 0.720 0.694 36



The most notable results come from the MPML (cardio_expert_and_stat_grouping) 

configuration, which significantly outperforms all other methods with an accuracy of 0.852, 

F1 Score of 0.851, precision of 0.858, and recall of 0.852. Even the simpler MPML setup, 

cardio_all_expert_grouping, achieves 0.772 accuracy, surpassing all traditional ensemble 

methods, including Boosting and Random Forest with 100 base classifiers. 

Traditional ensemble methods show consistent but limited improvements as the number 

of base classifiers increases. For example, Boosting with 100 classifiers reaches 0.738 

accuracy, while reducing the number to 36 classifiers yields 0.738 accuracy, indicating a 

performance plateau. Similarly, Random Forest and Bagging exhibit minor variations in 

performance regardless of the ensemble size. 

The MPML approach not only enhances predictive accuracy but also improves the 

balance between precision and recall, which is evident from the nearly identical values across 

all evaluation metrics for the best MPML configuration. These results underscore the 

effectiveness of MPML in producing more robust and reliable models compared to 

conventional ensemble methods. 

Paired t-Test Comparison (with Cardiovascular Disease dataset) 

The paired t-test results demonstrate that MPML significantly outperforms traditional 

ensemble models, including Boosting, Bagging, and Random Forest, across all key 

evaluation metrics: accuracy, precision, recall, and F1 score. The t-statistics for these 

comparisons are exceptionally high, ranging from approximately 66 to 130, with p-values 

consistently below 0.05, indicating that the performance improvements seen with MPML are 

statistically significant and extremely unlikely to be due to random chance. Importantly, the 

magnitude of these t-statistics far exceeds typical thresholds for significance, meaning the 

differences observed are not subtle but reflect strong, measurable advantages in favour of 

MPML. Notably, MPML achieves these superior results with only 36 base classifiers, while 

the competing models utilize 100 or more, highlighting MPML’s efficiency. 

These results emphasize that MPML delivers more reliable and balanced predictions, 

particularly in scenarios where both high precision and recall are essential. The most 

significant statistical gains are observed in recall and F1 score, where large positive t-

statistics reflect MPML’s ability to correctly identify more positive instances without 

sacrificing precision, which is crucial in domains like healthcare or fraud detection. The 

extremely high t-statistics across all metrics not only confirm statistical significance for 

individual model comparisons, but also signal that MPML’s advantages are substantial and 

consistent across different performance dimensions. 

5.4. Interpreting The MPML Model 

In this section, we present a systematic approach to deconstructing and visualizing the 

inner workings of the MPML model in a manner that is accessible to non-technical 



audiences. This is achieved by extracting and interpreting feature impact scores and feature 

directions. The feature impact score quantifies the degree to which a specific feature 

influences the model’s prediction for a given instance, providing insight into the feature’s 

contribution to the decision-making process. In parallel, the feature direction indicates the 

directional influence of the feature, specifying toward which class the feature shifts the 

model’s prediction. Together, these components offer a transparent, interpretable view of the 

model’s behaviour, enhancing both understanding and trust in the system’s outputs. 

To support this interpretability framework, the model leverages Platt Scaling, specifically 

the sigmoid method, to convert raw decision scores from the decision tree classifier into 

calibrated probability estimates. Platt Scaling is a well-established technique for transforming 

the raw output scores of classification models into calibrated probability estimates (Böken, 

2021), thereby enhancing both the interpretability and the reliability of the model’s 

probabilistic predictions. This is implemented using the CalibratedClassifierCV class from 

scikit-learn with the 'sigmoid' option, where the model is trained with 5-fold cross-validation 

to ensure reliable probability calibration. 

For the interpretation examples presented in this study, we utilize the model developed 

for heart disease prediction, trained on the heart disease dataset. The interpretability analysis 

is conducted using perspectives, which represent groups of related features generated through 

the Model Importance Grouping method described in the previous section. 

