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Continuous-wave quantum light control via engineered Rydberg-induced dephasing
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We analyze several implementations of all-optical single-photon transistors (SPTs) operating in the
continuous-wave (cw) regime, as presented in the companion paper [Phys. Rev. A 113, L011701 (2026)]. The
devices rely on ensembles of Rydberg atoms interacting via van der Waals interactions. Under electromagnet-
ically induced transparency (EIT), a weak probe field is fully transmitted through the atomic ensemble in the
absence of control photons. Exciting a collective Rydberg state with a single control photon breaks the EIT
condition, thereby strongly suppressing the probe transmission. We show how collective Rydberg interactions in
an atomic ensemble, confined either in an optical cavity or in free space, give rise to two distinct probe-induced
dephasing mechanisms. These processes localize the control excitations, extend their lifetimes, and increase the
device efficiency. We characterize the SPTs in terms of control-photon absorption probability and probe gain,
supported by numerical simulations of realistic one- and three-dimensional ensembles. The proposed cw devices
complement previously demonstrated SPTs and broaden the toolbox of quantum light manipulation circuitry.
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I. INTRODUCTION

The interaction between atoms and light has been a central
research topic since the early days of quantum mechanics. In
recent decades, significant progress has been made in real-
izing a quantum interface between a large number of atoms,
known as an atomic ensemble, and quantum light. This has
been achieved by effectively coupling a collective superposi-
tion state of many atoms to quantum light [1]. The interaction
of light with multiatom ensembles has resulted in numerous
applications for quantum information processing, including
quantum memories [2,3] and quantum repeaters [4,5]. These
applications take advantage of the collective quantum behav-
ior of the atomic ensemble to store and process quantum
information encoded in light, enabling the development of
more advanced quantum technologies.

Atomic ensembles with Rydberg excitations have captured
significant attention in recent years due to their characteristic
nonlinear properties arising from their strong van der Waals
interaction. Their utilization has contributed to significant
progress in quantum optics [6–9], enabling the realization
of strong photon-photon interactions [10,11]. This has led to
proposals for numerous applications such as Wigner crystal-
lization [12], Rydberg atomic qubits [13], and quantum gates
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[14–18]. The high degree of control and strong interaction
also make Rydberg atoms a promising platform for quantum
simulation [19–24] and quantum optimization [25–27].

The potential of Rydberg atoms as a platform for efficient
optical control has been demonstrated by several Rydberg-
based coherent switches and transistors, offering quantum
optical control of light by light [28–31]. The fundamental
limit of such a device is the single-photon transistor (SPT),
which was first proposed for a surface plasmon coupled to an
atom in a waveguide [32]. Similar SPTs have been realized
in various other systems [33–36]. However, these devices
operate in a regime where the control photon and probe are
applied separately, preventing continuous-wave operation. A
continuous-wave (cw) SPT was proposed in the microwave
regime [37–40], but here we propose a cw SPT in the optical
regime.

In this paper, we examine several implementations of cw
SPTs based on an ensemble of driven Rydberg atoms, pre-
sented in the companion paper [41]. The two versions we
theoretically study place the ensemble in free space or inside
a single-sided cavity. For the proposed devices, the absence
or presence of a single control photon is distinguished by
measuring the probe field. When there is no control photon,
the system is in the electromagnetically induced transparency
(EIT) regime, which allows the probe field to propagate
through the ensemble without loss [1,42]. When a single con-
trol photon enters the system and is converted into a long-lived
collective Rydberg excitation, it results in interaction-induced
blockade [43] and lifts the EIT condition of the probe field,
which leads to a measurable signal.

To achieve a long storage time and high gain of the
transistor, we engineer the probe-induced dephasing of the
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FIG. 1. (a) Sketch of the system, showing the cavity version of the Rydberg-based single-photon transistor. An ensemble of Rydberg atoms
in an optical cavity is continuously probed by a weak coherent field with strength |αin,p|2, which is fully reflected under EIT conditions, while
driven by two classical drives �c and �p. Upon sending a control photon âin,c to the cavity, it is converted into a Rydberg excitation, inducing
an energy-level shift that modifies the reflection of the probe. (b) Atomic level scheme. The relevant atomic states form two � subsystems
(branches): a probe branch ({|g〉, |ep〉, |rp〉}), responsible for EIT-based probing by the input field αin,p under the drive �p, and a control branch
({|g〉, |ec〉, |rc〉}), responsible for converting a single-photon pulse into a stored Rydberg excitation |rc〉, which breaks the probe EIT via the
interbranch van der Waals interaction Vkl .

control photons. This enables cw operation of all driving fields
throughout the entire protocol, thereby simplifying the proto-
col and extending the possible applications of the transistor.
Notably, our proposed devices can serve as efficient optical
single-photon detectors with a large signal-to-noise ratio [37].
We further believe that this study opens new possibilities for
the application of Rydberg atoms in quantum information
processing and quantum communication.

The remainder of this paper is structured as follows: In
Sec. II, the realization of the proposed cw SPT device based
on a single-sided cavity is discussed, while in Sec. III, the
free-space version of the device is analyzed. Both sections are
divided into five subsections. In Secs. II A and III A the model
is introduced, while in Secs. II B and III B the modification of
the scattering properties of the probe field and the dephasing
induced on the control branch are examined. In Secs. II C and
III C, the optimal impedance matching conditions for control
photon storage are theoretically estimated. In Secs. II D and
III D, the Monte Carlo wave-function method used to simulate
the system is presented, and in Sec. IIE and III E, the results
of the simulation are used to characterize the efficiency of
the proposed devices and are compared with the theoretical
estimates. Finally, in Sec. IV, we provide the conclusions of
our work.

II. CAVITY

A. Model

We begin by introducing the version of the SPT consisting
of a Rydberg atomic cloud placed in a single-sided cavity. The
cavity is subject to two driving fields and two weak fields,
serving as probe and control fields, respectively, as illustrated
in Fig. 1(a). In Fig. 1(b), we show the relevant energetic
structure of the Rydberg atoms, which was previously used
for pulsed operation [44]. The Hamiltonian for the system is
composed of several parts

Ĥ = Ĥprobe + Ĥcontrol + ĤRyd + Ĥinput + Ĥres. (1)

Here, Ĥprobe represents the atomic branch used for probing
[left branch in Fig. 1(b)], Ĥcontrol corresponds to the branch
responsible for single-photon storage of the control field

[right branch in Fig. 1(b)], and ĤRyd describes the Rydberg
interaction between the atoms. Additionally, we introduced
the coupling to a continuum Ĥinput, providing input and output
for the cavity, and the reservoir Hamiltonian Ĥres.

The probe part of the Hamiltonian is given by

Ĥprobe = −
N∑

l=1

h̄
(
gpâpσ̂

l
epg + �pσ̂

l
rpep

+ H.c.
)
, (2)

where the creation (annihilation) operator â†
p (âp) describes a

probe cavity photon and gp is the coupling constant between
atoms and probe cavity photons. The energy levels |ep〉 and
|rp〉 are coupled by a classical drive with Rabi frequency
of �p. The transition of the lth atom between states |m〉
and |n〉 is described by the operator σ̂ l

mn = |ml〉〈nl |, where
m, n ∈ {g, ep, rp, ec, rc}, and N is the total number of atoms
comprising the ensemble. The rotating wave approximation
has been performed, and the excitation scheme corresponds to
EIT conditions, where all fields are resonant with the corre-
sponding transitions.

The Hamiltonian that describes the control branch reads

Ĥcontrol =
N∑

l=1

h̄
[
�σ̂ l

ecec
+ δσ̂ l

rcrc
− (

�cσ̂
l
rcec

+ �∗
c σ̂

l
ecrc

)
+ (

gcâcσ̂
l
ecg + g∗

câ†
c σ̂

l
gec

)]
, (3)

where we have used a rotating frame with respect to the
classical drive frequency ω2,c and the resonance frequency of
the cavity ω1,c. The detuning � is defined as � = ωecg − ω1,c,
while the two-photon detuning is δ = � − (−ωrcec + ω2,c).
Both are depicted in the energy diagram of Fig. 1(b). The
atomic transition frequencies are ωecg = ωec − ωg and ωrcec =
ωrc − ωec , where the frequencies ωg, ωec , ωrc correspond to
the energies of states |g〉, |ec〉, |rc〉, respectively. The operator
â†

c describes the control photon, which interacts with each
atom with coupling strength gc, and the classical drive for the
transition between states |ec〉 and |rc〉 is characterized by the
Rabi frequency �c.

