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We verify that the pieces of this decomposition correspond to
the irreducible representations of G, verifying the Orbifold
Semiorthogonal Decomposition Conjecture of Polishchuk
and Van den Bergh. Due to work of Potter on the group
G(m,m,2), this conjecture is now proven for all finite groups
G < GL(2,C) that are generated by order 2 reflections. Each
of these groups contains, as a subgroup of index 2, a distinct
finite group H < SL(2,C). A key part of our work is an
explicit computation of the action of G/H on the H-Hilbert
scheme H-Hilb(C?2).
© 2026 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Let G be a finite subgroup of SL(2, C). The classical McKay correspondence connects
the representation theory of G, the algebra of the ring of invariants C[x,y]®, and the
geometry of the exceptional divisor of the minimal resolution of singularities 7: Y —
C?/G. Later, Kapranov and Vasserot [34] showed that the McKay correspondence may
be realized as the following equivalence between the bounded derived category of G-
equivariant coherent sheaves on C? and the derived category of coherent sheaves on Y

DY (C?) ~ D(Y).

This result has also been extended to the case of small finite subgroups G < GL(2, C),
that is, subgroups containing no pseudo-reflections (elements that fix a codimension
one subspace), in [27]. This paper is focused on a further extension of the derived
McKay correspondence to some finite reflection groups G < GL(2,C). The Chevalley—
Shephard-Todd Theorem [14,43] tells us that in this case C2/G is smooth, so there is
no singularity to resolve, making the geometric picture quite different from the classical
case. Instead of a derived equivalence as above, there is an embedding of D(C?/G) into
D%(C?), and moreover a semiorthogonal decomposition described by Polishchuk and
Van den Bergh’s Orbifold Semiorthogonal Decomposition Conjecture:

Conjecture 1.1 ([/1]). Suppose G is a finite group acting effectively on a smooth variety
X, and that for all X € G the geometric quotient X* = X*/C()\), where C(\) is the
centralizer of X in G, is smooth. Then there is a semiorthogonal decomposition of D (X)
whose components Cy) are in bijection with conjugacy classes and Cpy) = D(X™).

Our main result gives a geometric description of a semiorthogonal decomposition of
D(C?/G) for the reflection groups G = G(2m,m,2) for m > 3, G12, G13, and Ga,
which we show correspond to the components in the above conjecture. Note that the
intersections of G2, G13, and Gag with SL(2, C) are, respectively, the binary tetrahedral,
octahedral, and icosahedral groups with singularities of type Fg, E7 and Eg.
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Theorem A. Let G = G(2m,m,2) for m > 3, G2, Gi3, or Gaa.

There is a semiorthogonal decomposition of the following form, where By, ..., B, are
the normalizations of the irreducible components of the branch divisor of C?> — C?/G,
FEy, ..., B, are exceptional objects and r + n + 1 is the number of distinct irreducible
representations of G:

DY(C?) = (D(By),...,D(B,),E1,...,E,, D(C*/Q@)).
Corollary B. For each group G in Theorem A acting on C2, Conjecture 1.1 holds.

Our proof strategy is inspired by work of Potter, who proved the analogous result
for the dihedral groups G(m,m,2) in [40] (see [13] for further analysis), building on
work of Ishii and Ueda [28] who gave a semiorthogonal decomposition for finite small
subgroups of GL(2,C). An essential step in our arguments is to compute, for each group
G appearing in Theorem A, the action of G/H on the H-Hilbert scheme H-Hilb(C?) for
H := GNSL(2,C). We do this by working with the explicit description of the Hilbert
scheme given in these cases by Ito and Nakamura [25].

We wish to acknowledge several other related works. Theorem A has already been
proven in the case of G(4,2,2) by Lim and Rota [35]. They prove Conjecture 1.1 in this
case using direct methods that do not reference the Hilbert scheme; the authors prove
further orbifold semiorthogonal decompositions for groups acting on abelian varieties.
In [29], Kawamata proves a version of the derived McKay correspondence for finite
subgroups of GL(2, C). Specifically, he shows that for any finite subgroup G < GL(2, C),
there exists some m > 0 and smooth closed subvarieties Z; of C2/G for 1 < i < m
such that D([C?/G]) ~ (D(Z1),...,D(Z,,),D(Y)) where Y — C?/G is the minimal
resolution. Our proof strategy is similar, and we are able to enumerate the components
of the decomposition. In [30], Kawamata gives a similar result for finite subgroups of
GL(3,C) and connects the McKay correspondence to his conjecture, the DK-hypothesis.

More recently, work of Krug [33] proves Conjecture 1.1 for the imprimitive com-
plex reflection groups of rank two, Gy,...,Gs7, notably avoiding the classical McKay
correspondence in the process. Around the same time, Ishii-Nimura [26] deduced Con-
jecture 1.1 for all complex reflection groups of rank 2 from the work of [29]. They also
prove the conjecture for real reflection groups of rank 3. We would also like to direct
the reader to work of [22] describing the fixed locus of anti-Poisson involutions on the
minimal resolutions of C2/H. In each case we study, the action of G/H on H-Hilb(C?) is
one of these anti-Poisson involutions, and there is one additional anti-Poisson involution
for the groups G(2m,m,2) and the group Gis.

We were also inspired by recent work of Buchweitz, Faber, and Ingalls, who give an
algebraic McKay correspondence in terms of maximal Cohen—Macaulay modules of the
discriminant of the reflection group [6].

It would be interesting to explore these connections further for the groups we study.
To prove Corollary B, we establish that the components of the semiorthogonal decom-
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position in Theorem A are isomorphic to those predicted by Conjecture 1.1, but we do
not produce an explicit isomorphism. In particular, we do not establish a correspondence
between the components of Theorem A and conjugacy classes of G, though the proof
of Theorem A shows some patterns suggesting possible relationships between geometry
and the representations of G' (see Remark 6.2).

Outline of paper In Section 2 we give further background on the McKay correspondence
and in Section 3, we introduce the finite reflection groups G in GL(2, C) that are gener-
ated by order 2 reflections. In Section 4, for H := GNSL(2,C), we discuss the H-Hilbert
scheme, which is the primary setting for our computations. Then in Section 5, we discuss
the results on semiorthogonal decompositions of categories that we will need to prove
our results. Then, we give proofs of Theorem A for each of the groups in question in
Section 6 and prove Corollary B. We gather the specifics of our computations of fixed
points in the Hilbert scheme H-Hilb(C?) under the action of A := G/H in Appendix A.

Accompanying code The code file FixedLocus.m2 associated with this paper can be
found at the github repository [4] and as an ancillary file with the arxiv preprint.

1.1. Conventions and notation

We work over the base field C. For any variety or stack X, we denote the bounded
derived category of coherent sheaves on X by D(X). Given a group action G on a variety
X, DY(X) is the bounded derived category of G-equivariant coherent sheaves on X.

Sections 3-6 and Appendix A are in a common setting; we establish notation for
this setting here. Given a reflection group G < GL(2,C) as in Theorem A, we write
H := GNSL(2,C), which in this setting is index 2, making A := G/H ~ Z/2. We write
Y := H-Hilb(C?) for the H-orbit Hilbert scheme of C2, which is a crepant resolution for
C2/H. The action of A on C2?/H extends to Y. In the following diagram, the vertical
maps are quotient morphisms and the horizontal maps are resolutions. We note that
C?/G is smooth, and so the map Y/A — C2/G is not resolving any singularities, but is
a resolution in the sense of being proper and birational with a smooth source.

(CZ

|

C2/H +—— Y (1.2)

|

C2/G +—— Y/A
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2. Historical overview of the McKay correspondence

McKay showed in [37] that for any finite subgroup of SL(2,C), there is a one-to-
one correspondence between nontrivial irreducible representations of G and irreducible
components of the exceptional divisor of the minimal resolution of singularities 7: ¥ —
C?/G. More specifically, he showed that there was an isomorphism of quivers between
the Dynkin diagram for the representation theory of G and the resolution graph of Y.
Gonzalez-Sprinberg and Verdier made this correspondence more geometrically explicit
in [19] by constructing a vector bundle for each representation whose first Chern class
transversely intersects exactly one irreducible component of the exceptional divisor. As
a consequence they determined that the G-equivariant Grothendieck group of C?2 is
isomorphic to the ordinary Grothendieck group of ¥ [19, Theorem 2.2].

Soon after, Auslander provided an algebraic version of this correspondence in [2]. Let
S = Clz,y] and R = S, the coordinate ring of C2/G. By work of Herzog [21], there is
a 1-1 correspondence between indecomposable reflexive R-modules, and indecomposable
R-summands of S. Auslander showed there is an isomorphism S * G = Endg(S), and
extended the 1-1 correspondence to indecomposable projective modules over this skew
group ring and thus to irreducible representations of G.

In [24,25], Tto and Nakamura further developed this correspondence by using Hilbert
schemes to construct minimal resolutions. For a finite group G < GL(r, C) of order n, the
G-Hilbert scheme G-Hilb(C") is a subscheme of Hilb™(C") that parametrizes certain G-
invariant n-points in C”. Tto and Nakamura showed that for G < SL(2, C), G-Hilb(C?)
is not only the minimal resolution of C2/G, but a crepant resolution. Furthermore,
they give an explicit correspondence between nontrivial irreducible representations of
G and the components of the exceptional divisor of G-Hilb(C?). Using this moduli-
theoretic description of the McKay correspondence, Kapranov and Vasserot in [34] gave
a derived version of the McKay correspondence, proving there is a derived equivalence
D%(C?) ~ D(Y), which gave the previous statement on Ky by [19] and, by passing to a
suitable enhancement, higher K-groups simultaneously.
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Extending the McKay correspondence generally proceeds in two directions. One option
is to increase the dimension and consider actions of finite subgroups of SL(r,C) on
C”. Another is to remain in dimension 2 but expand our focus to consider other finite
subgroups of GL(2,C). Some work has been done in both directions; we briefly survey
them here.

In the case where G is a finite small subgroup of GL(2,C), a special version of the
McKay correspondence has long been known. Auslander’s results [2] still hold, giving a
one-to-one correspondence between irreducible representations of G and indecomposable
reflexive C [z, y]“-modules. However, the geometric picture becomes somewhat more nu-
anced, as the exceptional divisor of the minimal resolution 7 : Y — C2/G does not have
as many components as there are irreducible representations of G. Wunram introduced
special representations in [45] and showed that there is a bijection between irreducible
components of the exceptional divisor of the minimal resolution of C2/G and nontrivial
irreducible special representations.

This work was extended by Ishii in [27], who showed that Y = G-Hilb(C?) is the
minimal resolution of C2/G and gave an explicit correspondence between the nontrivial
irreducible special representations of G and the irreducible components of the exceptional
divisor of Y, & la [25]. Ishii also produced a fully faithful embedding of D(Y) < D%(C?).
Several years later, Ishii and Ueda gave the appropriate derived version of the corre-
spondence in [28]. In this setting, the embedding of D(Y) inside of D%(C?) from [27]
is part of a semiorthogonal decomposition. The other subcategories in this semiorthogo-
nal decomposition are generated by exceptional objects corresponding to the non-special
representations of G.

In dimension 3, Bridgeland, King, and Reid show that, similar to the 2-dimensional
case, for finite subgroups G < SL(3,C), Y = G-Hilb(C3) is a crepant resolution of
singularities of C3/G and DY(C?) ~ D(Y) [9]. Moreover, the Craw-Ishii conjecture
holds: every projective crepant resolution of C3/G is isomorphic to a moduli space of
stable G-constellations [46]. Beyond dimension 3, it is unknown in general if a crepant
resolution of C"/G exists. However, Nakamura has conjectured that when a crepant
resolution exists, Y := G-Hilb(C") is such a resolution. As noted before, Kawamata
has also proved a version of the derived McKay correspondence for finite subgroups of
GL(3,C) [30].

3. Finite reflection subgroups of GL(2, C) containing —1

In this section, we will examine the reflection groups that appear in Theorem A. These
are precisely the complex reflection groups in GL(2,C) that are generated by order 2
reflections, where we take a reflection to be any (order 2) element of GL(2,C) whose
fixed locus is codimension 1. Moreover, these groups are in one-to-one correspondence
with the finite subgroups of SL(2,C), up to conjugation. This correspondence is given
by intersecting with SL(2,C). Each of these reflection groups G has the intersection
H := GNSL(2,C) as an index 2 subgroup; G is an extension of H by —1. The primary
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pP3 P2 PO

EG:

oY P2 €p3 €p2 €Po

Fig. 1. Eg and E; Dynkin diagrams.

source for this section is [19]. The correspondence we discuss is also shown in [43,32]; see
[7] for a more recent examination.

