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Cycle packing is a fundamental problem in optimization, graph theory, and algorithms. Motivated by recent
advancements in finding vertex-disjoint paths between a specified set of vertices that either minimize the total
length of the paths [Björklund and Husfeldt, ICALP 2014; Mari et al., SODA 2024] or request the paths to be
shortest [Lochet, SODA 2021], we consider the following cycle packing problems: Min-Sum Cycle Packing
and Shortest Cycle Packing.

In Min-Sum Cycle Packing, we try to find, in a weighted undirected graph, : vertex-disjoint cycles of min-
imum total weight. Our first main result is an algorithm that, for any fixed : , solves the problem in polynomial
time. We complement this result by establishing the W[1]-hardness of Min-Sum Cycle Packing parameterized
by : . The same results hold for the version of the problem where the task is to find : edge-disjoint cycles.

Our second main result concerns Shortest Cycle Packing, which is a special case of Min-Sum Cycle
Packing that asks to find a packing of : shortest cycles in a graph.We prove this problem to be Fixed-Parameter
Tractable (FPT) when parameterized by : on weighted planar graphs. We also obtain a polynomial kernel
for the edge-disjoint variant of the problem on planar graphs. Whether Min-Sum Cycle Packing is FPT on
planar graphs, or Shortest Cycle Packing on general graphs, remains open.

A preliminary version of these results appeared in the proceedings of SODA 2025.
Tuukka Korhonen—Work was performed while at University of Bergen, Norway.
Kirill Simonov—Work was performed while at Hasso Plattner Institute, University of Potsdam, Germany.
This work is supported by the Research Council of Norway under BWCA project (grant no. 314528), the Franco-Norwegian
AURORA project (grant no. 349476), the UKRI EPSRC (grant EP/V044621/1), the Swarnajayanti Fellowship (grant
DST/SJF/MSA-01/2017-18), and the ERC Horizon 2020 research and innovation programme (grant no. 819416).
Authors’ Contact Information: Matthias Bentert, Universitetet i Bergen, Bergen, Norway; e-mail: matthias.bentert@uib.no;
Fedor V. Fomin, Department of Informatics, Universitetet i Bergen, Bergen, Norway; e-mail: fedor.fomin@uib.no; Petr
A. Golovach (corresponding author), Universitetet i Bergen, Bergen, Norway; e-mail: Petr.Golovach@uib.no; Tuukka
Korhonen, University of Copenhagen, Kobenhavn, Denmark; e-mail: tuko@di.ku.dk; William Lochet, Université de
Montpellier, Montpellier, France; e-mail: william.lochet@gmail.com; Fahad Panolan, University of Leeds, Leeds, United
Kingdom; e-mail: f.panolan@leeds.ac.uk; M. S. Ramanujan,  University of Warwick, Coventry, United Kingdom; e-mail:
R.Maadapuzhi-Sridharan@warwick.ac.uk; Saket Saurabh, The Institute of Mathematical Sciences, Chennai, India and
Universitetet i Bergen, Bergen, Norway; e-mail: saket@imsc.res.in; Kirill Simonov, University of Bergen, Bergen, Norway;
e-mail: Kirill.Simonov@uib.no.

This work is licensed under Creative Commons Attribution International 4.0.

© 2025 Copyright held by the owner/author(s).
ACM 1549-6333/2025/10-ART8
https://doi.org/10.1145/3765285

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 8. Publication date: October 2025.

https://orcid.org/0009-0009-0705-972X
https://orcid.org/0000-0003-1955-4612
https://orcid.org/0000-0002-2619-2990
https://orcid.org/0000-0003-0861-6515
https://orcid.org/0000-0002-8711-1170
https://orcid.org/0000-0001-6213-8687
https://orcid.org/0000-0002-2116-6048
https://orcid.org/0000-0001-7847-6402
https://orcid.org/0000-0001-9436-7310
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3765285


8:2 M. Bentert et al.

CCS Concepts: • Mathematics of computing→ Graph algorithms; • Theory of computation→ Pa-
rameterized complexity and exact algorithms; Problems, reductions and completeness;

Additional Key Words and Phrases: vertex-disjoint cycles, planar graphs, parameterized complexity

ACM Reference format:
Matthias Bentert, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, William Lochet, Fahad Panolan, M. S.
Ramanujan, Saket Saurabh, and Kirill Simonov. 2025. Packing Short Cycles. ACM Trans. Algor. 22, 1, Article 8
(October 2025), 35 pages.
https://doi.org/10.1145/3765285

1 Introduction
We consider the following problem.

We also consider the variant of the problem, called Min-Sum Edge-Disjoint Cycle Packing, where
the task is to find a packing of edge-disjoint cycles of total length at most ℓ .

Min-Sum Cycle Packing could be considered a “relaxation” of the notoriously difficult Min-Sum
Disjoint Paths. Recall that in the Min-Sum Disjoint Paths problem, we are given a graph with a
set of terminal pairs (B1, C1), . . . , (B: , C: ). The task is either to connect all terminal pairs (B8 , C8 ) by
pairwise vertex-disjoint paths of minimum total length or to decide that there is no set of pairwise
disjoint paths. Of course, the existence of a polynomial-time algorithm solving Min-Sum Disjoint
Paths for fixed : would imply a polynomial-time algorithm solving Min-Sum Cycle Packing.
Unfortunately, no such algorithm is known. Björklund and Husfeldt [4] give an algorithm with
running time O(=11) for finding two disjoint B8-C8-paths of minimal total length in an =-vertex
graph. For : > 2, the complexity of the problem is a long-standing open problem. Whether the
problem is polynomial-time solvable for : = 3 remains open even on planar graphs. The main
reason for our interest in Min-Sum Cycle Packing was the lack of any progress on the complexity
of Min-Sum Disjoint Paths.

Our first theorem establishes the membership of Min-Sum Cycle Packing and Min-Sum Edge-
Disjoint Cycle Packing in complexity class XP when parameterized by : . More precisely, we
show the following.

Theorem 1. Min-Sum Cycle Packing and Min-Sum Edge-Disjoint Cycle Packing can be solved
in =O(:6 ) time, where = is the number of vertices in the graph.

Further, we show thatTheorem 1 can be generalized for the variant of the problemwith individual
constraints on the length of the cycles in a packing. Formally, in Min-Vector Cycle Packing,
we are given a graph � , a positive integer : , and : positive integers ℓ1, . . . , ℓ: . Then the task is to
find : (vertex) disjoint cycles �1, . . . ,�: so that the length of �8 is upper-bounded by ℓ8 for each
8 ∈ {1, . . . , :}. We prove that Min-Vector Cycle Packing and the variant where we want the
cycles to be edge-disjoint, called Edge-Disjoint Min-Vector Cycle Packing, can also be solved
in =O(:6 ) time.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 8. Publication date: October 2025.
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We complement Theorem 1 by a computational lower bound, showing that the existence of an
Fixed-Parameter Tractable (FPT) algorithm for Min-Sum Cycle Packing is unlikely.

Theorem 2. Min-Sum Cycle Packing is W[1]-hard in subcubic graphs with unit edge weights
when parameterized by : .

Because the lower bound is obtained for subcubic graphs, the result also holds for Min-Sum
Edge-Disjoint Cycle Packing.

A special but still fascinating case of Min-Sum Disjoint Paths is the Disjoint Shortest Paths
problem. Here, we want to connect terminal pairs by vertex-disjoint shortest paths. Equivalently,
this is the variant of Min-Sum Disjoint Paths, where we request to connect terminals by disjoint
paths whose total length does not exceed

∑
1≤8≤: dist(B8 , C8 ).

The “relaxation” of Disjoint Shortest Paths as a cycle packing is the variant of Min-Sum Cycle
Packing where all the cycles in the packing should be shortest cycles, that is, ℓ = :6 where 6 is the
girth of � . (We remind that the girth of a weighted graph is the minimum length of its cycles.)

For example, if all edges of � are of weight one and the girth of � is three, then Shortest Cycle
Packing becomes the Triangle Packing problem.

By Theorem 1, Shortest Cycle Packing is solvable in polynomial time for a fixed number : of
cycles. We do not know whether it is W[1]-hard or FPT parameterized by : . Our next theorem
establishes the fixed-parameter tractability of Shortest Cycle Packing on planar graphs.

Theorem 3. Shortest Cycle Packing is solvable in time :O(: ) · =O(1) on planar graphs with =

vertices.

We do not knowwhether Shortest Cycle Packing admits a polynomial kernel on planar graphs.
However, the methods developed for the proof of Theorem 3 allow establishing a polynomial kernel
for the Edge-Disjoint Shortest Cycle Packing problem, the version of Shortest Cycle Packing
where the cycles should be edge-disjoint.

Theorem 4. Edge-Disjoint Shortest Cycle Packing on planar graphs admits a polynomial kernel
such that the output graph has O(:2) vertices.

The kernelization algorithm also implies that Edge-Disjoint Shortest Cycle Packing can be
solved in :O(: ) · =O(1) time on planar graphs.

Due to duality in planar graphs, Edge-Disjoint Shortest Cycle Packing in planar graphs is
equivalent to finding : disjoint minimum edge cuts; here we assume that two edge cuts (-1, .1)
and (-2, .2) are assumed to be disjoint if � (-1, .1) ∩ � (-2, .2) = ∅. Here, for each 8 ∈ [2], (-8 , .8 )
partitions the vertex set and � (-8 , .8 ) denotes the set of edges with exactly one endpoint in-8 . Thus,
Theorem 4 implies the existence of a polynomial kernel for the problem of packing edge-disjoint
minimum cuts. We observe that this problem parameterized by : on general graphs is W[1]-hard
even when restricted to graphs with unit edge weights.

Remarks on Impact of the Weight Function. Our algorithm in Theorem 1 is strongly polynomial
for each : . This rules out standard modifications used for converting weighted problems to the
unweighted case, for instance, by subdividing edges according to their weight which could be
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exponential in the graph size. In fact, we do not use the fact that the weights are integers and this
result can easily be generalized to positive rationals (or even positive reals assuming the real RAM
model). The same holds for Theorem 3.

1.1 Overview of the Methods
Here, we give a high-level overview over how we achieve the different results.

1.1.1 Min-Sum Cycle Packing. The algorithms for Min-Sum Cycle Packing, Min-Sum Edge-
Disjoint Cycle Packing, Min-Vector Cycle Packing, and Edge-Disjoint Min-Vector Cycle
Packing are based on a combinatorial result about the number of paths in graphs that are no-
instances for the Min-Sum Cycle Packing problem. In particular, we prove that if an edge-weighted
graph � does not contain a collection of : pairwise vertex-disjoint cycles of total length at most
ℓ , then the number of paths of length at most ℓ in � is at most =O(:5 ) (Lemma 3.6). Given this
lemma, obtaining =O(:6 ) -time algorithms for these problems is quite simple as shown in the next
paragraph.

In the case of Min-Sum Cycle Packing, we start enumerating paths of length at most ℓ , and
if there are more than =Ω (:5 ) of them, then we know that it is a yes-instances. Otherwise, from
the set of all paths of length at most ℓ , we obtain the set of all cycles of length at most ℓ and then
enumerate all collections of : of them in time =O(:6 ) . To generalize this to Min-Vector Cycle
Packing, we assume that ℓ1 is the smallest of the length bounds, apply the same enumeration
strategy with the parameters ℓ1 and : , and then branch on the =O(:5 ) enumerated cycles, to again
obtain the =O(:6 ) running time. These algorithms generalize to the edge-disjoint case simply by
applying the same combinatorial result about vertex-disjoint cycles, but inserting the additional
check when branching that the cycles we choose are edge-disjoint.

Thus, the main technical ingredient of the proof of Theorem 1 is the proof of this combinatorial
result (Lemma 3.6). We sketch the ideas here. First, consider the case of : = 1. If� does not contain
a cycle of length at most ℓ , then the number of paths of length at most ℓ/2 in � is at most

(
=
2

)
,

because having two distinct paths of length at most ℓ/2 between the same pair of vertices would
imply the existence of a cycle of length at most ℓ . Then, we observe that for any integer 2 ≥ 1 and
length-bound ℓ0, if � contains at most # paths of length at most ℓ0, then � contains at most # 2

paths of length 2 · ℓ0, and therefore conclude that� contains at most O(=4) paths of length at most
ℓ .

Now, we extend the above argument to the general case of : > 1. First, let �̃ be a subgraph of
� comprising a maximal collection of pairwise vertex-disjoint cycles each of length at most ℓ/: .
By our assumption, �̃ consists of at most : − 1 cycles, and the graph � −+ (�̃) does not contain
a cycle of length at most ℓ/: . We then consider a path % of length at most ℓ in � . By considering
how the path % intersects with �̃ , we divide it into segments of two types: maximal subpaths of
% that are internally vertex-disjoint with + (�̃), and maximal subpaths of % that are contained in
�̃ .

We next argue that if the number of such segments is more than Ω(:4), then we can in fact con-
struct a family of : vertex-disjoint cycles of total length at most ℓ , contradicting the premise of the
lemma. In order to do so, we show that if there is a cycle� in �̃ such that % “enters and exits”� more
than Ω(:3) times, then we can find the claimed collection of : vertex-disjoint cycles in % ∪� . The
proof of this proceeds by “cleaning up” the interactions of % and � into one of three cases with the
help of the Erdös-Szekeres theorem, and then demonstrating a simple construction in each of
the cases.

After proving that % decomposes into O(:4) segments that are either internally vertex-disjoint
with �̃ or contained in �̃ , it remains to show that there are only =O(: ) possible choices for each
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Fig. 1. A solution C = {�1, . . . ,�5} and the tree representing C.

segment and since % was chosen arbitrarily, this would in turn allow us to bound the number
of possibilities for % . For subpaths internally vertex-disjoint with �̃ we use the property that
+ (�) −+ (�̃) does not contain a cycle of length at most ℓ/: , implying that � −+ (�̃) contains at
most =O(: ) paths of length at most ℓ . For subpaths contained in �̃ , it is simple to observe that there
are at most O(=2) possible choices for them, as each path in �̃ is defined by the choice of two
vertices and the choice of a side to travel inside a cycle. This concludes the informal overview of
the proof of Theorem 1.

1.1.2 Cycle Packing on Planar Graphs. The proof ofTheorem 3 is based on constructing a laminar
family of disjoint cycles representing all shortest cycles and decomposing this family into a tree.
We use random separation on such trees to “filter out” the most “promising” parts and combine
branching arguments with an FPT algorithm for computing Independent Set in map graphs. In
more detail:

Let � be a weighted planar graph � of (weighted) girth 6. Without loss of generality, we can
assume that each vertex and edge of� is included in a shortest cycle. Otherwise, we can preprocess
the graph in polynomial time and delete vertices and edges that do not appear in a shortest
cycle. Consider a plane embedding of � . Packing facial cycles of � is equivalent to computing an
Independent Set in a map graph. Recall that a map graph is the intersection graph of connected
and internally disjoint regions of the Euclidean plane [10]. Indeed, facial cycles of � are vertex-
disjoint if and only if the corresponding vertices in the map graph induced by � are not adjacent.
For computing an Independent Set in a map graph, Chen [9] gave an EPTAS; the approximation
algorithm of Chen immediately implies an FPT algorithm for Independent Set on map graphs,
and hence for packing shortest facial cycles. The first natural approach to try would be to reduce
Shortest Cycle Packing to Independent Set in map graphs. This approach fails because a
solution may contain many non-facial cycles. The main challenge in obtaining the algorithm for
Shortest Cycle Packing is identifying such cycles. However, we will use Chen’s algorithm as a
subroutine for an appropriate base case.

In order to handle non-facial cycles, we construct a rooted tree whose nodes are shortest cycles,
called a Laminar Shortest Cycle Tree (LSCT). Constructions with similar properties are used
to approximate the maximum size of cycle packings for uncrossable families of cycles [24, 35, 36],
as well as for finding the minimum cycle basis for a planar graph (see, e.g., [26]). However, our
algorithm needs a new decomposition with specific properties tailored to the properties of shortest
cycles.

Suppose that C is a family of vertex-disjoint shortest cycles of � . Then C is a laminar family of
cycles. Some of these cycles may be nested. This means that a rooted tree can represent C naturally
(see Figure 1). We assume that the leaves of the tree are facial cycles in the embedding.
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It is convenient to assume that in the plane embedding of � the frontier of the external face is a
shortest cycle. (It is not difficult to prove that such an embedding exists and it can be constructed
in polynomial time.) We fix such an embedding and construct an LSCT tree T (�). The root of the
tree is the facial cycle of the external face. We construct the tree by recursively processing shortest
cycles that are current leaves of the already constructed tree.