The atoms in highly excited Rydberg states |rp〉 and |rc〉 in-
teract through the van der Waals interaction, which is modeled
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by the interaction Hamiltonian

ĤRyd = h̄
N∑

l=1
l �=k

N∑
k=1

Vkl σ̂
l
rprp

⊗ σ̂ k
rcrc

, (4)

where Vkl = C6/ρ
6
kl , with ρkl denoting the distance between

atoms and C6 is an interaction coefficient [9]. We analyze
the system’s capability to store control photons and manip-
ulate the probe by distinguishing between the control and
probe branches. Our analysis assumes that the control branch
receives a single control photon, whereas the probe branch
can receive multiple probe photons. The Hamiltonian (4) only
considers interactions between atoms excited in the Rydberg
states of different branches. This approach is justified in two
cases: First, when the principal quantum number of the Ry-
dberg state in the control branch significantly exceeds that
of the Rydberg state in the probe branch, resulting in much
larger dipole matrix elements between |rc〉 and its neighbor-
ing states compared with those of |rp〉 and its neighboring
states. Second, if the Rydberg states |rc〉 and |rp〉 are close
to a Förster resonance [45], leading to a near-zero energy
difference between the combined energies of states |rc〉 and
|rp〉 and those of a pair of neighboring states. Both cases
are thoroughly discussed in Appendix A. Finally, in order to
model the input-output of the system, we add the coupling to
the environment and reservoir Hamiltonians Ĥinput + Ĥres in
the standard form [46,47].

Using the Hamiltonian (1), we can derive the equations of
motion for the operators of the system. Using these equations,
we can quantify the storage capability of the control branch
and the change in the transmission properties of the probe
branch [48–50]. We assume that the probe branch operates
on a much faster timescale than the control branch, indicating
a substantial difference in the EIT-based bandwidth of the
probe and the Raman-based bandwidth of the control branch.
This enables us to examine the probe and control branches
separately in the two following sections.

B. Probe-induced dephasing

Initially, let us focus on the branch where the continuous
probe field is incident [left branch depicted in Fig. 1(b)].
In this section, we investigate the changes in the scattering
properties of the probe field based on the presence or absence
of a control photon, which is the primary role of the SPT [32].
Additionally, we examine the effective dephasing mechanisms
induced by the continuous probe field on the stored control
excitation through the Rydberg interaction.

The dynamics of the probe branch can be fully described
by the equations of motion (EOMs) derived from the Hamil-
tonians Ĥprobe + ĤRyd and the Lindblad jump operators

L̂κp = √
2κpâp, (5)

L̂l
gep

=
√

2γep σ̂
l
gep

. (6)

These operators account for the losses to the environment of
the intracavity probe photons and of the lth atom in the probe
excited state |ep〉 through spontaneous emission, respectively.
We further introduce the decay rate of the cavity probe pho-

tons κp and the decay rate of the probe excited state γep . By
considering independent Lindblad operators for each atom,
we implicitly assume that they are coupled to independent
reservoirs. This implies that emitted photons cannot be ab-
sorbed by a different atom, which holds true for a low-density
atomic ensemble within a cavity, where the optical depth of
the ensemble is small, thereby reducing the probability of
photon reabsorption by neighboring atoms.

The Heisenberg EOM is used to describe the evolution of
system operators through

˙̂o = i

h̄
[Ĥ,ô] +

∑
j

(
L̂†

j ôL̂ j − 1

2
{L̂†

j L̂ j, ô}
)

, (7)

where ô can be any system operator, and L̂ j refers to the
system’s Lindblad operators. We note that, for simplicity, we
have omitted the Langevin noise operators associated with the
decays. This is due to the fact that we consider the decay of op-
tical excitation, where the reservoir is typically in the vacuum
state. The corresponding noise operators therefore will al-
ways have expectation values corresponding to vacuum noise.
Since vacuum noise will never give rise to any excitations of
the system, so the latter can be neglected in the following.
The resulting EOMs for the operators associated with the
probe branch are found to be

˙̂ap = −κpâp + √
2κpâin,p + ig∗

p

N∑
l=1

σ̂ l
gep

, (8)

˙̂σ l
gep

= −γep σ̂
l
gep

+ igpâp + i�pσ̂
l
grp

, (9)

˙̂σ l
grp

= −i
N∑

k=1
k �=l

Vkl σ̂
k
rcrc

⊗ σ̂ l
grp

+ i�∗
pσ̂

l
gep

. (10)

Equation (8) describes the probe cavity photon’s dynamics,
accounting for losses to the environment and the input probe
field. Equation (9) captures the evolution of the probe excited
state |ep〉 of the lth atom and the interaction with the cavity
field and the excitation to the Rydberg state. Equation (10)
tracks the evolution of the lth atom’s Rydberg excitation of the
probe branch, which interacts with the Rydberg excitations of
the control branch |rc〉 of other atoms through van der Waals
interactions. We have approximated that the number of atoms
is sufficiently large such that we are operating below the satu-
ration point, so that the operators σ̂mm, where m ∈ {g, ep, rp},
can be neglected.

The incident probe field is subject to the cavity boundary
condition, described by the input-output relation [51–53] for
the probe cavity photons:

âin,p + âout,p = √
2κpâp. (11)

The probe input field is considered to be prepared in a
coherent state with classical amplitude αin,p and vacuum fluc-
tuations δâin,p, i.e., âin,p = αin,p + δâin,p.

We initially describe the system in the absence of any
stored excitation in the control branch, which serves as a
reference. By subtracting this reference, we obtain a purely
Rydberg-interaction-related description. When there is no
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stored excitation in the control branch, Eq. (10) simplifies to

˙̂σ l
grp

= i�∗
pσ̂

l
gep

. (12)

Moving to the frequency domain under the Fourier transform

ô[ω] =
∫

dteiωt ô[t], (13)

where ω is defined with respect to the resonance frequency
of the cavity, the solutions of the EOMs (8), (9), and (12)
are obtained. The solutions have the form ô = o + O(δâin,p)
consisting of a classical part proportional to the coherent
probe amplitude αin,p and a part proportional to the quantum
fluctuations δâin,p. The classical parts of the solutions in the
absence of stored control excitation are

ap[ω] =
√

2κpαin,p[ω]

κp − iω + ω|gp|2N
ω(γep −iω)+i|�p|2

, (14)

σ gep [ω] = gpω
√

2κpαin,p[ω]

(κp − iω)[ω(γep − iω) + i|�p|2] + ω|gp|2N
,

(15)

σ grp [ω] = −i�pgp
√

2κpαin,p[ω]

(κp − iω)[ω(γep − iω) + i|�p|2] + ω|gp|2N
.

(16)

Equipped with these solutions, we can evaluate the
scattering behavior of the system. The measure of the scat-
tering properties is the reflection coefficient, described by
the relation âout,p[ω] = Rp[ω]âin,p[ω]. Using the input-output
condition (11) and the solution of the intracavity probe field
(14), the reflection coefficient in the absence of a control
excitation is found to be

Rp[ω] = 2κp

κp − iω + g2
pNω

ω(γep −iω)+|�p|2
− 1. (17)

We note that for the probe field being resonant with the cavity,
i.e., ω = 0, the probe field is fully reflected Rp[ω = 0] = 1.
This is due to the device operating under EIT conditions.