The exceptional reflection groups are denoted by G132, G13, and Gas. Their intersec-
tions with SL(2,C) are the binary tetrahedral, octahedral, and icosahedral groups with
singularities of type Fg, E7 and Fg. The intersection of the reflection group G(2m,m, 2)
with SL(2,C) is isomorphic to the binary dihedral group of order 4m. The quotient
C?/H has a surface singularity of D,, 2 type; this notation is not to be mistaken for the
underlying dihedral group. To complete the classification, there are the reflection groups
G(m,m,2), which are isomorphic to the dihedral group of order 2m. Their intersections
with SL(2, C) are cyclic of order m, and their quotients have surface singularities of type
A1

Remark 3.1. The representations of the reflection groups G have a close relationship
with those of their subgroups H. Each reflection group has a nontrivial 1-dimensional
representation € whose restriction to H is trivial. The quotient group A := G/H acts on
the representations of H by sending them to their contragredients. This involution on
representations of H relates to the involution on representations of G given by ¢ ® (—)
via induction and restriction. By [19, Prop. 3.4], if p is a representation of H isomorphic
to its contragredient, then Indg p is the sum of two distinct irreducible representations
o and p’ ® e. Each of these representations restrict to p. If p is a representation of H
that is not isomorphic to its contragredient, then Indg p is irreducible and isomorphic
to its tensor product with e.

The McKay quivers for Eg and Ef are shown in Fig. 1; the quivers for each of the
groups in question can be found in Appendix B. For the subgroups of SL(2,C), these
are the extended A, D, and E Dynkin diagrams. We label the quivers of the correspond-
ing reflection groups as A’, D’, and E’. In the quivers, each vertex corresponds to an
irreducible representation. Edges are determined using the natural representation ppat
given by the inclusion of the group in GL(2,C): an arrow from p; to p; indicates that p,
is a summand of ppat ® p;. In cases where this relationship is symmetric, we consolidate
arrows in both directions to a single undirected edge. Since we will use results in [25] for
our computations, we follow their labeling system for representations of the subgroups of
SL(2,C). The subscripts on the representations in the Fg, E7, and Es diagrams indicate
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Group Clz, y]G B #chogp'

m m m 2 m even

G(m,m,?2) Clzy, 2™ +y™] V(" = 23) 1 ((m o\zjld))

G(2m, m, 2) Clz?y?, 2™ + ™) V(" = 23) ?; ((::Lz i\:fc?))
Gi2 Clz® + 14z'y* + %, my(a* — y*)) V(i — 23) !
Gis Clz® + 14ay* + 1, (wy)(z* —v*)?] | V(z(z] - 23)) 2

Cloy(z™ + 112°y° — y'°),
Gao —z20 — 20 _ 494410410 V(z$ - 23) 1
+228(2'%y® — 25y'0)]

Fig. 2. Table of invariant rings, branch divisors, and number of components in branch divisors.

their dimensions, but this is not the case in the diagrams of type A and D. We then
somewhat abuse this notation by reusing it for the representations of the corresponding
reflection group, given their close relationship. However, we follow [19] for the particu-
lar positioning of the diagrams; these place contragredients and tensor products with €
across a middle, horizontal axis of reflection from one another, to the extent that it is
possible without sacrificing compactness of presentation.

Finally, in Fig. 2, we give the ring of invariants C[z, y]“, the branch locus B of the map
C?/H — C?/G (up to a suitable change of coordinates), and the number of connected
components of B, for each reflection group G. This information is from [3].

4. H-Hilb(C2)

In this section we examine the structure of H-Hilb(C?) and H-Hilb(C?)/A, concluding
with a proof that H-Hilb(C?)/A is smooth.

4.1. Structure of H-Hilb(C?)

Let H be a finite subgroup of SL(2,C). In [25], Ito and Nakamura give a new per-
spective on the classical McKay correspondence via moduli theory, using the H-orbit
Hilbert scheme. An essential part of their work is an explicit description of H-Hilb(C?)
for each such H, which we will use in our computations. We include an overview here
for the convenience of the reader.

Definition 4.1 (/25, Theorem 9.3]). Let n = |H|. The H-orbit Hilbert scheme of C2, de-
noted H-Hilb(C?), is the unique component of the fixed locus Hilb" (C?2)# c Hilb™(C?)
dominating C2/H via the Hilbert—-Chow morphism Hilb"(C2)# — S*(C?*)# ~ C?/H.
Furthermore, H-Hilb(C?) is a crepant (equivalently minimal) resolution of C2/H.

As a moduli space, Hilb"(C2)# parametrizes H-invariant length |H| subschemes of
C?, equivalently, H-invariant ideals of the coordinate ring C[x, y]. Then Y := H-Hilb(C?)
parametrizes such subschemes that furthermore correspond to ideals I so that there is an
isomorphism of H-modules between O¢2/I and C[H], the regular representation of H.
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The exceptional locus E of Y — C?/H consists of the H-invariant subschemes supported
at the origin. We call the open subset of Y outside the exceptional locus N CY for non-
exceptional. H acts freely on C? outside of the origin, and thus the set of H-orbits of
C2\ {(0,0)} is isomorphic to C2\ {(0,0)}, so N ~ C2\ {(0,0)}.

We will generally refer to points in H-Hilb(C?) using their corresponding ideals, which
we now describe.

4.1.1. Exceptional locus of Y

Fixing coordinates so that C2 = Spec C[z,y], let m = (z,y) be the maximal ideal of
the origin in C?, mg be the maximal ideal at the origin in C2/H, and n := mg - C|x, ],
i.e., the ideal generated by H-invariant polynomials in C |z, y].

Let I be an ideal corresponding to a point in ' C Y. Because [ is supported at the
origin, I C m and n C I [25, Corollary 9.6]. Following the notation of [25], we define for
convenience the following finite H-module:

V(I):=1/(ml+n).

Let V(p) be the nontrivial irreducible H-module corresponding to the nontrivial irre-
ducible representation p : H — GL(V(p)). We define the following loci in E C Y

E(p) :={I € H-Hilb(C?): V(p) C V(I)},
P(p,p') :={I € H-Hilb(C?): V(p)  V(p') CV(I)}.

Ito and Nakamura prove the McKay correspondence by showing that the assignment
p — E(p) gives a bijection between nontrivial irreducible representations of H and the
irreducible components E(p) ~ P! of E. The locus P(p, p) is the intersection of E(p)
and E(p'); it is nonempty if and only if p and p’ are adjacent in the Dynkin diagram of
H. If P(p,p') # 0, then it consists of a single reduced point at which E(p) and E(p’)
intersect transversally [25, Theorem 10.4].

For each finite group H < SL(2,C), Ito and Nakamura identify the ideals correspond-
ing to points in the exceptional locus as certain submodules of m/n. We recount the
details in Theorem A.1 in Appendix A before using it for our own computations.

4.1.2. Outside of the exceptional locus of Y

For each finite subgroup H, the ideal n C C[z,y] can be generated by three poly-
nomials f1, f2, f3 € C|z,y]. The points of N correspond to points of C2\ {(0,0)}. In
particular, (a,b) € C2\ {(0,0)} corresponds to the following ideal:

I(a,b) = (fl(x,y) - fl(a7b)’f2(mvy) - f2(a?b)’f3($7y) - f3(a7b))'

Remark 4.2. The ideals I(, ;) are products of the maximal ideals of all points in the
H-orbit of (a,b). Since these points are distinct, the product of these maximal ideals is
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equal to their intersection, hence the ideals I(, ;) are radical. Thus, if some f € Clz,y]
does not vanish at any of the points in the H-orbit, f is a unit in Clz,y]/I(q,p)-

4.2. Structure of H-Hilb(C?)/A

It is significant to our proof of Theorem A that the quotient of Y by A := G/H ~ 7 /2
is smooth. The geometry of the branch locus of the quotient Y — Y/ A also plays a crucial
role.

In order to elucidate both of these, we will calculate the fixed locus of the action of A
on Y. In Appendix A we compute the fixed points of the action of A on the exceptional
locus of Y. For each group G, these computations show that there are points of Y fixed
by A that are isolated within the exceptional locus. In this section, we will show that
these fixed points are not isolated in Y by examining the parts of the fixed locus of the
action of A on Y that extend outside of the exceptional locus.

Therefore, we wish to compute which ideals I, ;) are fixed by the action of A in each
case. We will arrange our choice of f1, f2, and f3 in each case so that f; and fo are fixed
by the action of A and fs is sent to — f5. These choices of fi, fo and f3 are all given in
the subsections below; the actions of A in each case are given in Appendix A.

The kernel of the following polynomial map is principally generated by a polynomial
of the form w? + p(u,v):

C[U,U,W]—}C[Cﬂ,y], u'_>f17 U'_)f27 U/’—>f3 (43)

The above map surjects onto C[z,y] and gives the relation f2 + p(fi, f2) = 0. In this
setting we have the following result:

Lemma 4.4. Each irreducible factor of p(u,v) corresponds to a component of the ramifi-
cation locus of C%/H — C2 /G, which in turn corresponds to a component of the fized
locus of A acting on'Y that has nontrivial intersection with N .

Proof. For any (a,b) € C%\ {(0,0)} that satisfies f3(a,b) = 0, we see directly from the
definition that the ideal I(, ;) must be fixed under the action of A. Conversely, the sum
of I(q) and its image under A is:

(fl(x7y) - fl(a7b)af2(x7y) - f2(a7b)a f3($,y) - f3(a7b)7f3(xay) + f3((1,b))7

which contains f3(a,b). Thus I(, ) is fixed by A if and only if f3(a,b) = 0.
The fixed locus of A inside of C2/H, or equivalently, the ramification locus of C2/H —
C?/G, has the following coordinate ring:

Clz,y"/(f3) = Clf1, fo, f31/(f5 + p(f1, fo), f3) = CLf1, fol / (0(f1, £2)),

so the irreducible components of the fixed locus of A inside of C?/H correspond to the
irreducible factors of p(u,v). O
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Remark 4.5. Since C2 — C2/H is ramified only at the origin, the branch divisors of
C? — C?/G are the same as C2/H — C?/G. Note that C[fy, f2] = C[x,y]¢, and the
polynomials p(u, v) are the branch divisors of C2 — C?/G; in each case we treat, we see
the polynomials p(u,v) are consistent with the branch divisors shown in Fig. 2.

Now, for each reflection group G that appears in Theorem A, we will examine the
fixed locus of A acting on Y that has nontrivial intersection with N. For each case below,
we provide a family of ideals corresponding to points in Y which is flat over C*. By [20,
I11.9.8], there is a unique extension to a flat family over A'. We identify the point added
in the extension as the intersection of the fixed locus of A and the exceptional set E.

4.2.1. G(2m,m,?2)
We choose the H-invariants of C[z,y| as in [25, §13.1]

fr=a®" 4+ y?", fa=ay? fa=ay(@®™ — M),

In this case, the kernel of the map (4.3) is generated by w? — v(u? — 40™) and thus by
Lemma 4.4, the ramification locus of C2/H — C?/G has two components when m is
odd and three components when m is even.

When m is odd, these components are V(f2) and V(4 £ — fZ). When m is even, there
are three components: V(f2), V(2f3/% — f1), and V(2£2"/% + f1).

First, we consider the intersection of the component V'( f3) with the exceptional locus;
the same argument works for any value of m. Each ideal I, ;) corresponding to a point
in V(f2) N N is radical and thus contains (zy), and, furthermore, in the limit as points
(a,b) in this component approach 0, any ideal in the intersection of this component with
E must contain xy. Any ideal in the intersection of this component with £ must also
contain fi, fo, and f5 (see [25, Cor. 9.6,§10.1]). There is a unique ideal in the exceptional
locus containing f1, fa, fs, and xy, which corresponds to the module V2(p}) = (xy) (see
Appendix A.1 for explanation of notation). We identify this point in Proposition A.2.3(e)
as a fixed point of A in E that is contained in E(p}).

We treat the remaining components separately for m even or odd.

Consider the case where m is odd. The two components of the fixed locus of the
A-action on Y that intersect with N ~ C2\ {(0,0)} are V(f2) and V (4f5* — f?).

The points in NV are ideals I(, ;) that are products of the maximal ideals corresponding
to points in the orbit of (a,b) € C2. For any t € C*, the ideal I(4 1) is a point in the
component V (4f3" — ) and we write it as an ideal in C|[x,y]:

I(t,t) = (fl(xay) - 2t2m’f2(f£,y) - t47f3($,y)).