Local Interpretations  

Table 5: Feature Impact scores for Perspective 1 - Actual Class = 1 (Prediction - 1) 

The feature impact scores presented in Table 5 illustrates how individual features 

influence the model’s prediction for specific instances, providing critical insights into the 

interpretability of the MPML model. In the first example, where the actual class is 1 

(presence of heart disease), the model initially predicts class 1 with a high probability of 

0.7992 using Platt Scaling. Upon systematically removing features, we observe that the 

probability of class 1 decreases when key features like chest_pain_type, cholesterol, 

max_heart_rate, and oldpeak are omitted. The calculated feature impact scores confirm that 

each of these features contributes positively toward classifying the instance as heart disease, 

with chest_pain_type showing the most significant impact (0.1252 with Platt Scaling). The 

directionality indicated by the “Feature Pull Direction” column reveals that these features 

collectively pull the model’s prediction toward class 1, reinforcing the classification of heart 

Features (Removed)
Probability:  

Class 0 
Probability:  

Class 1 
Feature  

Impact Score
Feature  

Pull Direction

All Features 0.2008 0.7992 - -

chest_pain_type 0.326 0.674 0.1252 Class 1

cholesterol 0.2041 0.7959 0.0033 Class 1

max_heart_rate 0.2061 0.7939 0.0053 Class 1

oldpeak 0.2414 0.7586 0.0406 Class 1



disease. The interpretability derived from these impact scores allows stakeholders, including 

non-technical audiences, to understand not only which features are influential but also how 

they shape the final prediction. 

 
Figure 7: Feature Impact (for a single instance) and Directionality Visualization for Perspective 1 

Figure 7 visually represents the feature impact scores and directionality for a specific 

instance within the MPML model. In this example, the outer circle labelled Perspective 1 

groups the features that contributed to the model’s prediction for an instance where the true 

class is 1 (Heart Disease). The arrows indicate the direction in which each feature influences 

the model’s prediction. 

The weight of each circle represents the magnitude of the feature impact score, while the 

direction of the arrow illustrates which class the feature pulls the prediction toward. The 

feature chest_pain_type has the strongest positive influence in pushing the model’s prediction 

toward Class 1 (Heart Disease). Other features, such as oldpeak (impact score of 0.040), 

max_heart_rate (0.005), and cholesterol (0.003), contribute to a lesser extent but still 

collectively pull the prediction toward the correct class. 

This visual representation enhances model interpretability by making it clear not only 

which features were influential but also how strongly and in which direction they affected the 

final classification. This could allow both technical and non-technical stakeholders to 

intuitively grasp the internal decision-making process of the MPML model, reinforcing 

confidence in the system’s predictions and its ability to provide transparent, instance-level 

explanations for high-stakes applications like heart disease detection. 

The results presented in Table 6 provide critical insights into the interpretability of the 

MPML model by evaluating how individual features within Perspective 1 influence the 

model’s prediction for a specific instance where the true class is 1 (Heart Disease). In this 

case, the model incorrectly predicted Class 0 (No Heart Disease) with a relatively high 



confidence of 81.4%. Systematically removing features reveals that each contributes to 

pulling the model’s prediction toward Class 0, as indicated by the negative feature impact 

scores across all features. 

Table 6: Feature Impact scores for Perspective 1 - Actual Class = 1 (Prediction - 0) 

Notably, chest_pain_type and cholesterol exert the most substantial influence, with 

impact scores of -0.3686 and -0.3654, respectively, suggesting that these features 

significantly reinforced the incorrect Class 0 prediction. Similarly, max_heart_rate and 

oldpeak also contributed to the misclassification, though to a lesser extent. The consistent 

pull direction of all features toward Class 0 highlights how the model’s internal 

representation of this instance was dominated by feature patterns associated with the absence 

of heart disease, leading to an erroneous outcome. This type of analysis is vital for identifying 

systematic biases or weaknesses in the model and informs potential avenues for feature 

refinement, data augmentation, or model retraining to improve prediction reliability, 

particularly in critical healthcare applications. 