Subsequently, we turn to the description of the system
in the presence of a stored control excitation. To achieve a
description of solely the Rydberg-associated processes, the
solutions of the probe branch’s EOMs in the absence of any
stored control excitation (14)–(16) are used as a reference
frame. In that spirit, a new set of shifted operators is intro-
duced by subtracting the reference frame from the original
operators. The shifted operators of the probe branch are

δâp[ω] = âp[ω] − ap[ω], (18)

δσ̂ l
gep

[ω] = σ̂ l
gep

[ω] − σ gep
[ω], (19)

δσ̂ l
grp

[ω] = σ̂ l
grp

[ω] − σ grp [ω], (20)

δâin,p[ω] = âin,p[ω] − αin,p[ω]. (21)

The EOMs of the shifted operators are obtained by substitut-
ing the definitions of the shifted operators (18)–(20) into the
probe branch’s EOMs (8)–(10), which includes the potential
presence of a Rydberg excitation on the control branch. The

set of EOMs for the shifted probe branch operators in the
frequency domain reads

− iωδâp = − κpδâp + √
2κpδâin,p + ig∗

p

N∑
l=1

δσ̂ l
gep

, (22)

− iωδσ̂ l
gep

= −γepδσ̂
l
gep

+ igpδâp + i�pδσ̂
l
grp

, (23)

−iωδσ̂ l
grp

= −i
N∑

k=1
k �=l

Vkl σ̂
k
rcrc

⊗ δσ̂ l
grp

+ i�∗
pδσ̂

l
gep

+ i
√

2κpgpαin,p

�p(κp − iω)

N∑
k=1
k �=l

Vkl σ̂
k
rcrc

. (24)

As expected, a feeding term appears in Eq. (24) in the pres-
ence of a stored excitation on the control branch, resulting
from the Rydberg-Rydberg interaction between excitations
in the probe and control branches. This originates from the
fact that, in the shifted frame, the EOMs of the probe branch
describe solely the Rydberg-associated processes.

The solutions of these EOMs are of the form ô[ω] =
o[ω]σ̂rcrc + O(δâin[ω]), where the first term is a classical term
proportional to the amplitude of the probe field αin, condi-
tioned on the presence of a stored control excitation. The
second term is a weak quantum term proportional to the fluc-
tuation operator δâin. In the shifted frame this operator acts on
the vacuum state. Hence, for the normally ordered products
that appear below, we can simply ignore this operator. By
considering the probe input field resonant with the cavity,
i.e., ω = 0, which corresponds to a field constant in time, the
solutions for the probe cavity field and the probe excited-state
transition operator are found to be

δâp[ω = 0] = −
N∑

k=1

√
2

κp

αin,pCk
b,p

1 + Ck
b,p

σ̂ k
rcrc

, (25)

δσ̂ l
gep

[ω = 0] =
N∑

k=1

igp

√
2
κp

γep + |�p|2
iVkl

αin,p

1 + Ck
b,p

σ̂ k
rcrc

. (26)

The blockaded cooperativity for the probe branch due to a
stored excitation in the control Rydberg state of the kth atom is
here introduced as Ck

b,p = ∑N
l=1
l �=k

Ck,l
b1,p, being the cooperativity

of the atoms included in the Rydberg blockaded sphere around
the kth atom. The single atom blockaded cooperativity of the
lth atom due to the kth atom being excited in the Rydberg state
of the control branch is given by Ck,l

b1,p = (|gp|2/κp)/(γep −
i|�p|2/Vkl ). For fully blockaded atoms Vkl � |�p|2/γep

this yields the standard expression for cooperativity of the
probe branch Cp = |gp|2N/(γepκp), whereas outside the block-
ade regime Vkl 	 |�p|2/γep , the blockaded cooperativity is
suppressed.

At this point the main function of the SPT becomes
evident: in the presence of a stored control excitation in the
Rydberg state of the kth atom |rk

c 〉, the scattering properties
of the probe are altered from the full reflection observed in
Eq. (17). This is confirmed by using the input-output relation
(11), the solution for the shifted field (25), and the mapping
between the shifted and the initial operators (18). From these
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expressions, the reflection coefficient on resonance is found
to be

Rk
p[ω = 0] = 1 − Ck

b,p

1 + Ck
b,p

, (27)

depending on the atom where the control photon is stored.
To gain some intuition about this coefficient, let us examine
the reflection coefficient in the absence of the driving field
�p, which decouples |rp〉 from the rest of the system,
effectively reducing the probe branch to a two-level system.
In this case, using the reflection coefficient in Eq. (17) is
Rp[ω = 0] = (1 − Cp)/(1 + Cp). By analogy, Eq. (27) can
be interpreted as arising from an effective two-level system
within a sphere centered at the excited kth atom with a radius
equal to the Rydberg blockade radius.

As shown in Eq. (27), in the presence of a stored con-
trol excitation, the blockaded cooperativity Ck

b,p modifies the
scattering properties of the system. This modification leads in
turn to the extraction of information regarding the presence
and/or location of the stored control excitation. The extraction
of information about the presence or location of the stored
excitation in the control branch leads to dephasing processes
in that branch. These processes arise from the two Lindblad
operators (5) and (6), which in the shifted frame read

L̂κp = −
N∑

k=1

αin,pCk
b,p

1 + Ck
b,p

σ̂ k
rcrc

≡
N∑

k=1

√
2γ k

κp
σ̂ k

rcrc
, (28)

L̂l
gep

=
N∑

k=1
k �=l

i2gp

√
γep

κp
αin,p

γep + |�p|2
iVkl

σ̂ k
rcrc

1 + Ck
b,p

≡
N∑

k=1
k �=l

√
2γ k,l

gep σ̂
k
rcrc

, (29)

representing the dephasing of the stored control excitation
from a change in cavity reflection of the probe and the de-
phasing due to spontaneous emission of the lth atom from the
probe excited state |ep〉, respectively. The dephasing rates on
the kth atom, associated with the two processes, are given by
the relation γ k

i = 〈rk
c | 1

2 L̂†
i L̂i|rk

c 〉/〈rk
c |rk

c 〉:

γ k
κp

=
N∑

k=1

∣∣γ k
κp

∣∣2 =
N∑

k=1

2|Ck
b,p|2

|1 + Ck
b,p|2

|αin,p|2, (30)

γ k,l
gep

=
N∑

k=1
k �=l

∣∣γ k,l
ep

∣∣2 =
N∑

k=1
k �=l

Re
(
Ck,l

b1,p

)|αin,p|2∣∣1 + Ck
b,p

∣∣2 . (31)

Let us first focus on the dephasing operator L̂l
gep

due to
spontaneous emission of the lth atom from the probe excited
state |ep〉. Its dependence on which atom decayed (l) provides
information to the environment regarding the position of the
collective Rydberg excitation, leading to localization of the
stored control excitation in the vicinity of l . This is evident
by the presence of Vkl in the denominator, which localizes
the stored excitation around the decayed atom, since γ k,l

ep
is

nonzero only for the atoms k for which the distance ρkl is
shorter than the Rydberg blockade radius.

The second dephasing operator L̂κp acts on the stored ex-
citation due to a change in cavity reflection. This dephasing
process does not reveal any information regarding the location

of the stored excitation and, unlike L̂l
gep

, does not lead to local-
ization. Instead, it reveals information only about the presence
of the stored excitation, via the change of the reflected probe
field, which is the mechanism behind the proposed SPT. Al-
though this dephasing process is suppressed for Cb,p 	 1 as
seen in Eq. (30), for larger values of the blockaded cooper-
ativity, it is present and detectable as seen by the change in
the reflection coefficient in Eq. (27) compared with the full
reflection observed in the absence of any stored excitation.

Both dephasing processes are an intricate part of the func-
tioning of the proposed device. L̂κp is the detectable process
that is essential for the efficiency of the proposed device, but
the L̂l

gep
process leads to localization, which provides a long

lifetime for the stored excitation (see Sec. II E). An important
aspect of the current work is the balancing of these two pro-
cesses for the optimization of the functionality of the SPT.

Finally, we introduce the total collective dephasing rate of
the control stored Rydberg excitation, due to the Rydberg-
mediated processes of the probe branch,

γr =
γκp + ∑N

l=1 γ l
gep

N
=

N∑
k=1

2
[∣∣Ck

b,p

∣∣2 + Re
(
Ck

b,p

)]
N

∣∣1 + Ck
b,p

∣∣2 |αin,p|2.