If we furthermore consider the ideals I(; ;) these generate in Clx,y] (abusing notation),

because these ideals are radical and contain ff — 43" = (2™ — y?™)?, I(; ;) contains
2?™ — y?™. Thus we can write:
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I(t,t) — (:L,2m + y2m _ 2t2m’ $2y2 _ t4,flf2m _ y2m)

We claim that this ideal contains z™*! — t2y™~1 and y™*+! — t22™~1. To see this, we

first note that since z2y% —t* € I(; 1), all solutions to am~lym=1 _42m=2 are contained

m—1, m—1 __ t2m—2
)

in the vanishing of I ). Since I, 4) is radical, it must contain x y and

thus the following equality implies that ™1 (a™m*1 — ¢2ym=1) ¢ T4y

xm—l(wm-i-l _ 7f2ym—1) _’_t2(xm—1ym—1 _ t2m—2) _ x2m o t2m c I(t,t)~

Because ™1

is not contained in any of the maximal ideals which intersect to give
Ity (note Iq0), I(o,p) are in V(f2)) this implies amtl — 2yl ¢ I(; ). By a similar
argument, we see y™tl — 2pm-1 ¢ I(;)- Then we see that lim; .o I(;;) must contain

m+1 as well as fi, fo, and f3. There is a unique ideal in the exceptional locus

2™t and y
with this property, which corresponds to the module V., (pm) = (™%, y™ ') in the
notation of Appendix A.1. In Proposition A.2.3(e), we identify this point as a fixed point
of A in FE that is contained in E(p,).

Now, let m be even. The three components of the fixed locus of A on Y that intersect
with N ~ €2\ {(0,0)} are V(f2), V(2f7/* = f1), and V(2/7/* + f1).

For any t € C*, the ideal I(;4) is a point in the component V(2f§n/2 — f1) and we
write it as an ideal in C|[x,y]":

I(t,t) = (fl(xay) - 2t2m7f2(’r7y) - t4,f3($7y)).

Consider the ideals I ;) these generate in C[z,y], because this ideal is radical and

contains f; — 2f2m/2 = (2™ — y™)?2, it contains ™ — y™. Thus we can write our ideals
I(t7t) —_ (x2m + y2m o 2t2m,$2y2 o t4,$m o ym)

Then, lim;,0 I(;,;) must contain 2™ — y™ as well as f1, fa2, f3.

By a similar argument, noting that 2f," 2y fi = (@™ 4+ y™)?, the intersection of
component V(25" /2 + f1) with the exceptional locus is an ideal containing «™ + y™ as
well as f1, f2, and f3.

There are unique ideals in the exceptional locus that contain f1, f2, f3, 2™ — y™ and
f1, f2, f3, 2™ + y™, respectively, though which ideal depends on whether m is divisible
by 4. If m is not divisible by 4, these ideals correspond to the modules V,,(p;,,1) =
(2™ — ™ F2y™) and Vi (pl,10) = (@™ + i™T2y™) (see Appendix A.1 for notation),
respectively, and vice versa if 4|m.

We identify these points in Proposition A.2.3(e) as fixed points of A in E that are

contained in E(p}, ) and E(p], )

4.2.2. Gha
We choose the invariants of C[z,y]? as in [42], which coincides with [25, §14] except
for the choice of f3 (for unexplained notation see Appendix A.3):
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f1 =2y — 2y® = p1paps
fo =%+ 1aty* +® = oy = (93 + 4wp3) (p3 + 4w?p3)
fo = 22 — 3305y* — 33248 + 12

The kernel of the map (4.3) is generated by w? — (v3 — 108u*) and thus by Lemma 4.4,
the ramification locus of C2/H — C2?/G has one component, corresponding to one
component of the fixed locus of the action of A on Y. Its intersection with N ~ C?2\
{(0,0)} is V(3 —108f7).

Let € := ¢2™/8, For any t € C*, the ideal I(1 1) is a point in the component V(fs —
108f1):

Lty = (f1 — 2et®, fo + 1213, f3).

By Proposition A.3.1(c), the exceptional locus of H-Hilb(C?) has a single isolated fixed
point under the A-action on E(p3) corresponding to the following H-module:

V(I) = ((2° — y*) (o + ), zy(—p + ¥), (2 + y°) (—we + ¥), f1, f2, f3).

We are able to verify computationally using macaulay?2 in the code file FixedLocus.m2
[4], for each t and each generator of V(1) I(;.4) contains an element that is the sum of
the generator of V(/) and an element that is a multiple of ¢. Thus lim; o I(s,c;) must
contain all of the generators listed in V' (I), hence it is the point in E corresponding to

V(D).

4.2.3. Gi3
We choose the invariants of C[z,y]" as in [42], which differs from but is consistent
with that in [25, §15] in this case:

fi = (@Py—ay®)?,  fo =2 +ldatyt B, f3 = (21233281 —332Y P +y'?) (Py—ayP).

In this case, the kernel of the map (4.3) is generated by w? — u(v?® — 108u?), and thus by
Lemma 4.4, the ramification locus of C2/H — C2/G has two components, corresponding
to two components of the fixed locus of the action of A on Y. Their intersections with
N ~C?\ {(0,0)} are V(f1) and V(f3 — 108%).

We consider the intersection of the first component of the fixed locus with E. Each
ideal I,y corresponding to a point in V/(f1)NN is radical and thus contains (z°y—xy°).
In the limit as points (a,b) in this component approach 0, we see that any ideal in the
intersection of this component with E must contain (z%y —xy°) as well as fi, f2, and f3.
There is a unique ideal in the exceptional locus with this property, namely, in the notation
of Appendix A.1, Vs(p)) = (%y — zy®). We identify this point in Proposition A.4.1(c)
as a fixed point of A in Y N E that is contained in E(p]).
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Similarly, each ideal I(, p) corresponding to a point in V(fs—108f2)NN is radical and
thus contains z'2 —3328y* — 332498 +y'2. The intersection of this component of the fixed
locus of A in Y with E must be the unique ideal Vg (pj) = (x'? — 3328y* — 332%y® + ¢y'2)
that we identify in Proposition A.4.1(c) as a point on E(p}).

4.2.4. G
We choose the following invariants of C[z,y]? (see [3], [31, p. 55], [42]):

fl — xy(xlo T 11$5y5 _ ylo)
fo = 2% —2282"%y° + 49420y 4 22825y"" + y*°
fz =™ +5220%y° — 100052>°y'% — 100050y — 52227y + y*°

The kernel of the map (4.3) is generated by w? — (1728u® 4+ v3), and thus by Lemma 4.4,
the ramification locus of C2/H — C?2/G has one component, corresponding to one
component of the fixed locus of the action of A on Y. Its intersection with N ~ C?2 \
{(0,0)} is V(1728 + £3).

Let v := €2™/20, For any t € C*, the ideal ., is a point in the component
V(172817 + f3):

Ty o= (f1 — (24 1Li)yt"2, fo + (492 + 4560)t°°, f3)

By Proposition A.5.1(c), the exceptional locus of H-Hilb(C?) has a single isolated fixed
point on E(p3) corresponding to the following H-module:

V14(p;)/) — (Z'14 _ 14x9y5 +49x4y10’ 7x12y2 _ 48x7y7 _ 7m2y12,49x10y4 + 14x5y9 4 y14)

We are able to verify in our code file that for each ¢ and each generator of Vi4(p5), I(,41)
contains an element that is the sum of the generator of V(I) and an element that is
a multiple of ¢. Thus lim;_,q I(; .4y must contain all of the generators listed in Vi4(p5),
hence it is the point in E corresponding to Vi4(p¥).

4.2.5. Smoothness of Y/A
We now use the above results to show Y/A is smooth and draw conclusions about the
branch locus of Y — Y/A.

Proposition 4.6. Let G C GL(2,C) be a complex reflection group as in Theorem A. The
fixed locus of the action of A on'Y does not have any isolated fixed points.

Proof. By the arguments shown in sections 4.2.1-4.2.4, each fixed point of the action of
A on Y is contained in a component of codimension 1 and in particular there are no
isolated fixed points. 0O
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By the Chevalley—Shephard—Todd Theorem [14,43], Proposition 4.6 implies the fol-
lowing corollary.

Corollary 4.7. The quotient Y/A is smooth.

Remark 4.8. In [40], smoothness of Y/A in the G = G(m, m, 2) case is shown by analyzing
affine charts of the toric minimal resolution of C?/G, which is not available in the cases
we treat.

We may further identify the geometry of the components of the branch locus of Y —
Y/A:

Corollary 4.9. The branch locus of Y — Y /A that extends outside the exceptional locus
of Y/A — C2/G is isomorphic to a disjoint union of affine lines.

Proof. By Corollary 5.7 (cf. [40, Cor. 5.3.4]), since Y/A is smooth and hence coincides
with (Y/A)®", the branch locus of Y — Y/A consists of smooth divisors.

Let B be an irreducible component of the branch locus of Y — Y/A that extends
outside the exceptional locus of Y/A — C?/G. Consider the diagram (1.2) in the
Conventions section. Since it commutes, B is the strict transform (and therefore the
normalization) of a branch divisor of C?/H — C2/G.

Each component of the branch locus of C2/H — C?/G is given in terms of an explicit
equation in sections 4.2.1-4.2.4. Our equations all normalize to lines. O

5. Semiorthogonal decompositions of equivariant derived categories

An important tool in our proof of Theorem A is a collection of results concerning
semiorthogonal decompositions of equivariant derived categories. These results were first
combined and studied by Potter in his thesis [40, Chapter 6]. There are essentially three
moving pieces to this result. The first result is a semiorthogonal decomposition of the
derived category of a root stack, proven in [28] and [10] independently. The second
result is another semiorthogonal decomposition of the derived category of the canonical
stack associated to a surface. Finally, the third is a description of a quotient stack as
an iterated root stack along the branching divisors of a group action, proven in [18§].
Combined, these results allow us to realize the derived category of equivariant sheaves
as the derived category of sheaves on an iterated root stack over the canonical stack of a
surface, allowing us to obtain the claimed semiorthogonal decomposition using the first
two results mentioned above.

We first remind the reader about the notion of a root and canonical stack. Then, we
examine the topic of semiorthogonal decompositions. Finally, we assemble these ideas to
outline the method we will use to prove Theorem A.
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5.1. Root and canonical stacks

The original definition of a root stack was given independently in [12] and [1], while
the notion of a canonical stack is implicit in [44, 2.9, proof of 2.8] (see also [16] for
discussion). We will only need the basics of both, and refer the readers to the above
sources for more details.

We begin the discussion with the basics of root stacks. Let X be a smooth Deligne—
Mumford stack and let D = (Dy, ..., D,) be n effective Cartier divisors on X. Further,
let r = (r,...,m,) € Z2, be a tuple of positive integers. Recall that D determines
a morphism X — [A™/G'], which we also denote by D, and let 6, be the morphism
[A" /G ] — [A"/G]}] determined by x; — x;*, and A; — AJ".

A definition of the root stack of X along D in terms of its generalized points is straight-
forward but unnecessary for our purposes (cf. [12, Remark 2.2.2]). We alternatively define
the root stack of X along D as the fiber product

X[VD] — [A"/G]

| Je

X —B s [A/Gp)

Remark 5.1. The root stack behaves much like the notion of a blow-up in classical bi-
rational geometry. Indeed if D is the union of the D;, then the restriction X [¥/D]|x\p
is isomorphic to X \ D, however its restriction to D is much more interesting (see [12]).
Intuitively, in the case where r = (r) and D = (D), the rth root stack of X along D
modifies X only on D, resulting in a stack with stabilizer groups of u, along D. The
objects of the root stack serve as rth roots of the line bundle Ox (D).

Remark 5.2. It will be useful later on to recognize that by definition of the root stack
X[v/D], there is a canonical isomorphism

X[VD] = X[/ Di][ /D] - [ "3/ Dnl.
In other words, we may take root stacks iteratively.

Canonical stacks were first studied by Vistoli in [44] as a means of attaching a smooth
Deligne-Mumford stack to a scheme with tame quotient singularities. Our primary ref-
erence is [16, §4].

Definition 5.3. Let X be a smooth Deligne-Mumford stack with coarse moduli space Y.
We say that X is canonical if the locus where the map X — Y is not an isomorphism
has codimension at least two.

Remark 5.4. In [44, Proposition 2.8, 2.9], it was shown that any scheme of finite type over
a field with tame quotient singularities is the coarse moduli space of a canonical stack.



A. Bhaduri et al. / Advances in Mathematics 489 (2026) 110794 17

The question of uniqueness is resolved by [16, Theorem 4.6], where canonical stacks are
shown to be terminal with respect to dominant, codimension-preserving morphisms to
their coarse moduli spaces. This property is stable under base change by étale morphisms,
thus via descent every algebraic stack with tame quotient singularities has a canonical
stack. We denote the canonical stack associated to such a stack X by X",

Remark 5.5. As a byproduct of the definition of canonical stacks, one can check directly
that if Y°*" is a smooth canonical Deligne-Mumford stack with coarse moduli space Y,
the locus where 7 : Y°*" — Y is an isomorphism is precisely 7r*1(Y;m), where Y, is the
smooth locus of Y. Clearly, if Y is itself smooth, then Y =Y [16, §4].

The main result concerning root and canonical stacks is a result of Geraschenko and
Satriano, which shows that under suitable assumptions, a stack can be built from its
coarse moduli space by repeating the canonical and root stack constructions.