If � is a facial cycle, it becomes a leaf of T (�). When � is not a facial cycle, we consider two
possibilities:

(i) � contains two vertices B and C (called the poles) that are at a distance 6/2 from each other in
� and such that there is an B-C-path % of length 6/2 whose edges and internal vertices are in the
internal face of � . Then we say that � is a splittable cycle and we create an (-node of T (�) from � .
We find an inclusion-maximal family P = {%0, %1, . . . , %ℓ } of internally vertex-disjoint B-C-paths of
length 6/2 where %0 and %ℓ are the paths in � and the other paths have their edges and internal
vertices in the internal face of � . We assume the paths are indexed in the clockwise order from B .
We define the cycles formed by the consecutive paths in P (see Figure 3(a)) to be the children of � .
We show that the poles (if they exist) must be unique, so this step is well defined.

(ii) If� has no poles, we call such cycles unsplittable and we make a* -node of T (�) from� . We
find an inclusion-maximal laminar family C = {�1 . . . ,�ℓ } of shortest cycles distinct from � such
that (i) the cycles of C are inside � in the sense that they have no elements in the external face
of � , (ii) for every 8, 9 ∈ [ℓ], cycles �8 and � 9 are outside each other, that is, � 9 has no elements in
the internal face of �8 and vice versa, and (iii) the cycles of C are maximal in the sense that for
each 8 ∈ [ℓ], there is no shortest cycle �′ distinct from � and �8 such that �8 is inside �′. We set
the cycles of C to be the children of � in T (�) (see Figure 3(b)).

We prove that an LSCT can be constructed in polynomial time and it contains all shortest cycles
in the following sense: every shortest cycle � is either a node of T (�) or the tree has an (-node (
with poles B and C such that � is formed by two distinct paths of P constructed for ( .

The bottleneck in directly using LSCT at this point to find a solution, is dealing with (-nodes and
cycles formed by paths of P as these cycles are not nodes of the tree. To avoid having to consider
such cycles in the solution, we argue that the random separation technique [8] can be used to
highlight pairs of paths in the families P that could be cycles in a potential solution. We then
modify T (�) in such a way that for the obtained tree T ∗, every cycle of some potential solution is
a node of T ∗.

Finally, we use a recursive branching algorithm to find a solution. First, we check in FPT time
whether there is a solution formed by the facial cycles using the algorithm for Independent Set
on map graphs. Otherwise, if we fail to find a solution formed by facial cycles, we conclude that
for a yes-instance, there should be a cycle � in T ∗ and a solution containing � such that (i) the
only cycles in this solution that are in the internal face of � are facial cycles and (ii) the solution
contains : ′ ≥ 1 facial cycles that are inside� . The crucial observation is that we can choose� to be
one of the lowest nodes in T ∗ having the property that there are : ′ vertex-disjoint facial cycles
inside � , and we have at most : possibilities to choose � for a given : ′. Here, again we can use
the algorithm for Independent Set on map graphs as a black box. We branch on O(:2) possible
choices of : ′ and � . For each branch, we delete the vertices and edges of � that are in the inner
face of � and modify T ∗ respectively, decrease the parameter by : ′, and recurse. This results in the
algorithm solving Shortest Cycle Packing in time :O(: ) · =O(1) , which proves Theorem 3.

In the proof of Theorem 4 which provides a polynomial kernel for Edge-Disjoint Shortest
Cycle Packing on planar graphs, we use a similar approach. In this case the solution is easier
because when the LSCT has at least 4: leaves, that is, shortest facial cycles of � , the subgraph of
the dual graph induced by the shortest facial cycles of � has an independent set of size at least :
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(by the Four-Color Theorem). This means that (�,:) is a yes-instance of Edge-Disjoint Shortest
Cycle Packing. In the case when the number of leaves is less than 4: , we can mark O(:2) nodes of
T (�) in such a way that a yes-instance has a solution containing only marked shortest cycles or
cycles formed by paths from P constructed for (-nodes. The idea behind the marking is to choose
the lowest “useful” cycles. This leads to a kernel for Edge-Disjoint Shortest Cycle Packing with
O(:2) vertices and edges and proves Theorem 4.

1.2 Related Work
The complexity of Min-Sum Disjoint Paths is widely open on general and planar graphs. Björklund
and Husfeldt [4] give a randomized algorithm with running time O(=11) for finding two disjoint
B8-C8-paths of minimum total length. It is not known whether the problem is polynomial-time
solvable for : = 3. On planar graphs, several polynomial-time algorithms are known for the special
cases when the terminals belong to two faces [7, 11, 13, 30]. Recently, Mari et al. [32] designed an
algorithm for this problem with running time :2O(: ) when the input graph is a grid.

Disjoint Shortest Paths is NP-hard when : is part of the input [17] and W[1]-hard parame-
terized by : [2]. Lochet [31] gives a polynomial-time algorithm for any fixed : in undirected graphs
without weights, see also Bentert et al. [2] for an improvement of the running time of Lochet’s
algorithm. Whether Disjoint Shortest Paths is FPT parameterized by : on planar graphs is an
interesting open question.

Very little was known about the complexity of Min-Sum Cycle Packing and Shortest Cycle
Packing. Both problems are NP-complete when restricted to planar graphs [23, 25, 27] because they
generalize the well-known triangle packing problem. Rautenbach and Regen [33] show that for
graphs of girth 6 ∈ {4, 5}, Shortest Cycle Packing and Edge-Disjoint Shortest Cycle Packing
allow polynomial-time algorithms for instances with maximum degree 3 but are APX-hard for
instances with maximum degree 4. For each 6 ≥ 6, both problems are APX-hard already for graphs
with maximum degree 3.

Approximation algorithms of ratio (3 + Y) for Shortest Cycle Packing and Edge-Disjoint
Shortest Cycle Packing on planar graphs follow from the framework of Schlomberg et al. [36]
for uncrossing families of cycles.

When the sizes of the cycles are bounded, cycle packing is a special case of the subgraph packing
problem. For such problems a plethora of parameterized and kernelization algorithms are known
[12]. However, all these algorithms work only for cycles of constant sizes. For vertex-disjoint (or
edge-disjoint) cycle packing (without conditions on the lengths of cycles), a polynomial kernel on
planar graphs, as well as more general classes of sparse graphs, are known [5, 21].

2 Preliminaries
For a positive integer ? , we use [?] to denote the set {1, . . . , ?}, [?]0 for the set {0, 1, . . . , ?}, and
we define [?, @] = {?, . . . , @} for integers ? < @.

Graphs. In this article, we consider finite undirected graphs and refer to the textbook by Diestel
[14] for undefined notion. By default, the considered graphs are simple but we may allow multiple
edges and loops in some occasions. Let � = (+ , �) be a graph. We use + (�) and � (�) to denote
the set of vertices and the set of edges of � , respectively. We use = and< to denote the number of
vertices and edges in � , respectively, unless this creates confusion, in which case we clarify the
notation explicitly. For a vertex subset * ⊆ + , we use � [* ] to denote the subgraph of � induced
by the vertices in * and � − * to denote � [+ \ * ]. For two graphs �1 and �2, the intersection
� =�1 ∩�2 is the graph with + (�) =+ (�1) ∩+ (�2) and � (�) = � (�1) ∩ � (�2), and the union
� =�1∪�2 is the graphwith+ (�) =+ (�1)∪+ (�2) and � (�) = � (�1)∪� (�2). A path % = E0 · · · Eℓ
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is a graph with vertex set {E0, E1, . . . , Eℓ } and edge set {{E8−1, E8 } | 8 ∈ [ℓ]}; the vertices E0 and Eℓ
are the endpoints of % and the other vertices are internal. For a path with endpoints B and C , we say
that % is an B-C-path. For a path % , a subgraph ' of % with a single connected component is called a
subpath of % and we use the notation ' ⊆ % to denote this. In the case of unweighted graphs, the
length of % is defined as the number of edges, and if we are given edge weights F : � (�) → Z>0

then the length of % = E0 · · · Eℓ is F (%) =
∑ℓ

8=1F ({E8−1, E8 }). A cycle � is a path along with an
additional edge between the two endpoints. The length of a cycle is defined in the same way as the
length of a path. The girth of � is the minimum length of a cycle in � ; 6(�) = +∞ if � is a forest.
An (edge) cut of � is a partition (-,. ) of + (�); the set of edges � (-,. ) = {{G,~} | G ∈ -, ~ ∈ . }
is the cut-set. If � is a weighted graph then the weight of a cut is the weight of its cut-set.

A graph is planar if it can be drawn on the plane such that its edges do not cross each other. Such
a drawing is called a planar embedding of the graph and a planar graph with a planar embedding is
called a plane graph. The planarity of a graph can be tested and a planar embedding can be found (if
it exists) in linear time by the results of Hopcroft and Tarjan [28]. The faces of a plane graph are the
open regions of the plane bounded by a set of edges and that do not contain any other vertices or
edges. The outer region is the external face and the other faces are internal. The set of vertices and
edges appearing on the closed walk bounding the face forms its frontier. Given a plane graph� , we
use � (�) to denote its set of faces. If a cycle � of � is the frontier of some face, then � is a facial
cycle. For a plane graph� , its dual graph�∗ = (� (�), �∗) has the set of faces of� as the vertex set,
and for each 4 ∈ � (�), �∗ has the dual edge 4∗ whose endpoints are either two faces having 4 on
their frontiers or 4∗ is a self-loop at 5 if 4 is in the frontier of exactly one face 5 (i.e., 4 is a bridge of
�). Observe that �∗ is not necessarily simple even if � is a simple graph. If � is a weighted graph
then it is standard to define the weights of the edges of the dual graph by setting the weight of 4∗
to be equal to the weight of 4 for each edge 4 ∈ � (�). It is well known that finding a shortest cycle
for a plane graph is equivalent to computing a minimum cut for the dual graph. More precisely, �
is a shortest cycle in a weighted plane graph � if and only if the set {4∗ | 4 ∈ � (�)} of dual edges
is a cut-set of �∗ of minimum weight. In a weighted graph, the distance between two vertices is
the weight of a minimum-weight path between them.

The celebrated four-color theorem [1, 34] implies the following observation about independent
sets in planar graphs. Observation 2.1. An =-vertex planar graph has an independent set of size at

least =
4 .

A map graph is the intersection graph of a finite family of simply connected and internally
disjoint regions of the plane. In this article, we assume that each map graph � is given by its
embedding, that is, by a plane graph � such that + (�) ⊆ � (� ) and two vertices 51, 52 ∈ + (�) are
adjacent if and only if the frontiers of the faces 51 and 52 of � share at least one point (a vertex or
an edge of � ). It was shown by Chen [9] that Independent Set is FPT on map graphs.1

Proposition 2.2 ([9]). It can be decided in 2O(: ) · |+ (� ) |2 time whether a map graph � given by
its embedding � has an independent set of size at least : .

Parameterized Complexity. We refer to the textbooks by Cygan et al. [12] and by Downey
and Fellows [16] for a detailed introduction. Here, we just briefly remind the main notions. A
parameterized problem is a language ! ⊆ Σ∗ × N where Σ∗ is a set of strings over a finite alphabet
Σ. An input of a parameterized problem is a pair (G, :) where G is a string over Σ and : ∈ N
is a parameter. A parameterized problem is FPT if it can be solved in 5 (:) · |G |O(1) time for

1The result of Chen [9] is stated as an EPTAS but the approximation algorithm immediately implies an FPT algorithm.
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some computable function 5 . The complexity class FPT contains all fixed-parameter tractable
parameterized problems. A parameterized problem is in the class XP if it can be solved in |G | 5 (: )
time for a computable function 5 . A kernelization algorithm or kernel for a parameterized problem
! is a polynomial-time algorithm that takes as its input an instance (G, :) of ! and returns an
instance (G ′, : ′) of the same problem such that (i) (G, :) ∈ ! if and only if (G ′, : ′) ∈ ! and (ii)
|G ′ | + : ′ ≤ 5 (:) for some computable function 5 : N → N. The function 5 is the size of the kernel;
a kernel is polynomial if 5 is a polynomial.

We conclude this section with two auxiliary results used in our article. We need the following
classical result of Erdős and Szekeres [18].

Proposition 2.3 (Special case of Erdős-Szekeres Theorem [18]). Each sequence of more than
(A − 1)2 distinct real numbers contains either an increasing subsequence of length A or a decreasing
subsequence of length A .

For kernelization for Edge-Disjoint Shortest Cycle Packing on planar graphs, we use the
algorithm of Frank and Tardos [22] to compress the weights as it is standard for kernelization
algorithms [19].

Proposition 2.4 ([22]). There is an algorithm that, given a vector F ∈ QA and an integer # , in
(strongly) polynomial time finds a vector F ∈ ZA with ‖F ‖∞ ≤ 24A

3
# A (A+2) such that sign(F · 1) =

sign(F · 1) for all vectors 1 ∈ ZA with ‖1‖1 ≤ # − 1.

3 Min-Sum Cycle Packing Is in XP
In this section, we prove Theorem 1 and show that Min-Sum Cycle Packing and Min-Sum Edge-
Disjoint Cycle Packing can be solved in =O(:6 ) time. The algorithms for these two problems are
based on the same argument. We therefore focus on Min-Sum Cycle Packing and then explain
how to extend the algorithm for the case of edge-disjoint cycles.

First, we show that if a path and a cycle intersect in a complicated way, then we can construct a
collection of many pairwise disjoint short cycles. Before this, we introduce some notation about
the intersection of a path and a cycle.

Let % be a path in� and� a cycle in� so that % and� intersect in at least one vertex. A chord of
% relative to � is a maximal non-empty subpath ' ⊆ % so that the endpoints of ' are in + (�), the
internal vertices of ' are disjoint from + (�), and � (') is disjoint from � (�). A tail of % relative to
� is a maximal non-empty subpath ) ⊆ % whose one endpoint is an endpoint of % and is disjoint
from + (�), the other endpoint is in + (�), and all internal vertices are not contained in + (�). Note
that % has between zero and two tails relative to � . Note also that � (%) is the disjoint union of
� (%) ∩ � (�), the edges of the chords of % relative to � , and the edges of the tails of % relative to � .

Observation 3.1. The number of chords of % relative to � is the number of connected components of
% ∩� minus one.

Lemma 3.2. Let (�,F) be an edge-weighted graph, � a cycle in � of length at most ℓ , and % a path
in � of length at most ℓ . If % has at least 128:3 chords relative to � , then � contains a collection of :
pairwise vertex-disjoint cycles with total length at most ℓ .

Proof. We assume that % has at least 128:3 chords relative to � and construct the desired
collection of pairwise disjoint cycles.

First, we select a collection R of at least 64:3 chords of % so that the chords in R are vertex-
disjoint. This is done simply by following along % and selecting every second chord. Now, we index
+ (�) with integers from 1 to |+ (�) |, in an order following the cycle. Then we associate with each
chord ' ∈ R the pair (B ('), C (')) ∈ [|+ (�) |] of numbers such that B (') < C (') correspond to
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the two endpoints of ' (which are in + (�)). Note that as the chords are vertex disjoint, all of the
numbers associated to them are distinct.

Let '1, '2 ∈ R be two chords with B ('1) < B ('2). We say that '1 and '2 are:

—consecutive if B ('1) < C ('1) < B ('2) < C ('2),
—crossing if B ('1) < B ('2) < C ('1) < C ('2), and
—parallel if B ('1) < B ('2) < C ('2) < C ('1).

Note that any two chords are either consecutive, crossing, or parallel.
We then show that we can obtain a large enough subcollection of R such that every pair of

chords in this collection are related in the same way (i.e., one of consecutive, crossing, or parallel).

Claim 3.3. There is R′ ⊆ R with |R′ | ≥ 4: so that all chords in R′ are either pairwise consecutive,
pairwise crossing, or pairwise parallel.

Proof of the Claim. We say 8 ∈ [|+ (�) |] touches a chord ' ∈ R if B (') ≤ 8 ≤ C ('). First,
suppose that no 8 ∈ [|+ (�) |] touches more than 16:2 chords. Then, the greedy algorithm that
repeatedly chooses chords ' with the smallest C (') and discards all other chords touched by C (')
manages to collect a set of at least 8: ≥ 4: pairwise consecutive chords.

