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In this paper, we explore the derived McKay correspondence 
for several reflection groups, namely reflection groups of rank 
two generated by reflections of order two. We prove that 
for each of the reflection groups G = G(2m,m, 2), G12, 
G13, or G22, there is a semiorthogonal decomposition of the 
following form, where B1, . . . , Br are the normalizations of 
the irreducible components of the branch divisor C2 → C2/G
and E1, . . . , En are exceptional objects:

DG(C2) ∼ = ⟨E1, . . . , En, D(B1), . . . , D(Br), D(C2/G)⟩.
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We verify that the pieces of this decomposition correspond to 
the irreducible representations of G, verifying the Orbifold 
Semiorthogonal Decomposition Conjecture of Polishchuk 
and Van den Bergh. Due to work of Potter on the group 
G(m,m, 2), this conjecture is now proven for all finite groups 
G ≤ GL(2,C) that are generated by order 2 reflections. Each 
of these groups contains, as a subgroup of index 2, a distinct 
finite group H ≤ SL(2,C). A key part of our work is an 
explicit computation of the action of G/H on the H-Hilbert 
scheme H-Hilb(C2).
© 2026 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Let G be a finite subgroup of SL(2,C). The classical McKay correspondence connects 
the representation theory of G, the algebra of the ring of invariants C[x, y]G, and the 
geometry of the exceptional divisor of the minimal resolution of singularities π : Y →
C2/G. Later, Kapranov and Vasserot [34] showed that the McKay correspondence may 
be realized as the following equivalence between the bounded derived category of G
equivariant coherent sheaves on C2 and the derived category of coherent sheaves on Y :

DG(C2) ≃ D(Y ).

This result has also been extended to the case of small finite subgroups G ≤ GL(2,C), 
that is, subgroups containing no pseudo-reflections (elements that fix a codimension 
one subspace), in [27]. This paper is focused on a further extension of the derived 
McKay correspondence to some finite reflection groups G ≤ GL(2,C). The Chevalley--
Shephard--Todd Theorem [14,43] tells us that in this case C2/G is smooth, so there is 
no singularity to resolve, making the geometric picture quite different from the classical 
case. Instead of a derived equivalence as above, there is an embedding of D(C2/G) into 
DG(C2), and moreover a semiorthogonal decomposition described by Polishchuk and 
Van den Bergh’s Orbifold Semiorthogonal Decomposition Conjecture:

Conjecture 1.1 ([41]). Suppose G is a finite group acting effectively on a smooth variety 
X, and that for all λ ∈ G the geometric quotient X̄λ = Xλ/C(λ), where C(λ) is the 
centralizer of λ in G, is smooth. Then there is a semiorthogonal decomposition of DG(X)
whose components C[λ] are in bijection with conjugacy classes and C[λ] ∼ = D(X̄λ).

Our main result gives a geometric description of a semiorthogonal decomposition of 
D(C2/G) for the reflection groups G = G(2m,m, 2) for m ≥ 3, G12, G13, and G22, 
which we show correspond to the components in the above conjecture. Note that the 
intersections of G12, G13, and G22 with SL(2,C) are, respectively, the binary tetrahedral, 
octahedral, and icosahedral groups with singularities of type E6, E7 and E8.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Theorem A. Let G = G(2m,m, 2) for m ≥ 3, G12, G13, or G22.
There is a semiorthogonal decomposition of the following form, where B1, . . . , Br are 

the normalizations of the irreducible components of the branch divisor of C2 → C2/G, 
E1, . . . , En are exceptional objects and r + n + 1 is the number of distinct irreducible 
representations of G:

DG(C2) ∼ = ⟨D(B1), . . . , D(Br), E1, . . . , En, D(C2/G)⟩.

Corollary B. For each group G in Theorem A acting on C2, Conjecture 1.1 holds.

Our proof strategy is inspired by work of Potter, who proved the analogous result 
for the dihedral groups G(m,m, 2) in [40] (see [13] for further analysis), building on 
work of Ishii and Ueda [28] who gave a semiorthogonal decomposition for finite small 
subgroups of GL(2,C). An essential step in our arguments is to compute, for each group 
G appearing in Theorem A, the action of G/H on the H-Hilbert scheme H-Hilb(C2) for 
H := G ∩ SL(2,C). We do this by working with the explicit description of the Hilbert 
scheme given in these cases by Ito and Nakamura [25].

We wish to acknowledge several other related works. Theorem A has already been 
proven in the case of G(4, 2, 2) by Lim and Rota [35]. They prove Conjecture 1.1 in this 
case using direct methods that do not reference the Hilbert scheme; the authors prove 
further orbifold semiorthogonal decompositions for groups acting on abelian varieties. 
In [29], Kawamata proves a version of the derived McKay correspondence for finite 
subgroups of GL(2,C). Specifically, he shows that for any finite subgroup G ≤ GL(2,C), 
there exists some m ≥ 0 and smooth closed subvarieties Zi of C2/G for 1 ≤ i ≤ m

such that D([C2/G]) ≃ ⟨D(Z1), . . . , D(Zm), D(Y )⟩ where Y → C2/G is the minimal 
resolution. Our proof strategy is similar, and we are able to enumerate the components 
of the decomposition. In [30], Kawamata gives a similar result for finite subgroups of 
GL(3,C) and connects the McKay correspondence to his conjecture, the DK-hypothesis.

More recently, work of Krug [33] proves Conjecture 1.1 for the imprimitive com
plex reflection groups of rank two, G4, . . . , G37, notably avoiding the classical McKay 
correspondence in the process. Around the same time, Ishii–Nimura [26] deduced Con
jecture 1.1 for all complex reflection groups of rank 2 from the work of [29]. They also 
prove the conjecture for real reflection groups of rank 3. We would also like to direct 
the reader to work of [22] describing the fixed locus of anti-Poisson involutions on the 
minimal resolutions of C2/H. In each case we study, the action of G/H on H-Hilb(C2) is 
one of these anti-Poisson involutions, and there is one additional anti-Poisson involution 
for the groups G(2m,m, 2) and the group G12.

We were also inspired by recent work of Buchweitz, Faber, and Ingalls, who give an 
algebraic McKay correspondence in terms of maximal Cohen–Macaulay modules of the 
discriminant of the reflection group [6].

It would be interesting to explore these connections further for the groups we study. 
To prove Corollary B, we establish that the components of the semiorthogonal decom
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position in Theorem A are isomorphic to those predicted by Conjecture 1.1, but we do 
not produce an explicit isomorphism. In particular, we do not establish a correspondence 
between the components of Theorem A and conjugacy classes of G, though the proof 
of Theorem A shows some patterns suggesting possible relationships between geometry 
and the representations of G (see Remark 6.2).

Outline of paper In Section 2 we give further background on the McKay correspondence 
and in Section 3, we introduce the finite reflection groups G in GL(2,C) that are gener
ated by order 2 reflections. In Section 4, for H := G∩SL(2,C), we discuss the H-Hilbert 
scheme, which is the primary setting for our computations. Then in Section 5, we discuss 
the results on semiorthogonal decompositions of categories that we will need to prove 
our results. Then, we give proofs of Theorem A for each of the groups in question in 
Section 6 and prove Corollary B. We gather the specifics of our computations of fixed 
points in the Hilbert scheme H-Hilb(C2) under the action of A := G/H in Appendix A.

Accompanying code The code file FixedLocus.m2 associated with this paper can be 
found at the github repository [4] and as an ancillary file with the arxiv preprint.

1.1. Conventions and notation

We work over the base field C. For any variety or stack X, we denote the bounded 
derived category of coherent sheaves on X by D(X). Given a group action G on a variety 
X, DG(X) is the bounded derived category of G-equivariant coherent sheaves on X.

Sections 3-6 and Appendix A are in a common setting; we establish notation for 
this setting here. Given a reflection group G ≤ GL(2,C) as in Theorem A, we write 
H := G∩ SL(2,C), which in this setting is index 2, making A := G/H ≃ Z/2. We write 
Y := H-Hilb(C2) for the H-orbit Hilbert scheme of C2, which is a crepant resolution for 
C2/H. The action of A on C2/H extends to Y . In the following diagram, the vertical 
maps are quotient morphisms and the horizontal maps are resolutions. We note that 
C2/G is smooth, and so the map Y/A → C2/G is not resolving any singularities, but is 
a resolution in the sense of being proper and birational with a smooth source.

C2

C2/H Y

C2/G Y/A

(1.2)

Acknowledgments This collaboration started at the American Mathematical Society 
Mathematics (AMS) Research Community called ``Derived Categories, Arithmetic and 
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Geometry''. We thank the AMS and National Science Foundation for funding this pro
gram. We also thank Bronson Lim for helpful comments in an early stage of this project. 
E.F., K.H., and P.M. thank the Simon Fraser University math department and the Pacific 
Istitute for the Mathematical Sciences for their hospitality and support. Work of E.F. was 
supported by EPSRC grant EP/W007509/1. This material is based upon work supported 
by the NSF under Grant No. DMS-1928930 and by the Alfred P. Sloan Foundation under 
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A.B. was partially supported by the NSF under Award No. 2302263. K.H. is funded by 
an NSERC Discovery grant. D.S. was partially supported by the UW-Whitewater Math
ematics Department Strategic Priorities Fund.

2. Historical overview of the McKay correspondence

McKay showed in [37] that for any finite subgroup of SL(2,C), there is a one-to
one correspondence between nontrivial irreducible representations of G and irreducible 
components of the exceptional divisor of the minimal resolution of singularities π : Y →
C2/G. More specifically, he showed that there was an isomorphism of quivers between 
the Dynkin diagram for the representation theory of G and the resolution graph of Y . 
Gonzalez-Sprinberg and Verdier made this correspondence more geometrically explicit 
in [19] by constructing a vector bundle for each representation whose first Chern class 
transversely intersects exactly one irreducible component of the exceptional divisor. As 
a consequence they determined that the G-equivariant Grothendieck group of C2 is 
isomorphic to the ordinary Grothendieck group of Y [19, Theorem 2.2].

Soon after, Auslander provided an algebraic version of this correspondence in [2]. Let 
S = C[x, y] and R = SG, the coordinate ring of C2/G. By work of Herzog [21], there is 
a 1-1 correspondence between indecomposable reflexive R-modules, and indecomposable 
R-summands of S. Auslander showed there is an isomorphism S ∗ G ∼ = EndR(S), and 
extended the 1-1 correspondence to indecomposable projective modules over this skew 
group ring and thus to irreducible representations of G.

In [24,25], Ito and Nakamura further developed this correspondence by using Hilbert 
schemes to construct minimal resolutions. For a finite group G ≤ GL(r,C) of order n, the 
G-Hilbert scheme G-Hilb(Cr) is a subscheme of Hilbn(Cr) that parametrizes certain G
invariant n-points in Cr. Ito and Nakamura showed that for G ≤ SL(2,C), G-Hilb(C2)
is not only the minimal resolution of C2/G, but a crepant resolution. Furthermore, 
they give an explicit correspondence between nontrivial irreducible representations of 
G and the components of the exceptional divisor of G-Hilb(C2). Using this moduli
theoretic description of the McKay correspondence, Kapranov and Vasserot in [34] gave 
a derived version of the McKay correspondence, proving there is a derived equivalence 
DG(C2) ≃ D(Y ), which gave the previous statement on K0 by [19] and, by passing to a 
suitable enhancement, higher K-groups simultaneously.
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Extending the McKay correspondence generally proceeds in two directions. One option 
is to increase the dimension and consider actions of finite subgroups of SL(r,C) on 
Cr. Another is to remain in dimension 2 but expand our focus to consider other finite 
subgroups of GL(2,C). Some work has been done in both directions; we briefly survey 
them here.

In the case where G is a finite small subgroup of GL(2,C), a special version of the 
McKay correspondence has long been known. Auslander’s results [2] still hold, giving a 
one-to-one correspondence between irreducible representations of G and indecomposable 
reflexive C[x, y]G-modules. However, the geometric picture becomes somewhat more nu
anced, as the exceptional divisor of the minimal resolution π : Y → C2/G does not have 
as many components as there are irreducible representations of G. Wunram introduced 
special representations in [45] and showed that there is a bijection between irreducible 
components of the exceptional divisor of the minimal resolution of C2/G and nontrivial 
irreducible special representations.

This work was extended by Ishii in [27], who showed that Y = G-Hilb(C2) is the 
minimal resolution of C2/G and gave an explicit correspondence between the nontrivial 
irreducible special representations of G and the irreducible components of the exceptional 
divisor of Y , à la [25]. Ishii also produced a fully faithful embedding of D(Y ) ↪→ DG(C2). 
Several years later, Ishii and Ueda gave the appropriate derived version of the corre
spondence in [28]. In this setting, the embedding of D(Y ) inside of DG(C2) from [27] 
is part of a semiorthogonal decomposition. The other subcategories in this semiorthogo
nal decomposition are generated by exceptional objects corresponding to the non-special 
representations of G.

In dimension 3, Bridgeland, King, and Reid show that, similar to the 2-dimensional 
case, for finite subgroups G ≤ SL(3,C), Y = G-Hilb(C3) is a crepant resolution of 
singularities of C3/G and DG(C3) ≃ D(Y ) [9]. Moreover, the Craw–Ishii conjecture 
holds: every projective crepant resolution of C3/G is isomorphic to a moduli space of 
stable G-constellations [46]. Beyond dimension 3, it is unknown in general if a crepant 
resolution of Cr/G exists. However, Nakamura has conjectured that when a crepant 
resolution exists, Y := G-Hilb(Cr) is such a resolution. As noted before, Kawamata 
has also proved a version of the derived McKay correspondence for finite subgroups of 
GL(3,C) [30].

3. Finite reflection subgroups of GL(2,C) containing −1

In this section, we will examine the reflection groups that appear in Theorem A. These 
are precisely the complex reflection groups in GL(2,C) that are generated by order 2
reflections, where we take a reflection to be any (order 2) element of GL(2,C) whose 
fixed locus is codimension 1. Moreover, these groups are in one-to-one correspondence 
with the finite subgroups of SL(2,C), up to conjugation. This correspondence is given 
by intersecting with SL(2,C). Each of these reflection groups G has the intersection 
H := G ∩ SL(2,C) as an index 2 subgroup; G is an extension of H by −1. The primary 
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Fig. 1. E6 and E′
6 Dynkin diagrams. 

source for this section is [19]. The correspondence we discuss is also shown in [43,32]; see 
[7] for a more recent examination.