Theorem 5.6 ([18, Theorem 1]). Let X be a smooth separated tame Deligne—Mumford
stack with trivial generic stabilizer. Let' Y be its coarse moduli space and Y*" the canon-
ical stack associated to Y. Let D C'Y be the branch divisor of the map m: X — Y, and
D the pullback of D to Y. Let r; be the ramification index of m over the irreducible
component D; of D, then forr = (r1,...,7,) and D = (Dy,...,D,), the stack Y °**[v/D]
has tame quotient singularities and the map 7 factors as

can
x=(ver[VD]) " >y VD] - ver oy,
For our purposes, the following corollary is more directly useful.
Corollary 5.7 ([17, Corollary 5.6]). Suppose that X is a smooth quasi-projective variety
and G a finite abelian group whose order is coprime to the characteristic of k. Then the
induced map

[X/G] — (X/G)="

s a root stack morphism along a collection of smooth connected divisors with simple

normal crossings.
5.2. Semiorthogonal decompositions

Before we state the main results needed regarding semiorthogonal decompositions, we
first briefly remind the reader of the definition.

Definition 5.8. Let 7 be a triangulated category. A semiorthogonal decomposition, writ-
ten as
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T = (A1,..., An),

is a collection of full triangulated subcategories Ay, ..., A,, referred to as the components
of the decomposition, such that

(1) For any T' € A; and S € A;, if i > j then Hom(7, S) = 0.
(2) for any T € T, there is a sequence of morphisms

OZFn%Fn_1—>'-'—>F1—>F0=T
such that Cone(F; — F;_1) € A;.

Remark 5.9. One should think of a semiorthogonal decomposition as giving each object
of a category a distinguished filtration, whose intermediate factors belong to each of the
specified subcategories. Further, condition (1) implies that the intermediate factors are
unique and functorial.

Remark 5.10. When the subcategories appearing in Definition 5.8 are as simple as pos-
sible, that is, A; = D(k — v.s.) the derived category of k-vector spaces, A; is generated
by a single object called an exceptional object and we call A; exceptional. In general an
exceptional object is an object F in a triangulated category such that

. k i=0
Hom(FE, E[i]) =
0 i#0.
When a triangulated category admits a semiorthogonal decomposition as above, and
some of the A; are exceptional we say that the collection of those {A4;} form an ex-
ceptional collection. If all A; are exceptional, then we say they are a full exceptional
collection.

Semiorthogonal decompositions are usually very interesting from the perspective of
noncommutative geometry, but are typically difficult to establish. However, in a handful
of cases, much is known, for example the well-known semiorthogonal decomposition of
projective space [5] (cf. [23, Corollary 8.29]):

D(P™) =(0,0(1),...,0(n)). (5.11)
If X — Y is a blow-up with smooth center Z C Y of codimension ¢, then it is a

result of Orlov [39] (cf. [23, Prop. 11.18]), that we have the following semiorthogonal
decomposition of X:

D(X) = (D(Z)1 —c),...,D(Z)(~1), D(Y)). (5.12)
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From the viewpoint of the derived category, the root stack along a divisor behaves
much like a blow-up of a variety along a smooth center. Before we make this analogy
precise, it will be useful for us to know explicitly the embedding functors appearing
in the above semiorthogonal decomposition, so we devote some time to discuss them
here. Additionally, although it is possible to weaken the assumptions, we only work with
smooth Deligne-Mumford stacks for the rest of the paper.

Let X be a smooth Deligne-Mumford stack and D = (Dy,...,D,,) a collection of
effective Cartier divisors and r € ZZ,. Let D be the union of the D;, then one can think
of the stack D := D[+v/D] as the “strict transform” of D in the root stack. Indeed there
is a commutative diagram

D —L X[VD]
A

where 7§ is the closed embedding of the divisor D, and j is the composition of the closed
embedding D — X[v/D]|p (see [1, Appendix B]) and the inclusion X[v/D]|p € X[vD].
Now define the functors, for ¢ € Z:

7% : D(X) = D(X[V/D])
®y:= Ox({D) ® juml(—) : D(D) — D(X[VD]).

The following result was originally proven in [10] and [28] independently. A version
for iterated root stacks also appears in [10], but we will not need its full statement here.

Theorem 5.13 ([10, Theorem 4.7], [28, Proposition 6.1]). Let X be a smooth Deligne—
Mumford stack and D C X an effective Cartier divisor. Fiz a positive integer r, and let
me X[\/B] — X be the rth root stack along D. Then the functors m% and ®, are fully
faithful and there is a semiorthogonal decomposition into admissible subcategories:

D (X[VD)) = (@,-1(D(D))...., ®1(D(D)),wy D(X)).
Since equivariant derived categories appear in the statement of our results we take a
moment to note that they are equivalent to derived categories of quotient stacks. Given

a variety X and a group G acting on X, we have the following equivalence (see [38,
Exercise 9.H]):

DY (X) := D([X/G)).

The reader interested in reading further about G-equivariant sheaves may wish to see,
for example [9, Section 4].
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In light of the result of the discussion above, notably Corollary 5.7 and Theorem 5.13,
given a finite abelian group acting on the variety X, we now have a prescription to ob-
tain a semiorthogonal decomposition of the equivariant derived category on X, whose
components consist of the derived categories of the irreducible components of the branch-
ing divisors [X/G] — (X/G)®" as well as the derived category of the canonical stack
(X/G)%" . If X is a quasi-projective surface, then in fact [28, Theorem 1.4] provides a way
to decompose D((X/G)%") in terms of the minimal resolution of X/G and a collection
of exceptional objects coming from intersections of the branching divisors. In our case
we treat the action of A :=Z/2 on Y := G-Hilb(C?) and by Corollary 4.7 the quotient
Y /A is smooth, thus we have (Y/A)®" = Y/A (see Remark 5.5). These observations were
first assembled by Potter in his thesis [40], for convenience we include the full statement
below.

Theorem 5.14 ([/0, Corollary 6.1.2]). Let X be a quasi-projective surface over k and G
a finite abelian group acting faithfully on X. Let D = D; be the branch divisor of the
coarse moduli space morphism 7 : [X/G] — X/G, andY the minimal resolution of X/G.
Then there is a semiorthogonal decomposition

DG(X) = <E15 ooy B, {D(Dl)}:;lv L) {D(Dn)}:;lﬁD(Y»

consisting of D(Y'), multiple copies of D(D;), the number of which is the order of the
stabilizer group of D;, and exceptional objects arising from the intersections of D; and
D; where the stabilizer group jumps and non-special representations of G acting at an
isolated point.

5.8. Strategy for the proof of Theorem A

‘We now outline how results on derived categories and semiorthogonal decompositions
will be used to prove Theorem A.

Let G be a reflection group as in Theorem A.

The first step we make toward a semiorthogonal decomposition of D%(C?) is to use
the following equivalence of categories, which is valid for any choice of nontrivial finite
group G < GL(2,C) and the other notation is defined analogously to above:

Theorem 5.15 (28, Theorem 4.1]). DY (C?) ~ DA(Y)

More strongly, the underlying categories of coherent sheaves are equivalent.

The remainder of the strategy proceeds now as follows. By Corollary 5.7, the map to
the canonical stack [Y/A] — (Y/A)®" is a root stack. Since Y/A is a smooth quotient
(Corollary 4.7), as discussed in Remark 5.5, we may simply replace the canonical stack
(Y/A)*" with the quotient Y/A. The quotient Y/A is a 2nd root stack along the branch
divisor of [Y/A] — (Y/A). In each case we treat, the branch divisor of [Y/A] — (Y/A)
consists of disjoint curves D1, ..., D,. Then Theorem 5.13 and Remark 5.2 implies that:
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DA(Y) ~ (D(Dy),...,D(D,), D(Y/A)). (5.16)

Finally, divisors in Y/A can be blown down to obtain C2/G and thus we apply the
blow-up formula (5.12) using ¢ = 2, obtaining a semiorthogonal decomposition of the
following form:

D(Y/A) 2 (B, .., By, D(C/G)), (5.17)

where E1,..., E,, are exceptional objects, one for each divisor we blow down.

Thus, combining (5.16) and (5.17), we obtain a semiorthogonal decomposition of the
form given in Theorem A. We note that the (subcategories generated by) exceptional
objects and subcategories generated by branch divisors, since they are embedded via
Fourier—-Mukai transforms, are admissible and thus can be permuted in any order using
mutations; see [8], [11, Section 2].

In order to also count the number of exceptional objects present in this semiorthogonal
decomposition, we must identify, for each G, the fixed locus of the action of A on Y and
the divisors in Y/A that will be blown down to obtain C?/G. We address these details
in the next section.

6. Proof of Theorem A

We now combine the strategy outlined in Section 5.3 with the computational re-
sults shown in the appendix to prove Theorem A. In Sections 6.1-6.4, we identify the
components of the semiorthogonal decomposition of D%(C?), treating each reflection
group that appears in Theorem A separately. We illustrate these cases of the proof with
Figs. 3-7, which show the exceptional locus of H-Hilb(C?); the red curves indicate where
the discriminant curve intersects the exceptional locus and dashed arrows indicate a non-
identity action of A. We also discuss the G(m,m,2) case in Section 6.5 for the reader’s
convenience. Then in Section 6.6, we conclude by explaining why the components in the
semiorthogonal decomposition of D%(C?), are in bijection with the conjugacy classes of
G, verifying the Orbifold Semiorthogonal Decomposition Conjecture.

6.1. G(2m,m,?2)

Let m be even. By Proposition A.2.3(c),(e) and Fig. 2 (cf. Remark 4.5), the fixed
locus of the action of A on Y consists of % exceptional curves E(p2), E(pa), ..., E(pm),
as well as three curves that extend outside the exceptional locus. We claim that the
images of E(p2), E(p4),--., E(pm) in Y/A are also copies of P': by Corollary 5.7 their
images are smooth, and so we may conclude the claim by Riemann—Hurwitz. Here and
in the other cases below, we abuse notation and give the fixed exceptional curves in Y
and their images in Y/A the same name. Let By, B, and B3 be the images in Y/A of
the three curves that extend outside the exceptional locus. By Corollary 4.9, By, Ba,
and Bj are affine lines.
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(a) Exceptional locus in the G(2m,m,2) (m even) case.

E(P/m+1) E(pm)

E(py)

E(Pin+2)

(b) Exceptional locus in the G(2m,m,2) (m odd) case.

Fig. 3. G(2m, m, 2) cases.

Thus by (5.16),
DA(Y) ~ (D(By), D(Ba), D(Bs), D(E(p2)), D(E(p))s -, D(E(pn), D(Y/A)).

Since each E(py) ~ P!, by (5.11), there exists a semiorthogonal decomposition as follows,
where the F; are exceptional objects:

DA(Y) ~ (D(By), D(Bs), D(B3), Ey, ..., Em, D(Y/A)). (6.1)

By Proposition A.2.3(a), A acts as an automorphism on each of the m + 2 exceptional
curves in Y and therefore Y/A contains m + 2 curves that must be blown down to
obtain C2/G. Combining (5.17) and Theorem 5.15 with (6.1), we have the following
semiorthogonal decomposition, where the E; are exceptional objects:

DY(C?) ~ (D(By), D(By),D(Bs),E\, ..., Eymys, D(C?/G)).

We see in Fig. 9 that G has 2m + 6 irreducible representations, and thus we have proved
Theorem A in this case.

Let m be odd. By Proposition A.2.3(c),(e) and Fig. 2, the fixed locus of the action of
A on'Y consists of 71 exceptional curves E(p2), E(ps), ..., E(pm-1) and two curves
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Fig. 4. Exceptional locus in the G2 case.

that extend outside the exceptional locus of Y whose images By, B in Y/A are affine
lines.

By Proposition A.2.3(b), A acts as an automorphism on each of the m exceptional
curves E(p1), ..., E(pm) and exchanges E(py,+1) with E(pp,2). Therefore Y/A contains
m + 1 curves that must be blown down to obtain C?/G.

Applying Theorem 5.15, (5.16), and (5.17), we conclude that there exists a semiorthog-
onal decomposition of the following form, where the F; are exceptional objects:

DY(C?) ~ (D(B1),D(Bs), Er, ..., Eaym, D(C?/G)).

We see in Fig. 9 that G has 2m + 3 irreducible representations, proving Theorem A in
this case.

6.2. Gia

By Proposition A.3.1(c) and Fig. 2, the fixed locus of the action of A on Y consists
of one exceptional curve F(ps2) and one curve extending outside the exceptional locus of
Y, whose image, B, in Y/A is an affine line.

By Proposition A.3.1(a),(b), A acts as an automorphism on two exceptional curves
E(p2), E(ps) and exchanges two pairs of exceptional curves. Therefore Y/A contains 4
curves that must be blown down to obtain C2/G.

Applying Theorem 5.15, (5.16), and (5.17), we conclude that there exists a semiorthog-
onal decomposition of the following form, where the E; are exceptional objects:

DY(C?) ~ (D(B),Es,...,Es,D(C?/QG)).