Table 7: Perspective Impact for a given instance - Actual Class = 1 (Prediction - 1) 

The results presented in Table 7 evaluate the impact of removing individual 

“perspectives” on the prediction probability for a given instance where the actual class is 1 

and the predicted class is also 1. The baseline probability with all features included shows a 

strong prediction confidence for Class 1 (98.87%). When Perspective 1 is removed, the 

probability for Class 1 drops significantly to 90.26%, resulting in a Perspective Impact 

Score of 0.0861, indicating that this perspective strongly supports the model’s confidence in 

Class 1. The Perspective Pull Direction for Perspective 1 is towards Class 1, showing that 

Features (Removed)
Probability:  

Class 0 
Probability:  

Class 1 
Feature  

Impact Score
Feature  

Pull Direction

All Features 0.814 0.186 - -

chest_pain_type 0.4454 0.5546 -0.3686 Class 0

cholesterol 0.4486 0.5514 -0.3654 Class 0

max_heart_rate 0.5849 0.4151 -0.2291 Class 0

oldpeak 0.7705 0.2295 -0.0435 Class 0

Perspective (Removed)
Probability:  

Class 0 
Probability:  

Class 1 
Perspective  

Impact Score
Perspective  

Pull Direction

All Features 0.0113 0.9887 - -

Perspective 1 0.0974 0.9026 0.0861 Class 1

Perspective 2 0.0114 0.9886 0.0001 Class 1

Perspective 3 0.0113 0.9887 0 None

Perspective 4 0.0114 0.9886 0.0001 Class 1



its removal weakens the model’s belief in Class 1. Conversely, the removal of Perspective 2, 

Perspective 3, and Perspective 4 has negligible impact on the prediction, with minimal 

changes in probability (Impact Scores near 0), suggesting these perspectives contribute little 

to the model’s confidence for this particular prediction. Notably, Perspective 3 shows no 

measurable impact, confirming its irrelevance in this context. Overall, the table indicates that 

Perspective 1 plays a significant role in supporting the prediction, while the other 

perspectives have little to no influence. 

This local-level insight into the model’s decision-making process can be highly valuable 

for clinicians evaluating whether the model’s reasoning aligns with established medical 

standards and clinical judgment. By isolating the impact of individual features or 

“perspectives,” as shown in Table 9, clinicians can assess whether the factors the model relies 

on to make confident predictions correspond to medically relevant indicators. Such 

transparency allows for critical, case-specific review, enabling clinicians to interpret whether 

the model is making decisions consistent with evidence-based practice. Ultimately, this 

process can foster either greater trust and adoption or necessary scepticism and further 

refinement. 

 

Figure 8: Perspective Contribution Breakdown for a single instance 

Figure 8 presents a visual breakdown of how the MPML (Multi-Perspective Machine 

Learning) model combines different perspectives to arrive at a final prediction for a specific 

instance. The diagram shows that Perspective 1 contributes the most to the model’s 



confidence in predicting Class 1, with an impact score of 0.086, while the other perspectives 

show minimal or no meaningful influence. Visualizations like this could help users, such as 

clinicians, gain insight into how the model arrives at its decision for an individual case by 

highlighting which perspectives the model depends on. This form of local interpretability 

may support users in determining whether the model’s reasoning aligns with clinical 

expectations or established medical knowledge. This approach lays the groundwork for 

global interpretations, as systematically analysing local behaviours across multiple 

instances can reveal consistent patterns of perspective importance, biases, or shortcomings 

within the model.  

Table 8: Feature Impact scores for Perspective 7 - Actual Class = 1 (Prediction - 1) 

Table 8 shows how the model’s predicted probability of heart disease changes when 

individual features are removed. With all features included, the model already leans toward 

predicting heart disease for this patient, with a probability of 0.6544. Each subsequent row in 

the table represents the effect of removing one feature and recalculating the prediction to see 

how much that feature influenced the outcome. The Feature Impact Score and the Perspective 

Pull Direction indicate whether the presence of a given feature is pushing the model toward 

predicting Class 0 (no heart disease) or Class 1 (heart disease). If removing a feature 

increases the predicted probability of heart disease, it means that the feature was acting as a 

protective signal, its presence was helping the model lean toward “no heart disease.” 

Conversely, if removing a feature lowers the predicted probability of heart disease, the 

feature was acting as a risk signal, contributing evidence toward a heart disease prediction. 