The exceptional reflection groups are denoted by G12, G13, and G22. Their intersec
tions with SL(2,C) are the binary tetrahedral, octahedral, and icosahedral groups with 
singularities of type E6, E7 and E8. The intersection of the reflection group G(2m,m, 2)
with SL(2,C) is isomorphic to the binary dihedral group of order 4m. The quotient 
C2/H has a surface singularity of Dm+2 type; this notation is not to be mistaken for the 
underlying dihedral group. To complete the classification, there are the reflection groups 
G(m,m, 2), which are isomorphic to the dihedral group of order 2m. Their intersections 
with SL(2,C) are cyclic of order m, and their quotients have surface singularities of type 
Am−1.

Remark 3.1. The representations of the reflection groups G have a close relationship 
with those of their subgroups H. Each reflection group has a nontrivial 1-dimensional 
representation ϵ whose restriction to H is trivial. The quotient group A := G/H acts on 
the representations of H by sending them to their contragredients. This involution on 
representations of H relates to the involution on representations of G given by ϵ ⊗ (−)
via induction and restriction. By [19, Prop. 3.4], if ρ is a representation of H isomorphic 
to its contragredient, then IndG ρ is the sum of two distinct irreducible representations 
ρ′ and ρ′ ⊗ ϵ. Each of these representations restrict to ρ. If ρ is a representation of H
that is not isomorphic to its contragredient, then IndG ρ is irreducible and isomorphic 
to its tensor product with ϵ.

The McKay quivers for E6 and E′
6 are shown in Fig. 1; the quivers for each of the 

groups in question can be found in Appendix B. For the subgroups of SL(2,C), these 
are the extended A, D, and E Dynkin diagrams. We label the quivers of the correspond
ing reflection groups as A′, D′, and E′. In the quivers, each vertex corresponds to an 
irreducible representation. Edges are determined using the natural representation ρnat

given by the inclusion of the group in GL(2,C): an arrow from ρi to ρj indicates that ρj
is a summand of ρnat ⊗ ρi. In cases where this relationship is symmetric, we consolidate 
arrows in both directions to a single undirected edge. Since we will use results in [25] for 
our computations, we follow their labeling system for representations of the subgroups of 
SL(2,C). The subscripts on the representations in the E6, E7, and E8 diagrams indicate 
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Group C[x, y]G B
# comp. 

of B
G(m,m, 2) C[xy, xm + ym] V (zm

1 − z2
2) 2 (m even) 

1 (m odd) 
G(2m,m, 2) C[x2y2, x2m + y2m] V (z1(zm

1 − z2
2)) 3 (m even) 

2 (m odd) 
G12 C[x8 + 14x4y4 + y8, xy(x4 − y4)] V (z3

1 − z4
2) 1

G13 C[x8 + 14x4y4 + y8, (xy)2(x4 − y4)2] V (z1(z2
1 − z3

2)) 2

G22

C[xy(x10 + 11x5y5 − y10), 
−x20 − y20 − 494x10y10

+228(x15y5 − x5y15)]
V (z3

1 − z5
2) 1

Fig. 2. Table of invariant rings, branch divisors, and number of components in branch divisors. 

their dimensions, but this is not the case in the diagrams of type A and D. We then 
somewhat abuse this notation by reusing it for the representations of the corresponding 
reflection group, given their close relationship. However, we follow [19] for the particu
lar positioning of the diagrams; these place contragredients and tensor products with ϵ
across a middle, horizontal axis of reflection from one another, to the extent that it is 
possible without sacrificing compactness of presentation.

Finally, in Fig. 2, we give the ring of invariants C[x, y]G, the branch locus B of the map 
C2/H → C2/G (up to a suitable change of coordinates), and the number of connected 
components of B, for each reflection group G. This information is from [3].

4. 𝑯-Hilb(C2)

In this section we examine the structure of H-Hilb(C2) and H-Hilb(C2)/A, concluding 
with a proof that H-Hilb(C2)/A is smooth.

4.1. Structure of H-Hilb(C2)

Let H be a finite subgroup of SL(2,C). In [25], Ito and Nakamura give a new per
spective on the classical McKay correspondence via moduli theory, using the H-orbit 
Hilbert scheme. An essential part of their work is an explicit description of H-Hilb(C2)
for each such H, which we will use in our computations. We include an overview here 
for the convenience of the reader.

Definition 4.1 ([25, Theorem   9.3]). Let n = |H|. The H-orbit Hilbert scheme of C2, de
noted H-Hilb(C2), is the unique component of the fixed locus Hilbn(C2)H ⊂ Hilbn(C2)
dominating C2/H via the Hilbert–Chow morphism Hilbn(C2)H → Sn(C2)H ≃ C2/H. 
Furthermore, H-Hilb(C2) is a crepant (equivalently minimal) resolution of C2/H.

As a moduli space, Hilbn(C2)H parametrizes H-invariant length |H| subschemes of 
C2, equivalently, H-invariant ideals of the coordinate ring C[x, y]. Then Y := H-Hilb(C2)
parametrizes such subschemes that furthermore correspond to ideals I so that there is an 
isomorphism of H-modules between 𝒪C2/I and C[H], the regular representation of H. 
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The exceptional locus E of Y → C2/H consists of the H-invariant subschemes supported 
at the origin. We call the open subset of Y outside the exceptional locus N ⊆ Y for non
exceptional. H acts freely on C2 outside of the origin, and thus the set of H-orbits of 
C2 \ {(0, 0)} is isomorphic to C2 \ {(0, 0)}, so N ≃ C2 \ {(0, 0)}.

We will generally refer to points in H-Hilb(C2) using their corresponding ideals, which 
we now describe.

4.1.1. Exceptional locus of Y
Fixing coordinates so that C2 = SpecC[x, y], let 𝔪 = (x, y) be the maximal ideal of 

the origin in C2, 𝔪S be the maximal ideal at the origin in C2/H, and 𝔫 := 𝔪S ·C[x, y], 
i.e., the ideal generated by H-invariant polynomials in C[x, y].

Let I be an ideal corresponding to a point in E ⊂ Y . Because I is supported at the 
origin, I ⊆ 𝔪 and 𝔫 ⊆ I [25, Corollary 9.6]. Following the notation of [25], we define for 
convenience the following finite H-module:

V (I) := I/(𝔪I + 𝔫).

Let V (ρ) be the nontrivial irreducible H-module corresponding to the nontrivial irre
ducible representation ρ : H → GL(V (ρ)). We define the following loci in E ⊂ Y :

E(ρ) := {I ∈ H-Hilb(C2) : V (ρ) ⊆ V (I)},
P (ρ, ρ′) := {I ∈ H-Hilb(C2) : V (ρ) ⊕ V (ρ′) ⊆ V (I)}.

Ito and Nakamura prove the McKay correspondence by showing that the assignment 
ρ ↦→ E(ρ) gives a bijection between nontrivial irreducible representations of H and the 
irreducible components E(ρ) ≃ P 1 of E. The locus P (ρ, ρ′) is the intersection of E(ρ)
and E(ρ′); it is nonempty if and only if ρ and ρ′ are adjacent in the Dynkin diagram of 
H. If P (ρ, ρ′) ̸= ∅, then it consists of a single reduced point at which E(ρ) and E(ρ′)
intersect transversally [25, Theorem 10.4].

For each finite group H ≤ SL(2,C), Ito and Nakamura identify the ideals correspond
ing to points in the exceptional locus as certain submodules of 𝔪/𝔫. We recount the 
details in Theorem A.1 in Appendix A before using it for our own computations.

4.1.2. Outside of the exceptional locus of Y
For each finite subgroup H, the ideal 𝔫 ⊆ C[x, y] can be generated by three poly

nomials f1, f2, f3 ∈ C[x, y]. The points of N correspond to points of C2 \ {(0, 0)}. In 
particular, (a, b) ∈ C2 \ {(0, 0)} corresponds to the following ideal:

I(a,b) := (f1(x, y) − f1(a, b), f2(x, y) − f2(a, b), f3(x, y) − f3(a, b)).

Remark 4.2. The ideals I(a,b) are products of the maximal ideals of all points in the 
H-orbit of (a, b). Since these points are distinct, the product of these maximal ideals is 
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equal to their intersection, hence the ideals I(a,b) are radical. Thus, if some f ∈ C[x, y]
does not vanish at any of the points in the H-orbit, f is a unit in C[x, y]/I(a,b).

4.2. Structure of H-Hilb(C2)/A

It is significant to our proof of Theorem A that the quotient of Y by A := G/H ≃ Z/2
is smooth. The geometry of the branch locus of the quotient Y → Y/A also plays a crucial 
role.

In order to elucidate both of these, we will calculate the fixed locus of the action of A
on Y . In Appendix A we compute the fixed points of the action of A on the exceptional 
locus of Y . For each group G, these computations show that there are points of Y fixed 
by A that are isolated within the exceptional locus. In this section, we will show that 
these fixed points are not isolated in Y by examining the parts of the fixed locus of the 
action of A on Y that extend outside of the exceptional locus.

Therefore, we wish to compute which ideals I(a,b) are fixed by the action of A in each 
case. We will arrange our choice of f1, f2, and f3 in each case so that f1 and f2 are fixed 
by the action of A and f3 is sent to −f3. These choices of f1, f2 and f3 are all given in 
the subsections below; the actions of A in each case are given in Appendix A.

The kernel of the following polynomial map is principally generated by a polynomial 
of the form w2 + p(u, v):

C[u, v, w] → C[x, y], u ↦→ f1, v ↦→ f2, w ↦→ f3 (4.3)

The above map surjects onto C[x, y]H and gives the relation f2
3 + p(f1, f2) = 0. In this 

setting we have the following result:

Lemma 4.4. Each irreducible factor of p(u, v) corresponds to a component of the ramifi
cation locus of C2/H → C2/G, which in turn corresponds to a component of the fixed 
locus of A acting on Y that has nontrivial intersection with N .

Proof. For any (a, b) ∈ C2 \ {(0, 0)} that satisfies f3(a, b) = 0, we see directly from the 
definition that the ideal I(a,b) must be fixed under the action of A. Conversely, the sum 
of I(a,b) and its image under A is:

(f1(x, y) − f1(a, b), f2(x, y) − f2(a, b), f3(x, y) − f3(a, b), f3(x, y) + f3(a, b)),

which contains f3(a, b). Thus I(a,b) is fixed by A if and only if f3(a, b) = 0.
The fixed locus of A inside of C2/H, or equivalently, the ramification locus of C2/H →

C2/G, has the following coordinate ring:

C[x, y]H/(f3) ∼ = C[f1, f2, f3]/(f2
3 + p(f1, f2), f3) ∼ = C[f1, f2]/(p(f1, f2)),

so the irreducible components of the fixed locus of A inside of C2/H correspond to the 
irreducible factors of p(u, v). □
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Remark 4.5. Since C2 → C2/H is ramified only at the origin, the branch divisors of 
C2 → C2/G are the same as C2/H → C2/G. Note that C[f1, f2] ∼ = C[x, y]G, and the 
polynomials p(u, v) are the branch divisors of C2 → C2/G; in each case we treat, we see 
the polynomials p(u, v) are consistent with the branch divisors shown in Fig. 2.

Now, for each reflection group G that appears in Theorem A, we will examine the 
fixed locus of A acting on Y that has nontrivial intersection with N . For each case below, 
we provide a family of ideals corresponding to points in Y which is flat over C∗. By [20, 
III.9.8], there is a unique extension to a flat family over A1. We identify the point added 
in the extension as the intersection of the fixed locus of A and the exceptional set E.

4.2.1. G(2m,m, 2)
We choose the H-invariants of C[x, y] as in [25, §13.1]

f1 = x2m + y2m, f2 = x2y2, f3 = xy(x2m − y2m).

In this case, the kernel of the map (4.3) is generated by w2 − v(u2 − 4vm) and thus by 
Lemma 4.4, the ramification locus of C2/H → C2/G has two components when m is 
odd and three components when m is even.

When m is odd, these components are V (f2) and V (4fm
2 −f2

1 ). When m is even, there 
are three components: V (f2), V (2fm/2

2 − f1), and V (2fm/2
2 + f1).

First, we consider the intersection of the component V (f2) with the exceptional locus; 
the same argument works for any value of m. Each ideal I(a,b) corresponding to a point 
in V (f2) ∩N is radical and thus contains (xy), and, furthermore, in the limit as points 
(a, b) in this component approach 0, any ideal in the intersection of this component with 
E must contain xy. Any ideal in the intersection of this component with E must also 
contain f1, f2, and f3 (see [25, Cor. 9.6,§10.1]). There is a unique ideal in the exceptional 
locus containing f1, f2, f3, and xy, which corresponds to the module V2(ρ′1) = (xy) (see 
Appendix A.1 for explanation of notation). We identify this point in Proposition A.2.3(e) 
as a fixed point of A in E that is contained in E(ρ′1).

We treat the remaining components separately for m even or odd.
Consider the case where m is odd. The two components of the fixed locus of the 

A-action on Y that intersect with N ≃ C2 \ {(0, 0)} are V (f2) and V (4fm
2 − f2

1 ).
The points in N are ideals I(a,b) that are products of the maximal ideals corresponding 

to points in the orbit of (a, b) ∈ C2. For any t ∈ C∗, the ideal I(t,t) is a point in the 
component V (4fm

2 − f2
1 ) and we write it as an ideal in C[x, y]H :

I(t,t) := (f1(x, y) − 2t2m, f2(x, y) − t4, f3(x, y)).

If we furthermore consider the ideals I(t,t) these generate in C[x, y] (abusing notation), 
because these ideals are radical and contain f2

1 − 4fm
2 = (x2m − y2m)2, I(t,t) contains 

x2m − y2m. Thus we can write:
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I(t,t) = (x2m + y2m − 2t2m, x2y2 − t4, x2m − y2m).

We claim that this ideal contains xm+1 − t2ym−1 and ym+1 − t2xm−1. To see this, we 
first note that since x2y2 − t4 ∈ I(t,t), all solutions to xm−1ym−1 − t2m−2 are contained 
in the vanishing of I(t,t). Since I(t,t) is radical, it must contain xm−1ym−1 − t2m−2, and 
thus the following equality implies that xm−1(xm+1 − t2ym−1) ∈ I(t,t):

xm−1(xm+1 − t2ym−1) + t2(xm−1ym−1 − t2m−2) = x2m − t2m ∈ I(t,t).