Otherwise, there is 8 ∈ [|+ (�) |] that touches at least 16:2 + 1 chords, implying that there is
a collection R1 ⊆ R of at least 16:2 chords ' with B (') < 8 < C (') (recall that the chords in R
are vertex disjoint). By the Erdős-Szekeres theorem (Proposition 2.3), there exists a subcollection
R2 ⊆ R1 of size at least 4: so that when the chords in R2 are sorted by B ('), the endpoints C (') are
either all in increasing order, or all in decreasing order. In the former case, the chords in R2 are
pairwise crossing, and in the latter case, the chords in R2 are pairwise parallel. Ã

We next consider the three cases arising from the above claim. First, if we have a collection R′

of 4: pairwise consecutive chords, then by forming for each chord ' ∈ R′ a cycle consisting of
' and the path in � between B (') and C ('), we obtain a collection of 4: pairwise vertex-disjoint
cycles. As the edges of these cycles come from � (%) ∪ � (�), their total length is at most 2ℓ , so by
choosing the : shortest of them we obtain a collection of : pairwise vertex-disjoint cycles with a
total length at most ℓ/2.

Second, suppose we have a collection R′ of 4: pairwise crossing chords. We index them as
'1, . . . , '4: , so that B ('8 ) < B (' 9 ) if 8 < 9 . Note that now, B ('4: ) < C ('1) and C ('8 ) < C (' 9 )
whenever 8 < 9 . For each 8 ∈ [2:], we construct a cycle�8 by taking the union of '28−1 and '28 , and
connecting them by two paths in � , the first between B ('28−1) and B ('28 ), and the second between
C ('28−1) and C ('28 ). We obtain a collection of 2: pairwise vertex-disjoint cycles. The edges of these
cycles are contained in � (%) ∪ � (�), and therefore their total length is at most 2ℓ . By choosing the
: shortest of them we obtain : pairwise disjoint cycles of total length of at most ℓ .

For the final case of R′ comprising 4: pairwise parallel chords, We use the same indexing
'1, . . . , '4: as in the previous paragraph, so that B ('8 ) < B (' 9 ) if 8 < 9 . Note that now, B ('4: ) <
C ('4: ) and C ('8 ) > C (' 9 ) whenever 8 < 9 . We again construct a cycle�8 for each 8 ∈ [2:], by taking
the union of '28−1 and '28 , and connecting them by two paths in � , the first between B ('28−1)
and B ('28 ), and the second between C ('28 ) and C ('28−1). We obtain a collection of 2: pairwise
vertex-disjoint cycles. The edges of these cycles are contained in � (%) ∪ � (�), and therefore their
total length is at most 2ℓ and by choosing the : shortest of them we obtain : pairwise disjoint
cycles with a total length of at most ℓ . �

Our algorithm for Min-Sum Cycle Packing is based on a graph-theoretical lemma that bounds
the number of paths of length at most ℓ in no-instances. We first prove this lemma in the case when
: = 1, which will be used in the proof of the general case.
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Lemma 3.4. If an edge-weighted =-vertex graph (�,F) does not contain a cycle of length at most ℓ ,
then the number of paths of length at most ℓ/2 in � is at most

(
=
2

)
.

Proof. Suppose there are two vertices 0,1 ∈ + (�) with two distinct (but not necessarily vertex-
or edge-disjoint) 0-1-paths %1 and %2 in� , both of length at most ℓ/2. Now, the sum of edge weights
in %1 ∪ %2 is at most ℓ and must contain a cycle, that is, � contains a cycle of length at most ℓ .
Hence, for each pair 0,1 ∈ + (�), there is at most one 0-1-path of length at most ℓ/2, and therefore
the total number of paths of length at most ℓ/2 is at most

(
=
2

)
. �

We also note that such bounds on the number of paths of a certain length can be boosted to
higher lengths.

Observation 3.5. Let (�,F) be an edge-weighted graph, so that the number of paths of length
at most ℓ in � is at most # . For any integer 2 ≥ 1, the number of paths of length at most 2 · ℓ in � is
then at most (2# )2 .

Proof. Any path % of length at most 2 · ℓ can be constructed by a sequence ((B1, C1), . . . , (B2 , C2 ))
of vertex pairs, where:

—B8 is the vertex reached after walking a distance of (8 − 1) · ℓ along % (or the next vertex
afterwards in case distance (8 − 1) · ℓ ends on some edge), and

—C8 is the vertex reached after walking a distance of 8 · ℓ along % (or the last vertex before).

Note that % is completely determined by the sequence and there is a path of length at most ℓ
between each pair (B8 , C8 ). Since each such path can be used in either direction, that is, each path
forms a tuple (0,1) and a tuple (1, 0), the total number of possible paths of length at most 2 · ℓ is at
most (2# )2 . �

We are now ready to prove our main graph-theoretical lemma, which is at the heart of our
algorithm.

Lemma 3.6. If an edge-weighted =-vertex graph (�,F) does not contain a collection of : pairwise
vertex-disjoint cycles of total length at most ℓ , then the number of paths of length at most ℓ in � is in
=O(:5 ) .

Proof. Let �̃ be a subgraph of � comprising a maximal collection of vertex-disjoint cycles each
of length at most ℓ/: . Note that �̃ consists of at most : − 1 cycles as otherwise � contains :
vertex-disjoint cycles of total length at most ℓ . Since� −+ (�̃) does not contain a cycle of length at
most ℓ/: , Lemma 3.4 implies that the number of paths of length at most ℓ/(2 · :) in � −+ (�̃) is at
most

(
=
2

)
≤ =2/2. Finally, Observation 3.5 allows us to conclude that the number of paths of length

at most ℓ in � −+ (�̃) is at most (2 · =2/2)2: = =4: . This also implies that the number of paths of
length at most ℓ in� whose internal vertices are disjoint from + (�̃) is at most =2 · =4: ≤ =6: . Now,
let % be a path in � of length at most ℓ .

Claim 3.7. The number of connected components of % ∩ �̃ is at most 128:4 − 1.

Proof of the Claim. Suppose the number of connected components of % ∩ �̃ is more than
128:3 · (: − 1). Since �̃ is the union of at most : − 1 cycles of length at most ℓ/: each, by the
pigeonhole principle, there is a cycle � ⊆ �̃ such that the number of connected components of
% ∩� is more than 128:3. Observation 3.1 now implies that % has at least 128:3 chords relative to
� and Lemma 3.2 therefore states that � contains a collection of : pairwise vertex-disjoint cycles
of total length at most ℓ , which is a contradiction. Ã
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Now, % can be constructed as the union of the subpaths of % that are internally vertex-disjoint
from + (�̃) and the connected components of % ∩ �̃ , which are paths. Notice that the number of
subpaths of % that are internally disjoint with + (�̃) is by Observation 3.1 at most the number
of the connected components of % ∩ �̃ plus one, that is, at most 128:4. On the other hand, the
number of paths that are subgraphs of �̃ is at most =2. Hence, there are at most (=2)128:4 possible
choices for subpaths of % that are connected components of % ∩ �̃ and for each of the at most 128:4
chords and/or tails of % relative to �̃ , there are at most =6: choices for paths which are internally
vertex-disjoint from �̃ as noted earlier. The number of paths of length at most ℓ in� is therefore at
most:

(=2)128:4 · (=6: )128:4
= =256:

4
=768:

5 ∈ =O(:5 ) .
�

Now, we are ready to translate Lemma 3.6 into an algorithm for Min-Sum Cycle Packing. For
this, we need the following easy lemma.

Lemma 3.8. There is an algorithm that, given an edge-weighted =-vertex graph (�,F) and integers ℓ
and # , in time # ·=O(1) either returns all paths in� of length at most ℓ , or concludes that the number
of such paths is more than # .

Proof. The set of all paths of length 0 is easy to generate, as they are just the vertices of� . Now,
let 8 ≥ 1 and let P8−1 be the set of paths of length at most 8 − 1 in � . Given P8−1, we can generate
in time |P8−1 | · =O(1) the set P8 of all paths of length at most 8 by first generating |P8−1 | · =O(1)

candidates by trying to extend each path by one edge (and also including all paths in P8−1), then
filtering out the obtained subgraphs that are not paths, and finally deduplicating the output by
bucket sorting. By repeating this until either 8 = ℓ or |P8 | > # , we obtain the desired algorithm. �

We now prove the main theorem of the section.

Theorem 1. Min-Sum Cycle Packing and Min-Sum Edge-Disjoint Cycle Packing can be solved
in =O(:6 ) time, where = is the number of vertices in the graph.

Proof. We demonstrate an algorithm for Min-Sum Cycle Packing and then explain how to
adapt it for Min-Sum Edge-Disjoint Cycle Packing.

We first construct a decision algorithm, that given (�,F, :, ℓ), decides whether � contains a
collection of : pairwise vertex-disjoint cycles of total length at most ℓ . We first apply the algorithm
of Lemma 3.8 with# = =256:

4
=1,024:

5 ∈ =O(:5 ) (as specified in the proof of Lemma 3.6). If it concludes
that the number of paths of length at most ℓ is more than # , then we conclude that the answer
is yes. Otherwise, we obtain the collection of all paths of � of length at most ℓ , which has size at
most # ∈ =O(:5 ) . By trying to extend each with an edge, we obtain the collection of size at most #
of all cycles of � of length at most ℓ . Now, we try all possibilities of selecting : cycles from this
collection, yielding the running time

(
#
:

)
∈ =O(:6 ) .

Now this algorithm can be turned into an algorithm that finds a collection of : pairwise vertex-
disjoint cycles with total length at most ℓ by self-reduction as follows. We repeatedly attempt to
remove edges and check if the solution still exists after an edge is removed. These cause only a poly-
nomial (in =) overhead in the running time. This concludes the proof for Min-Sum Cycle Packing.

For Min-Sum Edge-Disjoint Cycle Packing, we observe that if the above algorithm for Min-
Sum Cycle Packing concludes that the graph contains : vertex-disjoint cycles of total length at
most ℓ , then these : cycles are also edge disjoint. Otherwise, we have that the number of cycles
of length at most ℓ is at most # and we can test for each selection of : of them whether they are
edge-disjoint in # O(: ) time. This concludes the proof. �
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Next, we generalizeTheorem 1 for Min-Vector Cycle Packing and Edge-Disjoint Min-Vector
Cycle Packing.

Theorem 5. Min-Vector Cycle Packing and Edge-Disjoint Min-Vector Cycle Packing can be
solved in =O(:6 ) time.

Proof. We give a decision algorithm. However, it can be turned into an algorithm for finding a
solution similarly to the proof of Theorem 1.

Let (ℓ1, . . . , ℓ: ) be the given vector, and assume without loss of generality that ℓ1 ≤ ℓ8 for all 8 .
Similarly as in the proof of Theorem 5, we apply the combination of Lemmas 3.6 and 3.8 with the
parameters : and ℓ1 to, in time =O(:5 ) , either conclude that � contains a collection of : pairwise
(vertex- and edge-)disjoint cycles of total length at most ℓ1, or enumerate all (at most # ∈ =O(:5 ) )
cycles of � of length at most ℓ1. In the former case, we are done as any such collection gives
us a solution, and in the second case, we branch on the cycles to guess the first cycle, delete its
vertices (or edges in the case of Edge-Disjoint Min-Vector Cycle Packing) and recursively
apply the algorithm to find the : − 1 other cycles. This branching algorithm runs in a total time of
(=O(:5 ) ): = =O(:6 ) . �

4 Lower Bound for Min-Sum Cycle Packing
In this section, we prove our computational lower bound for Min-Sum Cycle Packing. For conve-
nience, we restate our result.

Theorem 2. Min-Sum Cycle Packing is W[1]-hard in subcubic graphs with unit edge weights
when parameterized by : .

Proof. We reduce from Multicolored Cliqe which is well-known to be W[1]-complete [12].
We recall that the task of the problem is, given a graph � whose set of vertices is partitioned into
ℓ sets +1, . . . ,+ℓ (called color classes), to decide whether � has a clique of size ℓ with exactly one
vertex from each color class.

Let (�, ℓ) be an instance of Multicolored Cliqe and let +8 = {E81, E82, . . . , E8a8 } be the set of
vertices of color 8 for each 8 ∈ [ℓ]. Let a be the maximum number of vertices of any color, let Δ
be the maximal degree of � , and let W = (a − 1) (3Δ + 1) − 1. For each color 8 ∈ [ℓ], we create
a vertex-selection gadget as follows. We start with 6a verticesF 8,1

0 , D
8,1
0 ,F

8,2
0 , D

8,2
0 ,F

8,3
0 , and D8,30 for

each 0 ∈ [a]. We add an edge {F 8, 9
0 , D

8, 9
0 } for each 8 ∈ [ℓ], 9 ∈ [3], and each 0 ∈ [a]. Next, for

each 8 ∈ [ℓ], 9 ∈ [3], 0 ∈ [a], we add 3Δ − 1 vertices E8, 9
0,1

where 1 ∈ [3Δ − 1]. We add the edge
{E8, 9

0,1
, E

8, 9

0,1+1} for each 8 ∈ [ℓ], 9 ∈ [3], 0 ∈ [a], and each 1 ∈ [3Δ − 2]. Moreover, we add the edges
{D8, 90 , E

8, 9

0,1} and {E8, 9
0,3Δ−1,F

8, 9

0+1} for each 8 ∈ [ℓ], 9 ∈ [3], and 0 ∈ [a − 1] and the edges {D8, 9a , E
8, 9

a,1} and
{E8, 9

a,3Δ−1,F
8, 9 mod 3+1
1 } for each 8 ∈ [ℓ] and each 9 ∈ [3]. Note that the entire constructed cycle has

length 3a (3Δ+ 1). Finally, we add paths of length 2W between all pairs ofF and D vertices that have
distance exactly (a − 1) (3Δ + 1) − 1 = W . We call these paths chords. Figure 2 gives an illustration of
the above construction.

Next, we encode the edges of the input graph. For each color 8 ∈ [ℓ] and each vertex E80 ∈ +8 ,
arbitrarily assign a distinct number from [Δ] to each incident edge. Let 5 (E80, 4) be the assigned
number. For each edge 4 = {E80, E

9

1
} ∈ �, we add paths of length

⌈
8
5W
⌉
between E

8,1
0,35 (E80,4 )−2

and

E
9,1

1,35 (E 9
1
,4 )−2

and between E
8,1
0,35 (E80,4 )−1

and E 9,1
1,35 (E 9

1
,4 )−1

. We say that these two paths encode the edge

4 . Finally, we set : = 3ℓ +
(
ℓ
2

)
.
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Fig. 2. An example of the vertex-selection gadget with a = Δ = 3 for one color 8 . The chords depict paths of
length 2(a − 1) (3Δ − 1) = 32 and one of the ways to pick three vertex-disjoint cycles using three chords is
highlighted. This solution picks vertex E83. Paths encoding two edges incident to E83 are shown by dashed and
dotted lines, respectively.

Since the above construction takes polynomial time to compute, : ≤ 4ℓ2, and each vertex has
degree at most three, it only remains to prove that the input instance contains a multicolored clique
(of size ℓ) if and only if the constructed graph contains : vertex-disjoint cycles of total length at
most ! = 9ℓW +

(
ℓ
2

)
2(
⌈
8
5W
⌉
+ 1). For the backward direction, note that all cycles that use vertices

from more than one vertex-selection gadget have length at least 2(
⌈
8
5W
⌉
+ 1) > 3W . Moreover, all

cycles within one vertex-selection gadget that use more than one chord have length at least 4W .
Hence, any solution of total length at most ! contains at least 3ℓ cycles of total length at most 9ℓW .
By construction within one vertex-selection gadget, one can pick at most 3 vertex-disjoint cycles
of average length at most 3W and this is only achievable if one picks three equally spaced chords
and all vertices from the initial cycle of the vertex-selection gadget with the exception of three
sets of E vertices between two consecutiveF and D vertices as depicted in Figure 2. We say that
such a solution avoiding the E vertices betweenF

8,1
0 and D8,1

0+1 (or D8,21 if 0 = a) picks vertex E80 . If we
select a solution that picks a vertex for each vertex-selection gadget, then it remains to find

(
ℓ
2

)
vertex-disjoint cycles that use vertices from at least two vertex-selection gadgets of total length
at most

(
ℓ
2

)
2(
⌈
8
5W
⌉
+ 1). Since each path between two vertex-selection gadgets is of length

⌈
8
5W
⌉
,
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each vertex in a vertex-selection gadget has at most one incident edge leaving the vertex-selection
gadget, and two paths between vertex-selection gadgets have adjacent endpoints if and only if
they encode an edge in � , it follows that any solution of total length at most ! contains

(
ℓ
2

)
pairs

of paths encoding edges of � . By construction, this corresponds to a set of
(
ℓ
2

)
edges between ℓ

vertices of different colors, that is, to a multicolored clique (of size ℓ).
For the forward direction, note that if there exists a multicolored clique, then choosing the

respective vertex in each vertex-selection gadget and taking the cycles encoding all edges between
the chosen vertices results in a set of : vertex-disjoint cycles of total length exactly !. This concludes
the proof. �

Since two cycles in subcubic graphs are edge-disjoint if and only if they are vertex-disjoint, we
can defer the same hardness result for Min-Sum Edge-Disjoint Cycle Packing.