We see in Fig. 10 that G has 8 irreducible representations, proving Theorem A.
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E(pa) E(p3)

E(ps) E(ps) E(pa) E(p3) E(p2)

Fig. 6. Exceptional locus in the G235 case.

6.3. Gi3

By Proposition A.4.1(b),(c) and Fig. 2, the fixed locus of the action of A on Y consists
of the three exceptional curves F(ps), E(p5) and E(p4) as well as two curves extending
outside the exceptional locus of ¥ whose images By and By in Y/A are affine lines.

By Proposition A.4.1(a), G153 acts as an automorphism on each of the seven exceptional
curves, and therefore Y/A contains 7 curves that must be blown down to obtain C2/G.

Applying Theorem 5.15, (5.16), and (5.17), we conclude that there exists a semiorthog-
onal decomposition of the following form, where the F; are exceptional objects:

DY(C?) ~ (D(By), D(By), E1, ..., E3, D(C?/G)).
We see in Fig. 11 that G has 16 irreducible representations, proving Theorem A.
6.4. Gag

By Proposition A.5.1(b),(c) and Fig. 2, the fixed locus of the action of A on Y consists
of the exceptional curves E(p2), E(py), E(ps), and E(pg) as well as one curve extending
outside the exceptional locus of Y whose image B in Y/A is an affine line.

By Proposition A.4.1(a), Goo acts as an automorphism on each exceptional curve, and
therefore Y/A contains 8 curves that must be blown down to obtain C2/G.

Applying Theorem 5.15, (5.16), and (5.17), we conclude that there exists a semiorthog-
onal decomposition of the following form, where the F; are exceptional objects:
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E(Pl) E(pm—l)
T T
» A
\ /

\ /
\ /
A /
N /
N N //
(a) Exceptional locus in the G(m,m,2) (m even) case.

E(p1) E(pm-1)
T T
~ ™
\ /

A /

\\ ’

\\ //

(b) Exceptional locus in the G(m, m,2) (m odd) case.

Fig. 7. G(m,m, 2) cases.

DG(C2) =~ <D(B)7 Ela AR E16, D((C2/G)>
We see in Fig. 12 that G has 18 irreducible representations, proving Theorem A.
6.5. G(m, m,?2)

Finally, for the reader’s convenience, we will discuss the proof of Theorem A for the
group G(m,m,2), which was shown in [40, §6.5].

Using explicit charts for the toric minimal resolution of the singularity A,,_1, Potter
computes that the fixed locus of the action of A on Y consists only of the strict transform
of the ramification locus C2/H — C?2/G. This lies over the branch locus V(2% — 2")
in C2/G and thus has one component B when m is odd and two components, B; and
By, when m is even. He furthermore shows that when m is odd, A interchanges pairs
of exceptional curves, leaving mT_l curves in Y/A that must be blown down to obtain

C2/G. When m is even, A interchanges 5 — 1 pairs of exceptional curves and acts as
a nonidentity involution on E(p,,/2), implying there are % curves in Y/A that must

be blown down to obtain C2?/G. The curves that are interchanged with one another
correspond to the representations directly above and below one another in the Dynkin
diagram on the left-hand side of Fig. 8.
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Thus, there exist semiorthogonal decompositions of the following form, where the FE;
are exceptional objects:

DY(C?) ~ (D(B), Ey, .. - Bu_1, D(C?/G))  (m odd),
DY(C?) ~ (D(By),D(Bs), Er,...,Ex»,D(C?/G)) (m even).

It is illustrated in Fig. 8 that G(m,m,2) has ’”;‘ L nontrivial irreducible representations

when m is odd and % + 2 when m is even.

Remark 6.2. In each case of the proof of Theorem A, the number of exceptional objects
we add in the first step of the proof, where we use (5.16), is always equal to the number
of representations of G that contain an € in our Dynkin diagrams. In each case, whether
A acts as an involution on exceptional curves or exchanges them corresponds precisely
to whether the corresponding representation is or is not isomorphic to its contragredient.

6.6. Proof of Corollary B

As we noted in the introduction, the semiorthogonal decompositions we construct
are predicted by Polishchuk and Van den Bergh’s Orbifold Semiorthogonal Decom-
position Conjecture. We have already shown that the number of components of our
semiorthogonal decomposition of D& (C?) is equal to the irreducible representations and
thus conjugacy classes of G, so it remains to show that the components are isomorphic
to D((C?)9/C(g)) for each conjugacy class [g], where C(g) is the centralizer of G.

We will show that these components are isomorphic, but we will not produce explicit
isomorphisms. For a more explicit approach to constructing this semiorthogonal decom-
position and showing it satisfies the conjecture of Polishchuk—Van den Bergh, see [35,
Section 3] which covers the details for G(4, 2, 2).

By Theorem A, each semiorthogonal decomposition we construct consists of one copy
of D(C2/G), a copy of D(A!) for each of the r components of the branch divisor of
C? — C?/@G, and n exceptional objects each generating a subcategory isomorphic to
D(Spec C), such that n + r + 1 equals the number of representations of G.

In parallel, each group G has three types of conjugacy class: [I| where I is the identity
matrix, [s] where s is a reflection, and [¢] for all remaining non-identity, non-reflection
elements g € G. We have the following isomorphisms:

D((C*)!/C(1)) =~ D(C?/G), D((C?*)*/C(s)) =~ D(A'), D((C*)?/C(g)) ~ D(SpecC).

Thus we just need to show that the conjugacy classes of reflections are in bijection
with the components of the branch divisor of C?/H — C?/G, which is the image of

I = 55, where s; and sy are

the hyperplanes fixed by reflections in G. Suppose gs1g~
reflections fixing hyperplanes H; and Hs. Then gH; = Hs, so H; and H; map to the

same component of the branch divisor of C* — C?/G and we are done.
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Appendix A. Computing the action of A on H-Hilb(C?)

A key component of our proofs of Theorem A for each of the reflection groups G
is our computation of the fixed points of the action of A on the exceptional locus of
Y := H-Hilb(C?). Ito and Nakamura have given explicit algebraic descriptions of the
points of Y for each H < SL(2,C) [25]. To perform our computations in this setting,
we find embeddings G < GL(2,C) that are extensions of those given in [25], and in
particular we choose an element o € G\ H that we use to explicitly compute the action
of A. Ito and Nakamura give the exceptional curves of Y and their intersections in terms
of certain H-invariant submodules, which in some cases we must identify precisely and
parametrize in order to determine the fixed points of the action. In this appendix, we
show these computational details and summarize our findings, handling the different
groups G in each section.

Some computations discussed in sections A.3, A.4, and A.5 are verified using
macaulay?2 in the code file FixedLocus.m2, which is available at [4] or as an ancillary
file with the arxiv preprint.

A1l

For the groups H < SL(2,C) we treat in this appendix, Ito and Nakamura identify
the ideals corresponding to points in the exceptional locus of Y as certain submodules
of m/n where m is the maximal ideal of the origin in C? and C[z,y]? ~n Cm C Clz, ]
is the ideal generated by H-invariant polynomials.

For each irreducible representation p of H, they define the modules V;(p):

Vi(p) := p-summands of the homogenous degree i part of m/n.

Their theorem below particularly refers to modules V},+4(,)(p), where h is the Coxeter
number of H, listed in the table below, and d(p) is the distance of p from the represen-
tation at the center in the Dynkin diagram of H. For H of type D,, 2, Fg, E7, or Eg,
the Dynkin diagram is star-shaped with a unique center; these centers are labeled in the
Dynkin diagrams in Appendix B as p,,, p3, p4, and pg, respectively.

Group G ‘ G(m,m,2) G(2m,m,2) Gi2 Gi3 Ga
Coxeter number of H ‘ m 2m + 2 12 18 30

By [25, Theorem 10.6], we have that V% (p) = p? for p the center of the Dynkin
diagram and ngd( ) (p) ~ V% +d( p)(p) =~ p otherwise. The structure of the exceptional
set for groups of type D,, FEgs, E7, and Eyg is then given by:

Theorem A.1 (25, Theorem 10.7]). Let H < SL(2,C) a finite group such that C2/H is
of type D,,, Eg, Er, or Eg. Then:
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(1) Assume p is an endpoint of the Dynkin diagram. Then I is a point on E(p) and no
other exceptional component if and only if V(I) is a nonzero irreducible H -submodule
(~p) of Vi _a(p)(P) © Vi Lap)(p) different from Vi 40, (p)

(2) Assume p is not an endpoint or center of the Dynkin diagram. Then I is a point
on E(p) and no other exceptional component if and only if V(I) is a nonzero ir-
reducible H-submodule (~ p) of Vi_y,)(p) ® Vi _q()(p) different from Vi _ 4, (p)
and Vi 40, (p)

(8) Assume p is the center of the Dynkin diagram. Then I is a point on E(p) and no
other exceptional component if and only if V(I) is a nonzero irreducible component
of Vi (p) different from {S - V%_l(p')}[p] for any p’' adjacent to p

(4) Assume p and p’ are adjacent with d(p’) = d(p) +1 > 2 (so neither are the center).
Then I € P(p,p') if and only if

V{I) =Vi_gy(p) ® Vg+d(p/)(,0/)

(5) Assume p is the center of the Dynkin diagram and p' is adjacent to p. Then I €
P(p,p') if and only if

V() ={S1-Va_1(?)}Hpl & Vi1 (0).

Here Sy - Vi(p) means the H-submodule of m/n generated by (x,y) and Vi(p), and Wp]
refers to the p-summands of W, a homogenous H -submodule of m/n.

A.2. G(2m,m,?2)

Let m be an integer greater than or equal to 3 and let G := G(2m, m,2). The sin-
gularity C2/H is of type Dy, 2. A presentation of G is given in [36, p. 36], where G is
generated by

. —1
o B o IR s

A presentation of H is given in [25, Ch. 13], where H is generated by

(g O (0 1
77\ ) T -1 0

where e := ™/ is an 2m-th root of unity. Note that these presentations of H and G
agree because 0 = rys and 7 = rit"™.

In order to construct our semiorthogonal decomposition, we need to know the rami-
fication locus of C2/H — C?/G as well as the A-action on Y. In particular, we need to
understand which points in Y are fixed by A and which exceptional components of Y



A. Bhaduri et al. / Advances in Mathematics 489 (2026) 110794 29

are fixed or exchanged by A, allowing us to deduce how many exceptional components
are in Y/A.

In this section, we will compute the following information about the action of A, which
we summarize in a proposition. The module V,,1(pym) consists of two py,-summands,
which are denoted by V,,, 1 (pm) and V,! 1 (pm)-

Proposition A.2.3. Let G := G(2m,m,2). The following statements describe the action
of A on the exceptional locus of Y .

(a) When m is even, the action of A maps each of the m+2 exceptional curves to itself.

(b) When m is odd, A interchanges E(p), 1) and E(p}, ), and maps each of the other
m exceptional curves to themselves.

(¢) When m is odd or even, A fizes E(pr) pointwise for each even value of k with
2<k<m.

(d) When m is odd or even, A fizes exactly two points of E(py) for each odd value of
k with 1 < k < m. When k # 1,m, these are the points of intersection with the
adjacent exceptional curves. When k = 1, one fized point is the intersection of E(p1)
with E(p2) and when k = m is odd one fized point is the intersection of E(py,) with
E(pm-1)-

(e) Within the exceptional locus, we have the following isolated fixed points:

(i) When m is odd or even, there an isolated fized point on E(p1) given by Va(p) =
(zy).
(ii) When m is odd, there is an isolated fized point on E(py,) given by V,) 1 (pm) =
(™ ym ).
(iii) When m is even, E(p, 1) and E(p),.5) each contain an isolated fived point
given by Vin(lpy1) = (27 — ™2™ and Vn(pys) = (™ + ™2™ respec-
tively.

To compute the A-action, we need a representative « of the nontrivial element of A,
which we can conveniently take to be t™ from the generators of G' (A.2.2), which acts
by sending = to —z and fixing y.

A.2.1. E(p})

p} is an endpoint of the Dynkin diagram a distance of m —1 from the center. By Theo-
rem A.1(1), the points of E(p)) away from its intersection with E(ps) are given by proper
H-invariant submodules of V2(p}) ® Va,(p)) other than Va,,(p}). By Theorem A.1(4),
its intersection with F(p2) is given by Vo, (p)) @ Vs(p2). By [25], we have

Va(ph) = (zy),  Vam(ph) = (@ —y*™),  Va(p2) = (z%y,z1?).

We may directly verify that o fixes Va(p)) ® Vam (p)), Va(p)), and Vo (p) @ Va(p2), and
thus « is an involution of E(p}) that fixes its point of intersection with E(p2) as well as
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the point given by Va(p}) = (zy). To determine whether « fixes all points on E(p}), we
check its action on a third point. We check that (zy + (z*™ — y*™)) is an H-module in
FixedLocus.m2 and thus corresponds to a point on E(p}), and we confirm that:

alzy + (@ —y*™)) = (zy — (@ —y™™)) # (vy + (2" —y*™)).
Thus A does not fix E(p)) pointwise.