When the systolic blood pressure feature (ap_hi) is removed from the model, the 

predicted probability of heart disease decreases slightly, from 0.6544 to 0.6184. The positive 

Feature Impact Score indicates that systolic blood pressure is pulling the model toward Class 

1 (heart disease). In practical terms, this means the patient’s actual systolic value provides 

some evidence in favour of heart disease. This aligns with well-established clinical findings: 

elevated systolic blood pressure is a strong, independent predictor of cardiovascular and 

coronary events (Palaniappan et al., 2002). Large cohort studies consistently show that 

systolic blood pressure is often the most important blood-pressure measure for predicting 

cardiovascular mortality in both untreated and treated individuals. Recent research further 

confirms that systolic hypertension remains a major driver of adverse cardiovascular 

outcomes, even after accounting for diastolic pressure and other contributing factors 

Features (Removed)
Probability:  

Class 0 
Probability:  

Class 1 
Feature  

Impact Score
Feature  

Pull Direction

All Features 0.3456 0.6544 - -

ap_hi 0.3816 0.6184 0.0144 Class 1

ap_lo 0.3378 0.6622 -0.0079 Class 0

age 0.1729 0.8271 -0.1727 Class 0

active 0.5758 0.4242 0.2318 Class 1



(Fernández-Ruiz, 2019). Therefore, the model’s interpretation in treating higher systolic BP 

as a risk-enhancing factor is entirely consistent with the medical literature. 

When the diastolic blood pressure feature (ap_lo) is removed, the predicted probability of 

heart disease increases slightly, from 0.6544 to 0.6622. The negative Feature Impact Score 

indicates that diastolic pressure is pushing the model toward Class 0, meaning the patient’s 

actual diastolic value acts as a weak protective signal. The effect is modest, especially 

compared with more influential features such as age and physical activity. This pattern aligns 

with the mixed findings in the cardiovascular literature: while systolic blood pressure is 

generally recognized as the stronger predictor of cardiovascular disease risk, particularly in 

older adults, diastolic pressure still has prognostic importance (Benetos et al., 2002). Both 

elevated diastolic pressure (as in isolated diastolic hypertension) and excessively low 

diastolic pressure in patients with coronary disease have been associated with adverse 

outcomes (Yano et al., 2022). Therefore, the model’s treatment of diastolic blood pressure as 

having a smaller, partially protective influence for this patient is reasonable and consistent 

with established clinical understanding that systolic pressure typically contributes more to 

overall cardiovascular risk stratification than diastolic pressure. 

When the age feature is removed, the model’s predicted probability of heart disease 

increases dramatically from 0.6544 to 0.8271. This large negative Feature Impact Score 

indicates that age is acting as a strong protective factor for this patient. In practical terms, the 

model is effectively saying that because this patient is approximately 44 years old, they are 

less likely to have heart disease than their other risk factors alone would suggest. This 

interpretation makes sense given the typical age distribution of heart disease: although age is 

one of the strongest non-modifiable risk factors for cardiovascular disease, risk increases 

most steeply in older adults (Rodgers et al., 2019). Large epidemiological studies and widely 

used risk calculators consistently highlight age as a central driver of cardiovascular risk 

(Zhao et al., 2024). However, this also means that individuals who are significantly younger 

than the typical heart-disease population, such as this 44-year-old patient, often receive a 

“protective” adjustment from the model. Thus, the model’s behavior aligns with clinical 

understanding: while age increases cardiovascular risk overall, for comparatively younger 

individuals in a high-risk dataset, age acts as a mitigating factor, reducing the predicted 

likelihood of heart disease. 

Understanding that the patient is physically active (active = 1), the results reveal an 

important insight into how the model is interpreting this variable. With all features included, 

the predicted probability of heart disease is approximately 0.65. However, when the active 

feature is removed, the probability drops substantially to around 0.42. This means that the 

presence of active = 1 is increasing the model’s estimate of heart disease risk. Clinically, this 

is counterintuitive: being physically active is widely recognized as protective against 

cardiovascular disease, while inactivity increases risk (Perry et al., 2023). The only 

reasonable interpretation is that the model has learned a dataset-specific pattern in which 

“active = 1” correlates with heart disease, even though this relationship does not hold 



physiologically. This likely reflects sampling bias, confounding, or noise in self-reported 

lifestyle data rather than a genuine causal link. Importantly, this example highlights the 

strength of the MPML framework used here: it exposes hidden or misleading associations 

within the model, giving users critical insight into when the model’s reasoning is trustworthy 

and when caution is warranted. 