(32)

This rate is proportional to the strength of the probe field
|αin,p|2. We can thus adjust the probing strength |αin,p|2 to op-
timize impedance matching conditions for the control photon
storage by counterbalancing decay processes on the control
branch. This will be discussed in Sec. II C.

C. Impedance matching

A critical step for the functioning of the SPT is the conver-
sion of a control photon, incident on the cavity, to a Rydberg
collective excitation with near unity probability. To achieve
that, we analyze the scattering dynamics on the control branch
and derive an analytical estimate for the impedance-matching
conditions.

The dynamics of the control branch can be fully de-
scribed by the corresponding equations of motion derived
from Ĥcontrol and the Lindblad jump operators

L̂κc =
√

2κcâc, (33)

L̂l
gec

= √
2γec σ̂

l
gec

, (34)

L̂l
rcrc

=
√

2γr σ̂
l
rcrc

. (35)

The first two Lindblad operators account for the losses to the
environment of the intracavity control photon via the decay
of the cavity and the decay of the lth atom from the control
excited state |ec〉 via spontaneous emission, respectively. The
third Lindblad operator (35) accounts for the total effective
dephasing of the control Rydberg state |rc〉 due to the decay
dynamics of the probe branch’s Lindblad operators (5) and (6)
mediated by the Rydberg interaction, as derived in Sec. II B.

The EOMs for the system operators associated with the
control field are derived using the Heisenberg equation (7) and
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read

˙̂ac = −κcâc +
√

2κcâin,c + ig∗
c

N∑
l=1

σ̂ l
gec

, (36)

˙̂σ l
gec

= −(γec + i�)σ̂ l
gec

+ igcâc + i�cσ̂
l
grc

, (37)

˙̂σ l
grc

= −(γr + iδ)σ̂ l
grc

+ i�∗
c σ̂

l
gec

, (38)

We again move to the frequency domain under the Fourier
transformation (13). Solving the control branch’s set of EOMs
and using the input-output relation for the control field âin,c +
âout,c = √

2κcâc, we obtain the reflection coefficient and the
susceptibilities corresponding to transitions from the ground
state to the excited state |ec〉 and to the Rydberg state |rc〉,

Rc[ω] =
κc + iω − |gc|2N

γec +i(�−ω)+ |�c |2
γr +i(δ−ω)

κc − iω + |gc|2N

γec +i(�−ω)+ |�c |2
γr +i(δ−ω)

, (39)

χec [ω] =
igc

[γec +i(�−ω)]+ |�c |2
γr +i(δ−ω)

κc − iω + |gc|2N

γec +i(�−ω)+ |�c |2
γr +i(δ−ω)

, (40)

χrc [ω] =
−�∗

c gc

[γec +i(�−ω)][γr+i(δ−ω)]+|�c|2

κc − iω + |gc|2N

γec +i(�−ω)+ |�c |2
γr +i(δ−ω)

, (41)

respectively. These factors connect the control branch’s op-
erators with the control input field through âout,c = Rcâin,c,
σ̂gec = χec âin,c/

√
2κc, σ̂grc = χrc âin,c/

√
2κc.

The conservation of probability dictates the balancing of
the incoming and outgoing scattering processes of the system.
For the control branch, this translates to the relation

〈(âin,c)†âin,c〉 = 〈(âout,c)†âout,c〉 +
∑

l

〈(
Ll

gec

)†
Ll

gec

〉

+
∑

l

〈(
Ll

rc

)†
Ll

rc

〉
. (42)

By the use of the proportionality factors (39)–(41), Eq. (42)
can be reexpressed as

|Rc[ω]|2 + 
ec [ω] + 
rc [ω] = 1, (43)

which explicitly represents the conservation of probabil-
ity. Here, we have introduced the loss probability through
spontaneous emission of the control excited state |ec〉 given
an incident photon 
ec [ω] = Nγec |χec [ω]|2/κ , the dephasing
probability of the Rydberg control state |rc〉 given an incident
photon 
rc [ω] = γrN |χrc [ω]|2/κ and the reflectance of the
incoming control field |Rc[ω]|2.

Impedance matching is achieved when the dephasing prob-
ability of the Rydberg control state, derived by Eq. (41) as


rc =
4Cc

|�c|2γr

γec∣∣∣ γr (1+Cc )γec +�

(
|�c |2

�
−δ

)
γec

+ i �γr+δ(1+Cc )γec
γec

∣∣∣2
, (44)

is close to unity and, accordingly, the reflectance and the
decay rate through the excited state are close zero. In this
case, an incident control photon always induces a dephasing
quantum jump, thereby storing the photon as a collective Ryd-
berg excitation. To accomplish this, the effective processes of

the system need to be balanced and some of them suppressed.
This is achieved by choosing the dephasing rate to be equal to
the effective output rate of the cavity

γr = Ccγec |�c|2/�2, (45)

where Cc = |gc|2N/(κcγec ) is the cooperativity of the control
branch [54]. Moreover, the detuning is chosen to be large
compared with the effective decay rate from the control ex-
cited stated, i.e., � � (Cc + 1)γec . This condition is crucial
because it ensures that the effective decay rate of the cavity
is proportional to the number of atoms participating in the
collective excitation [55]. Consequently, localization will lead
to suppression of this form of decay. A last condition is nec-
essary in order to counter the ac Stark shift, that is present
due to the control branch’s classical field �c. This condition
requires the two-photon detuning to be equal to the ac Stark
shift, i.e., δ = |�c|2/�. Under these conditions, the dephasing
probability of the Rydberg state given an incident photon on
resonance is found to be


rc [ω = 0] = 1

1 + 1
Cc

+ 1
(2Cc )2

, (46)

which goes to unity for large values of the cooperativity
Cc � 1, leading to fulfillment of the impedance matching
requirement. Accordingly, the reflectance of the control field
Rc and spontaneous emission loss probability from the excited
state given an incident photon 
ec go to zero in the same limit
Cc � 1, since

|Rc[ω = 0]|2 = 1

(2Cc + 1)2 , (47)


ec [ω = 0] = 4Cc

(2Cc + 1)2 . (48)

Under these conditions, the control photon is transferred into
a collective Rydberg excitation. This analytical estimate is
confirmed numerically in Sec. II E.

D. Numerical simulation

In this section, the wave-function Monte Carlo (wfMC)
approach is introduced to simulate the system of a Rydberg
atomic ensemble located in a single-sided cavity. We con-
sidered N = 1000 atoms located inside the cavity, and three
different atomic distributions were examined. The first distri-
bution was a symmetric ring geometry, where the neighboring
atoms were equidistant. The constant neighboring distance
leads to a constant blockaded cooperativity Ck

b,p for k ∈ [1, N],
which consequently leads to identical dephasing rates γ k

r ,
k ∈ [1, N] for all atoms. The second and third distributions
investigated were more realistic versions, where the atoms
were randomly distributed in space following a Gaussian dis-
tribution in one and three dimensions. The two-dimensional
version was not included as it is not relevant to conventional
experimental setups. In these more realistic models, the block-
aded cooperativity depends on the position of each atom,
and consequently so does the dephasing rate. Comparing the
results between the realistic and symmetric models reveals the
impact of distance fluctuations on device performance. For
all the geometries, we assume that the atoms have identical
coupling constants to each field.
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The full system is described by the control Hamiltonian
(3), two decay operators (5) and (6) and two dephasing oper-
ators (28) and (29). The two dephasing operators effectively
describe the probe branch, which has been adiabatically

eliminated as discussed in Sec. II B. The corresponding
non-Hermitian Hamiltonian of the effectively described
system reads

ĤNH = Ĥcontrol − i

2
L̂†

κc
L̂κc − i

2

N∑
l=1

(
L̂l

gec

)†
L̂l

gec
− i

2
L̂†

κp
L̂κp − i

2

N∑
l=1

(
L̂l

gep

)†
L̂l

gep
. (49)

The basis of the Hilbert space associated with the system is given by the (2N + 1)-dimensional vector
{|g, 1〉, |e1

c〉, . . . , |eN
c 〉, |r1

c 〉, . . . , |rN
c 〉} because we allow the presence of only a single control photon. The non-Hermitian

Hamiltonian projected on this basis can be written in matrix form as the (2N + 1) × (2N + 1) matrix

HNH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iκc gc gc · · · gc 0 · · · · · · 0

gc � − iγec 0 · · · 0 �c
. . .