Because xm−1 is not contained in any of the maximal ideals which intersect to give 
I(t,t) (note I(a,0), I(0,b) are in V (f2)) this implies xm+1 − t2ym−1 ∈ I(t,t). By a similar 
argument, we see ym+1 − t2xm−1 ∈ I(t,t). Then we see that limt→0 I(t,t) must contain 
xm+1 and ym+1 as well as f1, f2, and f3. There is a unique ideal in the exceptional locus 
with this property, which corresponds to the module V ′

m+1(ρm) = (xm+1, ym+1) in the 
notation of Appendix A.1. In Proposition A.2.3(e), we identify this point as a fixed point 
of A in E that is contained in E(ρm).

Now, let m be even. The three components of the fixed locus of A on Y that intersect 
with N ≃ C2 \ {(0, 0)} are V (f2), V (2fm/2

2 − f1), and V (2fm/2
2 + f1).

For any t ∈ C∗, the ideal I(t,t) is a point in the component V (2fm/2
2 − f1) and we 

write it as an ideal in C[x, y]H :

I(t,t) = (f1(x, y) − 2t2m, f2(x, y) − t4, f3(x, y)).

Consider the ideals I(t,t) these generate in C[x, y], because this ideal is radical and 

contains f1 − 2fm/2
2 = (xm − ym)2, it contains xm − ym. Thus we can write our ideals

I(t,t) = (x2m + y2m − 2t2m, x2y2 − t4, xm − ym).

Then, limt→0 I(t,t) must contain xm − ym as well as f1, f2, f3.
By a similar argument, noting that 2fm/2

2 + f1 = (xm + ym)2, the intersection of 
component V (2fm/2

2 + f1) with the exceptional locus is an ideal containing xm + ym as 
well as f1, f2, and f3.

There are unique ideals in the exceptional locus that contain f1, f2, f3, x
m − ym and 

f1, f2, f3, x
m + ym, respectively, though which ideal depends on whether m is divisible 

by 4. If m is not divisible by 4, these ideals correspond to the modules Vm(ρ′m+1) =
(xm − im+2ym) and Vm(ρ′m+2) = (xm + im+2ym) (see Appendix A.1 for notation), 
respectively, and vice versa if 4|m.

We identify these points in Proposition A.2.3(e) as fixed points of A in E that are 
contained in E(ρ′m+1) and E(ρ′m+2).

4.2.2. G12
We choose the invariants of C[x, y]H as in [42], which coincides with [25, §14] except 

for the choice of f3 (for unexplained notation see Appendix A.3):
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f1 = x5y − xy5 = p1p2p3

f2 = x8 + 14x4y4 + y8 = φψ = (p2
2 + 4ωp2

3)(p2
2 + 4ω2p2

3)

f3 = x12 − 33x8y4 − 33x4y8 + y12

The kernel of the map (4.3) is generated by w2 − (v3 − 108u4) and thus by Lemma 4.4, 
the ramification locus of C2/H → C2/G has one component, corresponding to one 
component of the fixed locus of the action of A on Y . Its intersection with N ≃ C2 \
{(0, 0)} is V (f3

2 − 108f4
1 ).

Let ε := e2πi/8. For any t ∈ C∗, the ideal I(t,εt) is a point in the component V (f3
2 −

108f4
1 ):

I(t,εt) := (f1 − 2εt6, f2 + 12t8, f3).

By Proposition A.3.1(c), the exceptional locus of H-Hilb(C2) has a single isolated fixed 
point under the A-action on E(ρ3) corresponding to the following H-module:

V (I) = ((x2 − y2)(−ω2φ + ψ), xy(−φ + ψ), (x2 + y2)(−wφ + ψ), f1, f2, f3).

We are able to verify computationally using macaulay2 in the code file FixedLocus.m2 
[4], for each t and each generator of V (I) I(t,εt) contains an element that is the sum of 
the generator of V (I) and an element that is a multiple of t. Thus limt→0 I(t,εt) must 
contain all of the generators listed in V (I), hence it is the point in E corresponding to 
V (I).

4.2.3. G13

We choose the invariants of C[x, y]H as in [42], which differs from but is consistent 
with that in [25, §15] in this case:

f1 = (x5y−xy5)2, f2 = x8+14x4y4+y8, f3 = (x12−33x8y4−33x4y8+y12)(x5y−xy5).

In this case, the kernel of the map (4.3) is generated by w2 −u(v3 − 108u2), and thus by 
Lemma 4.4, the ramification locus of C2/H → C2/G has two components, corresponding 
to two components of the fixed locus of the action of A on Y . Their intersections with 
N ≃ C2 \ {(0, 0)} are V (f1) and V (f3

2 − 108f2
1 ).

We consider the intersection of the first component of the fixed locus with E. Each 
ideal I(a,b) corresponding to a point in V (f1)∩N is radical and thus contains (x5y−xy5). 
In the limit as points (a, b) in this component approach 0, we see that any ideal in the 
intersection of this component with E must contain (x5y−xy5) as well as f1, f2, and f3. 
There is a unique ideal in the exceptional locus with this property, namely, in the notation 
of Appendix A.1, V6(ρ′1) = (x5y − xy5). We identify this point in Proposition A.4.1(c) 
as a fixed point of A in Y ∩E that is contained in E(ρ′1).
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Similarly, each ideal I(a,b) corresponding to a point in V (f3
2 −108f2

1 )∩N is radical and 
thus contains x12−33x8y4−33x4y8+y12. The intersection of this component of the fixed 
locus of A in Y with E must be the unique ideal V8(ρ′′2) = (x12 − 33x8y4 − 33x4y8 + y12)
that we identify in Proposition A.4.1(c) as a point on E(ρ′′2).

4.2.4. G22
We choose the following invariants of C[x, y]H (see [3], [31, p. 55], [42]):

f1 = xy(x10 + 11x5y5 − y10)

f2 = x20 − 228x15y5 + 494x10y10 + 228x5y15 + y20

f3 = x30 + 522x25y5 − 10005x20y10 − 10005x10y20 − 522x5y25 + y30

The kernel of the map (4.3) is generated by w2− (1728u5 +v3), and thus by Lemma 4.4, 
the ramification locus of C2/H → C2/G has one component, corresponding to one 
component of the fixed locus of the action of A on Y . Its intersection with N ≃ C2 \
{(0, 0)} is V (1728f5

1 + f3
2 ).

Let γ := e2πi/20. For any t ∈ C∗, the ideal I(t,γt) is a point in the component 
V (1728f5

1 + f3
2 ):

I(t,γt) := (f1 − (2 + 11i)γt12, f2 + (492 + 456i)t20, f3)

By Proposition A.5.1(c), the exceptional locus of H-Hilb(C2) has a single isolated fixed 
point on E(ρ3) corresponding to the following H-module:

V14(ρ′′3) = (x14 − 14x9y5 + 49x4y10, 7x12y2 − 48x7y7 − 7x2y12, 49x10y4 + 14x5y9 + y14)

We are able to verify in our code file that for each t and each generator of V14(ρ′′3), I(t,γt)
contains an element that is the sum of the generator of V (I) and an element that is 
a multiple of t. Thus limt→0 I(t,εt) must contain all of the generators listed in V14(ρ′′3), 
hence it is the point in E corresponding to V14(ρ′′3).

4.2.5. Smoothness of Y/A
We now use the above results to show Y/A is smooth and draw conclusions about the 

branch locus of Y → Y/A.

Proposition 4.6. Let G ⊆ GL(2,C) be a complex reflection group as in Theorem A. The 
fixed locus of the action of A on Y does not have any isolated fixed points.

Proof. By the arguments shown in sections 4.2.1-4.2.4, each fixed point of the action of 
A on Y is contained in a component of codimension 1 and in particular there are no 
isolated fixed points. □
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By the Chevalley–Shephard--Todd Theorem [14,43], Proposition 4.6 implies the fol
lowing corollary.

Corollary 4.7. The quotient Y/A is smooth.

Remark 4.8. In [40], smoothness of Y/A in the G = G(m,m, 2) case is shown by analyzing 
a�ine charts of the toric minimal resolution of C2/G, which is not available in the cases 
we treat.

We may further identify the geometry of the components of the branch locus of Y →
Y/A:

Corollary 4.9. The branch locus of Y → Y/A that extends outside the exceptional locus 
of Y/A → C2/G is isomorphic to a disjoint union of a�ine lines.

Proof. By Corollary 5.7 (cf. [40, Cor. 5.3.4]), since Y/A is smooth and hence coincides 
with (Y/A)can, the branch locus of Y → Y/A consists of smooth divisors.

Let B be an irreducible component of the branch locus of Y → Y/A that extends 
outside the exceptional locus of Y/A → C2/G. Consider the diagram (1.2) in the 
Conventions section. Since it commutes, B is the strict transform (and therefore the 
normalization) of a branch divisor of C2/H → C2/G.

Each component of the branch locus of C2/H → C2/G is given in terms of an explicit 
equation in sections 4.2.1-4.2.4. Our equations all normalize to lines. □
5. Semiorthogonal decompositions of equivariant derived categories

An important tool in our proof of Theorem A is a collection of results concerning 
semiorthogonal decompositions of equivariant derived categories. These results were first 
combined and studied by Potter in his thesis [40, Chapter 6]. There are essentially three 
moving pieces to this result. The first result is a semiorthogonal decomposition of the 
derived category of a root stack, proven in [28] and [10] independently. The second 
result is another semiorthogonal decomposition of the derived category of the canonical 
stack associated to a surface. Finally, the third is a description of a quotient stack as 
an iterated root stack along the branching divisors of a group action, proven in [18]. 
Combined, these results allow us to realize the derived category of equivariant sheaves 
as the derived category of sheaves on an iterated root stack over the canonical stack of a 
surface, allowing us to obtain the claimed semiorthogonal decomposition using the first 
two results mentioned above.

We first remind the reader about the notion of a root and canonical stack. Then, we 
examine the topic of semiorthogonal decompositions. Finally, we assemble these ideas to 
outline the method we will use to prove Theorem A.
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5.1. Root and canonical stacks

The original definition of a root stack was given independently in [12] and [1], while 
the notion of a canonical stack is implicit in [44, 2.9, proof of 2.8] (see also [16] for 
discussion). We will only need the basics of both, and refer the readers to the above 
sources for more details.

We begin the discussion with the basics of root stacks. Let X be a smooth Deligne--
Mumford stack and let D = (D1, . . . , Dn) be n effective Cartier divisors on X. Further, 
let r = (r1, . . . , rn) ∈ Zn

>0 be a tuple of positive integers. Recall that D determines 
a morphism X → [An/Gn

m], which we also denote by D, and let θr be the morphism 
[An/Gn

m] → [An/Gn
m] determined by xi ↦→ xri

i , and λi ↦→ λri
i .

A definition of the root stack of X along D in terms of its generalized points is straight
forward but unnecessary for our purposes (cf. [12, Remark 2.2.2]). We alternatively define 
the root stack of X along D as the fiber product

X[ r

√
D] [An/Gn

m]

X [An/Gn
m]

θr

D

Remark 5.1. The root stack behaves much like the notion of a blow-up in classical bi
rational geometry. Indeed if D is the union of the Di, then the restriction X[ r

√
D]|X\D

is isomorphic to X \D, however its restriction to D is much more interesting (see [12]). 
Intuitively, in the case where r = (r) and D = (D), the rth root stack of X along D
modifies X only on D, resulting in a stack with stabilizer groups of μr along D. The 
objects of the root stack serve as rth roots of the line bundle 𝒪X(D).

Remark 5.2. It will be useful later on to recognize that by definition of the root stack 
X[ r

√
D], there is a canonical isomorphism

X[ r

√
D] ∼ = X[ r1

√︁
D1][ r2

√︁
D2] · · · [ rn

√︁
Dn].

In other words, we may take root stacks iteratively.

Canonical stacks were first studied by Vistoli in [44] as a means of attaching a smooth 
Deligne–Mumford stack to a scheme with tame quotient singularities. Our primary ref
erence is [16, §4].

Definition 5.3. Let X be a smooth Deligne–Mumford stack with coarse moduli space Y . 
We say that X is canonical if the locus where the map X → Y is not an isomorphism 
has codimension at least two.

Remark 5.4. In [44, Proposition 2.8, 2.9], it was shown that any scheme of finite type over 
a field with tame quotient singularities is the coarse moduli space of a canonical stack. 
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The question of uniqueness is resolved by [16, Theorem 4.6], where canonical stacks are 
shown to be terminal with respect to dominant, codimension-preserving morphisms to 
their coarse moduli spaces. This property is stable under base change by étale morphisms, 
thus via descent every algebraic stack with tame quotient singularities has a canonical 
stack. We denote the canonical stack associated to such a stack X by Xcan.

Remark 5.5. As a byproduct of the definition of canonical stacks, one can check directly 
that if Y can is a smooth canonical Deligne–Mumford stack with coarse moduli space Y , 
the locus where π : Y can → Y is an isomorphism is precisely π−1(Ysm), where Ysm is the 
smooth locus of Y . Clearly, if Y is itself smooth, then Y can ∼ = Y [16, §4].

The main result concerning root and canonical stacks is a result of Geraschenko and 
Satriano, which shows that under suitable assumptions, a stack can be built from its 
coarse moduli space by repeating the canonical and root stack constructions.

Theorem 5.6 ([18, Theorem 1]). Let X be a smooth separated tame Deligne–Mumford 
stack with trivial generic stabilizer. Let Y be its coarse moduli space and Y can the canon
ical stack associated to Y . Let D ⊂ Y be the branch divisor of the map π : X → Y , and 
𝒟 the pullback of D to Y can. Let ri be the ramification index of π over the irreducible 
component 𝒟i of 𝒟, then for r = (r1, . . . , rn) and D = (𝒟1, . . . ,𝒟n), the stack Y can[ r

√
D]

has tame quotient singularities and the map π factors as

X ∼ = 
(︂
Y can

[︂
r

√
D
]︂)︂can

→ Y can
[︂

r

√
D
]︂
→ Y can → Y.

For our purposes, the following corollary is more directly useful.

Corollary 5.7 ([17, Corollary   5.6]). Suppose that X is a smooth quasi-projective variety 
and G a finite abelian group whose order is coprime to the characteristic of k. Then the 
induced map

[X/G] → (X/G)can

is a root stack morphism along a collection of smooth connected divisors with simple 
normal crossings.

5.2. Semiorthogonal decompositions

Before we state the main results needed regarding semiorthogonal decompositions, we 
first briefly remind the reader of the definition.