Corollary 4.1. Min-Sum Edge-Disjoint Cycle Packing is W[1]-hard in subcubic graphs with
unit edge weights when parameterized by : .

5 Packing Shortest Cycles in Planar Graphs
In this section, we consider packings of disjoint shortest cycles in planar graphs and proveTheorems
3 and 4. In Section 5.1, we construct a tree structure of a laminar family of shortest cycles that
represent all minimum cycles. In Section 5.2, we prove Theorem 3 and Section 5.3 contains the
proof of Theorem 4.

5.1 Laminar Decomposition for Shortest Cycles
In this subsection, we construct a laminar family of disjoint cycles representing all shortest cycles
in a planar graph and decompose this family into a tree. Throughout this subsection, we assume
that considered graphs are not forests, that is, they have cycles.

We use the following folklore properties of shortest cycles which we prove for completeness.
Given two distinct cycles �1 and �2 of a graph � with a non-empty intersection, we say that �1

and �2 touch if �1 ∩�2 is a path (possibly trivial, that is, having a single vertex).

Lemma 5.1. Let� be a weighted graph and let �1 and �2 be distinct shortest cycles with at least one
common vertex. Then:

—either �1 and �2 touch,
—or + (�1 ∩�2) = {B, C} for distinct B and C at distance 6(�)/2 in both cycles, and �1 = %1 ∪ %2
and �2 =&1 ∪&2 where %1, %2, &1, and &2 are distinct internally vertex-disjoint B-C-paths of
length 6(�)/2.

Proof. Assume that �1 and �2 do not touch. Then �1 has two distinct internally vertex-disjoint
paths %1 and %2 such that the endpoints of these paths are in�2 and the internal vertices and all the
edges are outside�2. Then, the length of one of these paths, say, %1 is upper-bounded by 6(�)/2. Let
B and C be the endpoints of %1. Denote by&1 and&2 two distinct B-C-paths in�2. Since (1 = %1 ∪&1

and (2 = %1 ∪&2 are cycles, the length of (1 and (2 is at least 6(�). Therefore, the paths %1, &1, and
&2 have the same length 6(�)/2. Also, we have that the length of %2 is 6(�)/2. Thus, %1, %2, &1,
and &2 are distinct internally vertex-disjoint B-C-paths of length 6(�)/2. �

We need the following additional notation for plane graphs.

Definition 5.2 (Laminar Family). We say that two cycles �1 and �2 in � cross if �1 has at least
one edge in the internal face of �2 and, symmetrically, �2 has at least one edge in the internal face
of �1. A family C of cycles is laminar if cycles in C do not cross.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 8. Publication date: October 2025.



8:16 M. Bentert et al.

Let � be a weighted plane graph. We introduce the following partial order on the family of all
shortest cycles of � . For two shortest cycles �1 and �2, we write �1 ≤ �2 if every vertex and edge
of �1 is a vertex or an edge of �2 or is embedded in the internal face of �2. We also write �1 <E �2

if �1 ≤ �2 and + (�1) ∩+ (�2) = ∅ (that is, �1 is completely inside �2), and we write �1 <4 �2 if
�1 ≤ �2 and � (�1) ∩ � (�2) = ∅ (i.e., �1 and �2 may share vertices but not edges).

For a cycle � in � , we denote by �� the subgraph of � composed by the vertices and edges of �
and the vertices and edges of � embedded in the internal face of � . We say that � is clean if each
vertex and each edge of � is included in some shortest cycle. We show that a clean graph always
has a facial shortest cycle in the same way as other uncrossable families [36].

Lemma 5.3. Let � be a clean weighted plane graph. Then, there is an internal face 5 ∈ � (�) whose
frontier is a shortest cycle.

Proof. Let � be the shortest cycle that is minimal with respect to the partial order (≤). We
claim that the internal face of � is a face of � . For the sake of contradiction, assume that this is
not the case. Then, � either has a vertex E embedded in the internal face of � or an edge 4 with
its endpoints in � which is embedded in the internal face of � . In both cases, because � is clean,
there is a cycle �′ containing either E or 4 . Since � is minimal, �′ � � . Hence, � and �′ cross and
�′ has either a vertex or an edge in the external face of � . By Lemma 5.1, + (� ∩�′) = {B, C} for
distinct B and C at distance 6(�)/2 in both cycles, and � = %1 ∪ %2 and �′ = &1 ∪ &2 where %1,
%2, &1, and &2 are distinct internally vertex-disjoint B-C-paths of length 6(�)/2. Notice that either
&1 or &2 contain E or 4 . By symmetry, assume that this holds for &1. Because %1, %2, and &1 are
distinct internally vertex-disjoint, we have that &1 is drawn in the internal face of � . This means
that ( = %1 ∪&1 is a shortest cycle and ( ≤ � . However, this contradicts the assumption that � is
minimal. This concludes the proof. �

Let � be a shortest cycle in a weighted plane graph � . We say that � is splittable if there are
two vertices B, C ∈ + (�) at distance 6(�)/2 from each other in � such that �� has an B-C-path % of
length 6(�)/2 distinct from the two B-C-paths in � ; we say that � is unsplittable, otherwise. We call
B and C poles. Notice that for poles B and C on a splittable shortest cycle, the distance between them
in � is 6(�)/2. We need the following observation about splittable cycles.

Lemma 5.4. Let� be a splittable shortest cycle in a weighted plane graph� with poles B and C . Then,
any two distinct shortest B-C-paths in �� are internally vertex-disjoint and {B, C} is a unique pair of
poles on � .

Proof. Suppose that %1 and %2 are distinct B-C-paths in �� of length 6(�)/2. To show that %1
and %2 are internally vertex-disjoint, note that if %1 and %2 have a common vertex distinct from B

and C then %1 ∪ %2 has a cycle whose length is less than 6(�). This proves that any two shortest
B-C-paths in �� are internally vertex-disjoint.

Consider the second property and let % be a shortest B-C-path in �� that is distinct from the
two B-C paths along � . Assume that there is a pair of vertices {B′, C ′} ≠ {B, C} on � at distance
6(�)/2 such that there is an B′-C ′-path % ′ of length 6(�)/2 in �� that is not a path in � . Note that
{B′, C ′} ∩ {B, C} = ∅. Otherwise, one of the two B-C-paths in � or one of the two B′-C ′-paths in � is
strictly shorter than 6(�)/2. Let & be the B-C-path in � containing B′ and let & ′ be the B′-C ′-path in
� containing B . By the first claim of the lemma, % and& are internally vertex-disjoint, and, similarly,
% ′ and& ′ are internally vertex-disjoint as well. Then, ( = % ∪& and ( ′ = % ′∪& ′ are shortest cycles.
Notice that ( ∩ ( ′ contains an B-B′-path in � which is nontrivial (contains at least two vertices)
because B ≠ B′. Also, because % and % ′ are paths in �� , the paths have a common vertex E in the
internal face of� and, therefore, ( ∩ ( ′ is not a path. By Lemma 5.1, we have that ( and ( ′ intersect
in exactly two vertices, implying that B = B′; a contradiction. This concludes the proof. �
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Fig. 3. Construction of PB (�) and CB (�) for a splittable cycle (a) and construction of CD (�) = {�1,�2,�3,�4}
for an unsplittable cycle (b).

Let � be a splittable shortest cycle in a weighted plane graph � with poles B and C . We denote
by PB (�) = {%0, . . . , %ℓ } the inclusion-maximal family of distinct B-C-paths in �� . By Lemma 5.4,
PB (�) is unique. We assume that the paths on PB (�) are ordered in the clockwise order from the
perspective of B (see Figure 3(a)) and � = %0 ∪ %ℓ . For 8 ∈ [ℓ], we define the cycle �8 = %8−1 ∪ %8 ,
and set CB (�) = {�1, . . . ,�ℓ }. We use the following crucial property of splittable shortest cycles.

Lemma 5.5. Let � be a splittable shortest cycle in a weighted plane graph � . Then, for any shortest
cycle ( in �� , either ( = % ∪& for two paths %,& ∈ PB (�) or ( ≤ ' for some cycle ' ∈ CB (�).

Proof. Let ( be a shortest cycle in �� and assume that ( � ' for any ' ∈ CB (�). Suppose that
there is ' ∈ CB (�) such that ( and ' cross. Then by Lemma 5.1,+ (( ∩') = {B′, C ′} for distinct B′ and
C ′ at distance 6(�)/2 in both cycles, and ( = %1 ∪ %2 and ' =&1 ∪&2 where %1, %2, &1, and &2 are
distinct internally vertex-disjoint B′-C ′-paths of length6(�)/2. Because ( and ' cross, we can assume
without loss of generality that the edges and internal vertices of %1 are embedded in the internal
face of ' and the edges and internal vertices of %2 are in the external face of '. If {B′, C ′} = {B, C}
then we have that %1 is an B-C-path in �� internally vertex disjoint with the B-C-paths of PB (�)
forming '. Then %1 is internally vertex disjoint with every path of PB (�). However, this would
contradict the maximality of PB (�). Thus, {B′, C ′} ≠ {B, C}. Moreover, note that {B′, C ′} ∩ {B, C} = ∅
as otherwise, we would contradict the fact that &1 and &2 are paths of length 6(�)/2. But now, we
have that B and C are embedded in distinct faces of ( . This is impossible because B, C ∈ + (�) and �
is the frontier of the external face of �� (recall that ( cannot contain B or C as it already contains B′
and C ′). This contradiction shows that ( and ' do not cross for any ' ∈ CB (�).

Since ( and ' do not cross for any ' ∈ CB (�), the definition of CB (�) implies that ( = % ∪& for
two paths %,& ∈ PB (�). This concludes the proof. �

Now we deal with unsplittable shortest cycles. Consider an unsplittable shortest cycle � in a
weighted plane graph � . We define CD (�) to be the set of all shortest cycles of �� distinct from
� , that are maximal cycles of this type with respect to (≤) (see Figure 3(b)). We use the following
property of CD (�).

Lemma 5.6. Let � be an unsplittable shortest cycle in a weighted plane graph � . Then CD (�) is
laminar and for any shortest cycle ( ≠ � in �� , ( ≤ ' for some cycle ' ∈ CD (�).

Proof. To show that CD (�) is laminar, consider distinct '1, '2 ∈ CD (�) and assume that '1 and
'2 cross. By Lemma 5.1,+ ('1 ∩'2) = {B′, C ′} for distinct B′ and C ′ at distance 6(�)/2 in both cycles,
and '1 = %1 ∪ %2 and '2 =&1 ∪&2 where %1, %2, &1, and &2 are distinct internally vertex-disjoint
B′-C ′-paths of length 6(�)/2. Because '1 and '2 cross, we can assume without loss of generality
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that the edges and internal vertices of&1 are embedded in the internal face of '1 and the edges and
internal vertices of %2 are in the external face of '2. Consider ' = %1 ∪&2. We have that '1 ≤ ' and
'2 ≤ '. Recall that '1 and '2 are maximal with respect to (≤) shortest cycles distinct from� . Since
' ∉ CD (�), ' = � . However, we have that B, C ∈ + (�) and �� has four internally vertex-disjoint
B-C-paths of length 6(�)/2. This means that � is splittable and contradicts our assumptions. Thus,
CD (�) is laminar.

To see the second claim, it is sufficient to observe that already by the definition of CD (�), for
any shortest ( ≠ � in�� , ( ≤ ' for some maximal (with respect to (≤)) shortest cycle of�� that is
distinct from � . This concludes the proof. �

Now we are ready to construct a tree representing a laminar family of shortest cycles.
Let � be a clean planar weighted graph. Consider an arbitrary embedding of � in the plane. By

Lemma 5.3, there is a face 5 in this embedding whose frontier is a shortest cycle � . Then, there is
another planar embedding of � such that � is a facial cycle of the external face of the embedded
graph. We fix this embedding and construct the rooted tree T (�), called the LSCT, whose nodes
are shortest cycles.

We start constructing T (�) from the facial cycle � of the external face which is set to be the
root. Then, we construct T (�) by the recursive analysis of shortest cycles� that are current leaves
of the already constructed tree.

—If � is a facial cycle for an internal face then we set � to be a leaf of T (�).
—If � a splittable cycle then we construct CB (�) and set the cycles of CB (�) to be the children
of � in T (�); we say that � is an (-node in this case.

—If � is an unsplittable cycle then we construct CD (�) and set the cycles of CD (�) to be the
children of � in T (�); we say that � is a* -node.

The properties of LSCTs are summarized in the following lemma.

Lemma 5.7. Suppose that the LSCT T (�) is constructed for a clean planar weighted graph � . Then
the nodes of T (�) form a laminar family of shortest cycles such that :

(i) for any two nodes � and �′ of T (�), � ≤ �′ in the planar embedding used in the construction
of T (�) if and only if � is a descendant of �′ in T (�),

(ii) for any shortest cycle � of � , either � is a node of T (�) or there is an (-node ' of T (�) and
two paths %,& ∈ PB (') such that � = % ∪& , and

(iii) the facial shortest cycles of � distinct from the root of T (�) are the leaves of T (�).

Furthermore, the LSCT can be constructed in polynomial time.

Proof. Properties (i)–(iii) follow directly from Lemmas 5.5 and 5.6, and the construction of T (�).
To prove that T (�) can be constructed in polynomial time, recall that a planar embedding of� can
be found in linear time [28]. Then we can consider all the faces and find a face 5 whose frontier is a
shortest cycle � . This allows us to construct an embedding of � where the frontier of the external
face is a shortest cycle, in polynomial time. Then, following the steps of the algorithm, for each
� that is a current leaf of the already constructed tree, we verify whether � is splittable or not.
This can be done in polynomial time using Dijkstra’s algorithm [15]. If � is splittable, then we
construct the unique family of paths PB (�) by greedily finding shortest B-C-paths. This allows us to
construct CB (�) in polynomial time. If � is unsplittable, then we can, for example, list all shortest
cycles in �� using the well-known fact that the number of such cycles is quadratic in the number
of vertices and they can be enumerated in polynomial time (e.g., by using the algorithm of Karger
and Stein [29] for the enumeration of all minimum cuts in the dual graph). Then, we can find all
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maximal shortest cycles with respect to (≤) distinct from � in �� and obtain CD (�) in polynomial
time. Summarizing, we conclude that the overall running time is polynomial. This concludes
the proof. �

We conclude this section with some structural observations about solutions of Shortest Cycle
Packing and Edge-Disjoint Shortest Cycle Packing on planar graphs. Let� be a clean weighted
planar graph and let : be a positive integer. Recall that we assume that � has a fixed planar
embedding with the frontier of the external face being a shortest cycle. For LSCT T (�), we define
special cycle packings.

Definition 5.8.Apacking C = {�1, . . . ,�: } of: (vertex/edge)-disjoint shortest cycles isT -maximal
if:

(i) the number of facial cycles of internal faces in the packing is maximum, and
(ii) there is no packing C′ = {�′

1, . . . ,�
′
:
} distinct from C such that �′

8 ≤ �8 for all 8 ∈ [:].

Our algorithm uses the following property.

Lemma 5.9. Suppose that the LSCT T (�) is constructed for a clean weighted planar graph � and
assume that � is embedded in the plane according to the construction of T . Let C be a T -maximal
packing of : (vertex/edge)-disjoint shortest cycles. Then, C is laminar and for each � ∈ C, either � is a
facial cycle of an internal face or there is a �′ ∈ C such that �′ ≤ � .