...

gc 0 � − iγec 0 · · · 0 �c
. . .

...
...

...
. . .

. . .
. . .

...
. . .

. . . 0
gc 0 · · · 0 � − iγec 0 · · · 0 �c

0 �c 0 · · · 0 δ − iγ 1
r 0 · · · 0

...
. . . �c 0 · · · 0 δ − iγ 2

r
. . .

...
...

. . .
. . .

. . .
...

. . .
. . . 0

0 · · · · · · 0 �c 0 · · · 0 δ − iγ N
r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where γ k
r = |γ k

κc
| + ∑N

l |γ k,l
gec

| is the effective dephasing rate
resulting from decay processes on the probe branch (28)
and (29).

In a similar manner, the wave function describing the sys-
tem at time t is expanded as

|�(t )〉 = cg|g, 1〉 +
N∑

l=1

cl
ec

(t )|ec〉l +
N∑

l=1

cl
rc

(t )|rc〉l . (50)

Initially, the system is deexcited, meaning that cg(t0) =
cl

ec
(t0) = cl

rc
(t0) = 0, l ∈ [0, N]. The control excitation is in-

troduced to the system by a long single-photon pulse of
Gaussian profile that starts entering the system at t = t0. This
is described by

cin(t ) = 1

4πσ
e−(t−t0−tm )2/(4σ 2 ). (51)

The input control-photon pulse is normalized according to∫ tmax

t0
dt |cin(t )|2 = 1. The values used for the simulation are

σ = 160/γep , tm = 500/γep , t0 = 0 and the total duration of
the pulse is ttot = 1000/γep .

The system evolves under the non-Hermitian Hamiltonian
and, in the presence of the control-photon pulse, the evolution
is given by

d

dt
|�(t )〉 = −iHNH|�(t )〉 +

√
2κccin(t )|g, 1〉. (52)

The total norm of the system’s wave function and the
control-photon pulse at time t is

〈�(t )|�(t )〉 +
∫ tmax

t
|cin(t )|2

= |cg(t )|2 +
N∑
l

|cec (t )|2 +
N∑
l

|crc (t )|2 +
∫ tmax

t
|cin(t )|2.

(53)

The norm’s initial value is unity at t = t0 and is reduced
under the evolution of the non-Hermitian dynamics, while the
control-photon pulse is fed into the dissipative system.

As the first step of the process, a quantum jump will occur
since an incident photon will either be subject to a dephasing
quantum jump or the photon will leave the system, corre-
sponding to a decay jump. The time of the jump is decided by
the standard stochastic wave-function Monte Carlo (wfMC)
procedure: A value between 0 and 1 is randomly chosen and
the time of the jump set to the temporal point, when the norm
reaches that value.

Once the time of jump t j is set, a second stochastic process
determines the nature of the jump as one of the four jump
operators (5), (6), (28), or (29). The non-normalized probabil-
ities of these jumps are calculated as

pγgec
(t j ) = 2γec

N∑
k=1

∣∣ck
ec

(t j )
∣∣2

, (54)

pκc (t j ) = |
√

2κccg(t j ) − cin(t j )|2, (55)

pκp (t j ) =
N∑

k=1

∣∣γ k
κp

∣∣∣∣ck
rc

(t j )
∣∣2

, (56)

pγgep
(t j ) =

N∑
l=1

N∑
k=1
k �=l

∣∣γ k,l
ep

∣∣∣∣ck
rc

(t j )
∣∣2

, (57)

where the dephasing rates γ k
κp

, γ k,l
ep

were introduced in
Eqs. (28) and (29). Additionally, the normalized probabili-
ties �i of the jumps are found via a normalization process
�i = pi(t j )/

∑
i pi(t j ). Depending on the nature of the jump,

the evolution of the system takes different paths:
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Decay jumps L̂κc , L̂γgec
. In the cases of one of these two

decay jumps, the control photon is lost into the environment
by spontaneous emission of one atom from the excited state
|ec〉 or via decay of the cavity. This type of decay jump
concludes the trajectory, and the simulation comes to an end.

Dephasing jump L̂γκp
. In the occurrence of a dephasing

jump due to a change in cavity reflection of the probe, the
control input photon is fully absorbed by the atoms, and the
state of the system becomes

|� ′(t j )〉 = L̂κp |�(t j )〉√
pκp (t j )

. (58)

Then the process is repeated by solving Eq. (52) without the
single-photon pulse term, with the subsequent jump deter-
mined by the same procedure.

Dephasing jump L̂γgep
. In the case of a dephasing jump

due to the spontaneous emission of an excited atom in the
probe branch, a third stochastic process is necessary in order
to identify which of the N atoms decayed from the probe
branch’s excited state |ep〉. The normalized probability of the
lth atom to decay is

�l
γgep

(t j ) =
pl

γgep
(t j )∑N

l=1 pl
γgep

(t j )
, (59)

where pl
γgep

(t j ) = ∑N
k=1
k �=l

|γ k,l
gep

||ck
rc

(t j )|2. Once the atom that de-

cayed has been determined, the control-photon pulse is fully
absorbed by the system, and the system is prepared in the state

|� ′(t j )〉 =
L̂l

γgep
|�(t j )〉√

pl
γgep

(t j )
, (60)

which is localized around the lth atom that decayed, as ex-
plained in the Sec. II B. Then the process is repeated for
determining the time and the nature of the next jump.

The process is repeated until the control excitation de-
cays through one of the two decay jumps (L̂gec , L̂κc ) or we
determine that sufficiently many L̂κp dephasing jumps have
occurred that it constitutes a successful switching event.

Our results are averaged over Ntraj = 2000 trajectories for
each value of the cooperativity Cc of the control branch and the
average blockaded cooperativity Cb,p = 1/N

∑N
k Ck

b,p of the
probe branch. In Fig. 2, the first 20 trajectories of a simulation
with Cc = 100 and Cb,p = 0.5 for a three-dimensional (3D)
atomic Gaussian distribution are depicted. Each trajectory
comes to an end, with either successful L̂κp dephasing jumps
(green dots) or is unsuccessful with one of the decay jumps
(pink and red dots). Furthermore, it can be observed that
the occurrence of an L̂gep dephasing jump is rarely followed
by an L̂κc decay jump, since the localization induced by the
dephasing jump strongly suppresses this type of decay, as
explained below.

E. Results

The results section is organized in three parts. The first
focuses on the impedance-matching conditions, which are
numerically optimized and compared with our analytical es-
timate derived in the Sec. II C. The second part presents the

FIG. 2. First 20 trajectories of the Monte Carlo simulation
for 3D Gaussian atomic distribution of N = 1000 atoms in a
cavity with cooperativity Cc = 100 and blockaded cooperativ-
ity Cb,p = 0.5. The color of the dot indicates the nature of
the jump that occurs at the specific time. The parameters are
fixed to �/γec = 180, κp = κc = γep = γec , �c/γec = 5, �p/γec =
10, δ/γec = 1.09, |αin,p|2/γec = 0.33.

numerical optimization of the efficiency of the SPT versus
the cooperativity Cc of the control branch and the average
blockaded cooperativity Cb,p of the probe branch. Finally, in
the third part, we discuss the effects that limit the efficiency
and possible improvements.

Impedance matching. The impedance matching probability
PIM is defined as the ratio of the probability of the first jump
being a dephasing jump (L̂gep , L̂κp ), instead of a decay jump
(L̂gec , L̂κc ). This is given by the relation

PIM =
∫ tmax

t0
dt

[
pγκp

(t ) + pγgep
(t )

]
∫ tmax

t0
dt

[
pγgec

(t ) + pκc (t ) + pγκp
(t ) + pγgep

(t )
] ,

(61)

where the probabilities for the realization of each jump are
defined in Eqs. (54)–(57). It is essential for the function of the
SPT that PIM is close to unity because it sets the upper limit
for the efficiency, since it guarantees that the control photon is
absorbed by the atomic ensemble.