Definition 5.8. Let 𝒯 be a triangulated category. A semiorthogonal decomposition, writ
ten as
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𝒯 = ⟨𝒜1, . . . ,𝒜n⟩,

is a collection of full triangulated subcategories 𝒜1, . . . ,𝒜n, referred to as the components 
of the decomposition, such that

(1) For any T ∈ 𝒜i and S ∈ 𝒜j , if i > j then Hom(T, S) = 0.
(2) for any T ∈ 𝒯 , there is a sequence of morphisms

0 = Fn → Fn−1 → · · · → F1 → F0 = T

such that Cone(Fi → Fi−1) ∈ 𝒜i.

Remark 5.9. One should think of a semiorthogonal decomposition as giving each object 
of a category a distinguished filtration, whose intermediate factors belong to each of the 
specified subcategories. Further, condition (1) implies that the intermediate factors are 
unique and functorial.

Remark 5.10. When the subcategories appearing in Definition 5.8 are as simple as pos
sible, that is, 𝒜i

∼ = D(k − v.s.) the derived category of k-vector spaces, 𝒜i is generated 
by a single object called an exceptional object and we call 𝒜i exceptional. In general an 
exceptional object is an object E in a triangulated category such that

Hom(E,E[i]) =
{︄
k i = 0
0 i ̸= 0.

When a triangulated category admits a semiorthogonal decomposition as above, and 
some of the 𝒜i are exceptional we say that the collection of those {𝒜i} form an ex
ceptional collection. If all 𝒜i are exceptional, then we say they are a full exceptional 
collection.

Semiorthogonal decompositions are usually very interesting from the perspective of 
noncommutative geometry, but are typically difficult to establish. However, in a handful 
of cases, much is known, for example the well-known semiorthogonal decomposition of 
projective space [5] (cf. [23, Corollary 8.29]):

D(Pn) = ⟨𝒪,𝒪(1), ...,𝒪(n)⟩. (5.11)

If X → Y is a blow-up with smooth center Z ⊂ Y of codimension c, then it is a 
result of Orlov [39] (cf. [23, Prop. 11.18]), that we have the following semiorthogonal 
decomposition of X:

D(X) = ⟨D(Z)(1 − c), . . . , D(Z)(−1), D(Y )⟩. (5.12)
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From the viewpoint of the derived category, the root stack along a divisor behaves 
much like a blow-up of a variety along a smooth center. Before we make this analogy 
precise, it will be useful for us to know explicitly the embedding functors appearing 
in the above semiorthogonal decomposition, so we devote some time to discuss them 
here. Additionally, although it is possible to weaken the assumptions, we only work with 
smooth Deligne–Mumford stacks for the rest of the paper.

Let X be a smooth Deligne–Mumford stack and D = (D1, ..., Dn) a collection of 
effective Cartier divisors and r ∈ Zn

>0. Let D be the union of the Di, then one can think 
of the stack 𝒟 := D[ r

√
D] as the ``strict transform'' of D in the root stack. Indeed there 

is a commutative diagram

𝒟 X[ r

√
D]

D X

j

πD πX

j

where j is the closed embedding of the divisor D, and j is the composition of the closed 
embedding 𝒟 → X[ r

√
D]|D (see [1, Appendix B]) and the inclusion X[ r

√
D]|D ⊂ X[ r

√
D]. 

Now define the functors, for ℓ ∈ Z:

π∗
X : D(X) → D(X[ r

√
D])

Φℓ := 𝒪X(ℓ𝒟) ⊗ j∗π
∗
D(−) : D(D) → D(X[ r

√
D]).

The following result was originally proven in [10] and [28] independently. A version 
for iterated root stacks also appears in [10], but we will not need its full statement here.

Theorem 5.13 ([10, Theorem 4.7], [28, Proposition 6.1]). Let X be a smooth Deligne--
Mumford stack and D ⊂ X an effective Cartier divisor. Fix a positive integer r, and let 
π : X[ r

√
D] → X be the rth root stack along D. Then the functors π∗

X and Φℓ are fully 
faithful and there is a semiorthogonal decomposition into admissible subcategories:

D
(︂
X[ r

√
D]

)︂
= ⟨Φr−1(D(D)), . . . ,Φ1(D(D)), π∗

XD(X)⟩.

Since equivariant derived categories appear in the statement of our results we take a 
moment to note that they are equivalent to derived categories of quotient stacks. Given 
a variety X and a group G acting on X, we have the following equivalence (see [38, 
Exercise 9.H]):

DG(X) := D([X/G]).

The reader interested in reading further about G-equivariant sheaves may wish to see, 
for example [9, Section 4].
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In light of the result of the discussion above, notably Corollary 5.7 and Theorem 5.13, 
given a finite abelian group acting on the variety X, we now have a prescription to ob
tain a semiorthogonal decomposition of the equivariant derived category on X, whose 
components consist of the derived categories of the irreducible components of the branch
ing divisors [X/G] → (X/G)can as well as the derived category of the canonical stack 
(X/G)can. If X is a quasi-projective surface, then in fact [28, Theorem 1.4] provides a way 
to decompose D((X/G)can) in terms of the minimal resolution of X/G and a collection 
of exceptional objects coming from intersections of the branching divisors. In our case 
we treat the action of A := Z/2 on Y := G-Hilb(C2) and by Corollary 4.7 the quotient 
Y/A is smooth, thus we have (Y/A)can ∼ = Y/A (see Remark 5.5). These observations were 
first assembled by Potter in his thesis [40], for convenience we include the full statement 
below.

Theorem 5.14 ([40, Corollary 6.1.2]). Let X be a quasi-projective surface over k and G
a finite abelian group acting faithfully on X. Let D =

∑︁
Di be the branch divisor of the 

coarse moduli space morphism π : [X/G] → X/G, and Y the minimal resolution of X/G. 
Then there is a semiorthogonal decomposition

DG(X) = ⟨E1, . . . , Ek, {D(D1)}r1i=1, . . . , {D(Dn)}rni=1, D(Y )⟩

consisting of D(Y ), multiple copies of D(Di), the number of which is the order of the 
stabilizer group of Di, and exceptional objects arising from the intersections of Di and 
Dj where the stabilizer group jumps and non-special representations of G acting at an 
isolated point.

5.3. Strategy for the proof of Theorem A

We now outline how results on derived categories and semiorthogonal decompositions 
will be used to prove Theorem A.

Let G be a reflection group as in Theorem A.
The first step we make toward a semiorthogonal decomposition of DG(C2) is to use 

the following equivalence of categories, which is valid for any choice of nontrivial finite 
group G ≤ GL(2,C) and the other notation is defined analogously to above:

Theorem 5.15 ([28, Theorem   4.1]). DG(C2) ≃ DA(Y )

More strongly, the underlying categories of coherent sheaves are equivalent.
The remainder of the strategy proceeds now as follows. By Corollary 5.7, the map to 

the canonical stack [Y/A] → (Y/A)can is a root stack. Since Y/A is a smooth quotient 
(Corollary 4.7), as discussed in Remark 5.5, we may simply replace the canonical stack 
(Y/A)can with the quotient Y/A. The quotient Y/A is a 2nd root stack along the branch 
divisor of [Y/A] → (Y/A). In each case we treat, the branch divisor of [Y/A] → (Y/A)
consists of disjoint curves D1, . . . , Dn. Then Theorem 5.13 and Remark 5.2 implies that:
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DA(Y ) ≃ ⟨D(D1), . . . , D(Dn), D(Y/A)⟩. (5.16)

Finally, divisors in Y/A can be blown down to obtain C2/G and thus we apply the 
blow-up formula (5.12) using c = 2, obtaining a semiorthogonal decomposition of the 
following form:

D(Y/A) ≃ ⟨E1, . . . , Em, D(C2/G)⟩, (5.17)

where E1, . . . , Em are exceptional objects, one for each divisor we blow down.
Thus, combining (5.16) and (5.17), we obtain a semiorthogonal decomposition of the 

form given in Theorem A. We note that the (subcategories generated by) exceptional 
objects and subcategories generated by branch divisors, since they are embedded via 
Fourier–Mukai transforms, are admissible and thus can be permuted in any order using 
mutations; see [8], [11, Section 2].

In order to also count the number of exceptional objects present in this semiorthogonal 
decomposition, we must identify, for each G, the fixed locus of the action of A on Y and 
the divisors in Y/A that will be blown down to obtain C2/G. We address these details 
in the next section.

6. Proof of Theorem A

We now combine the strategy outlined in Section 5.3 with the computational re
sults shown in the appendix to prove Theorem A. In Sections 6.1-6.4, we identify the 
components of the semiorthogonal decomposition of DG(C2), treating each reflection 
group that appears in Theorem A separately. We illustrate these cases of the proof with 
Figs. 3-7, which show the exceptional locus of H-Hilb(C2); the red curves indicate where 
the discriminant curve intersects the exceptional locus and dashed arrows indicate a non
identity action of A. We also discuss the G(m,m, 2) case in Section 6.5 for the reader’s 
convenience. Then in Section 6.6, we conclude by explaining why the components in the 
semiorthogonal decomposition of DG(C2), are in bijection with the conjugacy classes of 
G, verifying the Orbifold Semiorthogonal Decomposition Conjecture.

6.1. G(2m,m, 2)

Let m be even. By Proposition A.2.3(c),(e) and Fig. 2 (cf. Remark 4.5), the fixed 
locus of the action of A on Y consists of m2 exceptional curves E(ρ2), E(ρ4), . . . , E(ρm), 
as well as three curves that extend outside the exceptional locus. We claim that the 
images of E(ρ2), E(ρ4), . . . , E(ρm) in Y/A are also copies of P 1: by Corollary 5.7 their 
images are smooth, and so we may conclude the claim by Riemann–Hurwitz. Here and 
in the other cases below, we abuse notation and give the fixed exceptional curves in Y
and their images in Y/A the same name. Let B1, B2, and B3 be the images in Y/A of 
the three curves that extend outside the exceptional locus. By Corollary 4.9, B1, B2, 
and B3 are a�ine lines.
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E(ρm−1)
E(ρm−2)

· · ·

E(ρ2) E(ρ′
1)

E(ρm)E(ρ′
m+1)

E(ρ′
m+2)

(a) Exceptional locus in the G(2m,m, 2) (m even) case.

E(ρm−1)
E(ρm−2)

· · ·

E(ρ2) E(ρ′
1)

E(ρm)E(ρ′
m+1)

E(ρ′
m+2)

(b) Exceptional locus in the G(2m,m, 2) (m odd) case.

Fig. 3. G(2m,m, 2) cases. 

Thus by (5.16),

DA(Y ) ≃ ⟨D(B1), D(B2), D(B3), D(E(ρ2)), D(E(ρ4)), . . . , D(E(ρm)), D(Y/A)⟩.

Since each E(ρk) ≃ P 1, by (5.11), there exists a semiorthogonal decomposition as follows, 
where the Ei are exceptional objects:

DA(Y ) ≃ ⟨D(B1), D(B2), D(B3), E1, . . . , Em, D(Y/A)⟩. (6.1)

By Proposition A.2.3(a), A acts as an automorphism on each of the m + 2 exceptional 
curves in Y and therefore Y/A contains m + 2 curves that must be blown down to 
obtain C2/G. Combining (5.17) and Theorem 5.15 with (6.1), we have the following 
semiorthogonal decomposition, where the Ei are exceptional objects:

DG(C2) ≃ ⟨D(B1), D(B2), D(B3), E1, . . . , E2m+2, D(C2/G)⟩.

We see in Fig. 9 that G has 2m+6 irreducible representations, and thus we have proved 
Theorem A in this case.

Let m be odd. By Proposition A.2.3(c),(e) and Fig. 2, the fixed locus of the action of 
A on Y consists of m−1

2 exceptional curves E(ρ2), E(ρ4), . . . , E(ρm−1) and two curves 
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E(ρ′
1) E(ρ′

2) E(ρ3) E(ρ′′
2 ) E(ρ′′

1 )

E(ρ2)

Fig. 4. Exceptional locus in the G12 case. 

that extend outside the exceptional locus of Y whose images B1, B2 in Y/A are a�ine 
lines.

By Proposition A.2.3(b), A acts as an automorphism on each of the m exceptional 
curves E(ρ1), . . . , E(ρm) and exchanges E(ρm+1) with E(ρm+2). Therefore Y/A contains 
m + 1 curves that must be blown down to obtain C2/G.

Applying Theorem 5.15, (5.16), and (5.17), we conclude that there exists a semiorthog
onal decomposition of the following form, where the Ei are exceptional objects:

DG(C2) ≃ ⟨D(B1), D(B2), E1, . . . , E2m, D(C2/G)⟩.

We see in Fig. 9 that G has 2m + 3 irreducible representations, proving Theorem A in 
this case.

6.2. G12

By Proposition A.3.1(c) and Fig. 2, the fixed locus of the action of A on Y consists 
of one exceptional curve E(ρ2) and one curve extending outside the exceptional locus of 
Y , whose image, B, in Y/A is an a�ine line.

By Proposition A.3.1(a),(b), A acts as an automorphism on two exceptional curves 
E(ρ2), E(ρ3) and exchanges two pairs of exceptional curves. Therefore Y/A contains 4
curves that must be blown down to obtain C2/G.

Applying Theorem 5.15, (5.16), and (5.17), we conclude that there exists a semiorthog
onal decomposition of the following form, where the Ei are exceptional objects:

DG(C2) ≃ ⟨D(B), E1, . . . , E6, D(C2/G)⟩.

We see in Fig. 10 that G has 8 irreducible representations, proving Theorem A.
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E(ρ2) E(ρ3) E(ρ4) E(ρ′
3) E(ρ′

2) E(ρ′
1)

E(ρ′′
2 )

Fig. 5. Exceptional locus in the G13 case. 

E(ρ′
2) E(ρ′

4) E(ρ6) E(ρ5) E(ρ4) E(ρ3) E(ρ2)

E(ρ′′
3 )

Fig. 6. Exceptional locus in the G22 case. 

6.3. G13

By Proposition A.4.1(b),(c) and Fig. 2, the fixed locus of the action of A on Y consists 
of the three exceptional curves E(ρ2), E(ρ′2) and E(ρ4) as well as two curves extending 
outside the exceptional locus of Y whose images B1 and B2 in Y/A are a�ine lines.

By Proposition A.4.1(a), G13 acts as an automorphism on each of the seven exceptional 
curves, and therefore Y/A contains 7 curves that must be blown down to obtain C2/G.

Applying Theorem 5.15, (5.16), and (5.17), we conclude that there exists a semiorthog
onal decomposition of the following form, where the Ei are exceptional objects:

DG(C2) ≃ ⟨D(B1), D(B2), E1, . . . , E13, D(C2/G)⟩.

We see in Fig. 11 that G has 16 irreducible representations, proving Theorem A.