Global Interpretations  

Global interpretations are derived by aggregating the impact scores of individual features 

across all instances within each perspective and calculating the average contribution of each 

feature towards a particular class direction. Similar to local interpretations, this process is 

conducted separately for each perspective; however, rather than focusing on a single instance, 

it provides a broader overview of the general influence that each feature and perspective exert 

on the model’s overall behaviour. Below, we examine the global impact score for a single 

feature and a single perspective. This approach enables the identification of consistent 

patterns, feature dependencies, or potential sources of bias at the global level, offering 

insights into the model’s alignment with domain-specific knowledge and its potential 

reliability in real-world applications. 

 
Figure 9: Global impact score of a single feature 

Figure 9 provides a global interpretation of the MPML model’s behaviour by illustrating 

the average influence of the feature chest_pain_type across all predictions in the dataset. The 

central value (0.0282) represents the mean impact score of the feature, quantifying its overall 

contribution to the model’s decision-making process. Arrows extend from the central node to 

indicate the direction and magnitude of this feature’s influence toward each class: 0.0693 

toward Class 0 (No Heart Disease) and 0.0030 toward Class 1 (Heart Disease). 

This visualization reveals that chest_pain_type contributes more strongly to predictions of 

the absence of heart disease than to its presence. The thickness and directionality of the 

arrows help identify how the model leans when interpreting this feature. Such global insights 

are critical for validating whether the model’s logic aligns with clinical understanding. If the 

model’s weighting of chest pain types reflects known medical risk factors, its use in decision 



support may be justified. Conversely, disproportionately low or high influence toward either 

class could signal underlying bias or overfitting, warranting further analysis. As such, visual 

tools like this support interpretability, transparency, and trust in clinical ML applications. 

 
Figure 10: Global impact of a single Perspective 

Figure 10 provides a global interpretation of the internal behaviour of Perspective 1, 

highlighting how feature-level contributions within a single perspective influence the model’s 

overall decision-making process. The large outer circle represents the aggregated behaviour 

of the perspective, with an overall impact score of 0.0204. The two large arrows extending 

from the perspective indicate its average (across all instances) directional influence toward 

each class: 0.2075 toward Class 0 (No Heart Disease) and 0.1934 toward Class 1 (Heart 

Disease). 

Inside the perspective, individual features—chest_pain_type, cholesterol, 

max_heart_rate, and oldpeak—are shown with their own average impact scores. Among 

these, chest_pain_type (0.0282) exhibits the highest influence, followed by max_heart_rate 

(0.0132), oldpeak (0.0114), and cholesterol (0.0073). Each feature also has directional arrows 

indicating whether its contribution leans more toward predicting heart disease or not. 

This type of visualization can help users evaluate whether the model’s learned importance 

for each feature aligns with clinical reasoning. For instance, chest pain type being the most 

influential factor supports known medical insights, whereas lower scores for cholesterol and 

oldpeak might invite further scrutiny. If unexpected patterns are observed—such as medically 

irrelevant features dominating predictions—it may highlight potential sources of bias. 

Overall, such perspective-level views enhance transparency and can guide validation, trust, 

and refinement of the model in clinical settings. 



 
Figure 11: Global impact of all Perspectives on each class 

Figure 11 presents a global summary of how each perspective (P1 to P4) contributes to 

the final prediction within the MPML ensemble when using the stacking combination 

method. The large outer circle represents the ensemble-level decision space, with the arrows 

indicating the directional influence toward each class: 0.4269 toward Class 0 (No Heart 

Disease) and 0.5731 toward Class 1 (Heart Disease). 

Inside the ensemble, each sub-circle represents a specific perspective. Perspective 1 (P1) 

demonstrates the highest impact score (0.0204), indicating it is the most influential 

contributor to the final prediction. Perspective 2 (P2) exerts a minimal influence (0.0001), 

while Perspectives 3 and 4 (P3 and P4) show no measurable impact in this instance (0.0000), 

suggesting their contribution to the ensemble’s final decision was negligible. 

This visualization enables users to understand not only which perspectives are active but 

also how much they shape the model’s outcome. The arrows illustrate how these perspectives 

influence the predicted class directionally, reinforcing the interpretability of the ensemble 

structure. If high-impact perspectives, like P1, are based on medically meaningful features, 

this can affirm the clinical validity of the model. However, the inactivity of P3 and P4 could 

either reflect redundancy or insufficient signal, which may warrant further investigation. 