Proof. If C = {�1, . . . ,�: } is a packing of vertex-disjoint cycles, then C is trivially laminar.
Suppose that C is a packing of edge-disjoint cycles and assume that there are distinct 8, 9 ∈ [:] such
that �8 and � 9 cross. Then by Lemma 5.1, + (�8 ∩� 9 ) = {B, C} for distinct B and C at distance 6(�)/2
in both cycles, and �8 = %1 ∪ %2 and � 9 =&1 ∪&2 where %1, %2, &1, and &2 are distinct internally
vertex-disjoint B-C-paths of length 6(�)/2. Since the cycles cross, we can assume without loss of
generality that the edges and internal vertices of &1 are in the internal face of �8 and the edges
and internal vertices of %2 are in the internal face of � 9 . Let �′

8 = %1 ∪&1 and �′
9 = %2 ∪&2. Notice

that �8 and � 9 are not facial cycles and it holds that �′
8 ≤ �8 and �′

9 ≤ � 9 . Consider C′ obtained
by the replacement of �8 and � 9 with �′

8 and �
′
9 , respectively. We have that C′ ≠ C is a packing

of : edge-disjoint shortest cycles such that the number of facial cycles is at least as large as in C.
Moreover, because �′

8 ≤ �8 and �′
9 ≤ � 9 , the existence of C′ contradicts that C is a T -maximal

packing. Thus, C is laminar.
To prove the second claim, suppose that �8 ∈ C is not a facial cycle of an internal face of �

for some 8 ∈ [:] and there is no 9 ∈ [:] distinct from 8 such that � 9 ≤ �8 . Consider ��8
. Then by

Lemma 5.3, there is an internal face 5 of��8
whose frontier is a shortest cycle. Denote by�′

8 such a
cycle. We have that �′

8 ≠ �8 and �′
8 ≤ �8 . Furthermore, because C is laminar by the already proved

first claim, C′ obtained from C by the replacement of �8 with �′
8 is a packing of disjoint cycles.

However, the number of facial cycles of internal faces in C′ is bigger than the number of such
cycles in C. This contradicts the assumption that C is T -maximal. This proves the second claim
and completes the proof of the lemma. �

5.2 FPT Algorithm for Shortest Cycle Packing
In this subsection, we prove Theorem 3 which we restate here.

Theorem 3. Shortest Cycle Packing is solvable in time :O(: ) · =O(1) on planar graphs with =

vertices.

Proof. Let (�,F, :) be an instance of Shortest Cycle Packing where � is a planar graph. If
� is a forest, then we have a trivial no-instance. Thus, we assume that this is not the case. Then,
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we preprocess � and delete every edge and every vertex that is not included in a shortest cycle as
these edges and vertices are irrelevant for our problem. From now on, we assume that � is clean.

Next, we construct a planar embedding of� such that the frontier of the external face is a shortest
cycle. From this point, we assume that � is a plane graph. We then construct the LSCT T (�). Our
aim is to find a T -maximal solution by using the properties given by Lemma 5.9.

By Lemma 5.7 (ii), for any shortest cycle� of� , either� is a node of T (�) or there is an (-node
' of T (�) and two paths %,& ∈ PB (') such that ' = % ∪& where � ≠ % ∪& and % ∪& ∉ CB (').
If � is a shortest cycle of the second type, then we say that � is a non-tree cycle.

In the following, we wish to achieve the property that each cycle of a solution is a node of
the tree. Since this may not always be the case, we ensure this property by modifying the tree at
selected nodes.

Let� be an (-node of T (�). We say that� is large if |CB (�) | ≥ 3: + 3 and� is small, otherwise.
We prove that for large (-nodes, we already have the desired property.

Claim 5.10. Let C be a T -maximal solution to (�,F, :). Then for any large (-node� of T (�), if C
contains a cycle ' = % ∪& for two distinct paths %,& ∈ PB (�) then either ' =� or ' ∈ CB (�).

Proof of the Claim. Let� be a large (-node ofT (�) with poles B and C . LetPB (�) = {%0, . . . , %ℓ }
and CB (�) = {�1, . . . ,�ℓ }. We assume that the paths in PB (�) are ordered in the clockwise order
from the perspective of pole B and �8 = %8−1 ∪ %8 for each 8 ∈ [ℓ], as shown in Figure 3(a). Suppose
that there is ' ∈ C distinct from � such that ' = %8 ∪ % 9 for 8, 9 ∈ [0, ℓ] with 8 < 9 − 1. Notice that
' is not a facial cycle.

Consider S = C \ {'}. By the fact that B, C ∈ + ('), Lemma 5.7, and the laminarity of C, we
have that for every ( ∈ S, B, C ∉ + (() and either ( has no edges and vertices in the internal face
of � or there is 8 ∈ [ℓ] such that ( ≤ �8 . Because � is large, ℓ ≥ 3: + 3. Then by the pigeon hole
principle, there is 8 ∈ [2, ℓ − 1] such that there is no ( ∈ S with ( ≤ �8−1,�8 ,�8+1. This means
that S′ = S ∪ {�8 } is a packing of : vertex-disjoint shortest cycles. By Lemma 5.3, there is a
facial shortest cycle '′ of an internal face of ��8

. As there is no ( ∈ S with ( ≤ �8 , we have that
C′ = S ∪ {'′} is a packing of : vertex-disjoint shortest cycles. However, C′ is obtained from C by
replacing a non-facial cycle ' with a facial cycle '′. This contradicts the assumption that C is a
T -maximal solution and proves the claim. Ã

By Claim 5.10, it remains to deal with non-tree cycles formed by two paths of P(�) for small
(-nodes. For this, we apply the random separation technique [8, 12]. For simplicity, we give a
randomized Monte Carlo procedure and explain how to derandomize this step in the conclusion of
the proof of the theorem.

Let P =
⋃

� PB (�) where the union is taken over all small (-nodes � of T (�), that is, P is the
family of all paths that may be parts of non-tree cycles in a solution. We color the paths of P
randomly by two colors red and blue in such a way that a path % ∈ P is colored red with probability
2

3:+3 and % is colored blue with probability 3:+1
3:+3 . Consider a solution C such that if C contains a

non-tree cycle ' = % ∪& for two distinct paths %,& ∈ PB (�) for a small (-node � of T (�) then (i)
% and & are colored red and (ii) all other paths in PB (�) are blue. We say that such a solution C is
colorful.

To see the reason behind the coloring, assume that C is a T -maximal solution to the considered
instance. Let '1, . . . , 'ℓ be the non-tree cycles in C formed by pairs of paths from PB (�1), . . . ,PB (�ℓ )
for small (-nodes �1, . . . ,�ℓ of T (�). Let P′ =

⋃ℓ
8=1 PB (�8 ). Clearly, ℓ ≤ : . The probability that

all 2ℓ paths from P′ forming the non-tree cycles '1, . . . , 'ℓ are red is at least
( 2
3:+3

)2ℓ ≥ ( 2
3:+3

)2: .
Since �8 is a small (-node for T (�), |PB (�8 ) | ≤ 3: + 3 for each 8 ∈ [ℓ]. Hence, the total number of
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Fig. 4. Construction of T ∗. In the tree on the right side of the figure, the parent node of�2 and�3 corresponds
to the cycle �′ (red dashed lines) on the left.

paths in P′ that are not parts of non-tree cycles is at most (3: + 1)ℓ ≤ (3: + 1): . The probability
that all these paths are colored blue is at least:( 3: + 1

3: + 3

) (3:+1):
≥
(
1 − 2

3: + 3

) 3:+3
2 2:

≥
( 8
27

)2:
.

Thus, the probability that all paths in P′ forming non-tree cycles are red and all other paths are

blue is at least
(

16
81(:+1)

)2:
. This implies that if we try # =

(
81(:+1)

16

)2:
= :O(: ) random colorings,

then the probability that the desired property that all paths in P′ forming non-tree cycles are red

and all other paths are blue is not fulfilled for any of the colorings is at most
(
1 − 1

#

)#
≤ 1

4
.

From now on, we assume that a coloring of the paths of P is given such that if there is a solution,
then a T -maximal solution is colorful.

We construct the tree T ∗ from T (�) by splitting selected small (-nodes. For every small (-node
� such that there are two red (dashed) paths in PB (�) forming a non-tree cycle �′ and all other
paths in PB (�) are blue (solid), we do the following (see Figure 4):

—create a new node �′ and make it a child of � , and
—make every cycle ( ∈ CB (�) such that ( ≤ �′ a child of �′; the other cycles in CB (�) remain
to be children of � .

Observe that every node of T (�) is a node of T ∗ and, by Lemma 5.7 and the construction of
T ∗, we have that the nodes of T ∗ form a laminar family of shortest cycles such that the following
two properties hold.

Property (i): For any two nodes � and �′ of T ∗, � ≤ �′ in the planar embedding of � if and only
if � is a descendant of �′ in T ∗.

Property (ii): The facial shortest cycles of � distinct from the root of T ∗ are the leaves of T ∗.
Furthermore, if a colorful T -maximal solution to (�,F, :) exists, then each cycle of the solution

is a node of T ∗. We use these properties to construct a recursive branching algorithm that finds a
solution if a colorful T -maximal solution exists.

The algorithm takes� , : , and T ∗ as its parameters; these parameters are modified in the recursive
calls.

In the first step, we construct the map graph " with � as its planar embedding whose vertices
are the faces of � with their frontiers being shortest facial cycles. Then we call the algorithm from
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Proposition 2.2 to check whether" has an independent set of size: . If such a set exists then the fron-
tiers of the faces of� in the independent set compose a packing of : vertex-disjoint shortest cycles.
Thus, we can conclude that (�,F, :) is a yes-instance and stop. Assume that this is not the case.

Because there is no packing of : vertex-disjoint shortest cycles that contains only facial cycles, by
Lemma 5.9, we conclude that if there is a colorful T -maximal solution then any solution contains a
non-facial cycle � and a facial cycle �′ such that �′ <E � . Moreover, by properties (i) and (ii) of
T ∗, there is a node � of T ∗ in the solution such that (a) � is a non-facial cycle, (b) there is a facial
cycle �′ in the solution such that �′ <E � , and moreover, we can choose � such that (c) any cycle
�′′ ≠ � in the solution such that�′′ ≤ � is facial. Our goal is to identify� among all those shortest
cycles that satisfy conditions (a)–(c),

For this, we first mark the nodes of T ∗ that are candidates to be � . Namely, we mark every node
� of T ∗ such that there is a facial shortest cycle, that is, a leaf �′ of T ∗, with the property that
�′ <E � . If no node was marked, then we conclude that there is no colorful T -maximal solution
and so, we return that (�,F, :) is a no-instance and stop. We now assume that this is not the case
and consider the subgraph T U of T ∗ induced by the marked nodes. Notice that T U is a subtree of
T ∗ with the same root as T ∗, since any ancestor of a marked node is marked by property (i) of T ∗.

Denote by L the set of leaves of T U and let U be the set of nodes of T U that includes the root,
the nodes of L, and all the nodes with at least two children. Notice that because of Lemma 5.3,
for each � ∈ L, there is a facial shortest cycle �′ <E � . Then by the laminarity of the cycles of
T U and property (i) of T U , we have that |L| < : . Otherwise, the map graph " would have an
independent set of size : . However, this was already checked and ruled out. Since |L| < : , we
have that |U| ≤ 2|L| − 1 ≤ 2: − 3. Denote by S the set of all nontrivial (1-(2-paths in T U with
their endpoints (1 and (2 in U such that the internal vertices have degree two in T U . Note that
|S| ≤ |U| − 1 ≤ 2: − 4.

For each node � in T U , consider the map graph "� such that �� is its planar embedding and
the vertices of "� are those faces of �� with shortest cycles as their frontiers and such that for
any of their facial cycles ', we have that ' <E � , that is, all these faces are in the internal face of �
and the facial cycles do not touch � .

Recall that we aim to find the non-facial cycle � satisfying conditions (a)–(c) stated above. For
this, we guess the path in S containing � and the number A of facial cycles �′ in the solution such
that�′ <E � . This is done by branching on all possible choices of a path in S and a positive integer
A ≤ : − 1.

Assume that A and an (1-(2-path % ∈ S are given. Since (1, (2 ∈ U, we can assume without loss
of generality that (2 is a descendant of (1 in T U . For each node ( in % , we check whether there is a
packing of A vertex-disjoint facial cycles �′ such that �′ <E ( . This is done by calling the algorithm
from Proposition 2.2 for "( . If such a node does not exist, then we conclude that either � does
not lie on % or the solution does not have A vertex-disjoint facial cycles �′ such that �′ <E � . So,
we discard this choice of % and A . On the other hand, if we found a cycle ( and A vertex-disjoint
facial cycles �′ such that �′ <E ( for A = : − 1, then these A facial shortest cycles together with (

compose a packing of : vertex-disjoint shortest cycles. Thus, we return yes and stop. Otherwise,
among all nodes ( with the above property (lying on % and having A vertex-disjoint facial cycles�′

such that �′ <E (), we select the node (∗ closest to (2 in % .
To argue that the choice of (∗ is feasible in the sense that if the guess of the path containing �

and A was correct, then we can take � = (∗, assume that � is a non-facial cycle in a hypothetical
colorful T -maximal solution C such that � is a node of % , conditions (a)–(c) are fulfilled, and
there are exactly A facial cycles �′ in the solution with �′ <E � . We additionally assume that C
is a solution where � is at a minimum distance from (2 in T ∗. Let C′ ⊆ C be the set of all the
A + 1 cycles �′ in the solution with �′ ≤ � . By the choice of (∗, (∗ ≤ � and �(∗ has a packing
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C′′ of A + 1 vertex-disjoint shortest cycles that includes (∗ and A facial cycles �′ <E (
∗. Consider

C∗ = (C \ C′) ∪ C′′, that is, we replace the cycles of C′ with the cycles of C′′. Because C is laminar
and (∗ ≤ � , we obtain that C∗ is a packing of : vertex-disjoint cycles. Because we choose C where
� is at a minimum distance from (2 in T U , we obtain that (∗ =� . This means that the choice of (∗
is feasible if % and A were correctly guessed.

Next, we call our algorithm recursively. Since we would like to avoid rebuilding T ∗ because we
are looking for a colorful solution defined for T ∗, we construct new parameters � ′, : ′, and (T ∗)′
as follows:

—construct� ′ from� by deleting the vertices and edges of� that are embedded in the internal
face of (∗,

—set : ′ = : − A , and
—construct (T ∗)′ from T ∗ by deleting the nodes that are proper descendants of (∗ (i.e., descen-
dants of (∗ distinct from (∗) in T ∗.

Observe that because we do not delete (∗, we can use (T ∗)′ to represent the shortest cycles in the
obtained graph � ′.

Then, we call the algorithm for � ′, : ′, and (T ∗)′. If the algorithm returns yes, then we conclude
that (�,F, :) is a yes-instance and stop. If the algorithm returns no, then we discard the current
choice of % and A . To complete the description of the branching algorithm, we observe that we
branch on at most 2: − 4 paths % in S and at most : − 1 choices of A . If the algorithm fails to find a
solution for all choices, then we conclude that there is no solution and return no.

Since A ≥ 1, we have that the depth of the recursion is at most : , that is, the algorithm is finite.
Notice that if the algorithm concludes that there is a packing C of : vertex-disjoint shortest cycles,
then it may happen that C is not a T -maximal solution. However, it is sufficient for us that C is
a solution to (�,F, :). From the other side, if (�,F, :) is a yes-instance, then the instance has a
T -maximal solution. Hence, if there is a colorful solution of this type, then the algorithm returns
yes. This concludes the correctness proof for the branching algorithm.

Recall that we call this algorithm for at most # =

(
81(:+1)

16

)2:
random colorings of P. If for one

of the colorings, we obtain that (�,F, :) is a yes-instance then we return yes and stop. Otherwise,
if we fail to find a solution for all colorings, then we return no. The algorithm may return a false
negative answer but the probability of this event is at most 1

4
. This concludes the description and

the correctness proof of the algorithm.
To evaluate the running time, note that we can verify whether � is a forest, compute the girth,

and delete the vertices and edges that are not included in shortest cycles in polynomial time
by Dijkstra’s algorithm [15]. Then, T (�) and the corresponding planar embedding of � can be
constructed in polynomial time by Lemma 5.7. Given T (�), it is straightforward to construct the
set of paths P in polynomial time. Then, for each random coloring of P, it is also easy to construct
T ∗ in polynomial time. Then, we call our branching algorithm.