6.4. G22

By Proposition A.5.1(b),(c) and Fig. 2, the fixed locus of the action of A on Y consists 
of the exceptional curves E(ρ2), E(ρ′2), E(ρ4), and E(ρ6) as well as one curve extending 
outside the exceptional locus of Y whose image B in Y/A is an a�ine line.

By Proposition A.4.1(a), G22 acts as an automorphism on each exceptional curve, and 
therefore Y/A contains 8 curves that must be blown down to obtain C2/G.

Applying Theorem 5.15, (5.16), and (5.17), we conclude that there exists a semiorthog
onal decomposition of the following form, where the Ei are exceptional objects:
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E(ρ1)
· · ·

E(ρm

2 −1) E(ρm

2 ) E(ρm

2 +1)

· · ·
E(ρm−1)

(a) Exceptional locus in the G(m,m, 2) (m even) case.

E(ρ1)
· · ·

E(ρm−1
2 ) E(ρm+1

2 )

· · ·
E(ρm−1)

(b) Exceptional locus in the G(m,m, 2) (m odd) case.

Fig. 7. G(m,m, 2) cases. 

DG(C2) ≃ ⟨D(B), E1, . . . , E16, D(C2/G)⟩.

We see in Fig. 12 that G has 18 irreducible representations, proving Theorem A.

6.5. G(m,m, 2)

Finally, for the reader’s convenience, we will discuss the proof of Theorem A for the 
group G(m,m, 2), which was shown in [40, §6.5].

Using explicit charts for the toric minimal resolution of the singularity Am−1, Potter 
computes that the fixed locus of the action of A on Y consists only of the strict transform 
of the ramification locus C2/H → C2/G. This lies over the branch locus V (z2

1 − zm2 )
in C2/G and thus has one component B when m is odd and two components, B1 and 
B2, when m is even. He furthermore shows that when m is odd, A interchanges pairs 
of exceptional curves, leaving m−1

2 curves in Y/A that must be blown down to obtain 
C2/G. When m is even, A interchanges m2 − 1 pairs of exceptional curves and acts as 
a nonidentity involution on E(ρm/2), implying there are m

2 curves in Y/A that must 
be blown down to obtain C2/G. The curves that are interchanged with one another 
correspond to the representations directly above and below one another in the Dynkin 
diagram on the left-hand side of Fig. 8.
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Thus, there exist semiorthogonal decompositions of the following form, where the Ei

are exceptional objects:

DG(C2) ≃ ⟨D(B), E1, . . . , Em−1
2 , D(C2/G)⟩ (m odd),

DG(C2) ≃ ⟨D(B1), D(B2), E1, . . . , Em
2 , D(C2/G)⟩ (m even).

It is illustrated in Fig. 8 that G(m,m, 2) has m+1
2 nontrivial irreducible representations 

when m is odd and m2 + 2 when m is even.

Remark 6.2. In each case of the proof of Theorem A, the number of exceptional objects 
we add in the first step of the proof, where we use (5.16), is always equal to the number 
of representations of G that contain an ϵ in our Dynkin diagrams. In each case, whether 
A acts as an involution on exceptional curves or exchanges them corresponds precisely 
to whether the corresponding representation is or is not isomorphic to its contragredient.

6.6. Proof of Corollary B

As we noted in the introduction, the semiorthogonal decompositions we construct 
are predicted by Polishchuk and Van den Bergh’s Orbifold Semiorthogonal Decom
position Conjecture. We have already shown that the number of components of our 
semiorthogonal decomposition of DG(C2) is equal to the irreducible representations and 
thus conjugacy classes of G, so it remains to show that the components are isomorphic 
to D((C2)g/C(g)) for each conjugacy class [g], where C(g) is the centralizer of G.

We will show that these components are isomorphic, but we will not produce explicit 
isomorphisms. For a more explicit approach to constructing this semiorthogonal decom
position and showing it satisfies the conjecture of Polishchuk--Van den Bergh, see [35, 
Section 3] which covers the details for G(4, 2, 2).

By Theorem A, each semiorthogonal decomposition we construct consists of one copy 
of D(C2/G), a copy of D(A1) for each of the r components of the branch divisor of 
C2 → C2/G, and n exceptional objects each generating a subcategory isomorphic to 
D(SpecC), such that n + r + 1 equals the number of representations of G.

In parallel, each group G has three types of conjugacy class: [I] where I is the identity 
matrix, [s] where s is a reflection, and [g] for all remaining non-identity, non-reflection 
elements g ∈ G. We have the following isomorphisms:

D((C2)I/C(I)) ≃ D(C2/G), D((C2)s/C(s)) ≃ D(A1), D((C2)g/C(g)) ≃ D(SpecC).

Thus we just need to show that the conjugacy classes of reflections are in bijection 
with the components of the branch divisor of C2/H → C2/G, which is the image of 
the hyperplanes fixed by reflections in G. Suppose gs1g

−1 = s2, where s1 and s2 are 
reflections fixing hyperplanes H1 and H2. Then gH1 = H2, so H1 and H2 map to the 
same component of the branch divisor of C2 → C2/G and we are done.
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Appendix A. Computing the action of 𝑨 on 𝑯-Hilb(C2)

A key component of our proofs of Theorem A for each of the reflection groups G
is our computation of the fixed points of the action of A on the exceptional locus of 
Y := H-Hilb(C2). Ito and Nakamura have given explicit algebraic descriptions of the 
points of Y for each H ≤ SL(2,C) [25]. To perform our computations in this setting, 
we find embeddings G ≤ GL(2,C) that are extensions of those given in [25], and in 
particular we choose an element α ∈ G \H that we use to explicitly compute the action 
of A. Ito and Nakamura give the exceptional curves of Y and their intersections in terms 
of certain H-invariant submodules, which in some cases we must identify precisely and 
parametrize in order to determine the fixed points of the action. In this appendix, we 
show these computational details and summarize our findings, handling the different 
groups G in each section.

Some computations discussed in sections A.3, A.4, and A.5 are verified using 
macaulay2 in the code file FixedLocus.m2, which is available at [4] or as an ancillary 
file with the arxiv preprint.

A.1. 

For the groups H ≤ SL(2,C) we treat in this appendix, Ito and Nakamura identify 
the ideals corresponding to points in the exceptional locus of Y as certain submodules 
of 𝔪/𝔫 where 𝔪 is the maximal ideal of the origin in C2 and C[x, y]H ≃ 𝔫 ⊆ 𝔪 ⊆ C[x, y]
is the ideal generated by H-invariant polynomials.

For each irreducible representation ρ of H, they define the modules Vi(ρ):

Vi(ρ) := ρ-summands of the homogenous degree i part of 𝔪/𝔫.

Their theorem below particularly refers to modules Vh±d(ρ)(ρ), where h is the Coxeter 
number of H, listed in the table below, and d(ρ) is the distance of ρ from the represen
tation at the center in the Dynkin diagram of H. For H of type Dm+2, E6, E7, or E8, 
the Dynkin diagram is star-shaped with a unique center; these centers are labeled in the 
Dynkin diagrams in Appendix B as ρm, ρ3, ρ4, and ρ6, respectively.

Group G G(m,m, 2) G(2m,m, 2) G12 G13 G22

Coxeter number of H m 2m + 2 12 18 30

By [25, Theorem 10.6], we have that Vh
2 (ρ) ≃ ρ2 for ρ the center of the Dynkin 

diagram and Vh
2 −d(ρ)(ρ) ≃ Vh

2 +d(ρ)(ρ) ≃ ρ otherwise. The structure of the exceptional 
set for groups of type Dn, E6, E7, and E8 is then given by:

Theorem A.1 ([25, Theorem 10.7]). Let H ≤ SL(2,C) a finite group such that C2/H is 
of type Dn, E6, E7, or E8. Then:
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(1) Assume ρ is an endpoint of the Dynkin diagram. Then I is a point on E(ρ) and no 
other exceptional component if and only if V (I) is a nonzero irreducible H-submodule 
(≃ ρ) of Vh

2 −d(ρ)(ρ) ⊕ Vh
2 +d(ρ)(ρ) different from Vh

2 +d(ρ)(ρ)
(2) Assume ρ is not an endpoint or center of the Dynkin diagram. Then I is a point 

on E(ρ) and no other exceptional component if and only if V (I) is a nonzero ir
reducible H-submodule (≃ ρ) of Vh

2 −d(ρ)(ρ) ⊕ Vh
2 +d(ρ)(ρ) different from Vh

2 −d(ρ)(ρ)
and Vh

2 +d(ρ)(ρ)
(3) Assume ρ is the center of the Dynkin diagram. Then I is a point on E(ρ) and no 

other exceptional component if and only if V (I) is a nonzero irreducible component 
of Vh

2 (ρ) different from {S1 · Vh
2 −1(ρ′)}[ρ] for any ρ′ adjacent to ρ

(4) Assume ρ and ρ′ are adjacent with d(ρ′) = d(ρ) + 1 ≥ 2 (so neither are the center). 
Then I ∈ P (ρ, ρ′) if and only if

V (I) = Vh
2 −d(ρ)(ρ) ⊕ Vh

2 +d(ρ′)(ρ′)

(5) Assume ρ is the center of the Dynkin diagram and ρ′ is adjacent to ρ. Then I ∈
P (ρ, ρ′) if and only if

V (I) = {S1 · Vh
2 −1(ρ′)}[ρ] ⊕ Vh

2 +1(ρ′).

Here S1 · Vi(ρ) means the H-submodule of 𝔪/𝔫 generated by (x, y) and Vi(ρ), and W [ρ]
refers to the ρ-summands of W , a homogenous H-submodule of 𝔪/𝔫.

A.2. G(2m,m, 2)

Let m be an integer greater than or equal to 3 and let G := G(2m,m, 2). The sin
gularity C2/H is of type Dm+2. A presentation of G is given in [36, p. 36], where G is 
generated by

r1 =
(︃

0 1
1 0

)︃
, tm =

(︃
−1 0
0 1

)︃
, and s =

(︃
0 ε−1

ε 0

)︃
. (A.2.2)

A presentation of H is given in [25, Ch. 13], where H is generated by

σ =
(︃
ε 0
0 ε−1

)︃
, τ =

(︃
0 1
−1 0

)︃
,

where ε := eπi/m is an 2m-th root of unity. Note that these presentations of H and G
agree because σ = r1s and τ = r1t

m.
In order to construct our semiorthogonal decomposition, we need to know the rami

fication locus of C2/H → C2/G as well as the A-action on Y . In particular, we need to 
understand which points in Y are fixed by A and which exceptional components of Y
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are fixed or exchanged by A, allowing us to deduce how many exceptional components 
are in Y/A.

In this section, we will compute the following information about the action of A, which 
we summarize in a proposition. The module Vm+1(ρm) consists of two ρm-summands, 
which are denoted by V ′

m+1(ρm) and V ′′
m+1(ρm).

Proposition A.2.3. Let G := G(2m,m, 2). The following statements describe the action 
of A on the exceptional locus of Y .

(a) When m is even, the action of A maps each of the m+2 exceptional curves to itself.
(b) When m is odd, A interchanges E(ρ′m+1) and E(ρ′m+2), and maps each of the other 

m exceptional curves to themselves.
(c) When m is odd or even, A fixes E(ρk) pointwise for each even value of k with 

2 ≤ k ≤ m.
(d) When m is odd or even, A fixes exactly two points of E(ρk) for each odd value of 

k with 1 ≤ k ≤ m. When k ̸= 1,m, these are the points of intersection with the 
adjacent exceptional curves. When k = 1, one fixed point is the intersection of E(ρ1)
with E(ρ2) and when k = m is odd one fixed point is the intersection of E(ρm) with 
E(ρm−1).

(e) Within the exceptional locus, we have the following isolated fixed points:

(i) When m is odd or even, there an isolated fixed point on E(ρ1) given by V2(ρ′1) =
(xy).

(ii) When m is odd, there is an isolated fixed point on E(ρm) given by V ′
m+1(ρm) =

(xm+1, ym+1).
(iii) When m is even, E(ρ′m+1) and E(ρ′m+2) each contain an isolated fixed point 

given by Vm(ρ′m+1) = (xm − im+2ym) and Vm(ρ′m+2) = (xm + im+2ym) respec
tively.

To compute the A-action, we need a representative α of the nontrivial element of A, 
which we can conveniently take to be tm from the generators of G (A.2.2), which acts 
by sending x to −x and fixing y.

A.2.1. E(ρ′1)
ρ′1 is an endpoint of the Dynkin diagram a distance of m−1 from the center. By Theo

rem A.1(1), the points of E(ρ′1) away from its intersection with E(ρ2) are given by proper 
H-invariant submodules of V2(ρ′1) ⊕ V2m(ρ′1) other than V2m(ρ′1). By Theorem A.1(4), 
its intersection with E(ρ2) is given by V2m(ρ′1) ⊕ V3(ρ2). By [25], we have

V2(ρ′1) = (xy), V2m(ρ′1) = (x2m − y2m), V3(ρ2) = (x2y, xy2).

We may directly verify that α fixes V2(ρ′1)⊕V2m(ρ′1), V2(ρ′1), and V2m(ρ′1)⊕V3(ρ2), and 
thus α is an involution of E(ρ′1) that fixes its point of intersection with E(ρ2) as well as 
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the point given by V2(ρ′1) = (xy). To determine whether α fixes all points on E(ρ′1), we 
check its action on a third point. We check that (xy + (x2m − y2m)) is an H-module in 
FixedLocus.m2 and thus corresponds to a point on E(ρ′1), and we confirm that:

α(xy + (x2m − y2m)) = (xy − (x2m − y2m)) ̸= (xy + (x2m − y2m)).

Thus A does not fix E(ρ′1) pointwise.

A.2.2. E(ρk) for 2 ≤ k ≤ m− 1
In these cases, ρk is not an endpoint of the Dynkin diagram and is a distance of m−k

from the center. By Theorem A.1(1), the points of E(ρk) away from its intersections 
with E(ρk−1) and E(ρk+1) are given by proper H-invariant submodules of Vk+1(ρk) ⊕
V2m−k+1(ρk) other than Vk+1(ρk) and V2m−k+1(ρk). By Theorem A.1(4), its intersection 
with E(ρk−1) is given by Vk+1(ρk) ⊕ V2m−k+2(ρk−1) and its intersection with E(ρk+1)
is given by V2m−k+1(ρk) ⊕ Vk+2(ρk+1), except in the case of k = m − 1 in which case 
the intersection of E(ρm−1) with E(ρm) is given by Vm+2(ρm−1) ⊕ V ′′

m+1(ρm). By [25], 
we have

Vk+1(ρk) = (xky, xyk), V2m−k+1(ρk) = (x2m−k+1, y2m−k+1), V ′′
m+1 = (xmy, xym).