A.2.2. E(pg) for2<k<m-—1

In these cases, pi is not an endpoint of the Dynkin diagram and is a distance of m — k
from the center. By Theorem A.1(1), the points of E(py) away from its intersections
with E(pr—1) and E(pg4+1) are given by proper H-invariant submodules of Vj11(pg) &
Vam—k+1(px) other than V11 (pr) and Vay—k+1(pk). By Theorem A.1(4), its intersection
with E(pr_1) is given by Vii1(px) B Vam—r+2(pr—1) and its intersection with E(pg41)
is given by Vam—k+1(pk) @ Vita(pr+1), except in the case of k = m — 1 in which case
the intersection of E(pp,—1) with E(py,) is given by Vii2(pm—1) © Vir1(pm)- By [25],
we have

2m—k+1 | 2m—k+1 " _
x ; )

Vier1(pr) = (@%y, 29%),  Vom—ri1(pr) = ( y , Vi =@My, ay™).

We may directly verify that « fixes each of the above ideals, and thus it is an involution
of E(py) that fixes its two points of intersection with other exceptional components. To
determine whether « fixes every point in E(px), we examine the action of a on a third
point on E(py): We check that (zFy + y?m=F 1 ayk + (=1)kg?m=*+1) C Vi (pk) @
Vam—k+1(px) is an H-module in FixedLocus.m2 and we confirm that

a((xky + me—k—&-l’xyk + (_1)kx2m—k+1)) _ ((—1)kxky + me—k—&-l’wyk + x2m—k+1>7

and thus « fixes this point when k is even and does not fix it k is odd. Thus A fixes
E(pi) pointwise when k is even, but does not when & is odd.

A.2.3. E(p),,1) and E(p;, o)

Pryq and pf, o are endpoints of the Dynkin diagram a distance of 1 from the center.
By Theorem A.1(1) the points on E(p), ) and E(p],,,) away from their intersection
with E(p.,) are given by nontrivial, proper H-submodules of Vi, (p},,11) © Vint2(0)ni1)
other than Vi, 12(p}, 1) and nontrivial, proper H-submodules of Vy,,(p},, 12)®Vint2(0)n42)
other than Vy,12(p},, ), respectively. By A.1(5), the intersections of E(p;, ;) and
E(prns2) with E(py) are given by Vinya(op,11) @ [S1 Vin(pr41)] and Vingo(pr i)
[S1 - Vin(ph,42)]. By [25, p. 217], we have

Vi (Pln) = (&7 =" 2™), Vi (phay) = (oy(a™ + ™ 2y™)),

Vin(Pn2) = (2
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We may directly verify that when m is odd, o exchanges Vi, (), 1 1) @ Ving2(p),11) with
Vi (Phns2) @ Vinga(p)y42) but, when m is even, o fixes each of them.

Thus, when m is odd, o exchanges the components E(p;, ) and E(p}, ), but when
m is even, a acts on an involution on each of E(p), ;) and E(p;, o).

In the case when m is even, we may verify directly that the following points are
fixed by oz Vin(plnpq) = (@™ — " F2y™) and Vin(pl,10) = (@™ + " F2y™). However,
to determine whether « is a nontrivial involution on E(p, ) and E(p], ), we check
additional points on each of them. We confirm that ((z™ — ™ 2y™) +zy(z™ +im+2y™))
is an H-module and thus a point on E(p}, ;). Then, because m is even,

a((a™ — iy fay(a™ 4" TPY™) = (@ — iy — ey (a™ + i Ty™)

y y
(™ —i"F2y™) + ay(a™ + " PyY™).

LN

We also confirm that ((z™ + i™T2y™) + zy(z™ — i™+2y™)) is an H-module and thus
corresponds to a point on E(p;,, ).

a((xm 4 im+2ym) + xy(wm _ im+2ym)) ((xm 4 Zm+2 m) _ y(xm m+2 ))

y y
# ((@™ +i" Y™ + ay(a™ — i PyY™).

Thus, when m is even, A does not pointwise fix E(p], ) and E(p}, ).

A.2.4. E(pm)

We may deduce the nature of the action of A on E(p,,) from the previous sections.
For any value of m, the action is an involution.

For odd m, since E(p;,,,) and E(p;, ,) are exchanged, the involution is nontrivial.
The point of intersection between E(py,) and E(p,,—1) is fixed, and we may verify directly
that the other fixed point is V., (pm) = (2™, y™ ).

For even m, since « fixes the points of intersection of E(p,,) with its three adjacent
components, the action of A fixes E(p,).

A.3. G

In this section, we set G := G12. The following are generators of G [36] where ¢ :=

e2™/8 is an 8-th root of unity:

1 (1 1 , 1 (11 s (0 ¢
BEA\-1 1) BT 1) T o)

The intersection H := G N SL(2,C) is the binary tetrahedral group and the singularity
C/H is of type Eg. The group H is generated by the following elements, matching the
notation given in [25, §14]:
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(i 0 (0 1 1 [T €
JfOfi’T*flo’uiﬁess'

We note that these embeddings are compatible because 7 = r3ry, 72 = —I, 0 =
—(rariry)?, and p = (rhr3)(rhry)?. We choose the following element o € G\ H, which
we will use to compute the action of A. We have chosen this particular representative
for convenience since it is diagonal and so acts by scaling each of x and y; it is not a

reflection, but is the product of a reflection with a rotation, as we show:

(e O _(0 e\ (0 &
“=lo )7\t o) 1 o
The matrices act on the coordinate vectors x and y in Ito and Nakamura’s description
of the points of Y.
The exceptional locus of YV consists of six exceptional curves: E(p}), E(pY), E(ph),

E(pY), E(p2), and E(p3). Their intersections are given by the Dynkin diagram Fig. 10.
The results of this section are summarized in the following proposition:

Proposition A.3.1. Let G := G12. The action of A on the exceptional locus of Y :

(a) exchanges E(p)) with E(pY) and E(ph) with E(p}).
(b) restricts to an involution on E(p2) and E(ps).
(c) fizes each point on E(p2) and fizes one additional point on E(ps) given by:

V(I) = (p1(—w’0 + ), p3(—¢ + ), p2(—we + ¥)).

In this case, we use the following notation for generators of H-modules in the excep-

tional locus of Y [25, p. 227], where w := ¢>™/3:

p =2 -y, p2 =%+ 9%,

p3 =y, T = pipaps, W = @
¢ = z° + (2w + 1)zy?, @2 =y* + (2w + 1)z?y,
51 =23 4 (2w? + 1)zy?, s9 = 1y> + (2w? + 1)z%y,
¢ = ph + 4wps, ¥ = p3 + 4wp3,

= z° — 5:cy4, Yo = y5 — 53:4y.

The action of « fixes and exchanges some of these generators up to scaling. In particular,
we will use that a(¢) = =, a(v) = —p, a(s1) = (t° — t)q1, and a(ss) = t3q2, a(y1) =

27

24 | a primitive 24-th root of unity.

%71, and a(vys) = €79, where t := e
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A.8.1. E(p}) and E(pY)

Both p) and p! are endpoints of the Dynkin diagram Fig. 10 a distance of 2 from the
center. By Theorem A.1(1), the points of E(p}) and E(p}), away from their intersections,
are given by proper H-invariant submodules of V4 (p]) ® Vs(p)) and Vi(pY) ® Vs (p}) other
than Vg(p) and Vi(p}). By Theorem A.1(4), the intersections of E(p}) with E(p4) and
of E(pY) with E(pY) are given by Vs(ph) @ Vs(p}) and Vs(py) @ Va(pY). In terms of the
generators above, we have:

Vi(ph) ® Vs(ph) = (¢) @ (¢°) Vi(p) © Vs(p) = () ® (¢°)
Vs(py) & Va(ph) = (zo,y9) ® (¢¥°) Vs(p3) @ Va(p!) = (¢, y) & (©%)

By our observations above on the action of «, a exchanges the generators of V(p}),
Vs(ph), and Vi(ph) with those of Vi(py), Vs(py), and Vi(py) up to multiplication by
scalars. Thus, the action of A exchanges E(p}) with E(p}), including the points of
intersection with E(p}) and E(p}).

A.8.2. E(ph) and E(pY)

Now consider the curves FE(ph) and E(p}). The representations pf and p§ are both a
distance of 1 from the center of the Dynkin diagram and so by Theorem A.1(2), their
points, away from intersections with other curves, are given by the proper H-invariant
submodules of the following modules, respectively:

Vs(ph) ® Vz(ph) = (z,y9) @ (5190, 520),  Vs(py) ® Va(phy) = (x10,y) & (q10, q20)-

Again, the action of a exchanges, up to scalars, the generators of Vs (p5) and Vz(ph) with
those of V;(p4) and Vz(py), and so, the action of A exchanges E(p5) with E(p}).

A.8.3. E(p2)

Before examining the intersections of F(p3) with E(p) and E(p}), we analyze
E(p2). To carry out this analysis, we parametrize E(p3). By Theorem A.1(1), the non-
intersection points of E(ps) are given by H-invariant submodules, other than V7(p2), of
the following;:

Vs(p2) @ Vz(p2) = (71,72) @ (190, 5200). (A.3.2)

We parametrize E(p3) by setting each projective point [a : b] with a # 0 in correspon-
dence with the submodule (a1 + bsap, ay2 — bs1¢p), and thus [0 : 1] corresponds to the
point of intersection with F(p3). It remains to prove that (avy; + bsayp, ays — bs1p) is
H-invariant. We check that it is fixed by each of 7, o, and p: The action of 7 exchanges
the generators up to scalars, the action of o scales each generator, and p maps to a linear
combination of the generators, as can be verified in FixedLocus.m2:
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7(avy1 + bsap) =—avys + bs1p, a(avyr + bsap) =i(ay + bsap),

=avy; + bsayp, o(aye — bs1p) =—i(aye — bs1p),

)
)
) z+1
)

T(ays — bs1p

(a1 + bsap) — F(aye — bs1i0),
L

(
(

payr + bs2p
( z+1(

plays — bsip)= a1 + bsa) + 5= (a2 — bsip).

We also verify in FixedLocus.m2 that « fixes (A.3.2), meaning that the action of A
restricts to an involution of E(ps). In order to check that « fixes every point on E(ps),
we furthermore verify that it fixes the three points [1: 1], [1 : —1], and [1 : 0].

This argument implies that the intersection point between E(p2) and E(p3) must also
be fixed by the action of A, which we nevertheless check to aid in our parametrization
of E(p3). By Theorem A.1(5), the intersection of E(p3) and E(ps) corresponds to the
module denoted {57 - V5(p2)}ps] ® Vz(p2), where {S7 - V5(p2)}[ps] is the summand of
S - Vis(p2) that is isomorphic to ps as an H-module. Since Sy - V5(p2) has four generators
TY1, YY1, TV2, YY2, we need only identify a 3-dimensional invariant subspace. We claim
that:

{81 Vs(p2)lps] = (yn1 + zy2, 71 +yy2, 71 — Yv2).

In FixedLocus.m2, it is verified this submodule is H-invariant and further checked that
{S1 - Vs(p2)}ps] ® Vz(p2) is fixed by «, as expected.

A.5.4. E(ps)

By Theorem A.1(3), the non-intersection points of E(p3) correspond to proper sub-
modules of Vi(p3) =~ p§? distinct from {S; - Vs(p')}[p3] for any E(p') intersecting E(p3).
Since Vi(ps) is fixed by A as shown in FixedLocus.m2, the action of A restricts to an
involution on Vg(p3). We parametrize FE(p3) by setting each projective point [a : b] with
a # 0, b # 0 in correspondence with the following submodule:

((z* —y*)(ap + b)), zy(awp + b)), (2 + %) (aw? o+ b)) C Vs(ps) = (2%, zy,3%) - (@, 1)

Since V5(ph) = (zp, yp) and Vs(ph) = (x1p,yp) the points of intersection of E(p3) with
E(py) and E(p}) are parametrized by [1 : 0] and [0 : 1], respectively. It is checked in
FixedLocus.m2 that [1 : w] corresponds to the point of intersection with E(p2).

Finally, we examine the action of A on F(p3). The following actions are checked in
FixedLocus.m2:

p) = ap) = —p, a(z?) =iz?, a(zy) = —zy, ay?) = —iy?
(2* — )(aso + b)) = —iw(@? + y?) (b + aw’y)

zy(awp + b)) = —wyw? (bwe + aw?y)

a((z? + y?) (aw?e + b)) = i(x? — y?)(byp + aw?i))

Q

[e%

«

(
(
(
(
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Thus, A acts on E(p3) by sending [a : b] to [bw : a]. As expected, A exchanges the points
of intersection with E(p}) and E(pY). Its fixed points are [1 : w] (the point of intersection
with E(p2)) and [1 : t2°] = [1 : —w], which is not a point of intersection with another
exceptional curve. We list the specific module V'(I) in Proposition A.3.1(c).