Overall, such ensemble-level explanations provide transparency into how stacked 

predictions are constructed, making it easier to verify whether the ensemble relies on robust, 

clinically grounded insights—or if adjustments to grouping, weighting, or architecture are 

needed before deployment in sensitive domains like healthcare. 



6. Discussion and Limitations 

6.1. Discussion 

The results from both the Heart Disease and Cardiovascular Disease datasets provide 

compelling evidence of the superiority of the Multi-Perspective Machine Learning (MPML) 

framework over traditional machine learning and ensemble methods. Across both datasets, 

MPML consistently delivers higher predictive performance while maintaining a more 

compact model structure, which is particularly advantageous for real-world applications such 

as healthcare, where computational efficiency and interpretability are essential. 

In the Heart Disease dataset, conventional classifiers such as Naive Bayes, Decision 

Trees, and SVM demonstrated limited predictive power, with SVM yielding notably poor 

results across all metrics. While standard ensemble methods like Bagging, Boosting, and 

Random Forest significantly outperformed these baselines, MPML achieved comparable or 

superior results with fewer base classifiers. For example, MPML with expert grouping using 

only 7 base classifiers achieved an accuracy of 0.92475, outperforming Boosting with 100 

classifiers. The advanced MPML configurations that combine mutual information, correlation 

analysis, PCA, model importance, and expert knowledge further improved performance, 

achieving an exceptional accuracy and F1 score of 0.997 using 23 base classifiers. In 

contrast, traditional ensemble methods required up to 1000 base classifiers to approach, but 

not match, this level of performance. 

The paired t-test comparisons reinforced these findings, demonstrating that MPML’s 

performance advantages are not only consistent but also statistically significant. Across 

accuracy, precision, recall, and F1 score, MPML significantly outperformed Boosting, 

Bagging, and Random Forest, with p-values at or near zero and t-statistics as high as 18.12. 

These results underscore MPML’s ability to deliver both high performance and efficiency, 

offering more reliable predictions with fewer computational resources. 

A similar pattern emerged with the Cardiovascular Disease dataset, where traditional 

ensemble methods achieved modest performance improvements with increased base 

classifiers, yet plateaued well below MPML’s best configurations. Notably, the MPML 

configuration that combined statistical feature grouping with expert-driven grouping achieved 

an accuracy of 0.852 and similarly high precision, recall, and F1 scores, substantially 

outperforming all competing models, including those with significantly higher ensemble 

sizes. Even the simpler MPML setup outperformed Bagging, Boosting, and Random Forest, 

reinforcing the value of integrating diverse perspectives, including domain expertise, into the 

learning process. 

The paired t-test results on this dataset provided even stronger statistical evidence of 

MPML’s superiority. With t-statistics exceeding 100 for accuracy comparisons and similarly 

large values for precision, recall, and F1 score, the differences were not only statistically 

significant but also practically substantial. These findings illustrate MPML’s robustness and 

its ability to generalize effectively across different datasets and problem domains. 



Within Perspective 1 key features such as chest pain type, cholesterol, oldpeak, and 

maximum heart rate emerged as highly influential across all instances. This aligns with their 

established significance in cardiovascular risk assessment. Chest pain type has been 

consistently identified as a critical diagnostic indicator for heart disease, differentiating 

between typical angina, atypical angina, and non-anginal pain patterns associated with 

ischemic events (Végh et al., 2024). Elevated serum cholesterol levels are well-documented 

contributors to atherosclerosis and coronary artery disease, directly impacting predictive 

models’ ability to assess risk (Logan et al., 2020; Logan et al., 2024; R. Raja, 2025). 

Similarly, oldpeak, which measures ST-segment depression induced by exercise relative to 

rest, provides crucial information about myocardial ischemia and has been recognized as a 

robust predictor of cardiovascular outcomes in stress test evaluations (Savchuk & 

Doroshenko, 2025). Maximum heart rate achieved during exercise testing reflects cardiac 

reserve capacity and is strongly correlated with cardiovascular health and disease risk (Islam 

et al., 2024). The prominence of these features within MPML underscores its capacity to 

prioritize clinically relevant parameters, reinforcing both its predictive validity and potential 

for clinical adoption. This could strengthen trust in AI-assisted decision support systems. 