We may directly verify that α fixes each of the above ideals, and thus it is an involution 
of E(ρk) that fixes its two points of intersection with other exceptional components. To 
determine whether α fixes every point in E(ρk), we examine the action of α on a third 
point on E(ρk): We check that (xky + y2m−k+1, xyk + (−1)kx2m−k+1) ⊊ Vk+1(ρk) ⊕
V2m−k+1(ρk) is an H-module in FixedLocus.m2 and we confirm that

α((xky + y2m−k+1, xyk + (−1)kx2m−k+1)) = ((−1)kxky + y2m−k+1, xyk + x2m−k+1),

and thus α fixes this point when k is even and does not fix it k is odd. Thus A fixes 
E(ρk) pointwise when k is even, but does not when k is odd.

A.2.3. E(ρ′m+1) and E(ρ′m+2)
ρ′m+1 and ρ′m+2 are endpoints of the Dynkin diagram a distance of 1 from the center. 

By Theorem A.1(1) the points on E(ρ′m+1) and E(ρ′m+2) away from their intersection 
with E(ρm) are given by nontrivial, proper H-submodules of Vm(ρ′m+1) ⊕ Vm+2(ρ′m+1)
other than Vm+2(ρ′m+1) and nontrivial, proper H-submodules of Vm(ρ′m+2)⊕Vm+2(ρ′m+2)
other than Vm+2(ρ′m+2), respectively. By A.1(5), the intersections of E(ρ′m+1) and 
E(ρ′m+2) with E(ρm) are given by Vm+2(ρ′m+1) ⊕ [S1 · Vm(ρ′m+1)] and Vm+2(ρ′m+2) ⊕
[S1 · Vm(ρ′m+2)]. By [25, p. 217], we have

Vm(ρ′m+1) = (xm − im+2ym), Vm+2(ρ′m+1) = (xy(xm + im+2ym)),

Vm(ρ′m+2) = (xm + im+2ym), Vm+2(ρ′m+2) = (xy(xm − im+2ym)).
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We may directly verify that when m is odd, α exchanges Vm(ρ′m+1)⊕ Vm+2(ρ′m+1) with 
Vm(ρ′m+2) ⊕ Vm+2(ρ′m+2) but, when m is even, α fixes each of them.

Thus, when m is odd, α exchanges the components E(ρ′m+1) and E(ρ′m+2), but when 
m is even, α acts on an involution on each of E(ρ′m+1) and E(ρ′m+2).

In the case when m is even, we may verify directly that the following points are 
fixed by α: Vm(ρ′m+1) = (xm − im+2ym) and Vm(ρ′m+2) = (xm + im+2ym). However, 
to determine whether α is a nontrivial involution on E(ρ′m+1) and E(ρ′m+2), we check 
additional points on each of them. We confirm that ((xm− im+2ym)+xy(xm+ im+2ym))
is an H-module and thus a point on E(ρ′m+1). Then, because m is even,

α((xm − im+2ym) + xy(xm + im+2ym)) = ((xm − im+2ym) − xy(xm + im+2ym))

̸= ((xm − im+2ym) + xy(xm + im+2ym)).

We also confirm that ((xm + im+2ym) + xy(xm − im+2ym)) is an H-module and thus 
corresponds to a point on E(ρ′m+2).

α((xm + im+2ym) + xy(xm − im+2ym)) = ((xm + im+2ym) − xy(xm − im+2ym))

̸= ((xm + im+2ym) + xy(xm − im+2ym)).

Thus, when m is even, A does not pointwise fix E(ρ′m+1) and E(ρ′m+2).

A.2.4. E(ρm)
We may deduce the nature of the action of A on E(ρm) from the previous sections. 

For any value of m, the action is an involution.
For odd m, since E(ρ′m+1) and E(ρ′m+2) are exchanged, the involution is nontrivial. 

The point of intersection between E(ρm) and E(ρm−1) is fixed, and we may verify directly 
that the other fixed point is V ′

m+1(ρm) = (xm+1, ym+1).
For even m, since α fixes the points of intersection of E(ρm) with its three adjacent 

components, the action of A fixes E(ρm).

A.3. G12

In this section, we set G := G12. The following are generators of G [36] where ε :=
e2πi/8 is an 8-th root of unity:

r3 = 1 √
2

(︃
1 −1
−1 −1

)︃
, r′3 = 1 √

2

(︃
1 1
1 −1

)︃
, r′′3 =

(︃
0 ε
ε7 0

)︃
.

The intersection H := G ∩ SL(2,C) is the binary tetrahedral group and the singularity 
C/H is of type E6. The group H is generated by the following elements, matching the 
notation given in [25, §14]:
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σ =
(︃
i 0
0 −i

)︃
, τ =

(︃
0 1
−1 0

)︃
, μ = 1 √

2

(︃
ε7 ε7

ε5 ε

)︃
.

We note that these embeddings are compatible because τ = r3r
′
3, τ2 = −I, σ =

−(r3r′3r′′3 )2, and μ = (r′3r3)(r′3r′′3 )2. We choose the following element α ∈ G \H, which 
we will use to compute the action of A. We have chosen this particular representative 
for convenience since it is diagonal and so acts by scaling each of x and y; it is not a 
reflection, but is the product of a reflection with a rotation, as we show:

α =
(︃
ε 0
0 ε3

)︃
=

(︃
0 ε

ε−1 0

)︃
·
(︃

0 ε4

1 0

)︃

The matrices act on the coordinate vectors x and y in Ito and Nakamura’s description 
of the points of Y .

The exceptional locus of Y consists of six exceptional curves: E(ρ′1), E(ρ′′1), E(ρ′2), 
E(ρ′′2), E(ρ2), and E(ρ3). Their intersections are given by the Dynkin diagram Fig. 10.

The results of this section are summarized in the following proposition:

Proposition A.3.1. Let G := G12. The action of A on the exceptional locus of Y :

(a) exchanges E(ρ′1) with E(ρ′′1) and E(ρ′2) with E(ρ′′2).
(b) restricts to an involution on E(ρ2) and E(ρ3).
(c) fixes each point on E(ρ2) and fixes one additional point on E(ρ3) given by:

V (I) = (p1(−ω2φ + ψ), p3(−φ + ψ), p2(−ωφ + ψ)).

In this case, we use the following notation for generators of H-modules in the excep
tional locus of Y [25, p. 227], where ω := e2πi/3:

p1 = x2 − y2, p2 = x2 + y2,

p3 = xy, T = p1p2p3, W = φψ.

q1 = x3 + (2ω + 1)xy2, q2 = y3 + (2ω + 1)x2y,

s1 = x3 + (2ω2 + 1)xy2, s2 = y3 + (2ω2 + 1)x2y,

φ = p2
2 + 4ωp2

3, ψ = p2
2 + 4ω2p2

3,

γ1 = x5 − 5xy4, γ2 = y5 − 5x4y.

The action of α fixes and exchanges some of these generators up to scaling. In particular, 
we will use that α(φ) = −ψ, α(ψ) = −φ, α(s1) = (t5 − t)q1, and α(s2) = t3q2, α(γ1) =
ε5γ1, and α(γ2) = ε7γ2, where t := e

2πi
24 , a primitive 24-th root of unity.
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A.3.1. E(ρ′1) and E(ρ′′1)
Both ρ′1 and ρ′′1 are endpoints of the Dynkin diagram Fig. 10 a distance of 2 from the 

center. By Theorem A.1(1), the points of E(ρ′1) and E(ρ′′1), away from their intersections, 
are given by proper H-invariant submodules of V4(ρ′1)⊕V8(ρ′1) and V4(ρ′′1)⊕V8(ρ′′1) other 
than V8(ρ′1) and V8(ρ′′1). By Theorem A.1(4), the intersections of E(ρ′1) with E(ρ′2) and 
of E(ρ′′1) with E(ρ′′2) are given by V5(ρ′2) ⊕ V8(ρ′1) and V5(ρ′′2) ⊕ V8(ρ′′1). In terms of the 
generators above, we have:

V4(ρ′1) ⊕ V8(ρ′1) = (φ) ⊕ (ψ2) V4(ρ′′1) ⊕ V8(ρ′′1) = (ψ) ⊕ (φ2)

V5(ρ′2) ⊕ V8(ρ′1) = (xφ, yφ) ⊕ (ψ2) V5(ρ′′2) ⊕ V8(ρ′′1) = (xψ, yψ) ⊕ (φ2)

By our observations above on the action of α, α exchanges the generators of V4(ρ′1), 
V8(ρ′1), and V4(ρ′2) with those of V4(ρ′′1), V8(ρ′′1), and V4(ρ′′2) up to multiplication by 
scalars. Thus, the action of A exchanges E(ρ′1) with E(ρ′′1), including the points of 
intersection with E(ρ′2) and E(ρ′′2).

A.3.2. E(ρ′2) and E(ρ′′2)
Now consider the curves E(ρ′2) and E(ρ′′2). The representations ρ′2 and ρ′′2 are both a 

distance of 1 from the center of the Dynkin diagram and so by Theorem A.1(2), their 
points, away from intersections with other curves, are given by the proper H-invariant 
submodules of the following modules, respectively:

V5(ρ′2) ⊕ V7(ρ′2) = (xφ, yφ) ⊕ (s1ψ, s2ψ), V5(ρ′′2) ⊕ V7(ρ′′2) = (xψ, yψ) ⊕ (q1φ, q2φ).

Again, the action of α exchanges, up to scalars, the generators of V5(ρ′2) and V7(ρ′2) with 
those of V5(ρ′′2) and V7(ρ′′2), and so, the action of A exchanges E(ρ′2) with E(ρ′′2).

A.3.3. E(ρ2)
Before examining the intersections of E(ρ3) with E(ρ′2) and E(ρ′′2), we analyze 

E(ρ2). To carry out this analysis, we parametrize E(ρ2). By Theorem A.1(1), the non
intersection points of E(ρ2) are given by H-invariant submodules, other than V7(ρ2), of 
the following:

V5(ρ2) ⊕ V7(ρ2) = (γ1, γ2) ⊕ (s1φ, s2φ). (A.3.2)

We parametrize E(ρ2) by setting each projective point [a : b] with a ̸= 0 in correspon
dence with the submodule (aγ1 + bs2φ, aγ2 − bs1φ), and thus [0 : 1] corresponds to the 
point of intersection with E(ρ3). It remains to prove that (aγ1 + bs2φ, aγ2 − bs1φ) is 
H-invariant. We check that it is fixed by each of τ , σ, and μ: The action of τ exchanges 
the generators up to scalars, the action of σ scales each generator, and μ maps to a linear 
combination of the generators, as can be verified in FixedLocus.m2:
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τ(aγ1 + bs2φ) = −aγ2 + bs1φ, σ(aγ1 + bs2φ) = i(aγ1 + bs2φ),

τ(aγ2 − bs1φ) = aγ1 + bs2φ, σ(aγ2 − bs1φ) = −i(aγ2 − bs1φ),

μ(aγ1 + bs2φ) = −i+1
2 (aγ1 + bs2φ) − i+1

2 (aγ2 − bs1φ),

μ(aγ2 − bs1φ) = −i+1
2 (aγ1 + bs2φ) + i+1

2 (aγ2 − bs1φ).

We also verify in FixedLocus.m2 that α fixes (A.3.2), meaning that the action of A
restricts to an involution of E(ρ2). In order to check that α fixes every point on E(ρ2), 
we furthermore verify that it fixes the three points [1 : 1], [1 : −1], and [1 : 0].

This argument implies that the intersection point between E(ρ2) and E(ρ3) must also 
be fixed by the action of A, which we nevertheless check to aid in our parametrization 
of E(ρ3). By Theorem A.1(5), the intersection of E(ρ2) and E(ρ3) corresponds to the 
module denoted {S1 · V5(ρ2)}[ρ3] ⊕ V7(ρ2), where {S1 · V5(ρ2)}[ρ3] is the summand of 
S1 ·V5(ρ2) that is isomorphic to ρ3 as an H-module. Since S1 ·V5(ρ2) has four generators 
xγ1, yγ1, xγ2, yγ2, we need only identify a 3-dimensional invariant subspace. We claim 
that:

{S1 · V5(ρ2)[ρ3] = (yγ1 + xγ2, xγ1 + yγ2, xγ1 − yγ2).

In FixedLocus.m2, it is verified this submodule is H-invariant and further checked that 
{S1 · V5(ρ2)}[ρ3] ⊕ V7(ρ2) is fixed by α, as expected.

A.3.4. E(ρ3)
By Theorem A.1(3), the non-intersection points of E(ρ3) correspond to proper sub

modules of V6(ρ3) ≃ ρ⊕2
3 distinct from {S1 ·V5(ρ′)}[ρ3] for any E(ρ′) intersecting E(ρ3). 

Since V6(ρ3) is fixed by A as shown in FixedLocus.m2, the action of A restricts to an 
involution on V6(ρ3). We parametrize E(ρ3) by setting each projective point [a : b] with 
a ̸= 0, b ̸= 0 in correspondence with the following submodule:

((x2 −y2)(aφ+ bψ), xy(aωφ+ bψ), (x2 +y2)(aω2φ+ bψ)) ⊆ V6(ρ3) = (x2, xy, y2) · (φ,ψ).

Since V5(ρ′2) = (xφ, yφ) and V5(ρ′′2) = (xψ, yψ) the points of intersection of E(ρ3) with 
E(ρ′2) and E(ρ′′2) are parametrized by [1 : 0] and [0 : 1], respectively. It is checked in 
FixedLocus.m2 that [1 : ω] corresponds to the point of intersection with E(ρ2).

Finally, we examine the action of A on E(ρ3). The following actions are checked in 
FixedLocus.m2:

α(φ) = −ψ, α(ψ) = −φ, α(x2) = ix2, α(xy) = −xy, α(y2) = −iy2

α((x2 − y2)(aφ + bψ)) = −iω(x2 + y2)(bω2φ + aω2ψ)

α(xy(aωφ + bψ)) = −xyω2(bωφ + aω2ψ)

α((x2 + y2)(aω2φ + bψ)) = i(x2 − y2)(bφ + aω2ψ)
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Thus, A acts on E(ρ3) by sending [a : b] to [bω : a]. As expected, A exchanges the points 
of intersection with E(ρ′2) and E(ρ′′2). Its fixed points are [1 : ω] (the point of intersection 
with E(ρ2)) and [1 : t20] = [1 : −ω], which is not a point of intersection with another 
exceptional curve. We list the specific module V (I) in Proposition A.3.1(c).