As shown in Figs. 3(a)–3(c), the optimization is
done by varying the strength of the input probe field
for different atomic distributions. The parameters can
be found in the caption. The simulations are repeated
for different values of the control branch’s cooperativity
Cc = 10, 20, 50, 100, 500, 1000 and blockaded cooperativ-
ity Re[Cb,p] ≈ 0.1, 0.25, 0.5, 1, 1.5, 2 for the symmetric ring
geometry, the one-dimensional (1D) Gaussian, and the 3D
Gaussian atomic distribution.

The value of PIM is observed to be in excellent agreement
with the analytical estimate given in Eq. (46). The maximum
value of PIM is obtained for Cc = 5000, with PIM = 0.9997
for the symmetric ring geometry, 0.9996 for the 1D Gaussian
distribution, and 0.9994 for the 3D Gaussian distribution.
The result for the symmetric ring geometry is closest to the
theoretical prediction of 0.9998, while the slight deviations
observed in the 1D and 3D Gaussian distributions are due to
the reduced symmetry present in these more realistic atomic
configurations.
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FIG. 3. Impedance-matching results for the cavity model with N = 1000 atoms. (a)–(c) Impedance-matching probability PIM as a function
of probe strength for Re[Cb,p] ≈ 0.5, with multiple curves corresponding to different values of cooperativity Cc = 10, 20, 50, 100, 1000, 5000,
shown for different atomic distributions: (a) symmetric ring geometry, (b) 1D Gaussian, (c) 3D Gaussian. (d)–(f) Numerically optimized
dephasing rate (dots) and the theoretical estimate (solid line) versus the blockaded cooperativity, shown for the same values of Cc and atomic
distributions: (d) symmetric ring geometry, (e) 1D Gaussian, (f) 3D Gaussian. In all panels, lower curves correspond to lower Cc, and the
curves for Cc = 1000 and 5000 nearly overlap. The parameters are fixed to κp = κc = γep = γec ,�p/γec = 10, �/γec = 180, �c/γec = 5 for
Cc = 10, 20, 50, 100, and �/γec = 4Cc/5, �c/γec = 20, 45, for Cc = 1000, 5000. The detuning δ is optimized at each point to enhance PIM.

Furthermore, in Figs. 3(d)–3(f) the numerically optimized
impedance matching conditions for the dephasing rate γ

opt
r =∑N

k (γ k
κp

+ ∑N
l γ k,l

ep
) (dots) are compared with the theoretical

estimate (solid line) in Eq. (45). For the symmetric ring case
we observe a very close agreement between the two, while
as the system becomes more realistic, we observe a small
deviation due to the inhomogeneity of the system. For lower
values of Cb,p, the observed deviation is due to a broad plateau
of almost equal PIM probabilities, where the highest value was
chosen.

Efficiency. The final readout of the device can be obtained
by counting photons or with a homo- or heterodyne detec-
tion scheme, which measures the difference in the output
field due to the Rydberg blockade mechanism of the control
photon. Alternatively, the SPT can be incorporated into an
interferometric setup, which cancels the probe signal on a
photodetector in the absence of control photons (note that in
this case the output is in a coherent state and can hence be
canceled exactly). Since the reflection operator L̂κp shown in
Eq. (28) exactly corresponds to the difference between having
a control photon or not, a detection on such a detector exactly
corresponds to a L̂κp jump. For simplicity, we thus characterize
the performance of the proposed SPT device by the number
of L̂κp jumps, noting that similar information can also be
extracted using homo- or heterodyne detection. In practice,
we require the number of detection jumps L̂κp to be larger
than or equal to a fixed threshold number, which we take to
be Nth

γκp
= 3. We then define the efficiency as the probability

for this to happen, as the corresponding fraction of trajectories

η =
Ntraj

(
Nth

γκp
� 3

)
Ntraj

. (62)

For a homodyne measurement scheme, this requirement
roughly corresponds to a homodyne signal whose squared
amplitude is six times the vacuum noise if we disregard com-
plications due to the multimode nature of the outgoing field.

Gain. The gain of the transistor is defined as the average
number of probe photons scattered due to a single stored
control excitation, resulting in a measurable change in probe
reflection through the cavity. It is obtained by counting the
number of L̂κp jumps per trajectory, each corresponding to a
change in reflection due to disrupted EIT. Since the number of
such jumps fluctuates between trajectories, the total gain G is
defined as the average over all trajectories contributing to the
efficiency.

The simulations are repeated for different values of the
control branch’s cooperativity Cc = 10, 20, 50, 100, 1000,

5000 and blockaded cooperativity Re[Cb,p] ≈ 0.1, 0.25,

0.5, 1, 1.5, 2 for the symmetric ring geometry, the 1D
Gaussian, and the 3D Gaussian atomic distribution. The
performance results are shown in Fig. 4. The maximum
efficiency is achieved for the highest considered value of
the cooperativity Cc = 5000 and Re[Cb,p] = 0.09, reaching
η = 0.942 with an associated gain of G = 181 for the sym-
metric ring geometry. For the 1D Gaussian distribution,
the maximum efficiency is η = 0.916 with G = 136, and
for the 3D Gaussian distribution, η = 0.908 with G = 113.
The reduction in efficiency and gain observed in Gaussian
distributions compared with the symmetric case is due to
Rydberg interaction-induced dephasing caused by distance
fluctuations.

Higher values of the control branch’s cooperativity are
observed to result in increased efficiency. Although similar
experiments typically demonstrate cooperativity values on the
order of a few tens [57,58], the values used in our sim-
ulations have been achieved experimentally [59]. We note
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FIG. 4. Performance of the cavity model with N = 1000 atoms. (a)–(c) SPT efficiency as a function of blockaded cooperativity, for control
branch cooperativity values Cc = 10, 20, 50, 100, 1000, 5000 (lower curves correspond to lower Cc). Results are shown for different atomic
distributions: (a) symmetric ring geometry, (b) 1D Gaussian, (c) 3D Gaussian. (d)–(f) SPT efficiency (solid) and gain (dashed) as functions
of cooperativity, with the blockaded cooperativity optimized at each point. Results are shown for different atomic distributions: (d) symmetric
ring geometry, (e) 1D Gaussian, (f) 3D Gaussian. The parameters are fixed to κp = κc = γep = γec , with �p/γec = 10, �/γec = 180, and
�c/γec = 5 for Cc = 10, 20, 50, 100; and �/γec = 4Cc/5, �c/γec = 20, 45 for Cc = 1000, 5000. The detuning δ and probe strength |αin,p|2 are
optimized at each point to enhance efficiency. Solid curves are polynomial fits provided as guides to the eye; points correspond to simulation
data.

that the upper limit of the observed efficiency is constrained
by the capabilities of numerical simulations rather than by
physical feasibility. This indicates that, although current
experimental setups achieve only limited cooperativity, the
underlying physical principles could support much higher ef-
ficiencies with greater cooperativity, which future devices are
anticipated to attain. Relevant physical values and experimen-
tal parameters are discussed in Appendix B.

Limitation of efficiency. The efficiency of the device is lim-
ited by the deleterious jumps responsible for the unsuccessful
trajectories, which are the decay L̂gec or L̂κc jumps related to
the loss of the control-photon excitation due to the decay of
an excited atom and loss through the cavity, respectively. For
the considered operating conditions, the decay through the
cavity L̂κc jumps happens at a much faster rate, thus limiting
the lifetime of the stored excitation.

On one hand, the localization plays an essential role in
the functioning of the SPT because it enhances the lifetime
of the stored excitation by suppressing the L̂κc jumps. This
is achieved through L̂l

gep
jumps by the following mechanism:

The storage dynamics transfer the excitation to a collective
superposition of all states in |ec〉, which has an enhanced
decay rate Ccγec . This leads to the input-output rate γout being
enhanced by a factor of Cc ∝ N [54]. When the excitation
localizes due to a spontaneous emission jump in the probe
branch L̂l

gep
, revealing information about the location of the

excitation on the control branch |rk
c 〉, the number of atoms

participating in the superposition goes down, leading to a
reduced decay rate and a longer lifetime. For high values of
Cb,p, the cavity is fully blocked, and we only have L̂κc jumps,
as shown in Fig. 5(a). This means that the control excitation is
not localized and decay rapidly through L̂κc jumps, as shown
in Fig. 5(b).