For the evaluation of the running time of the branching algorithm, we note the map graph "

can be constructed in polynomial time for the given planar embedding of � . The algorithm from
Proposition 2.2 runs in 2O(: ) · =2 time. If the algorithm reports that " has no independent set of
size : , we construct T U from T ∗ and this can be done in polynomial time. Further, we branch on
at most 2: − 4 choices of % ∈ S and at most : − 1 choices of A , that is, we have O(:2) possibilities.
Because % has at most = nodes, we call the algorithm from Proposition 2.2 at most = times. Thus, we
can find the cycle �∗ (if exists) in 2O(: ) · =3 time. Then we call our branching algorithm recursively
for � ′, : ′, and (T ∗)′ which can be easily constructed in polynomial time. Since the depth of the
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recursion tree is at most : , we obtain that the total running time of the branching algorithm is
:O(: ) · =O(1) .

We run the branching algorithm for at most # =

(
81(:+1)

16

)2:
= :O(: ) random colorings. Then

the total running time is :O(: ) · =O(1) . Taking into account that the running time of the previous
steps is polynomial, the overall running time is :O(: ) · =O(1) .

The described algorithm is a randomized Monte Carlo algorithm with one-sided error due to
applying the random separation technique. More precisely, we consider random colorings of the
paths in the set P =

⋃
� PB (�) where the union is taken over all small (-nodes � of T (�). Notice

that we use a non-uniform probability distribution. To derandomize the algorithm, one can use the
results of Fomin et al. [20] tailored for dealing with random colorings of this type. More precisely,
we can replace random colorings by separating collections; we refer to Fomin et al. [20] for the
definition of separating collections and the details of their construction. The obtained deterministic
algorithm has a slightly worse running time. However, the overall running time still can be written
as :O(: ) · =O(1) . This concludes the proof. �

5.3 Kernelization for Edge-Disjoint Shortest Cycle Packing
In this subsection, we prove Theorem 4 which we restate here.

Theorem 4. Edge-Disjoint Shortest Cycle Packing on planar graphs admits a polynomial kernel
such that the output graph has O(:2) vertices.

Proof. Let (�,F, :) be an instance of Edge-Disjoint Shortest Cycle Packing where � is a
planar graph. We assume that � is clean, as we can safely remove all vertices and edges that are
not part of any shortest cycle. If the graph is empty, we return a trivial no-instance. Otherwise,�
is clean and non-empty, therefore by Lemma 5.3, there is also an internal face 5 whose frontier is a
shortest cycle, in some fixed planar embedding of� . We consider another embedding of� where 5
is the outer face, and compute the LSCT T (�) as described in the proof of Theorem 3.

We first bound the number of leaves in T (�).

Claim 5.11. If T (�) has at least 4: leaves, then (�,F, :) is a yes-instance.

Proof of the Claim. Consider the graph�� , where the vertex set is the set of shortest cycles in
� that are found in the leaves of T (�), and a pair of vertices is adjacent if and only if the respective
cycles share edges. Since the shortest cycles in the leaves of T (�) are frontiers of internal faces
in the embedding of � , �� is a subgraph of the dual graph �∗ of � , and is therefore planar. By
Observation 2.1, a planar graph with at least 4: vertices has an independent set of size : . The
vertices of this independent set in �� correspond to : edge-disjoint shortest cycles in � , which
proves the claim. Ã

By Claim 5.11, if there are at least 4: leaves in T (�), we stop and return a trivial yes-instance.
Thus, in the following we assume that T (�) has less than 4: leaves.

For a shortest cycle � in � , we say that its extension is any shortest cycle �′ with � <4 �
′, and

we say that �′ is its lowest extension if �′ is an extension of � and for every other extension �′′ of
� , it holds that �′ ≤ �′′.

Claim 5.12. Every shortest cycle� in� that has at least one extension, has a unique lowest extension.

Proof of the Claim. Observe that for any shortest cycles �′ ≤ �′′ in � , if � <4 �′, then
� <4 �

′′. Consider first extensions of � that are cycles in T (�). By Lemma 5.7, all cycles �′ of
T (�) with� ≤ �′ form a rooted subpath in T (�); by the above, the set of extensions of� in T (�)
forms a rooted subpath of this path. If the subpath is empty, then the root cycle itself shares edges
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with � , in which case � has no extension. Otherwise, let �∗ be the lowest cycle on this subpath;
for each other extension �′ in T (�), �∗ ≤ �′. If �∗ is a U-node, by Lemma 5.6 � ≤ �′ for some
�′ ∈ CD (�∗), and for every other shortest cycle �′′ in ��∗ with � ≤ �′′, it holds that �′′ ≤ �′.
Since �′ ∈ T (�) is not an extension of � , there are no other extensions in ��∗ and �∗ is indeed
the unique lowest extension.

Now, consider the casewhere�∗ is an S-node. Let B, C be the poles of�∗ and letPB (�) = {%0, . . . , %ℓ }
be the inclusion-wise maximal family of B-C-paths in��′ as in the construction of CB (�∗). By Lemma
5.5, either there exists �′ ∈ CB (�∗) such that � ≤ �′, or � = %8 ∪ % 9 for some 8 < 9 ∈ [ℓ]0. In the
latter case, observe that 8 > 0 and 9 < ℓ since � shares no edges with �∗, and all non-tree cycles in
��∗ that are extensions of � are of the form %8′ ∪ % 9 ′ for some 8′ < 8 and 9 < 9 ′ ≤ ℓ . Hence, in this
case %8−1 ∪ % 9+1 is the lowest extension of %8 ∪ % 9 . Otherwise, if � ≤ �′ for some �′ ∈ CB (�∗), then
�′ shares edges with � by the choice of �∗ as �′ ∈ T (�). Let ℎ ∈ [ℓ] be such that �′ = %ℎ−1 ∪ %ℎ ,
let 8 be the smallest index in {ℎ − 1, ℎ} such that %8 shares edges with � , and let 9 be the largest. By
the same argument as in the previous case, %8−1 ∪ % 9+1 is the lowest extension of � . Ã

Due to Claim 5.12, for every shortest cycle � in � with at least one extension, we denote by
!(�), the unique lowest extension of � . We say that the extension chain U(�) of � is the sequence
�0,�1, . . . ,�A of shortest cycles in � such that �0 =� , �8 = !(�8−1) for each 8 ∈ [A ], and the cycle
�A has no extension. Notice that, given T (�), U(�) can be found in polynomial time by tracing
the path from � to the root in the tree.

We now construct the set of marked cycles C" , which is a subset of all shortest cycles of � . We
start by describing the set of base cycles C� ⊆ C" , which contains:

—every leaf cycle of T (�),
—every* -node that has at least two children, and
—every (-node together with the cycles %0 ∪ %ℓ−1 and %1 ∪ %ℓ , where {%0, . . . , %ℓ } = PB (�).

If there exists a cycle � ∈ C� with a large enough extension chain, i.e., with |U(�) | ≥ : , we stop
and return a trivial yes-instance. This is safe, since by definition all of the cycles in U(�) are
edge-disjoint. Otherwise, we define C" to be all cycles of C� together with their extension chains,
plus the root of T (�) and the set of all non-tree cycles: C" = {A } ∪ C# ∪⋃

�∈C� U(�), where C#

denotes the set of all shortest cycles in � that are not in T (�). We first observe that C" is closed
under taking the lowest extension.

Claim 5.13. For every cycle � ∈ C" , its lowest extension !(�) also belongs to C" , if it exists.

Proof of the Claim. For each � ∈ C� , the statement is immediate for � and all cycles in U(�),
since their lowest extensions are added to U(�) exhaustively by the definition.

It remains to consider non-tree cycles. Let � be an S-node in T (�) with PB (�) = {%0, . . . , %ℓ }
and consider a non-tree cycle�′ = %8 ∪ % 9 for some 8 < 9 ∈ [ℓ]0. By the proof of Claim 5.12, if 8 > 0
and 9 < ℓ , the lowest extension of �′ is %8−1 ∪ % 9+1, which is either another non-tree cycle or the
S-node �; both are part of C" by definition. Finally, if 8 = 0 we claim that !(�′) = !(%0 ∪ %ℓ−1),
where %0 ∪ %ℓ−1 ∈ C� and !(%0 ∪ %ℓ−1) ∈ C" . This holds since both lowest extensions are above � ,
while the intersection between� and�′ is %0, which is the same as the intersection between� and
%0 ∪ %ℓ−1. The argument for 9 = ℓ − 1 and !(�′) = !(%1 ∪ %ℓ ) is analogous. Ã

By construction, we have an upper-bound on the size of C" , which we prove in the next claim.

Claim 5.14. The size of C" is O(:2).

Proof of the Claim. We first bound the number of base cycles, i.e., the size of C� . Recall that we
have already bounded the number of leaves in T (�) by 4: − 1. This also implies that the number
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of internal vertices of T (�) that have at least two children is less than 4: . Therefore, the total
number of * -nodes and (-nodes in C� is less than 4: . By definition, C� contains two additional
cycles for each (-node; from the above, the number of such cycles is less than 8: . The total size of
C� is therefore less than 16: .

For every � ∈ C� , the size of its extension chain U(�) is at most : − 1. Thus, the cycles of C�
together with their extension chains amount to less than 16:2 cycles. In addition to these cycles, C"
contains the root and the non-tree cycles C# . By the above, we have less than 4: (-nodes, and in
total they have less than 8: children. Since an (-node with ? children contains at most ? · (? + 1)/2
non-tree cycles, there are at most 4: · (8: + 1) non-tree cycles in � in total. The size of C" can be
therefore upper-bounded by 52 · :2 = O(:2). Ã

We now show the main property of the set of marked cycles C" , that no other cycles are needed
in order to find a T -maximal solution.

Claim 5.15. For every T -maximal solution C, it holds that C ⊆ C" .

Proof of the Claim. Consider a T -maximal solution C, and assume by contradiction that it is
not contained in C" . Let� be the minimal cycle in C with respect to (≤) that is not in C" . Since C"
contains all leaves and internal vertices of T (�) with at least two children and all non-tree shortest
cycles of� , we have that � is a U-node in T (�) with exactly one child �′. If �′ ∈ C, then �′ ∈ C"
by the choice of �; but then �′ <4 � , and � is the lowest extension of �′, which contradicts the
assumption that � ∉ C" , since by Claim 5.13, C" is closed under taking the lowest extension.

Therefore, �′ ∉ C, and let C′ = C ∪ {�′} \ {�} be a set of : shortest cycles obtained from C by
replacing � with �′. Since C is T -maximal, it cannot be that C′ is a solution, thus �′ must share
edges with some other cycle �′′ ∈ C \ {�}; this cycle must be contained in �� , since otherwise it
also shares edges with� . By the choice of� ,�′′ is in the set of marked cycles C" . We claim that� is
then the lowest extension of�′′, which again contradicts the assumption that� ∉ C" . Indeed, since
both� and�′′ are part of the solution C, and�′′ ≤ � , we have that�′′ <4 � . On the other hand,�
shares edges with�′, which is the only other maximal cycle in�� with respect to (≤). Thus, no other
shortest cycle in �� is an extension of �′′, and � = !(�′′). This finishes the proof of the claim. Ã

For a set of cycles C in � , let
⋃C be a shortcut for

⋃
�∈C � , i.e., the graph obtained by taking

the union of all cycles in C, which is a subgraph of � . Let � =
⋃C" ; in other words, � is the

subgraph of � obtained by removing all vertices and edges that are not in any of the cycles in C" .
Since � is a subgraph of � , we treat the weight functionF as a weight function on edges of � as
well. From Claim 5.15, it follows immediately that (�,F, :) is a yes-instance of Edge-Disjoint
Shortest Cycle Packing if and only if (�,F, :) is a yes-instance. Therefore, we focus on (�,F, :)
for the remainder of the proof.

Observe also that the LSCT T (� ) can be seen as the result of dissolving degree-2 nodes in
T (�). Here, dissolving a degree-2 node means removing the node from the graph while making
its neighbors adjacent. Indeed, by construction of C" , the only shortest cycles in � that are not
necessarily in C" are* -nodes with exactly one child. Removing vertices and edges of such a cycle
� that are not part of C" results in the child of � being directly adjacent to the parent of � in the
new LSCT. Note that all leaves, (-nodes, * -nodes with at least two children and the root node are
preserved between T (�) and T (� ).

While � is constructed from only O(:2) cycles of � , it is not necessarily a kernel yet, since
the number of vertices involved in these cycles may be large. We now argue that the number of
vertices in � can be reduced by showing that only a few vertices in � have degree more than 2.
We identify the vertices of degree at least 3 by following the LSCT T (� ). For each � ∈ T (� ), we
define the set of vertices �(�) ⊆ + (�� ) as follows. If � is an (-node, then �(�) = {B, C}, where B, C
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are the poles of � . If � is a * -node, let �(�) be the set of vertices of degree at least three in the
graph

⋃{�} ∪ CD (�), i.e., we consider only the cycle � and its children in T (� ).

Claim 5.16. For each* -node � of T (� ) with ? children, the size of �(�) is at most ? · (? + 1).

Proof of the Claim. The family {�} ∪ CD (�) contains ? + 1 cycles. By Lemma 5.1, every two
of these cycles either touch or do not intersect. Therefore, for every two cycles �1 and �2 there
are at most two vertices of degree at least 3 in �1 ∪�2, which are the endpoints of the shared path
�1 ∩�2. On the other hand, every vertex of degree at least three in

⋃CD (�) ∪ {�} has two incident
edges that belong to some distinct cycles �1,�2 ∈ {�} ∪ CD (�), which means that this vertex has
degree at least three also in �1 ∪�2. Thus, the size of �(�) is at most twice the number of pairs of
cycles in {�} ∪ CD (�), showing the claim. Ã

Claim 5.17. The number of vertices of degree at least three in � is in O(:2).

Proof of the Claim. Let � =
⋃

�∈T (� ) �(�). Let E be a vertex of degree at least 3 in � , we
claim that � contains E . By definition, � contains the poles of all splittable cycles, so it remains
to consider the case where E is not a pole of any splittable cycle. Since the degree of E is at least
three in � , there exist two distinct shortest cycles �1, �2 in � that contain distinct edges incident
to E . Assume �1 is a non-tree cycle, then by Lemma 5.7, (ii), there exist a splittable cycle � ∈ T (� )
with PB (�) = {%0, . . . , %ℓ } and �1 = %8 ∪ % 9 for some 0 ≤ 8 < 9 ≤ ℓ . Since E is not a pole of � , E
is an internal vertex of %8 or % 9 ; in any case, there exists a cycle in CB (�) that contains the same
edges incident to E as �1, so �1 may be replaced by this cycle. Since an analogous argument can be
applied to �2, from now on we assume that both �1 and �2 are nodes of T (� ).

Let �1, �2 be the closest pair of cycles with this property, where the distance is measured over
the tree T (� ), and let �1 be the highest node in T (� ) among �1, �2. We claim that either �1 is
the parent of �2 in T (� ), or �1 and �2 have a common parent in T (� ). Assume the contrary, and
consider two cases depending on the locations of �1 and �2 in T (� ).

Case 1 (�2 ≤ �1). Consider the parent � of �2 in T (� ), � ≤ �1 and � ≠ �1. The cycle � contains
E , since otherwise E is an inner vertex of �� and cannot be on the cycle �1. If � contains the same
edges incident to E as �2, then �1, � fulfill the same property but are closer in T (� ) than �1, �2,
which is a contradiction. Otherwise, � contains an edge incident to E that is not contained in �2,
and the pair (�,�2) fulfills the property, leading to a contradiction.
Case 2 (�2 � �1 and �1 � �2). Let � be the parent of �2 in T (� ). By the assumption, � is not

the parent of�1, and also�1 � � since otherwise�1 has lower depth in T (� ) than�2. Similarly to
the previous case, � contains E , as otherwise �1 and �2 cannot share the vertex. Again, either �
contains the same edges incident to E as �2, or it contains an edge incident to E that is not part of
�2. Thus, either �1 and � or � and �2 fulfill the property while being closer in T (� ) than �1 and
�2, which is a contradiction.