A.4. G13

In this section, we set G := G13. A presentation of G is given in [36, p. 88], where G
is generated by

r =
(︃

1 0
0 −1

)︃
, r3 = 1 √

2

(︃
1 −1
−1 −1

)︃
, r′′3 =

(︃
0 ε
ε7 0

)︃
.

The intersection H := G ∩ SL(2,C) is the binary octahedral group and the singularity 
C2/H is of type E7. A presentation of this group is given in [25, Ch. 15], where H is 
generated by

σ =
(︃
i 0
0 −i

)︃
, τ =

(︃
0 1
−1 0

)︃
, μ = 1 √

2

(︃
ε7 ε7

ε5 ε

)︃
, κ =

(︃
ε 0
0 ε7

)︃
,

where ε : = eπi/4 is a primitive eighth root of unity. We note that these embeddings are 
compatible because rr3r = r′3 and so this group contains the embedding of G12 used in 
Appendix A.3 and thus σ, τ , and μ. Finally, note that κ = r′′3 rτ .

In this section, we will compute the following information about the action of A, which 
we summarize in a proposition:

Proposition A.4.1. Let G := G13. The action of A on the exceptional locus of Y :

(a) maps every exceptional curve to itself;
(b) pointwise fixes E(ρ2), E(ρ′2), and E(ρ4);
(c) fixes exactly two points on E(ρ′1), E(ρ′′2), E(ρ3), and E(ρ′3), leaving a single isolated 

(within the exceptional locus) fixed point on E(ρ′1) and E(ρ′′2) given by V6(ρ′1) = (T )
and V8(ρ′′2) = (W ) respectively.

Since G12 is contained in G13, we can compute the action of A on the exceptional 
locus using the same choice of α ∈ G \H with

α =
(︃
ε 0
0 ε3

)︃
.

The exceptional locus of Y consists of seven exceptional curves: E(ρ′1), E(ρ2), E(ρ′2), 
E(ρ′′2), E(ρ3), E(ρ′3), and E(ρ4). We will show in our computations that E(ρ′1), E(ρ2), 
E(ρ′2), E(ρ′′2), E(ρ3), and E(ρ′3) are fixed by α, though not necessarily pointwise -- α
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restricts to an involution on each of them. This result implies that the central component, 
E(ρ4), must be pointwise fixed, as its three points of intersection with E(ρ3), E(ρ′3) and 
E(ρ′′2) must be fixed.

We will need several of the same invariants from Proposition A.3.1 so we include the 
relevant ones here for convenience:

φ = (x2 + y2)2 + 4ωx2y2, ψ = (x2 + y2)2 + 4ω2x2y2, W = φψ,

T = x5y − xy5, χ = x12 − 33x8y4 − 33x4y8 + y12 F = χT

where ω = e2πi/3 is a primitive cube root of unity.

A.4.1. E(ρ′1)
ρ′1 is an endpoint of the Dynkin diagram Fig. 11 a distance of 3 from the center. By 

Theorem A.1(1), points on E(ρ′1) away from its intersection with E(ρ′2) are given by 
nontrivial, proper H-invariant submodules of V6(ρ′1) ⊕ V12(ρ′1) other than V12(ρ′1). By 
Theorem A.1(4), its intersection with E(ρ′2) corresponds to V12(ρ′1) ⊕ V7(ρ′2). By [25, 
p.235], we have

V6(ρ′1) = (T ) V12(ρ′1) = (χ)

We check in FixedLocus.m2 that α fixes V6(ρ′1) ⊕ V12(ρ′1) and thus is an involution on 
E(ρ′1). Furthermore, α fixes V6(ρ′1) and V12(ρ′1) ⊕ V7(ρ′2), so to confirm whether α fixes 
E(ρ′1) pointwise we simply need to check whether it fixes a third point on E(ρ′1). In 
FixedLocus.m2, we confirm that (T + χ) is indeed an H-submodule of V6(ρ′1)⊕ V12(ρ′1)
and check that

α((T + χ)) = (T − χ) ̸= (T + χ).

Thus, A does not pointwise fix E(ρ′1).

A.4.2. E(ρ2)
ρ2 is an endpoint of the Dynkin diagram and is a distance of 2 from the center. By 

Theorem A.1(1), points on E(ρ2) away from its intersection with E(ρ3) are given by 
nontrivial, proper H-invariant submodules of V7(ρ2) ⊕ V11(ρ2) other than V11(ρ2). By 
Theorem A.1(4), its intersection with E(ρ3) corresponds to V11(ρ2) ⊕ V8(ρ3). By [25, 
p.235], we have

V7(ρ2) = (7x4y3 + y7,−x7 − 7x3y4)

V11(ρ2) = (x10y − 6x6y5 + 5x2y9,−xy10 + 6x5y6 − 5x9y2)

For readability, we will set
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f1 = 7x4y3 + y7 f2 = −x7 − 7x3y4

g1 = x10y − 6x6y5 + 5x2y9 g2 = −xy10 + 6x5y6 − 5x9y2

We check in FixedLocus.m2 that α fixes V7(ρ2) ⊕ V11(ρ2) and thus is an involution on 
E(ρ2). To confirm whether α fixes E(ρ2) pointwise we simply need to check whether it 
fixes a third point on E(ρ2). In FixedLocus.m2, we confirm that (f1 + g1, f2 + g2) is 
indeed an H-submodule of V7(ρ2) ⊕ V11(ρ2) and check that

α((f1 + g1, f2 + g2)) = (f1 + g1, f2 + g2).

Thus, A pointwise fixes E(ρ2).

A.4.3. E(ρ′2)
ρ′2 is not an endpoint of the Dynkin diagram and is a distance of 2 from the center. By 

Theorem A.1(2), points on E(ρ′2) away from its intersection with E(ρ′1) and E(ρ′3) are 
given by nontrivial, proper H-invariant submodules of V7(ρ′2)⊕V11(ρ′2) other than V7(ρ′2)
and V11(ρ′2). By Theorem A.1(4), its intersection with E(ρ′1) corresponds to V12(ρ′1) ⊕
V7(ρ′2) and its intersection with E(ρ′3) corresponds to V11(ρ′2) ⊕ V8(ρ′3). By [25, p.235], 
we have

V7(ρ′2) = (xT, yT ) V11(ρ′2) = (−11x8y3 − 22x4y7 + y11, 11x3y8 + 22x7y4 − x11)

For readability, let

v1 = −11x8y3 − 22x4y7 + y11 v2 = 11x3y8 + 22x7y4 − x11

We check in FixedLocus.m2 that α fixes V7(ρ′2) ⊕ V11(ρ′2) and thus is an involution on 
E(ρ′2). To confirm whether α fixes E(ρ′2) pointwise we simply need to check whether it 
fixes a third point on E(ρ′2). In FixedLocus.m2, we confirm that (xT + v1, yT + v2) is 
indeed an H-submodule of V7(ρ′2) ⊕ V11(ρ′2) and check that

α((xT + v1, yT + v2)) = (xT + v1, yT + v2).

Thus, A pointwise fixes E(ρ′2).

A.4.4. E(ρ′′2)
ρ′′2 is an endpoint of the Dynkin diagram Fig. 11 and is a distance of 1 from the center. 

By Theorem A.1(1), points on E(ρ′′2) away from its intersection with E(ρ4) are given 
by nontrivial, proper H-invariant submodules of V8(ρ′′2)⊕V10(ρ′′2) other than V8(ρ′′2). By 
Theorem A.1(5), its intersection with E(ρ4) corresponds to V10(ρ′′2) ⊕ [S1 · V8(ρ′′2)]. We 
note that there was a small typo in the generators of V12(ρ2) in [25, p.235] but with that 
typo corrected we get
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V8(ρ′′2) = (ψ2,−φ2), V10(ρ′′2) = (ψT,−φT )

We check in FixedLocus.m2 that α fixes V8(ρ′′2) ⊕ V10(ρ′′2) and thus is an involution on 
E(ρ′′2). To confirm whether α fixes E(ρ′′2) pointwise we simply need to check whether it 
fixes a third point on E(ρ′′2). In FixedLocus.m2, we confirm that (ψ2 + φT, φ2 + ψT ) is 
indeed an H-submodule of V8(ρ′′2) ⊕ V10(ρ′′2) and check that

α((ψ2 + φT, φ2 + ψT )) = (ψ2 − φT, φ2 − ψT ) ̸= (ψ2 + φT, φ2 + ψT ).

Thus, A does not pointwise fix E(ρ′′2).

A.4.5. E(ρ3)
ρ3 is not an endpoint of the Dynkin diagram Fig. 11 and is a distance of 1 from 

the center. By Theorem A.1(2), points on E(ρ3) away from its intersection with E(ρ2)
and E(ρ4) are given by nontrivial, proper H-invariant submodules of V8(ρ3) ⊕ V10(ρ3)
other than V8(ρ3) and V10(ρ3). By Theorem A.1(4) and (5), its intersection with E(ρ2)
corresponds to V11(ρ2)⊕V8(ρ3) and its intersection with E(ρ4) corresponds to V10(ρ3)⊕
[S1 · V8(ρ3)]. By [25, p.235], we have

V8(ρ3) = (−2xy7 − 14x5y3, x8 − y8, 2x7y + 14x3y5)

V10(ρ3) = (40x10 + 60x6y4, 5x9y + 54x5y5 + 5xy9, 60x4y6 + 4y10)

For readability, we write our generators as

h1 = −2xy7 − 14x5y3 h2 = x8 − y8 h3 = 2x7y + 14x3y5

j1 = 40x10 + 60x6y4 j2 = 5x9y + 54x5y5 + 5xy9 j3 = 60x4y6 + 4y10

We check in FixedLocus.m2 that α fixes V8(ρ3) ⊕ V10(ρ3) and thus is an involution on 
E(ρ3). To confirm whether α fixes E(ρ3) pointwise we simply need to check whether it 
fixes a third point on E(ρ3). In FixedLocus.m2, we confirm that (h1+j1, h2+j2, h3+j3)
is indeed an H-submodule of V8(ρ3) ⊕ V10(ρ3) and check that

α((h1 + j1, h2 + j2, h3 + j3)) = (h1 − j1, h2 − j2, h3 − j3)) ̸= (h1 + j1, h2 + j2, h3 + j3)).

Thus, A does not pointwise fix E(ρ3).

A.4.6. E(ρ′3)
ρ′3 is not an endpoint of the Dynkin diagram Fig. 11 and is a distance of 1 from 

the center. By Theorem A.1(2), points on E(ρ′3) away from its intersection with E(ρ′2)
and E(ρ4) are given by nontrivial, proper H-invariant submodules of V8(ρ′3) ⊕ V10(ρ′3)
other than V8(ρ′3) and V10(ρ′3). By Theorem A.1(4) and (5), its intersection with E(ρ′2)
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corresponds to V11(ρ′2)⊕V8(ρ′3) and its intersection with E(ρ4) corresponds to V10(ρ′3)⊕
[S1 · V8(ρ′3)]. By [25, p.235], we have

V8(ρ′3) = (x2T, xyT, y2T )

V10(ρ′3) = (−3x8y2 − 14x4y6 + y10, 8x7y3 + 8x3y7, x10 − 14x6y4 − 3x2y8)

For readability we set

u1 = −3x8y2 − 14x4y6 + y10 u2 = 8x7y3 + 8x3y7 u3 = x10 − 14x6y4 − 3x2y8

We check in FixedLocus.m2 that α fixes V8(ρ′3) ⊕ V10(ρ′3) and thus is an involution on 
E(ρ′3). To confirm whether α fixes E(ρ′3) pointwise we simply need to check whether 
it fixes a third point on E(ρ′3). In FixedLocus.m2, we confirm that (x2T + u1, xyT +
u2, y

2T + u3) is indeed an H-submodule of V8(ρ′3) ⊕ V10(ρ′3) and check that

α((x2T + u1, xyT + u2, y
2T + u3)) = (x2T − u1, xyT − u2, y

2T − u3)

̸= (x2T + u1, xyT + u2, y
2T + u3).

Thus, A does not pointwise fix E(ρ′3).

A.5. G22

In this section, we set G := G22. Then H is the binary icosahedral group and the 
singularity C2/H is of type E8. A presentation of H with the following generators is 
given in [25, Ch. 15], where ε : = e2πi/5 is a primitive fifth root of unity:

σ = −
(︃
ε3 0
0 ε2

)︃
, τ = 1 √

5

(︃
−(ε− ε4) ε2 − ε3

ε2 − ε3 ε− ε4

)︃
.

A presentation of G is given in [36, p. 88], but the embedding of G∩ SL(2,C) is distinct 
from that given in [25]. To extend the embedding of H in [25] to an embedding of G, we 
add the following choice of α as a generator:

α = i √
5

(︃
−ε + ε4 ε2 − ε3

ε2 − ε3 ε− ε4

)︃
.

It is shown in [36, p. 90] that the center of G22 is the cyclic group of order 4 and in [15] 
that in fact G22 is the unique extension of H ≃ SL2(F5) by Z/2 whose center contains 
an element of order 4. Thus to show that σ, τ and α in fact generate G22, it suffices to 
observe that ατ−1 = iI (this is verified in FixedLocus.m2).

In this section, we compute the following information about the action of A, which 
we summarize in a proposition:
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Proposition A.5.1. Let G := G22. The action of A on the exceptional locus of Y :

(a) maps every exceptional curve to itself;
(b) pointwise fixes E(ρ2), E(ρ′2), E(ρ4), and E(ρ6);
(c) fixes exactly two points on E(ρ3), E(ρ′′3), E(ρ′4), and E(ρ5), leaving a single isolated 

(within the exceptional locus) fixed point on E(ρ′′3) given by V14(ρ′′3).

It will also be convenient to use the following invariants from [25, p.239]:

σ1 = x10 + 66x5y5 − 11y10 σ2 = −11x10 − 66x5y5 + y10

τ1 = x10 − 39x5y5 − 26y10 τ2 = −26x10 + 39x5y5 + y10

The exceptional locus of H-Hilb(C2) consists of eight curves: E(ρ2), E(ρ′2), E(ρ3), 
E(ρ′′3), E(ρ4), E(ρ′4), E(ρ5), and E(ρ6). Their intersections are shown in Fig. 12. We 
will show computationally that E(ρ2), E(ρ′2), E(ρ3), E(ρ′′3), E(ρ4), E(ρ′4), and E(ρ5)
are fixed by α, though not necessarily pointwise -- α restricts to an involution on each of 
them. These results imply that the central component, E(ρ6), must be pointwise fixed, as 
its three points of intersection with E(ρ′′3), E(ρ′4) and E(ρ5) must be fixed. Furthermore, 
since every point of intersection is fixed and α acts on each exceptional component E(ρ)
as in involution, to check whether α pointwise fixes E(ρ) or not, we simply need to find 
a non-intersection point on E(ρ) and check whether α fixes that point.