On the other hand, for low Cb,p, we do have very strong
localization and the excitation lives long until it is finally lost
by spontaneous emission through an L̂gec jump [Fig. 5(b)].
However, a problem arises when Cb,p is small, despite the
prolonged lifetime of the excitation, its impact on the probe’s
reflection is negligible, making it practically invisible to de-
tection. Since for small Cb,p, the dephasing L̂κp jumps are
suppressed, as shown in Fig. 5(a).

As a consequence of the above, an optimization process
is necessary to balance the relevant processes and the decay
rates. The optimal Cb,p is found at the point where the two

FIG. 5. Dissipative processes for the cavity model of N = 1000
atoms with a 3D Gaussian distribution. (a) Ratio of the two de-
phasing rates versus the blockaded cooperativity for a cooperativity
Cc = 100. (b) Percentage of unsuccessful trajectories due to spon-
taneous emission from the probe excited state (dashed line) and
decay of the cavity (solid line) versus the blockaded cooperativity for
cooperativity Cc = 100. Solid and dashed curves show fitted polyno-
mials and serve as a guide to the eye. The parameters are fixed to
κp = κc = γep = γec , with �p/γec = 10, �/γec = 180, �c/γec = 5,
and δ varies between 0.14γec and 0.1γec to provide better impedance
matching and |αin,p|2 was chosen to optimize impedance matching at
each point.
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FIG. 6. Sketch of the free space device configuration, where the
probe propagates along the z axis inside the Rydberg cloud, which
fills part of the system {0, L}.

sources of decay jumps are equal, as observed when compar-
ing Fig. 4(c) with Fig. 5(b).

A higher value of the cooperativity Cc is beneficial for the
functioning of the device, since the localization does not lead
to such a dramatic decrease of Cb,p. This results from the fact
that the same number of localized atoms will have a higher
Cb,p, thus the dephasing L̂κp jumps occur more frequently,
while the excitation retains the benefit of an enhanced lifetime
due to localization. As a consequence, improvement of the
efficiency can be achieved by the implementation of a cavity
with higher cooperativity Cc, although this may be experimen-
tally challenging. This limitation is not present for the free
space model, analyzed in Sec. III.

III. FREE SPACE

A. System

The second system we consider also consists of a Rydberg
atomic cloud, but this time located in free space. As in the
cavity case, the atomic cloud is subject to two driving fields
and two weak fields, one serving as a probe and the other
as a control field. The system is sketched in Fig. 6, and
assumes propagation of both probe and control signals along
the z axis in the Rydberg medium. N atoms are placed in 1D
over a length L. The relevant energy structure of the Rydberg
atoms is the same as for the cavity case and can be seen in
Fig. 1(b). The corresponding Hamiltonian consists of several
parts, similar to the cavity case,

Ĥ = Ĥprobe + Ĥcontrol + ĤRyd + Ĥpropag + Ĥres, (63)

where instead of Ĥinput describing the input and output for
the cavity, we have the propagation of the field through the
medium Ĥpropag. The probe part reads

Ĥprobe = − h̄
∫ L

0
dzn(z)

[
gpÊp(z, t )σ̂epg(z, t )

+ �pσ̂rpep (z, t ) + H.c.
]
, (64)

where a traveling electromagnetic (EM) probe field at loca-
tion z is described by the creation (annihilation) operator Ê†

p

(Êp), and couples to the atoms with coupling constant gp, and
the classical drive couples the |ep|〉 ↔ |rp|〉 levels with Rabi
frequency �p. n(z) is the atomic density of the ensemble.
The transition operators σ̂mn(z) = |m(z)〉〈n(z)| correspond to
the operators for the transition of the atom located at point
z between states |m〉 and |n〉, {m, n} ∈ {g, ep, rp, ec, rc}. Here,
the rotating wave approximation was performed, and the ex-
citation regime corresponds to EIT conditions.

The Hamiltonian for the control branch under the rotating
wave approximation reads

Ĥcontrol =h̄
∫ L

0
dzn(z)

[
�σ̂ecec (z, t ) + δσ̂rcrc (z, t )

− �cσ̂rcec (z, t ) − �∗
c σ̂ecrc (z, t )

+ (
gcÊcσ̂ecg(z, t ) + g∗

cÊ†
c σ̂gec (z, t )

)]
, (65)

with detuning � = ωecg − ω1,c, where ω1,c corresponds to the
single-photon wave packet central frequency and the two-
photon detuning is δ = � − (−ωrcec + ω2,c), as above. The
single control photon is described by the operator Ê†

c , which
couples to each atom with strength gc, and the classical drive
for the upper transition has Rabi frequency �c.

The van der Waals interaction Hamiltonian for the ensem-
ble can be written as

ĤRyd = h̄
∫ L

0
dzn(z)

∫ L

0
dz′n(z′)V (z, z′)

× [
σ̂rprp (z, t ) ⊗ σ̂rcrc (z′, t )

]
, (66)

where V (z, z′) = C6/|z − z′|6 and C6 is an interaction coef-
ficient [9]. Similar to the cavity case, we consider a single
incident control photon and allow multiple probe photons but
only include interactions between Rydberg atoms in different
branches. This is justified when the principal quantum num-
ber of the control Rydberg state |rc〉 is significantly higher
than that of the probe Rydberg state |rp〉, or when the probe
and control Rydberg states are near a Förster resonance, as
discussed in detail in Appendix A. Lastly, we include the
propagation Ĥpropag and the reservoir Ĥres Hamiltonians.

In the following, we consider the dynamics of the probe
and control branches separately by assuming that the charac-
teristic timescales for probing are much faster than for storage
of the control photon.

B. Probe-induced dephasing

We now focus on the branch where the continuous probe
field is incident [left branch in Fig. 1(b)]. In this section, we
study the modification of the scattering properties of the probe
field conditioned on the absence or presence of a control pho-
ton, which is the main function of the SPT [32]. Furthermore,
we describe the effective dephasing processes induced by the
continuous probe field on the stored control photon via the
Rydberg interaction.

The dynamics of the probe branch are described by the
equations of motion derived from the Hamiltonians Ĥprobe +
ĤRyd, the Lindblad jump operator (6) which accounts for
the losses to the environment of the lth atom on the probe
excited state |ep〉 through spontaneous emission with a decay
rate of γep and the Maxwell equation for light propagation
in the medium. Reabsorption of emitted photons is disre-
garded by presuming an elongated atomic ensemble along
the z axis, thereby minimizing the optical depth in the
transverse direction. The EOMs for the operators associated
with the probe branch are found using the Heisenberg
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equation (7) to be

(∂t + c∂z )Êp(z, t ) = igpn(z)Lσ̂gep (z, t ), (67)
∂t σ̂gep (z, t ) = −γep σ̂gep (z, t ) + ig∗

pÊp(z, t ) + i�pσ̂grp (z, t ),
(68)

∂t σ̂grp (z, t ) = − i
∫ L

0
dz′n(z′)V (z, z′)σ̂rcrc (z′, t ) ⊗ σ̂grp (z, t )

+ i�∗
pσ̂gep (z, t ). (69)

Moving to a comoving frame under the transformation t ′ =
t − z/c with c being speed of light in the medium, absorbing
a factor

√
c/Lγep in the definition of Êp and assuming gp real

without loss of generality, we define the optical depth of a
single atom for the probe branch as dp1 = g2

pL/cγep . Dropping
the primes on the time coordinate, the EOMs of the operators
associated with the probe branch are then found to be

∂zÊp(z, t ) = i
√

dp1n(z)σ̂gep (z, t ), (70)

∂t σ̂gep (z, t ) = −γep σ̂gep (z, t ) + i
√

dp1γep Êp(z, t )

+ i�pσ̂grp (z, t ), (71)

∂t σ̂grp (z, t ) = − i
∫ L

0
dz′n(z′)V (z, z′)σ̂rcrc (z′, t ) ⊗ σ̂grp (z, t )

+ i�∗
pσ̂gep (z, t ). (72)