We now have that either �1 is the parent of �2, or there is a cycle � that is the parent of both �1

and �2 in T (� ). If �1 is the parent of �2, and �1 is an (-node, then E is a pole, which we assume is
not the case; the same holds if � is an (-node and �1,�2 ∈ CB (�). If �1 is the parent of �2 and �1 is
a* -node, then�1 ∪�2 is a subgraph of

⋃CD (�1) ∪ {�1}, so E ∈ �(�1). By the same argument, if�
is a* -node and�1,�2 ∈ CD (�), then E has degree at least three in�1∪�2 and so in

⋃CD (�) ∪ {�},
thus E ∈ �(�). This concludes the proof that � contains all vertices of degree at least 3 in � .

It remains to bound the number of elements in �. For each � ∈ T (� ) that is either an (-node
or a * -node with one child, it holds that |�(�) | ≤ 2. Since |C" | ∈ O(:2), the total contribution
of these nodes to � is O(:2). Observe that T (� ) has at most 4: leaves, since the leaves of T (� )
and the leaves of T (�) are the same. Therefore, the total number of children of all* -nodes with
at least two children in T (� ) is at most 8: . Since a * -node with ? children contributes at most
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? · (? + 1) vertices to � by Claim 5.16, all * -nodes with at least two children contribute in total at
most 8: · (8: + 1) ∈ O(:2) vertices to �. The total size of � is therefore also O(:2). Ã

We now exhaustively apply the following reduction rules, in order to remove all degree-2 vertices
in � .

Reduction Rule 1. If there is a vertex of degree 2 in � , dissolve it: remove the vertex and add an
edge between its former neighbors, such that the weight of the new edge is equal to the sum of weights
of the two removed edges.

Note that 1 may create loops and parallel edges. Thus we allow for intermediate instances to
be multigraphs. We introduce two more reduction rules so that the resulting instance is a simple
graph. Notice that while the original graph� is clean, these reduction rules, namely Reduction Rule
3, can spoil this property. It is possible to introduce an additional rule that would delete all edges
that are not included in any shortest cycle. However, we just don’t need the graph to be clean at
this stage of the kernelization algorithm. Thus, we simply state the rules without this assumption.

Reduction Rule 2. If there is a loop 4 in � , remove it from the graph. IfF (4) = 6(�), additionally
decrease : by 1. If this increases the length of the shortest cycle, return a trivial no-instance unless :
becomes 0, in which case return a trivial yes-instance.

Reduction Rule 3. If there are two parallel edges 41 and 42 in � , remove both and decrease : by 1
ifF (41) +F (42) = 6(�). If this increases the length of the shortest cycle, return a trivial no-instance
unless : becomes 0, in which case return a trivial yes-instance. Otherwise, ifF (41) +F (42) > 6(�),
then remove one of the parallel edges with the highest weight without changing : .

Claim 5.18. Reduction Rules 1–3 are safe.

Proof of the Claim. First, for Reduction Rule 1, observe that every cycle in � either remains
unchanged, or is replaced by a cycle that passes through the newly-created edge, while the length
of the cycle and the set of remaining edges stays the same. Therefore, the length of all cycles is
unchanged, any two cycles that were edge-disjoint stay edge-disjoint, and any two cycles that
shared edges still share edges after applying the reduction rule.

Second, consider a loop 4 to which Reduction Rule 2 is applied. IfF (4) > 6(�), no shortest cycle
passes through 4 , thus it can be safely removed. If F (4) = 6(�), the only shortest cycle passing
through 4 is the one that contains the edge 4 and nothing else, as only simple cycles are considered.
Adding this cycle to the solution is safe as no other cycle in � can share edges with it.

Finally, let 41, 42 be the parallel edges in Reduction Rule 3, with the endpoints D, E . We start with
the caseF (41) +F (42) = 6(�). If : = 1, then the cycle � containing 41 and 42 is indeed a solution;
if : > 1 and 6(� ′) > 6(� ), where � ′ = � − 41 − 42, then (�,F, :) is a no-instance: Otherwise, each
cycle in the solution must use a different edge in {41, 42}, so : = 2, but then the remaining D-E-paths
of the two cycles in� ′ form a cycle of length 6(�) = 6(� ) in� ′, contradicting 6(� ) < 6(� ′). Now,
with 6(� ′) = 6(� ), we claim that a packing of : edge-disjoint shortest cycles exist in � if and only
if a packing of : − 1 edge-disjoint shortest cycles exists in � ′ = � . The backward direction is clear,
since the cycle � containing 41 and 42 can be added to any packing in � ′. In the forward direction,
if the statement does not hold, then the solution in � does not contain the cycle � , but contains at
least one cycle with an edge in {41, 42}. If there is just one such cycle, then it can be replaced by� , so
that the remaining : − 1 cycles form a packing in � . If there are two cycles�1 and�2, containing 41
and 42 respectively, let %1 be theD-E-path in�1 other than 41, and %2 be theD-E-path in�2 other than
42. Since F (�1) +F (�2) = 26(�) and F (41) +F (42) = 6(�), it holds that F (%1) +F (%2) = 6(�)
and the cycle �′ = %1 ∪ %2 is also a shortest cycle. However, we can then replace �1 and �2 with
� and �′ to get a packing of : edge-disjoint shortest cycles in � that contains � .
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In the other case, whenF (41) +F (42) > 6(�), let without loss of generality beF (42) ≥ F (41).
If F (41) < F (42), then no shortest cycle may pass through 42, so removing the edge 42 is safe. If
F (41) =F (42) > 6(�)/2, then no shortest cycle can contain both 41 and 42. Also, it cannot be that
two edge-disjoint shortest cycles contain 41 and 42, respectively, as then by joining�1−41 and�2−42
we get a cycle that is shorter than 6(�). Thus, in any solution at most one cycle passes through
either 41 or 42. Thus, it is safe to remove 42 since any such cycle may pass through 41 instead. Ã

By applying Reduction Rules 1–3 exhaustively, we obtain a simple graph � ′ with the weight
functionF ′, and an integer : ′ ≤ : such that (�,F, :) is equivalent to (� ′,F ′, : ′) (by Claim 5.18).
Moreover, |+ (� ′) | = O(:2), by Claim 5.17 and since Reduction Rule 1 can no longer be applied. It
remains to compress the weights, so that they can be represented by :O(1) bits. Let = = |+ (� ′) |,
< = |� (� ′ |. We have that < ≤ 3= − 6 as � ′ is a simple planar graph. Thus, < = O(:2). We
now interpret the weight function F ′ : � (� ′) → Z as a vector in Z< by assigning an arbitrary
numbering to the edges of � ′, and invoke Proposition 2.4 with F ′ and # = < + 1 to obtain a
compressed vector F ∈ Z< . From Proposition 2.4, we have that for any vector 1 ∈ Z< with
| |1 | |1 ≤<, sign(F ′ · 1) = sign(F · 1). Interpreting the vectorF as a weight function on � (� ′), we
obtain the instance (� ′,F, : ′) of Edge-Disjoint Shortest Cycle Packing. By Proposition 2.4,
| |F | |∞ ≤ 24<

3 · (< + 1)< (<+2) = 2O(:6 ) , therefore each entry ofF can be represented by O(:6) bits.
Thus, the bit-size of (� ′,F, : ′) is O(:8). It remains to verify that (� ′,F, : ′) is indeed equivalent to
(� ′,F ′, : ′). We show that for every pair of cycles in � ′, their weights compare in the same way
before and after the weight compression.

Claim 5.19. For every two cycles �1, �2 in � ′,F ′ (�1) is smaller than (equal to/larger than)F ′ (�2)
if and only ifF (�1) is smaller than (equal to/larger than)F (�2).

Proof of the Claim. It suffices to show that sign(F ′ (�1) −F ′ (�2)) = sign(F (�1) −F (�2)).
For each cycle �8 with 8 ∈ {1, 2}, consider its characteristic vector 08 ∈ {0, 1}< , where the 9th
coordinate is equal to 1 if and only if the 9 th edge of� ′ belongs to�8 . By definition,F ′ (�8 ) =F ′ ·08
and F (�8 ) = F · 08 for each 8 ∈ {1, 2}. Let 1 ∈ {−1, 0, 1}< be the difference vector 01 − 02,
then F ′ (�1) − F ′ (�2) = F ′ · 1 and F (�1) − F (�2) = F · 1. By construction, | |1 | |1 ≤ <, so
Proposition 2.4 applies to the vector 1, therefore sign(F ′ · 1) = sign(F · 1), which means that
sign(F ′ (�1) −F ′ (�2)) = sign(F (�1) −F (�2)). Ã

From Claim 5.19, we have that every shortest cycle in the instance (� ′,F, : ′) is a shortest cycle
in (� ′,F ′, : ′), and the other way around. Therefore, the instances are equivalent with respect to the
existence of a packing of : edge-disjoint shortest cycles. Since (� ′,F ′, : ′) was previously shown
to be equivalent to the original instance (�,F, :) of Edge-Disjoint Shortest Cycle Packing,
(� ′,F, : ′) is equivalent to (�,F, :) as well, and, from the above, the bit-size of (� ′,F, : ′) is O(:8).
This completes the proof of the theorem. �

By using the small family of marked cycles constructed in the proof of the theorem, we imme-
diately get the following FPT algorithm for Edge-Disjoint Shortest Cycle Packing on planar
graphs.

Corollary 5.20. Edge-Disjoint Shortest Cycle Packing can be solved in :O(: ) · =O(1) time on
planar graphs.

Proof. Given the instance (�,F, :) of Edge-Disjoint Shortest Cycle Packing, construct the
set of marked cycles C" as in the proof of Theorem 4. By Claim 5.15, we have that whenever there
exists a solution for (�,F, :), there also exists one where all cycles are in C" . By Claim 5.14, we
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also have that C" = O(:2). Therefore, in time :O(: ) · =O(1) we can enumerate all :-tuples of cycles
in C" and check for each tuple whether the cycles are edge-disjoint. �

Finally, combining the equivalence between Edge-Disjoint Shortest Cycle Packing and Min-
Cut Packing on planar graphs, and the two results above, we get analogous results for Min-Cut
Packing on planar graphs.

Corollary 5.21. Min-Cut Packing on planar graphs admits a polynomial kernel such that the
output graph has O(:2) vertices. Furthermore, the problem can be solved in :O(: ) · =O(1) time on
planar graphs.

6 Kernelization Lower Bound for Shortest Cycle Packing and Edge-Disjoint Shortest
Cycle Packing

Note that Theorem 1 implies that Shortest Cycle Packing and Edge-Disjoint Shortest Cycle
Packing are in XP, but since the lower bound in Theorem 2 does not apply for these problems,
it remains open whether they are FPT or W[1]-hard on general graphs. Here, we show that both
problems do not admit polynomial kernels. Formally, we prove the following.

Theorem 6. Shortest Cycle Packing and Edge-Disjoint Shortest Cycle Packing parameterized
by solution size : do not admit polynomial kernels unless NP ⊆ coNP/poly.

To this end, we first define Disjoint Shortest Factors, a version of Disjoint Factors where
all of the factors of the solution need to be shortest factors. Let Σ be a finite alphabet. We use
Σ= to denote all words of length = over Σ. Given a word F = F1F2 . . .F= , we denote the 8th
charater in F by F [8], that is, F [8] = F8 . An G-factor of a word F = F1F2 . . .F= is a substring
F8F8+1 . . .F 9 for some 8 < 9 ∈ [=] which starts and ends with G , that is, F8 = G =F 9 . The length
of a factor F8F8+1 . . .F 9 is 9 − 8 and a G-factor is a shortest factor if there is no other G-factor
which has smaller length. Two factorsF1 =F81F81+1 . . . ,F 91 andF2 =F82F82+1 . . . ,F 91 intersect if
{81, 81 + 1, . . . , 91} ∩ {82, 82 + 1, . . . , 92} ≠ ∅, that is, there is an index in whichF1 andF2 intersect.
Otherwise, the factors are disjoint. We can now define Disjoint Shortest Factors formally.

Note that we allow for a special character � for which no factor needs to be picked. Since adding
two consecutive � to the start of the input word adds a shortest factor for �, this does not change
the computational complexity of Disjoint Shortest Factors. We show that Disjoint Shortest
Factors does not admit a polynomial kernel when parameterized by the alphabet size. We believe
that this result may be interesting by itself. We mention that our reduction is similar to the reduction
that shows that Disjoint Factors does not admit a polynomial kernel [6].

Proposition 6.1. Disjoint Shortest Factors parameterized by |Σ| does not admit a polynomial
kernel.

Proof. We present an OR-cross-decomposition from 3,4-Sat, a variant of Sat where each clause
contains exactly three literals and each variable appears at most four times. This version is known
to be NP-complete [37]. We first present a polynomial-time many-one reduction from 3,4-Sat
to Disjoint Shortest Factors. Given a formula q in 3-CNF-Sat, our alphabet consists of one
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character for each of the 3< positions in q and one character for each variable G8 in q . We create
the word:

F = 123123123456456456 . . . (3< − 2) (3< − 1) (3<) (3< − 2) (3< − 1) (3<)��FG1FG2 . . .FG= ,

where:

FG8 = G8?
8
1��?

8
1?

8
2��?

8
2?

8
3��?

8
3?

8
4��?

8
4G8=

8
1��=

8
1=

8
2��=

8
2=

8
3��=

8
3=

8
4��=

8
4G8 .

Therein, ?89 (respectively =
8
9 ) are the positions where G8 appears for the 9th time positively (respec-

tively negated) or � if G8 does not appear 9 times positively (negated). Note that the shortest factor
for any of the position characters has length three and for any variable character, it has length 17.
If the formula q is satisfiable, then we find a shortest factor for each character inF as follows. Let
V be a satisfying assignment for q . For each variable G8 , if V (G8 ) is false, then we select the first
G8 -factor inFG8 (the one through all ?89 ’s). If V (G8 ) is true, then we select the second G8 -factor inFG8

(the one through all =89 ’s). For each clause � 9 , we select one variable E 9 such that V (E 9 ) satisfies � 9 .
Note that such a variable exists as V is a satisfying assignment. Let 2 9 be the position of E 9 in � 9 .
Note that by construction, we can pick a shortest 2 9 -factor inFE9 . For the other two positions in
� 9 , we can find disjoint shortest factors in the starting part ofF .

In the other direction, if F admits a set of disjoint shortest factors, then we will construct a
satisfying assignment for q . For each variable G8 ,F only contains two shortest G8 -factors and both
are contained inFG8 . If the first one is chosen, then we set G8 to false and otherwise, we set G8 to
true. Suppose this assignment does not satisfy q . Then, there exists a clause � 9 that is not satisfied.
Note that for each position character, there are only three shortest factors inF , two in the starting
part and one in a wordFG8 for the variable in the respective position. Moreover in the starting part,
we can find disjoint shortest factors for at most two out of the three positions (3 9 − 2), (3 9 − 1),
and 3 9 in � 9 . This means that there is at least one position in � 9 whose position-character-factor
has been chosen within a variable word F8 . This is a contradiction to the fact that the chosen
assignment does not satisfy � 9 .

We next present the OR-cross-decomposition. Given C instances of 3,4-Sat, where all instances
contain the same number of clauses and variables, we use the previously described many-one
reduction to construct words F1,F2, . . . ,FC , one for each instance. We assume that C = 2B for
some integer B . Otherwise, we can copy one of the instances at most C times to ensure that the
number of instances is a power of 2. Note that by construction, all words F8 have the same
length # = 9< + 35= ∈ $ (= +<), all words are over the same alphabet Σ, and the shortest factor
for each character has the same length in each F8 . Next, we combine all of these instances into
one instance such that the whole instance is a yes-instance if and only if at least one of the
wordsF8 is a yes-instance using B additional characters 21, 22, . . . , 2B . Let Σ′ = Σ ∪ {21, 22, . . . , 2B }.
We iteratively combine two batches of instances of the same size into one instance, that is, in
the 8th round, we combine two batches containing 28−1 instances into one batch containing 28

instances using character 28 . Note that after B = log2 (C) rounds, we get one instance encoding all
C instances.

We next describe how two batches are merged. To this end, let,1 and,2 be the words corre-
sponding to two batches and let #8 = |,1 | = |,2 |. We create the word:

, = 28,1�#8/228�#8/2,228�.