A.5.1. E(ρ2)
ρ2 is an endpoint of the Dynkin diagram a distance of 4 from the center. By Theo

rem A.1(1), points on E(ρ2) away from its intersection with E(ρ3) are given by nontrivial, 
proper H-invariant submodules of V11(ρ2) ⊕ V19(ρ2) other than V19(ρ2). By Theo
rem A.1(4), its intersection with E(ρ3) corresponds to V19(ρ2)⊕ V12(ρ3). By [25, p.241], 
we have

V11(ρ2) = (xσ1,−yσ2)

V19(ρ2) = (−57x15y4 + 247x10y9 + 171x5y14 + y19,

− x19 + 171x14y5 − 247x9y10 − 57x4y15)

For readability let

c1 = xσ1 c2 = −yσ2

d1 = −57x15y4+ 247x10y9+ 171x5y14+ y19 d2 = −x19+ 171x14y5− 247x9y10− 57x4y15

We check in FixedLocus.m2 that α fixes V11(ρ2) ⊕ V19(ρ2) and thus is an involution on 
E(ρ2). To confirm whether α fixes E(ρ2) pointwise we simply need to check whether it 
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fixes a third point on E(ρ2). In FixedLocus.m2, we check that (c1 + d1, c2 − d2) is an 
H-submodule of V11(ρ2) ⊕ V19(ρ2) and we confirm that

α((c1 + d1, c2 − d2)) = (c1 + d1, c2 − d2).

Thus A fixes E(ρ2) pointwise.

A.5.2. E(ρ′2)
ρ′2 is an endpoint of the Dynkin diagram a distance of 2 from the center. By Theo

rem A.1(1), points on E(ρ2) away from its intersection with E(ρ′4) are given by nontrivial, 
proper H-invariant submodules of V13(ρ′2) ⊕ V17(ρ′2) other than V17(ρ′2). By Theo
rem A.1(4), its intersection with E(ρ′4) corresponds to V17(ρ′2)⊕ V14(ρ′4). By [25, p.241], 
we have

V13(ρ′2) = (y3τ2,−x3τ1)

V17(ρ′2) = (x17 + 119x12y5 + 187x7y10 + 17x2y15,

− 17x15y2 + 187x10y7 − 119x5y12 + y17)

For readability let

u1 = y3τ2 u2 = −c3τ1

v1 = x17+ 119x12y5+ 187x7y10+ 17x2y15 v2 = −17x15y2+ 187x10y7− 119x5y12+ y17

We check in FixedLocus.m2 that α fixes V13(ρ′2) ⊕ V17(ρ′2) and thus is an involution on 
E(ρ′2). To confirm whether α fixes E(ρ′2) pointwise we simply need to check whether it 
fixes a third point on E(ρ′2). In FixedLocus.m2, we check that (u1 + v1, u2 + v2) is an 
H-module of V13(ρ′2) ⊕ V17(ρ′2) and we confirm that

α((u1 + v1, u2 + v2)) = (u1 + v1, u2 + v2).

Thus A fixes E(ρ′2) pointwise.

A.5.3. E(ρ3)
ρ3 is not an endpoint of the Dynkin diagram and is a distance of 3 from the center. 

By Theorem A.1(2), points on E(ρ3) away from its intersections with E(ρ2) and E(ρ4)
are given by nontrivial, proper H-invariant submodules of V12(ρ3) ⊕ V18(ρ3) other than 
V12(ρ3) and V18(ρ3). By Theorem A.1(4), its intersection with E(ρ2) corresponds to 
V19(ρ2) ⊕ V12(ρ3) and its intersection with E(ρ4) corresponds to V18(ρ3) ⊕ V13(ρ4). By 
[25, p.241], we have

V12(ρ3) = (x2σ1,
xy

2 
(σ1 + σ2), y2σ2)
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V18(ρ3) = (−12x15y3 + 117x10y8 + 126x5y13 + y18, 45x14y4 − 130x9y9 − 45x4y14,

x18 − 126x13y5 + 117x8y10 + 12x3y15)

For readability let

f1 = x2σ1 g1 = −12x15y3 + 117x10y8 + 126x5y13 + y18

f2 = xy

2 
(σ1 + σ2) g2 = 45x14y4 − 130x9y9 − 45x4y14

f3 = y2σ2 g3 = x18 − 126x13y5 + 117x8y10 + 12x3y15

We check in FixedLocus.m2 that α fixes V12(ρ3) ⊕ V18(ρ3) and thus is an involution on 
E(ρ3). To confirm whether α fixes E(ρ3) pointwise we simply need to check whether it 
fixes a third point on E(ρ3). In FixedLocus.m2, we check that (f1 + g1, f2 + g2, f3 + g3)
is an H-module of V12(ρ3) ⊕ V18(ρ3) and we confirm that

α((f1 + g1, f2 + g2, f3 + g3)) = (f1 − g1, f2 − g2, f3 − g3) ̸= (f1 + g1, f2 + g2, f3 + g3).

Thus, A does not fix E(ρ3) pointwise.

A.5.4. E(ρ′′3)
ρ′′3 is an endpoint of the Dynkin diagram a distance of 1 from the center. By Theo

rem A.1(1), points on E(ρ′′3) away from its intersection with E(ρ6) are given by nontrivial, 
proper H-invariant submodules of V14(ρ′′3) ⊕ V16(ρ′′3) other than V16(ρ′′3). By Theo
rem A.1(5), its intersection with E(ρ6) corresponds to V16(ρ′′3) ⊕ [S1 · V16(ρ′′3)]. By [25, 
p.241], we have

V14(ρ′′3) = (x14 − 14x9y5 + 49x4y10, 7x12y2 − 48x7y7 − 7x2y12, 49x10y4 + 14x5y9 + y14)

V16(ρ′′3) = (3x15y − 143x10y6 − 39x5y11 + y16,−25x13y3 − 25x3y13,

x16 + 39x11y5 − 143x6y10 − 3xy15)

For readability let

m1 = x14 − 14x9y5 + 49x4y10 n1 = 3x15y − 143x10y6 − 39x5y11 + y16

m2 = 7x12y2 − 48x7y7 − 7x2y12 n2 = −25x13y3 − 25x3y13

m3 = 49x10y4 + 14x5y9 + y14 n3 = x16 + 39x11y5 − 143x6y10 − 3xy15

We check in FixedLocus.m2 that α fixes V14(ρ′′3) ⊕ V16(ρ′′3) and thus is an involution 
on E(ρ′′3). We also check that α fixes V14(ρ′′3), which is thus a fixed point on E(ρ′′3). To 
confirm whether α fixes E(ρ′′3) pointwise we simply need to check whether it fixes a third 
point on E(ρ′′3). In FixedLocus.m2, we check that (m1 + n1,m2 + n2,m3 + n3) is an 
H-module of V14(ρ′′3) ⊕ V16(ρ′′3) and we confirm that
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α((m1+n2,m2+n2,m3+n3)) = (m1−n1,m2−n2,m3−n3) ̸= (m1+n1,m2+n2,m3+n3).

Thus, A does not fix E(ρ′′3) pointwise.

A.5.5. E(ρ4)
ρ4 is not an endpoint of the Dynkin diagram and is a distance of 2 from the center. 

By Theorem A.1(2), points on E(ρ4) away from its intersections with E(ρ3) and E(ρ5)
are given by nontrivial, proper H-invariant submodules of V13(ρ4) ⊕ V17(ρ4) other than 
V13(ρ4) and V17(ρ4). By Theorem A.1(4), its intersection with E(ρ3) corresponds to 
V18(ρ3) ⊕ V13(ρ4) and its intersection with E(ρ5) corresponds to V17(ρ4) ⊕ V14(ρ5). By 
[25, p.241], we have

V13(ρ4) =(x3σ1,−3x12y + 22x7y6 − 7x2y11,−7x11y2 − 22x6y7 − 3xy12, y3σ2)

V17(ρ4) =(−2x15y2 + 52x10y7 + 91x5y12 + y17, 10x14y3 − 65x9y8 − 35x4y13,

− 35x13y4 + 65x8y9 + 10x3y14,−x17 + 91x12y5 − 52x7y10 − 2x2y15)

For readability let

h1 = x3σ1 j1 = −2x15y2 + 52x10y7 + 91x5y12 + y17

h2 = −3x12y + 22x7y6 − 7x2y11 j2 = 10x14y3 − 65x9y8 − 35x4y13

h3 = −7x11y2 − 22x6y7 − 3xy12 j3 = −35x13y4 + 65x8y9 + 10x3y14

h4 = y3σ2 j4 = −x17 + 91x12y5 − 52x7y10 − 2x2y15

We check in FixedLocus.m2 that α fixes V13(ρ4) ⊕ V17(ρ4) and thus is an involution 
on E(ρ4). To confirm whether α fixes E(ρ4) pointwise we simply need to check whether 
it fixes a third point on E(ρ4). We check that (h1 + j1, h2 + j2, h3 + j3, h4 + j4) is an 
H-module in FixedLocus.m2 and we confirm that

α((h1 + j1, h2 + j2, h3 + j3, h4 + j4)) = (h1 + j1, h2 + j2, h3 + j3, h4 + j4).

Thus, A fixes E(ρ4) pointwise.

A.5.6. E(ρ′4)
ρ′4 is not an endpoint of the Dynkin diagram and is a distance of 1 from the center. 

By Theorem A.1(2), points on E(ρ′4) away from its intersections with E(ρ′2) and E(ρ6)
are given by nontrivial, proper H-invariant submodules of V14(ρ′4) ⊕ V16(ρ′4) other than 
V14(ρ′4) and V16(ρ′4). By Theorem A.1(4) and (5), its intersection with E(ρ′2) corresponds 
to V17(ρ′2)⊕V14(ρ′4) and its intersection with E(ρ6) corresponds to V16(ρ′4)⊕[S1 ·V16(ρ′4)]. 
By [25, p.241], we have
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V14(ρ′4) =(xy3τ2,−x4τ1, y
4τ2,−x3yτ1)

V16(ρ′4) =(−2x15y + 77x10y6 − 84x5y11 + y16, 35x12y4 + 110x7y9 + 15x2y14,

15x14y2 − 110x9y7 + 35x4y12,−x16 − 84x11y5 − 77x6y10 − 2xy15)

For readability let

a1 = xy3τ2 b1 = −2x15y + 77x10y6 − 84x5y11 + y16

a2 = −x4τ1 b2 = 35x12y4 + 110x7y9 + 15x2y14

a3 = y4τ2 b3 = 15x14y2 − 110x9y7 + 35x4y12

a4 = −x3yτ1 b4 = −x16 − 84x11y5 − 77x6y10 − 2xy15

We check in FixedLocus.m2 that α fixes V14(ρ′4) ⊕ V16(ρ′4) and thus is an involution 
on E(ρ′4). To confirm whether α fixes E(ρ′4) pointwise we simply need to check whether 
it fixes a third point on E(ρ′4). In FixedLocus.m2, we check that (a1 + b2, a2 + b1, a3 +
b4, a4 + b3) is an H-module of V14(ρ′4) ⊕ V16(ρ′4) and we confirm that

α((a1 + b2, a2 + b1, a3 + b4, a4 + b3)) = (a1 − b2, a2 − b1, a3 − b4, a4 − b3)

̸= (a1 + b2, a2 + b1, a3 + b4, a4 + b3).

Thus A does not fix E(ρ′4) pointwise.

A.5.7. E(ρ5)
ρ5 is not an endpoint of the Dynkin diagram and is a distance of 1 from the center. 

By Theorem A.1(2), points on E(ρ5) away from its intersections with E(ρ4) and E(ρ6)
are given by nontrivial, proper H-invariant submodules of V14(ρ5) ⊕ V16(ρ5) other than 
V14(ρ5) and V16(ρ5). By Theorem A.1(4) and (5), its intersection with E(ρ4) corresponds 
to V17(ρ4)⊕V14(ρ5) and its intersection with E(ρ6) corresponds to V16(ρ5)⊕[S1 ·V16(ρ5)]. 
By [25, p.241], we have

V14(ρ5) = (x4σ1,−2x13y + 33x8y6 − 8x3y11,−5x12y2 − 5x2y12,

− 8x11y3 − 33x6y8 − 2xy13,−y4σ2)

V16(ρ5) = (64x15y + 728x10y6 + y16, 66x14y2 + 676x9y7 − 91x4y12,

56x13y3 + 741x8y8 − 56x3y13,

91x12y4 + 676x7y9 − 66x2y14, x16 + 728x6y10 − 64xy15)

For readability let

k1 = x4σ1 l1 = 64x15y + 728x10y6 + y16

k2 = −2x13y + 33x8y6 − 8x3y11 l2 = 66x14y2 + 676x9y7 − 91x4y12
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k3 = −5x12y2 − 5x2y12 l3 = 56x13y3 + 741x8y8 − 56x3y13

k4 = −8x11y3 − 33x6y8 − 2xy13 l4 = 91x12y4 + 676x7y9 − 66x2y14

k5 = −y4σ2 l5 = x16 + 728x6y10 − 64xy15

We check in FixedLocus.m2 that α fixes V14(ρ5) ⊕ V16(ρ5) and thus is an involution 
on E(ρ5). To confirm whether α fixes E(ρ5) pointwise we simply need to check whether 
it fixes a third point on E(ρ5). We check that (k1 + l1, k2 + l2, k3 + l3, k4 + l4, k5 − l5) is 
an H-module in FixedLocus.m2 and we confirm that A does not fix E(ρ5) pointwise:

α((k1 + l1, k2 + l2, k3 + l3, k4 + l4, k5 − l5)) ̸= (k1 + l1, k2 + l2, k3 + l3, k4 + l4, k5 − l5).

Appendix B. McKay quivers for 𝑮 and 𝑯 = 𝑮 ∩ SL(2,C)
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Fig. 8. Am−1 and A′
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Fig. 9. Dm+2 and D′
m+2 Dynkin diagrams. 
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Fig. 10. E6 and E′
6 Dynkin diagrams. 
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Fig. 11. E7 and E′
7 Dynkin diagrams. 
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Fig. 12. E8 and E′
8 Dynkin diagrams. 
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