A4. Gis

In this section, we set G := G13. A presentation of G is given in [36, p. 88], where G
is generated by

_ 1 O _i ]- *1 7 0 19
"mlo —1) BT A - —1) BT o)

The intersection H := G N SL(2,C) is the binary octahedral group and the singularity
C2/H is of type F7. A presentation of this group is given in [25, Ch. 15], where H is
generated by

(i O (0 1 _ L fem (e O
U_O—i’T_—lo’M_\/ﬁ555"‘{_067’

where e: = e™/* is a primitive eighth root of unity. We note that these embeddings are
compatible because rr3r = r4 and so this group contains the embedding of G2 used in
Appendix A.3 and thus o, 7, and p. Finally, note that k = r§rr.

In this section, we will compute the following information about the action of A, which

we summarize in a proposition:
Proposition A.4.1. Let G := G13. The action of A on the exceptional locus of Y :

(a) maps every exceptional curve to itself;

(b) pointwise fizes E(ps), B(s), and B(ps);

(c) fizes exactly two points on E(p}), E(py), E(ps), and E(p}), leaving a single isolated
(within the exceptional locus) fixed point on E(p}) and E(ph) given by Vg(p}) = (T)
and Vg(py) = (W) respectively.

Since G2 is contained in Gi3, we can compute the action of A on the exceptional
locus using the same choice of a € G\ H with

P 0
—\0 &)
The exceptional locus of Y consists of seven exceptional curves: E(p}), E(p2), E(ph),

E(pY), E(ps), E(ps), and E(ps). We will show in our computations that E(p}), E(p2),
E(py), E(pY), E(ps), and E(ph) are fixed by «, though not necessarily pointwise — «
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restricts to an involution on each of them. This result implies that the central component,
E(p4), must be pointwise fixed, as its three points of intersection with E(ps), E(p5) and
E(pY) must be fixed.

We will need several of the same invariants from Proposition A.3.1 so we include the
relevant ones here for convenience:

o= (22 + 9" +dwa®y?, =" +y?) +dwlay W = g,
T = 2%y — xy°, x = 2% — 3328%y* — 33x%y® + y'2 F=xT
where w = €27%/3 is a primitive cube root of unity.

A4.1. E(p))

P} is an endpoint of the Dynkin diagram Fig. 11 a distance of 3 from the center. By
Theorem A.1(1), points on E(p}) away from its intersection with E(p}) are given by
nontrivial, proper H-invariant submodules of Vs(p}) @ Vi2(p}) other than Vi2(p}). By
Theorem A.1(4), its intersection with E(pf) corresponds to Vi2(p}) @ Vz(ph). By [25,
p-235], we have

Vs(py) = (T) Via(py) = (x)

We check in FixedLocus.m2 that « fixes Vi(p)) @ Via(p)) and thus is an involution on
E(p}). Furthermore, « fixes Vi(p}) and Via(p}) ® Vz(ph), so to confirm whether « fixes
E(p)) pointwise we simply need to check whether it fixes a third point on E(p}). In
FixedLocus.m2, we confirm that (7'+ x) is indeed an H-submodule of Vg(p!) ® Vi2(p})
and check that

a((T+x)) = (T =x) # (T +x).

Thus, A does not pointwise fix E(p}).

A.4.2. E(ps)

p2 is an endpoint of the Dynkin diagram and is a distance of 2 from the center. By
Theorem A.1(1), points on E(ps) away from its intersection with E(p3) are given by
nontrivial, proper H-invariant submodules of V7(p2) @ V11(p2) other than Vi1(p2). By
Theorem A.1(4), its intersection with E(ps3) corresponds to Vi1(p2) @ Vs(ps). By [25,
p.235], we have

Va(pa) = (Ta'y® +y7, =" — T2’y*)
‘/11(p2) — (xlﬂy _ 6l‘6y5 + 511:2y97 _mylo T 6.T5y6 _ 5x9y2)

For readability, we will set
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fi=Ta +y7 fo=—a" — T2ty

g1 = 2% — 62%y° + 5z2¢y° go = —xy'® + 625y — 52%>

We check in FixedLocus.m2 that « fixes V7(p2) @ Vi1(p2) and thus is an involution on
E(p2). To confirm whether « fixes E(p2) pointwise we simply need to check whether it
fixes a third point on E(ps2). In FixedLocus.m2, we confirm that (f1 + g1, f2 + ¢2) is
indeed an H-submodule of Vz(p2) @ Vi1(p2) and check that

a((f1+ 91, f2+92)) = (fi + 91, f2 + g2).

Thus, A pointwise fixes E(ps).

A.4.8. E(ph)

ph is not an endpoint of the Dynkin diagram and is a distance of 2 from the center. By
Theorem A.1(2), points on E(ph) away from its intersection with E(p}) and E(p%) are
given by nontrivial, proper H-invariant submodules of Vz(p) ®V11(ph) other than V7 (p)
and Vi1(ph). By Theorem A.1(4), its intersection with E(p}) corresponds to Vi2(p}) @
Vz(p4) and its intersection with E(p4) corresponds to Vi1(ph) @ Vs(ps). By [25, p.235],
we have

Va(ph) = (2T, yT) Vir(ph) = (=112%° — 222%y" + y'!, 112%y° 4 2227y" — &)

For readability, let

v = —1128%y3 — 22217 + gt vy = 11235 + 22x7y4 — !

We check in FixedLocus.m2 that « fixes V7(p5) @ Vi1(p5) and thus is an involution on
E(ph). To confirm whether « fixes E(p5) pointwise we simply need to check whether it
fixes a third point on E(p}). In FixedLocus.m2, we confirm that (2T + vy, yT + va) is
indeed an H-submodule of Vz(p5) @ Vi1(ph) and check that

a((@T + vy, yT +va)) = (2T + v1,yT + v2).

Thus, A pointwise fixes E(p5).

A.44. E(p5)

P4 is an endpoint of the Dynkin diagram Fig. 11 and is a distance of 1 from the center.
By Theorem A.1(1), points on E(p}) away from its intersection with FE(p4) are given
by nontrivial, proper H-invariant submodules of Vi (p4) @ Vig(ph) other than Vi(ph). By
Theorem A.1(5), its intersection with E(p4) corresponds to Vig(p5) @ [S1 - Va(ph)]. We
note that there was a small typo in the generators of Via(p2) in [25, p.235] but with that
typo corrected we get
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‘/8(p/2/) = (¢27 _(p2)7 VIO(pg) = (wTv _QDT)

We check in FixedLocus.m2 that « fixes Vs(py) @ Vip(ph) and thus is an involution on
E(pY). To confirm whether « fixes E(p4) pointwise we simply need to check whether it
fixes a third point on E(p4). In FixedLocus.m2, we confirm that (¢ + T, 02 + ¢T) is
indeed an H-submodule of Vz(p4) @ Vip(p5) and check that

(W + T, 0> + Y1) = (V* — T, 9> —yT) # (V> + T, o* + ¥T).

Thus, A does not pointwise fix E(pf).

ps is not an endpoint of the Dynkin diagram Fig. 11 and is a distance of 1 from
the center. By Theorem A.1(2), points on E(p3) away from its intersection with F(ps)
and E(p4) are given by nontrivial, proper H-invariant submodules of Vg(p3) @ Vio(ps)
other than Vg(p3) and Vip(p3). By Theorem A.1(4) and (5), its intersection with E(p2)
corresponds to Vi1(p2) ® Vs(ps) and its intersection with E(p4) corresponds to Vig(ps) ®
[S1 - Vs(ps3)]. By [25, p.235], we have

Va(ps) = (—22y" — 142°y%, a® — o, 227y + 142°yP)
Vio(ps) = (4020 + 602%y?, 52 + 5425y + 52y°, 60215 + 4¢4'0)

For readability, we write our generators as

hy = —2zy" — 14253 ho =2 — 8 hs = 227y + 142°y°
g1 = 4020 + 6025y* jo = 5a%y + 54ay® + 5y jg = 60z1yS 4 4410

We check in FixedLocus.m2 that « fixes Vz(p3) @ Vip(ps) and thus is an involution on
E(p3). To confirm whether « fixes E(p3) pointwise we simply need to check whether it
fixes a third point on E(ps). In FixedLocus.m2, we confirm that (hy+j1, ho +j2, hs+j3)
is indeed an H-submodule of Vg(p3) ® Vig(ps) and check that

a((h1 + j1, ha + jo, ha + j3)) = (h1 — ji, ha — j2, ha — j3)) # (h1 + j1, ha + j2, hs + j3))-
Thus, A does not pointwise fix E(p3).

A.4.6. E(p)

p5 is not an endpoint of the Dynkin diagram Fig. 11 and is a distance of 1 from
the center. By Theorem A.1(2), points on E(p4) away from its intersection with E(p})
and E(p4) are given by nontrivial, proper H-invariant submodules of Vg(p%) @ Vig(p})
other than Vg(p5) and Vip(p4). By Theorem A.1(4) and (5), its intersection with E(p})
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corresponds to V11(p5) @ Vs(ph) and its intersection with E(p4) corresponds to Vig(ps) ®
[S1 - Va(ph)]. By [25, p.235], we have

Vs(py) = (2°T, ayT,y*T)
Vlo(/)g) _ (_3x8y2 _ 14.1342./6 =+ y107 8x7y3 + 8$3y7,$10 _ 14.’136;1/4 _ 31‘2y8)

For readability we set
up = =328y — 14ty + 410wy =827yP + 823" wg = 210 — 1425y — 3278

We check in FixedLocus.m2 that « fixes Vi(ph) @ Vip(p4s) and thus is an involution on
E(p4). To confirm whether « fixes F(p4) pointwise we simply need to check whether
it fixes a third point on E(p}). In FixedLocus.m2, we confirm that (22T + uy,zyT +
ug, y?T + u3) is indeed an H-submodule of Vi(p}) @ Vio(ph) and check that

(2T 4 uy, wyT + ug, v*T + u3)) = (2°T — uy, 2yT — uo, y°T — u3)
£ (2T + uy, xyT + ug, y*T + u3).

Thus, A does not pointwise fix E(p}).

A5 G22

In this section, we set G := Ga3. Then H is the binary icosahedral group and the
singularity C2/H is of type Eg. A presentation of H with the following generators is
given in [25, Ch. 15], where e: = /% is a primitive fifth root of unity:

S e 0 so L —(e—¢*) 2-¢3
- 0 ) T\ e2-ed et )
A presentation of G is given in [36, p. 88], but the embedding of GNSL(2,C) is distinct

from that given in [25]. To extend the embedding of H in [25] to an embedding of G, we
add the following choice of a as a generator:

o i (s+54 g2 53>
Ve\et—e e—¢t J-
It is shown in [36, p. 90] that the center of G is the cyclic group of order 4 and in [15]
that in fact Gog is the unique extension of H ~ SLs(FF5) by Z/2 whose center contains
an element of order 4. Thus to show that o, 7 and « in fact generate Gao, it suffices to
observe that a7 ! =4I (this is verified in FixedLocus.m2).

In this section, we compute the following information about the action of A, which
we summarize in a proposition:
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Proposition A.5.1. Let G := Gao. The action of A on the exceptional locus of Y :

(a) maps every exceptional curve to itself;

(b) pointuwise fizes E(pa), E(y), E(ps), and E(pe);

(c) fizes exactly two points on E(ps), E(py), E(p}), and E(ps), leaving a single isolated
(within the exceptional locus) fixed point on E(pY) given by Vi4(py).

It will also be convenient to use the following invariants from [25, p.239]:

o1 = 210 + 662°y° — 11y'° o9 = —112'% — 6625y° + y'©

7 = 2% — 392°y° — 26y*° Ty = =262 + 3925¢° + 410

The exceptional locus of H-Hilb(C?) consists of eight curves: E(p2), E(pb), E(p3),
E(pY), E(ps), E(p}), E(ps), and E(pg). Their intersections are shown in Fig. 12. We
will show computationally that E(pz2), E(py), E(ps), E(p4), E(ps), E(p}y), and E(ps)
are fixed by «, though not necessarily pointwise — « restricts to an involution on each of
them. These results imply that the central component, E(pg), must be pointwise fixed, as
its three points of intersection with E(p%), E(p}) and E(ps) must be fixed. Furthermore,
since every point of intersection is fixed and « acts on each exceptional component E(p)
as in involution, to check whether o pointwise fixes E(p) or not, we simply need to find
a non-intersection point on E(p) and check whether « fixes that point.