Note that #8 = 3#8−1 + 4, where #0 = # . This implies that #8 = 38# + 48 . In particular,
#B = 3B# + 4B = C log2 (3)# + 4 log2 (C), that is, the whole constructed instances has size in poly(C# ).
Moreover, |Σ′ | ≤ # + log2 (C). It hence only remains to show that the constructed instance is a
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yes-instance if and only if at least oneF8 is a yes-instance. To this end, first observe that all shortest
28 -factors are contained in the words for batches of 28 input words as we introduced #8 � between
two such words when creating batches for 8 + 1.

Assume first that one wordF8 is a yes-instance. Then we find a set of disjoint shortest factors for
all characters in Σ′ in, as follows. For each character 0 ∈ Σ, we take a shortest 0-factor fromF8 .
Next for each 28 , we look at the batch word,8 in round 8 that containsF8 . Note that,8 contains
the character 28 three times and between any two of them, there is a shortest 28-factor. We pick
the one that does not intersect withF8 . Note that in this way we can find a set of disjoint shortest
factors for all characters in Σ′.

Now assume that the word, is a yes-instance and let ( be a solution. Similar to before, the
character 2log2 (C ) is contained only three times in, . We take the shortest 2log2 (C ) -factor in ( and
consider the rest, ′ of the word, . We iteratively select the shortest 28 -factor in ( for decreasing
values of 8 . After log2 (C) iterations, we are only left with a single input wordF8 . By assumption, (
contains disjoint shortest factors for each character in Σ, that is, the instanceF8 is a yes-instance.
This concludes the proof. �

Now we can prove Theorem 6 which we restate.

Theorem 6. Shortest Cycle Packing and Edge-Disjoint Shortest Cycle Packing parameterized
by solution size : do not admit polynomial kernels unless NP ⊆ coNP/poly.

Proof. We present a polynomial parameter transformation from Disjoint Shortest Factors.
To this end, letF ∈ Σ= be a string. We assume without loss of generality that = ≥ 10. We start with
a path of length 2=. Let the vertices be D1, D2, . . . , D2= . Next, for each 0 ∈ Σ, we add a new vertex E0
to the graph. Let 801 < 802 < . . . < 809 be all the positions 8 whereF [8] = 0 and let 30 be the size of a
shortest 0-factor inF . We add a path between E0 and D28? for each ? ∈ [ 9]. The path between E0
and D8? is of length 3= − 30 . Finally, we set : = |Σ|.

Since the reduction can be computed in polynomial time and Disjoint Shortest Factors does
not admit a polynomial kernel when parameterized by |Σ|, it only remains to show that F has
: disjoint shortest factors if and only if there exists a set of : disjoint cycles of length 6 in the
constructed graph, where 6 is the girth of the graph. We start by showing that the girth of the
graph is 6=. Note that the set of vertices {E0 | 0 ∈ Σ} is a feedback vertex set of the constructed
graph and hence each cycle passes through at least one of these vertices. Moreover, each cycle that
passes through at least two such vertices are of length at least 4(3= − =) = 8= as 30 ≤ = for each
0 ∈ Σ. Next, each cycle that passes through exactly one vertex E0 ∈ {E0 | 0 ∈ Σ} has length at least
2(3= − 30) + 230 = 6= as any two vertices of the initial path that are connected to the same vertex
E0 have distance at least 230 as any factor ofF has length at least 30 . Moreover, each cycle through
E0 that has length exactly 6 = 6= corresponds to a shortest 0-factor inF . �

We mention that forcing the shortest distances for all factors to be equal is basically the same as
Colorful Independent Set in unit interval graphs where all monochromatic cliques have size at
most 2. This admits a cubic kernel as shown by van Bevern et al. [3]. For the sake of completeness,
we sketch a cubic kernel directly but based on their ideas. Observe that the distance ℓ of any
shortest factor is at most : as otherwise, any shortest factor would contain some letter twice, a
contradiction to the factor being shortest and all shortest factors having the same length ℓ . Next,
we can add ℓ + 3 new characters and build a quadratic-size gadget in the beginning that allows
all of these to be picked in a solution. Afterwards, we can use these characters to replace deleted
characters (since we cannot use a single character � in this variant). The gadget looks as follows:

1, 3, 4, . . . , ℓ + 2, 1, 2, 4, 5, . . . , ℓ + 3, 3, 1, 5, 6, . . . , ℓ + 3, 3, . . . , ℓ + 3, 1, 2, . . . , ℓ, ℓ + 3.
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With this at hand, we can observe that if there are at least 2: − 1 shortest factors of a given letter,
then each of these can intersect with at most two factors in any solution, that is, we can ignore
this character (replace it by the new characters). Now, each of the $ (:) character has at most 2:
shortest factors, each of length at most : . Keeping only characters contained in these factors and
adding “separators” of length : between “connected components” results in a cubic kernel.

7 Packing Minimum Cuts
In this section, we show that packing : minimum cuts in a graph is W[1]-hard when parameterized
by : . This is partially related to Shortest Cycle Packing as packing : minimum cuts in the dual
of a planar graph is the same as packing : shortest cycles in the primal graph.

Theorem 7. Min-Cut Packing is W[1]-hard when parameterized by solution size : on graphs
with unit edge weights.

Proof. We present a reduction from Independent Set parameterized by solution size : . Recall
that the problem is W[1]-complete [12, 16]. To this end, let (� = (+ , �), :) be an instance of
Independent Set. We create an equivalent instance (� = (+ ′, �′), :) of Min-Cut Packing as
follows. Let Δ be the maximum degree in � . We set + ′ = + ∪* where * is a set of 2Δ + 3 new
vertices. For the edge set �′, we start with the edge set � ∪ {{D, E} | D, E ∈ * }, that is, we make
* into a clique of size 2Δ + 3. Moreover for each vertex E ∈ + , we add edges between E and
2Δ + 1 − deg� (E) arbitrary vertices in* . This concludes the construction.

Since the solution sizes for both instances are the same and since the reduction can be computed
in polynomial time, it only remains to show that� contains an independent set of size : if and only
if there are : disjoint minimum cuts in� . We first show that all minimum cuts in� separate exactly
one vertex E ∈ + from the rest of the graph. Note that each such cut has size 2Δ + 1. Moreover,
no cut of size at most 2Δ + 1 can separate two vertices in * as each proper cut in a clique of size
ℓ = 2Δ + 3 contains at least ℓ − 1 = 2Δ + 2 edges. Lastly, consider a cut that separates two vertices
D, E ∈ + from all vertices in * . Such a cut contains at least 2Δ + 1 − Δ = Δ + 1 edges between D

and vertices in * and also at least Δ + 1 edges between E and vertices in * . Since these two sets of
edges are disjoint, such a cut has size at least 2Δ + 2 and is therefore not a minimum cut.

This basically concludes the proof as each minimum cut in � now corresponds to selecting a
single vertex E in� and two cuts are disjoint if and only if the two selected vertices are non-adjacent
in� , that is, a packing of : disjoint minimum cuts in � corresponds to an independent set of size :
in � . �

8 Conclusion
We investigated the parameterized complexity of finding packings of vertex or edge-disjoint cycles
of bounded total length. In Theorem 1, we showed that Min-Sum Cycle Packing and Min-Sum
Edge-Disjoint Cycle Packing are in XP when parameterized by the number of cycles. The result
is tight in the sense that both problems are proven to be W[1]-hard in Theorem 2. The interesting
special cases where we pack shortest cycles are Shortest Cycle Packing and Edge-Disjoint
Shortest Cycle Packing. Trivially, Theorem 1 implies that Shortest Cycle Packing and Edge-
Disjoint Shortest Cycle Packing are in XP. However, our lower bound in Theorem 2 does not
apply here. This leads to an intriguing open problem as to whether Shortest Cycle Packing and
Edge-Disjoint Shortest Cycle Packing are FPT or W[1]-hard on general graphs. Currently, we
can only rule out the existence of polynomial kernels (Theorem 6). We also observed that Min-Cut
Packing—which is dual for Edge-Disjoint Shortest Cycle Packing on planar graph—becomes
W[1]-hard for general case (Theorem 7).
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Further, we considered the case of planar graphs. We proved that Shortest Cycle Packing and
Edge-Disjoint Shortest Cycle Packing are FPT when parameterized by the number of cycles
and, furthermore, Edge-Disjoint Shortest Cycle Packing admits a polynomial kernel. The most
interesting open question here is whether Min-Sum Cycle Packing and Min-Sum Edge-Disjoint
Cycle Packing are FPT on planar graphs. Our algorithms for Shortest Cycle Packing and
Edge-Disjoint Shortest Cycle Packing crucially depend on the structure of shortest cycles in
planar graphs, and we cannot apply the same ideas for the more general length constraint. Further,
does Shortest Cycle Packing admit a polynomial kernel in the planar case? The kernelization
algorithm for Edge-Disjoint Shortest Cycle Packing in Theorem 4 exploits the fact that a plane
graph with at least 4: shortest facial cycles always has a packing of : edge-disjoint shortest cycles
by the four-color theorem, and we do not have similar properties in the case of vertex-disjoint
cycles. On the other side, the reduction in Theorem 6 is far from planar and cannot be used to infer
a similar kernelization lower bound for Shortest Cycle Packing.

Another interesting open problem for planar graphs is about packings of cycles from uncrossable
families (we refer to [24, 35, 36] for the definitions). Is it possible to extend our results for shortest
cycles for these more general cycle families?

Finally, we would be interested to know whether the running time of our algorithms could be
improved. The algorithm from Theorem 1 runs in =O(:6 ) time. Can the running time be improved to,
say, =O(: )? For the planar case, we solve Shortest Cycle Packing and Edge-Disjoint Shortest
Cycle Packing in :O(: ) · =O(1) time. Is there a single-exponential in : algorithm? It may even be
that that these problems can solved in subexponential time.

References
[1] Kenneth Appel and Wolfgang Haken. 1989. Every Planar Map Is Four Colorable. American Mathematical Society.
[2] Matthias Bentert, André Nichterlein, Malte Renken, and Philipp Zschoche. 2023. Using a geometric lens to find

:-disjoint shortest paths. SIAM Journal on Discrete Mathematics 37, 3 (2023), 1674–1703.
[3] René van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. 2015. Interval scheduling and colorful

independent sets. Journal of Scheduling 18, 5 (2015), 449–469.
[4] Andreas Björklund and Thore Husfeldt. 2019. Shortest two disjoint paths in polynomial time. SIAM Journal on

Computing 48, 6 (2019), 1698–1710.
[5] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos.

2016. (Meta) kernelization. Journal of the ACM 63, 5, Article 44 (2016), 1–69.
[6] Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. 2011. Kernel bounds for disjoint cycles and disjoint paths.

Theoretical Computer Science 412, 35 (2011), 4570–4578.
[7] Glencora Borradaile, Amir Nayyeri, and Farzad Zafarani. 2015. Towards single face shortest vertex-disjoint paths in

undirected planar graphs. In Proceedings of the 23rd Annual European Symposium Algorithms (ESA). Springer, 227–238.
[8] Leizhen Cai, Siu Man Chan, and Siu On Chan. 2006. Random separation: A new method for solving fixed-cardinality

optimization problems. In Proceedings of the 2nd International Workshop on Parameterized and Exact Computation
(IWPEC). Springer, 239–250.

[9] Zhi-Zhong Chen. 2001. Approximation algorithms for independent sets in map graphs. Journal of Algorithms 41, 1
(2001), 20–40.

[10] Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. 2002. Map graphs. Journal of the ACM 49, 2
(2002), 127–138.

[11] Éric Colin De Verdière and Alexander Schrijver. 2011. Shortest vertex-disjoint two-face paths in planar graphs. ACM
Transactions on Algorithms 7, 2 (2011), 1–12.

[12] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,
and Saket Saurabh. 2015. Parameterized Algorithms. Springer.

[13] Samir Datta, Siddharth Iyer, Raghav Kulkarni, and Anish Mukherjee. 2018. Shortest :-disjoint paths via determinants.
In Proceedings of the 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS). Schloss Dagstuhl—Leibniz-Zentrum Für Informatik, Article 19, 1–21.

[14] Reinhard Diestel. 2012. Graph Theory . Springer.

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 8. Publication date: October 2025.



Packing Short Cycles 8:35

[15] Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1 (1959),
269–271.

[16] Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity . Springer.
[17] Tali Eilam-Tzoreff. 1998. The disjoint shortest paths problem. Discrete Applied Mathematics 85, 2 (1998), 113–138.
[18] Paul Erdös and George Szekeres. 1935. A combinatorial problem in geometry. Compositio Mathematica 2 (1935),

463–470.
[19] Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. 2017. Polynomial kernels for weighted problems.

Journal of Computer System Sciences 84 (2017), 1–10.
[20] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2016. Efficient computation of representative

families with applications in parameterized and exact algorithms. Journal of the ACM 63, 4 (2016), 29:1–29:60.
[21] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. 2020. Bidimensionality and kernels.

SIAM Journal on Computing 49, 6 (2020), 1397–1422.
[22] András Frank and Éva Tardos. 1987. An application of simultaneous diophantine approximation in combinatorial

optimization. Combinatorica 7, 1 (1987), 49–65.
[23] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability. W.H. Freeman and Company.
[24] Michel X. Goemans and David P. Williamson. 1998. Primal-dual approximation algorithms for feedback problems in

planar graphs. Combinatorica 18, 1 (1998), 37–59.
[25] Venkatesan Guruswami, C. Pandu Rangan, Maw-Shang Chang, Gerard J. Chang, and C. K. Wong. 1998. The vertex-

disjoint triangles problem. In Proceedings of the 24th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG). Springer, 26–37.

[26] David Hartvigsen and Russell Mardon. 1994. The all-pairs min cut problem and the minimum cycle basis problem on
planar graphs. SIAM Journal on Discrete Mathematics 7, 3 (1994), 403–418.

[27] Ian Holyer. 1981. The NP-completeness of some edge-partition problems. SIAM Journal on Computing 10, 4 (1981),
713–717.

[28] John E. Hopcroft and Robert E. Tarjan. 1974. Efficient planarity testing. Journal of the ACM 21, 4 (1974), 549–568.
[29] David R. Karger and Clifford Stein. 1996. A new approach to the minimum cut problem. Journal of the ACM 43, 4

(1996), 601–640.
[30] Yusuke Kobayashi and Tatsuya Terao. 2022. One-face shortest disjoint paths with a deviation terminal. In Proceedings

of the 33rd International Symposium on Algorithms and Computation (ISAAC). Schloss Dagstuhl—Leibniz-Zentrum für
Informatik, Article 47, 1–15.

[31] William Lochet. 2021. A polynomial time algorithm for the :-disjoint shortest paths problem. In Proceedings of the
32nd ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 169–178.

[32] Mathieu Mari, Anish Mukherjee, Michał Pilipczuk, and Piotr Sankowski. 2024. Shortest disjoint paths on a grid. In
Proceedings of 35th ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 346–365.

[33] Dieter Rautenbach and Friedrich Regen. 2009. On packing shortest cycles in graphs. Information Processing Letters
109, 14 (2009), 816–821.

[34] Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin Thomas. 1997. The four-colour theorem. Journal of
Combinatorial Theory, Series B 70, 1 (1997), 2–44.

[35] Niklas Schlomberg. 2024. An improved integrality gap for disjoint cycles in planar graphs. In Proceeding of the 51st
International Colloquium on Automata, Languages, and Programming (ICALP). Schloss Dagstuhl—Leibniz-Zentrum für
Informatik, Article 122, 1–15.

[36] Niklas Schlomberg, Hanjo Thiele, and Jens Vygen. 2023. Packing cycles in planar and bounded-genus graphs. In
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2069–2086.

[37] Craig A. Tovey. 1984. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics 8, 1 (1984), 85–89.

Received 28 October 2024; revised 11 August 2025; accepted 23 August 2025

ACM Transactions on Algorithms, Vol. 22, No. 1, Article 8. Publication date: October 2025.


	Abstract
	1 Introduction
	1.1 Overview of the Methods
	1.2 Related Work

	2 Preliminaries
	3 Min-Sum Cycle Packing Is in XP
	4 Lower Bound for Min-Sum Cycle Packing
	5 Packing Shortest Cycles in Planar Graphs
	5.1 Laminar Decomposition for Shortest Cycles
	5.2 FPT Algorithm for Shortest Cycle Packing
	5.3 Kernelization for Edge-Disjoint Shortest Cycle Packing

	6 Kernelization Lower Bound for Shortest Cycle Packing and Edge-Disjoint Shortest Cycle Packing
	7 Packing Minimum Cuts
	8 Conclusion
	References