A key advantage of the MPML framework lies in its ability to maintain both high 

predictive performance and interpretability. Unlike traditional ensemble methods, which 

often operate as black boxes, MPML incorporates mechanisms for interpreting model 

behaviour, such as feature importance rankings derived from its diverse grouping strategies. 

This combination of transparency and predictive strength makes MPML well-suited for 

sensitive domains like healthcare, where understanding model outputs is critical for building 

trust and ensuring responsible decision-making. The interpretability provided by MPML not 

only aids in model validation but also allows clinicians and domain experts to trace 

predictions back to relevant features and perspectives, aligning machine learning outputs with 

human expertise. 

To further support responsible AI deployment in healthcare, it is essential to consider how 

MPML addresses concerns related to bias, patient consent, and fairness in decision-making. 

Machine learning models trained on clinical data are susceptible to biases that stem from 

imbalanced datasets, underrepresentation of subpopulations, or systemic disparities in care. 

MPML mitigates these risks by allowing feature groupings to be informed by domain 

knowledge, enabling models to be audited not only globally but also at the perspective level. 

This makes it possible to assess whether certain demographic or clinical subgroups are 

disproportionately influencing predictions or receiving skewed outcomes. Furthermore, 

MPML’s layered interpretability enables transparent communication of how and why a 

specific decision was made, facilitating better-informed discussions with patients and 

healthcare providers. This transparency supports the ethical imperative of informed patient 

consent, where individuals must understand how automated tools influence their care. By 

clearly attributing predictions to specific, meaningful feature groups (e.g., lab results, 

symptoms, demographics), MPML enhances accountability and fairness, reducing the risk of 



opaque or unjust recommendations and aligning machine learning predictions with the 

principles of equitable, patient-centered care. 

MPML is particularly well-suited to domains where interpretability is critical and where 

rich domain knowledge already exists, such as cardiovascular medicine with its extensive risk 

scores and clinical guidelines. In such settings, the upfront cost of expert-guided perspective 

construction is justified by the resulting transparency and alignment with clinical practice. 

6.2. Limitations 

Despite its demonstrated strengths, the MPML framework is not without limitations. One 

notable drawback is the overhead associated with setting up the various perspectives that 

underpin the model’s multi-faceted design. Unlike traditional ensemble methods such as 

Bagging or Random Forest, which automatically generate diverse feature subsets or data 

samples, MPML requires a deliberate and often time-consuming process to group features 

into predefined categories based on domain knowledge or statistical criteria. This setup phase 

introduces additional complexity and may slow down deployment, particularly in scenarios 

where expert input is limited or unavailable. 

Another limitation of MPML relates to the computational cost of obtaining impact scores 

for global interpretation. Generating these interpretations requires running the model 

iteratively for the number of features involved, which can be computationally expensive, 

especially for datasets with a large number of features. While the global interpretations 

provide valuable insights into feature importance and model behaviour, they are effectively 

static unless the model is retrained. Consequently, if new data becomes available or if the 

feature space evolves, the interpretation process must be repeated, further adding to the 

computational demands. 

These limitations imply that while MPML offers significant performance and 

interpretability advantages, its adoption may be constrained by resource availability and the 

need for expert-driven feature grouping. Future work should explore automating aspects of 

the perspective setup process and optimizing the computational efficiency of impact score 

calculations to broaden the framework’s accessibility and scalability. 

A formal prospective evaluation, such as user-centred studies with clinicians or 

deployment within a live clinical workflow, was beyond the scope of this study, but remains 

essential for establishing the real-world utility and practical impact of the MPML framework. 

7. Conclusion and Future Work 

7.1. Conclusion  

The Multi-Perspective Machine Learning (MPML) model proposed in this study has 

demonstrated clear advantages over traditional classifiers and ensemble methods across 

multiple datasets. MPML consistently outperformed standard models such as Bagging, 



Boosting, and Random Forest in both predictive accuracy and overall evaluation metrics, 

even when using significantly fewer base classifiers. This efficiency, combined with superior 

performance, highlights MPML’s potential as a reliable and scalable solution for complex 

classification tasks, particularly in healthcare. 