A.5.1. E(p2)

p2 is an endpoint of the Dynkin diagram a distance of 4 from the center. By Theo-
rem A.1(1), points on E(p2) away from its intersection with F(p3) are given by nontrivial,
proper H-invariant submodules of Vi1(p2) @ Vig(p2) other than Vig(pz). By Theo-
rem A.1(4), its intersection with E(p3) corresponds to Vig(p2) ® Via(ps). By [25, p.241],
we have

Vi1(p2) = (zo1, —yo2)
V19(P ) ( 57"31‘) 4+247l’10 9 + 171z0y14+y
— 2"+ 1712y — 2472%"0 — 5721y"?)

For readability let

C1 = T01 Co = —Yo2

dy = =572y 1247210 117125y 1410 dy = —2'9 4+ 1712My5 —2472%910 — 5721410

We check in FixedLocus.m2 that « fixes Vi1(p2) ® Vig(p2) and thus is an involution on
E(p2). To confirm whether « fixes E(p2) pointwise we simply need to check whether it
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fixes a third point on F(ps2). In FixedLocus.m2, we check that (¢; + dq,c2 — d2) is an
H-submodule of Vi1(p2) ® Vig(p2) and we confirm that

Q((Cl +dy,co — dg)) = (Cl +dy,co — dg)
Thus A fixes F(ps) pointwise.

A.5.2. E(ph)

ph is an endpoint of the Dynkin diagram a distance of 2 from the center. By Theo-
rem A.1(1), points on E(ps) away from its intersection with E(p),) are given by nontrivial,
proper H-invariant submodules of Vis(p5) @ Viz(ph) other than Viz(p5). By Theo-
rem A.1(4), its intersection with E(p}) corresponds to Vi7(p5) @ Via(p}). By [25, p.241],
we have

Vis(py) = (y°72, —2°m)
Viz(ph) = (2! + 11922y° + 1872 7y'% 4 1722y,
— 172%%y% + 1872107 — 1192°y'2 + ¢'7)

For readability let

up =y’ uy = —c’n

vy = 2+ 119212y 418727y 0 +172%y"® —1721y? 418720y —1192°y 2 +47

We check in FixedLocus.m2 that o fixes Vi3(ph) @ Vi7(ph) and thus is an involution on
E(p4). To confirm whether « fixes E(p}) pointwise we simply need to check whether it
fixes a third point on E(p}). In FixedLocus.m2, we check that (u; + vy, us + v2) is an
H-module of Vi3(ph) @ Vi7(phy) and we confirm that

a((uy +v1,us +v2)) = (ug + v1, us + va).

Thus A fixes FE(ph) pointwise.

A.5.3. E(ps)

ps is not an endpoint of the Dynkin diagram and is a distance of 3 from the center.
By Theorem A.1(2), points on E(ps3) away from its intersections with E(p2) and E(p4)
are given by nontrivial, proper H-invariant submodules of Vi2(p3) & Vis(ps) other than
Via(ps) and Vig(ps). By Theorem A.1(4), its intersection with E(ps) corresponds to
Vig(p2) @ Via(ps) and its intersection with E(p4) corresponds to Vig(ps) @ Viz(ps). By
[25, p.241], we have

x
Via(ps) = (204, —y(Jl + 03),y°02)

2
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Vig(ps) = (=122 + 11721%° 4 1262°y'3 + '8, 45214y* — 1302%° — 452191,
18 126213y + 11728910 + 1223y19)

For readability let

fi =220 g1 = —12z0y% + 11720 + 1262°y13 + ¢1®
f2= %(01 +02) = 4521 y* — 1302%° — 4524y
fza= y202 gs = '8 — 1269013y5 + 117358 104 12x3 15

We check in FixedLocus.m2 that o fixes Via(ps) @ Vis(ps) and thus is an involution on
E(ps3). To confirm whether « fixes E(p3) pointwise we simply need to check whether it
fixes a third point on E(p3). In FixedLocus.m2, we check that (f1 + g1, fo + g2, f3 + g3)
is an H-module of Vi2(p3) @ Vig(ps) and we confirm that

a((fr +91, f2+92, f3+93)) = (fi — g1, f2 — 92, f3 — g3) # (f1 + 91, f2 + g2, f3 + g3)-

Thus, A does not fix F(p3) pointwise.

A.5.4. E(pY)

p4 is an endpoint of the Dynkin diagram a distance of 1 from the center. By Theo-
rem A.1(1), points on E(pf) away from its intersection with E(pg) are given by nontrivial,
proper H-invariant submodules of Vi4(p%) @ Vig(p4) other than Vig(p4). By Theo-
rem A.1(5), its intersection with F(pg) corresponds to Vig(p4) @ [S1 - Vig(p4)]. By [25,
p.241], we have

Via(plh) = (1* — 142%° + 4924910 721292 — 4827y — T22y'2 4921 0y* + 142°y° + y1)
Vie(py) = (32'%y — 14321090 — 3925yt 4 410 —25213y3 — 2523y13,
21 4+ 39211y° — 14325410 — 329! )

For readability let

my = ' — 142%)° + 49:54 10 ny = 3x'%y — 14321045 — 392591 4 16
— 7212?48 TyT — 7oyt — 9521343 _ 95,3y13
ms = 4921%* + 142°y° + y1* ng = ' + 39211y° — 14325410 — 32410

We check in FixedLocus.m2 that o fixes Vi4(p%) @ Vie(p4) and thus is an involution
on E(pY). We also check that o fixes Vi4(p4), which is thus a fixed point on E(p%). To
confirm whether « fixes E(p4) pointwise we simply need to check whether it fixes a third
point on E(p4). In FixedLocus.m2, we check that (my + ni, ma + ng,ms + ng) is an
H-module of V14(p¥) ® Vig(p%) and we confirm that
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a((mi4ng, ma+ng, ma+n3z)) = (m1—n1, mo—nz, m3—ns) # (m1+n1, mo+nz, mz+ns).
Thus, A does not fix E(p4) pointwise.

A.5.5. E(py)

p4 is not an endpoint of the Dynkin diagram and is a distance of 2 from the center.
By Theorem A.1(2), points on E(p4) away from its intersections with E(p3) and E(ps)
are given by nontrivial, proper H-invariant submodules of Vi3(ps) @ Vi7(p4) other than
Vis(ps) and Viz(ps). By Theorem A.1(4), its intersection with E(ps) corresponds to
Vis(ps) @ Vis(ps) and its intersection with E(ps) corresponds to Viz(ps) @ Via(ps). By
[25, p.241], we have

Vis(pa) =(a01, =32"%y + 2227y° — TaPy™, —7aMy? — 222097 — 3xy12, yio2)
Viz(pa) =(=22"59y% + 522'%7 + 912592 + 417, 102> — 652%9° — 3521y*3,
— 35213y 4 652%y° + 1023y, —2'7 + 912125 — 5227y10 — 222y15)

For readability let

hy = 230, g1 = =259 4 52:1:10y7 + 9125912 4 417
ho = =322y + 2227y5 — T22y!? jo = 102My% — 652%y® — 3524y'3

hsy = =Tz y? — 222%¢7 — 32y'? g3 = =352y + 65289° 4 1023y

h4 _ ySCTQ j4 _ _x17 4 91x12 5 52x7y10 o 21,2y15

We check in FixedLocus.m2 that « fixes Vi3(ps) @ Vi7(ps) and thus is an involution
on E(p4). To confirm whether « fixes E(p,) pointwise we simply need to check whether
it fixes a third point on F(p4). We check that (hy + j1,ha + j2, hs + j3, ha + j4) is an
H-module in FixedLocus.m2 and we confirm that

a((h1 + j1, ha + j2, ha + ja, ha + ja)) = (b1 + ji, ha + j2, ha + ja, ha + ja).
Thus, A fixes F(py) pointwise.

A.5.6. E(p})

P is not an endpoint of the Dynkin diagram and is a distance of 1 from the center.
By Theorem A.1(2), points on E(p}) away from its intersections with E(p4) and E(pg)
are given by nontrivial, proper H-invariant submodules of Vi4(p}y) ® Vig(p}y) other than
V14(p}) and Vig(p}). By Theorem A.1(4) and (5), its intersection with E(p4) corresponds
to Viz(ph) @ Via(p)) and its intersection with F(pg) corresponds to Vig(p)) @ [S1-Vis(p})]-
By [25, p.241], we have
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V14 (pl ) :(xy?)TQu —ZL'4’7'1, y47—27 _xgyTl)
V16<p/> ( 2x15y+77$10 6 84.’)3‘5y11 +y16 35x12y4+110x7y9+15$2 14
1521y? — 1102% " + 352%y'2, —2® — 84aty® — 772510 — 224'°)

For readability let

a1 = zy>m by = =210y + 772100 — 8425yl 4 416
a = —xtn by = 35z 2y + 11027y° + 1522y

as =y by = 15:514 2 _1102%7 + 352142

ay = 23y by = — 84zt — 7725yt0 — 2gyt?

We check in FixedLocus.m2 that « fixes Vi4(p}) @ Vis(p)) and thus is an involution
on E(p}). To confirm whether « fixes E(p)) pointwise we simply need to check whether
it fixes a third point on E(p}). In FixedLocus.m2, we check that (a; + be,as + b1, a3 +
by, ayq + b3) is an H-module of Vi4(p}) @ Vie(p}) and we confirm that

a((ar + b2, a2 + b1,a3 + ba,as + b3)) = (a1 — ba, a2 — b1, a3 — ba, as — bs3)
# (a1 + b2, ag + b1, a3 + ba, as + b3).

Thus A does not fix E(p}y) pointwise.

A.5.7. E(ps)

ps is not an endpoint of the Dynkin diagram and is a distance of 1 from the center.
By Theorem A.1(2), points on E(ps5) away from its intersections with E(p4) and E(pg)
are given by nontrivial, proper H-invariant submodules of V14(p5) @ Vig(ps) other than
V14(ps) and Vig(ps). By Theorem A.1(4) and (5), its intersection with FE(p4) corresponds
to Viz(pa) ®V14(ps) and its intersection with E(pg) corresponds to Vig(ps) ®[S1-Vie(ps)]-
By [25, p.241], we have

Via(ps) = (ztoy, 2213y + 33285 — 823yt —5212y? — 52y'2,
85(,‘11 3 33$6 8_2my137_y40_2)

Vig(ps) = (642'5y + 728x10y6 + 9%, 66x14y? + 6762°y" — 912*y'2,
56x13y3 + 7412%y® — 5623y'3,
91212yt + 67627y — 6622y, 210 4 7282510 — 64xy!®)

For readability let

k1 = oy i = 64x15y + 7289510116 + 1
ko = —2x13y + 3328y5 — 8x3y!? ly = 662 y? 4 6762y — 91zty!?
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ks = —5x'2y? — 5a%y'? ls = 5623y + 7412%y® — 562°3y"3
ky = —8xty® — 33254 — 22913 Iy = 912 2y 4+ 67627y° — 6622y'*
ks = —y o9 ls = 21 4+ 7281‘6 10 643:3/

We check in FixedLocus.m2 that « fixes Vi4(ps) @ Vis(ps) and thus is an involution
on E(ps). To confirm whether « fixes E(ps5) pointwise we simply need to check whether
it fixes a third point on E(p5). We check that (ki + Iy, ko + l2, ks + I3, kg + la, ks — I5) is
an H-module in FixedLocus.m2 and we confirm that A does not fix E(p5) pointwise:

a((ky + 1, ko +lo, ks + s, ka + 1, ks —15)) # (k1 + 11, k2 + 1o, ks + s, kg + la, ks — 1s).

Appendix B. McKay quivers for G and H = G N SL(2,C)

PO
Am—1: Ain L ; 2
(m even)

Pm—1 Pm— 2 P +1

pPm=1
P1 p2 R o
Apm_1: Po Al 1 p2 _piil
(m odd)
Pm—1 Pm-—2 P%rl ¢
Fig. 8. A,,_1 and A;n71 Dynkin diagrams.
/
m41 I
Dypio:
+2 Pm— 1
P:n+2
Dl ot D! .,
mE 1 mt Pm  Pm—1  pP3 P2 P/1
(m even)
€EPm 42

(m odd) .
- @ 6@

€EPm €Pm—1 €P3 €p2 Gpl

€Pm  €Pm—1

Fig. 9. Dy y2 and D;, ., Dynkin diagrams.
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/
P1 P2 p3 p2 Po
3 P2 PO ! /
Eg: Eé ) P1 p.
11 1/
P1 P2 €p3 €p2 €Po
Fig. 10. E¢ and Eg Dynkin diagrams.
PO P2 p3 P4 P3 P2 P
/ ’ / 1
Po P2 P3 P4 P3 P2 P1
Er A S . El
J A
o P P2 €p3 Pa ept eplh ep)

Fig. 11. E7 and E; Dynkin diagrams.

Po p2 p3 pa ps5 Pe o4 P

/
’ / Y 4
€p0  €P2 €p3 €pa €05 €06 cpl epl

1
P3

N
B
o
b~
[
R
N
N

Fig. 12. E5 and E§ Dynkin diagrams.
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