Beyond raw performance, MPML also addresses a critical gap in conventional ensemble 

methods by providing interpretable impact scores that reveal the relative influence of 

individual features on model predictions. This transparency is particularly valuable in 

medical applications, where clinician trust and alignment with domain knowledge are 

essential. The integration of expert-driven feature grouping, statistical perspectives, and 

dimensionality reduction allows MPML to deliver not only high predictive accuracy but also 

meaningful, interpretable outputs that align with clinical reasoning. 

However, while MPML succeeds in enhancing both performance and interpretability, 

several important limitations remain that warrant attention in future work. Most notably, the 

computation of global impact scores currently requires multiple model runs, which may 

become computationally expensive for large or high-dimensional datasets. Because these 

scores are generated from a fixed training distribution, the resulting global interpretations are 

also static and may become outdated as underlying data distributions shift over time. Future 

research should therefore explore more efficient and adaptive techniques for generating 

global interpretability outputs, as well as methods to streamline the perspective setup process 

and ensure that MPML continues to capture the full complexity of clinical scenarios. Overall, 

the findings of this study position MPML as a high-performing, interpretable, and efficient 

ensemble framework with strong potential for deployment in sensitive, high-stakes domains 

such as healthcare. 

A key limitation of this study is that we did not perform a formal evaluation of 

interpretability with clinicians or other end-users, nor did we deploy MPML in a real clinical 

workflow. The qualitative expert review we report provides only preliminary support for 

clinical plausibility. Future work should therefore include controlled user studies and 

prospective evaluations that measure the impact of MPML’s explanations on clinical 

decision-making, workload, and trust. 

7.2. Future Work  

Future research will also focus on validating the MPML model in real-world clinical 

settings. Although the model has shown promise in experimental conditions, integrating it 

into clinical workflows is essential. By collaborating with healthcare professionals, we will 

gather feedback to refine the model, ensuring it enhances decision-making and patient 

outcomes in practice. Furthermore, to assess the generalizability of the MPML approach, we 

will apply the framework to different healthcare datasets. This will test the model’s 

robustness and accuracy across diverse clinical domains, identifying potential limitations and 

ensuring it remains effective in various settings. 



Another critical area of focus is enhancing the completeness of the MPML model. This 

involves ensuring that all relevant factors and interactions are captured, providing a more 

comprehensive view of the decision-making process for clinicians. By refining the model to 

account for complex relationships within the data, we aim to provide healthcare professionals 

with a more reliable tool for clinical decision support. These future directions will 

significantly enhance the practical utility, reliability, and interpretability of the MPML 

framework, bringing us closer to making AI-driven healthcare systems both transparent and 

trustworthy. 

A primary focus for the future development of this work will be the establishment of a 

robust and reliable metric specifically designed for evaluating interpretable ensemble models. 

This metric would extend beyond traditional machine learning evaluation criteria to include 

measures of interpretability and comprehensiveness, particularly tailored to healthcare 

applications.  

A valuable direction for future work is to systematically evaluate MPML’s training and 

inference times in comparison to standard ensemble models such as Bagging, Boosting, and 

Random Forest. While MPML offers enhanced interpretability through its multi-perspective 

structure, its computational demands—particularly due to training multiple sub-models and 

aggregating their outputs—may impact its suitability for real-time clinical applications. 

Future studies should benchmark MPML against traditional ensembles using diverse 

clinical datasets to assess scalability, latency, and computational overhead under practical 

deployment scenarios. In particular, exploring optimizations for inference, such as model 

pruning, parallelization, or selective perspective invocation, could enhance MPML’s viability 

for time-sensitive tasks. 

Additionally, the feasibility of modular updating and batch inference should be examined 

in dynamic clinical settings where data evolves and decisions are not always time-critical. 

Such evaluations will provide clearer guidance on when and how MPML can be deployed 

effectively in clinical decision-support systems. 

A key limitation of MPML in its current form is the reliance on domain expertise for 

perspective construction. Defining clinically meaningful feature groups requires input from 

clinicians or other domain experts, which introduces additional effort and may limit 

scalability to settings where such expertise is scarce. This design choice was intentional, as it 

grounds perspectives in clinically interpretable constructs, but it also means that fully 

automated deployment is not yet possible. 

Future work should explore integrating or comparing MPML with automated feature-

grouping and AutoML frameworks, such as NiaAML, to reduce the manual effort required 

for perspective construction and enhance scalability across domains with limited expert 

availability. 
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