This system of three EOMs can be reduced to two by
formally integrating the probe field equation (70) and substi-
tuting it into Eq. (71). This gives

∂t σ̂gep (z, t ) = − γep σ̂gep (z, t ) − dp1γep

∫ z

0
dz′n(z′)σ̂gep (z′, t )

+ i�pσ̂grp (z, t ) + i
√

dp1γep Êp(0, t ). (73)

We notice that the propagating probe field mediates an effec-
tive coupling between the atoms due to the collective optical
response of the ensemble. The effective Lindblad operator
associated with the atomic effective coupling by propagation
through the optically dense ensemble is

L̂1dp (z) =
√

2dp1γep

∫ z

0
dz′n(z′)σ̂gep (z′). (74)

By integrating over the entire length of the ensemble, we
obtain the Lindblad jump operator describing the loss of a
probe photon by transmission through the entire ensemble.
This is given by

L̂dp =
∫ L

0
dzL̂1dp (z) =

√
2dp1γep

∫ L

0
dzn(z)σ̂gep (z). (75)

As for the cavity case, we consider the probe input field
to be prepared in a coherent state, consisting of a classical
amplitude αin,p and vacuum fluctuations, i.e., Êp(z = 0) =
αin,p

√
2/γep + δÊp(z = 0). Similarly to our approach for the

cavity case in Sec. II B, we solve the system in the ab-
sence of a stored excitation in the control branch, which
we use as a reference, the subtraction of which leads to a
purely Rydberg-interaction-related description. In the case of
no stored excitation in the control branch, the EOM of the
transition operator to the probe Rydberg state (72) simplifies

to

∂t σ̂grp (z, t ) = i�∗
pσ̂gep (z, t ). (76)

Moving to the frequency domain under the Fourier transform
(13), where ω is defined with respect to the central frequency
of the photon, we can solve the set of EOMs (70), (71),
(76). The solutions have the form ô = o + O(δÊp(z = 0)) and
are comprised of a classical part proportional to the probe
field amplitude αin,p and a quantum part proportional to the
quantum fluctuations δÊp(z = 0). The classical parts of the
solutions are then

Ep(z, ω) = e
−

∫ z
0 dz′n(z′ )γep dp1(−iω)

(γep −iω)(−iω)+|�p |2 αin,p(ω)
√

2/γep , (77)

σ gep (z, ω) = i
√

2dp1γep (−iω)αin,p(ω)e
−

∫ z
0 dz′n(z′ )γep dp1(−iω)

(γep −iω)(−iω)+|�p |2

(γep − iω)(−iω) + |�p|2 ,

(78)

σ grp (z, ω) = −√
2dp1γep�

∗
pαin,p(ω)e

−
∫ z
0 dz′n(z′ )γep dp1(−iω)

(γep −iω)(−iω)+|�p |2

(γep − iω)(−iω) + |�p|2 . (79)

The measure of the scattering properties of the system
is the transmission coefficient, described by the relation
Êp[L, ω] = Tp[ω]Êp[0, ω]. Using Eq. (77), the transmission
coefficient in the absence of control excitation is

Tp[ω] = e
iωγep dp1N

(γep −iω)(−iω)+|�p |2 . (80)

Since the device is operating under EIT conditions in the
absence of control excitation, we note that, on resonance, the
probe field is fully transmitted, Tp[ω = 0] = 1.

Furthermore, to achieve a description solely of the
Rydberg-associated processes, the solutions of the probe
branch’s EOMs in the absence of any stored control excitation,
(77)–(79) are used as a reference, and a new set of shifted
operators is introduced by subtracting the reference frame
from the original operators. The shifted operators related to
the probe branch are then introduced as

δÊp(z, ω) = Êp(z, ω) − Ep(z, ω), (81)

δσ̂gep (z, ω) = σ̂gep (z, ω) − σ ge,p(z, ω), (82)

δσ̂grp (z, ω) = σ̂grp (z, ω) − σ gr,p(z, ω), (83)

δÊp(z = 0, ω) = Êp(z = 0, ω) − αin,p(ω)
√

2/γep . (84)

The EOMs for the shifted operators are derived by substi-
tuting the definitions of the shifted operators (81)–(83) into
the EOMs of the probe branch (70)–(72), accounting for the
possible presence of a control photon excitation in the control
branch. The EOMs for the shifted operators, associated with
the probe branch, in the frequency domain are

∂zδÊp(z, ω) = i
√

dp1n(z)δσ̂gep (z, ω), (85)

−iωδσ̂gep (z, ω) = −γepδσ̂gep (z, ω) + i�pδσ̂grp (z, ω)

+ i
√

dp1γepδÊp(z, ω), (86)
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− iωδσ̂grp (z, ω)

= i�∗
pδσ̂gep (z, ω) − i

∫ L

0
dz′n(z′)V (z, z′)

× σ̂rcrc (z′, ω) ⊗ δσ̂grp (z, ω)

+ i
√

2dp1γep�
∗
pαin

∫ L
0 dz′n(z′)V (z, z′)σ̂rcrc (z′, ω)

(−iω)(γep − iω) + |�p|2 .

(87)

As observed, a classical feeding term appears in Eq. (87) only
in the presence of a stored excitation in the control branch,
resulting from the Rydberg-Rydberg interaction between ex-
citations in the probe and control branches.

The solutions of these EOMs are expressed as ô[ω] =
o[ω]σ̂rr + O(δÊp[0, ω]), where the first term represents a clas-
sical component dependent on the probe field’s amplitude
αin,p, conditioned on the presence of a stored control ex-
citation. The second term corresponds to a weak quantum
component proportional to the fluctuation operator δÊp[0, ω].
Neglecting the weak second term, in a similar fashion as
for the cavity case, the solution for the probe excited-state
transition operator, for a resonant probe field (i.e., ω = 0, a
field constant in time), is found to be

δσ̂gep (z)

= − i
√

2αin,p√
dp1γep

∫ L

0
dz′n(z′)σ̂rcrc (z′)db1,p(z, z′)

×
(∫ z

0
dz′′n(z′′)db1,p(z′′, z′)e− ∫ z

z′′ dz′′′n(z′′′ )db1,p(z′′′,z′ ) − 1

)
.

(88)

The single-atom blockaded optical depth is defined as the
optical depth of an atom located at position z due to the control
excitation stored in the Rydberg state |rc〉 of the atom located
at position z′,

db1,p(z, z′) = dp1γep

γep + |�p|2
iV (z,z′ )

. (89)

Additionally, the blockaded optical depth of the probe branch
due to a stored control excitation in the Rydberg state |rc〉 of
the atom at position z′ is given by db,p(z′) = ∫ L

0 dzdb1,p(z, z′).
At this stage, the primary function of the SPT becomes

evident. When a control excitation is stored at the Rydberg
state |rc〉 of the atom positioned at point z′, the scattering
properties of the probe field deviate from the full transmission
described by Eq. (80). This effect is confirmed by the solution
for the probe field in the presence of a stored control excita-
tion, where the resonance transmission coefficient is given by

Tp[z′, ω = 0] = e−db,p(z′ ), (90)

where z′ represents the location where the control photon is
stored.

Equation (90) can be interpreted as an effective two-level
system sphere centered at point z′ with a radius equal to the
Rydberg blockade radius, residing within the ensemble of
three-level atoms. As is evident from Eqs. (80) and (90), the
presence of stored excitation modifies the scattering properties

of the system, by an amount set by the blockaded optical
depth db,p(z′). This modification leads in return to informa-
tion regarding the presence and location of the stored control
excitation.

This takes us to the second part of the section, relating to
how the extraction of information on the presence or location
of the stored excitation in the control branch leads to dephas-
ing processes. These processes arise from the two Lindblad
operators (75) and the equivalent of Eq. (6). At this point,
we note that we can move to a discrete description of our
system by dividing the system into pieces, each corresponding
to a single atom at position zl . To do so, the following trans-
formations are used: σ̂ (zl , t ) → σ̂ l (t ),

∫ zl′
zl

dzn(z) → ∑l ′
i=l .

Subsequently, the discrete version of Eqs. (6) and (75) in the
shifted frame using the solution (88) read

L̂dp = √
dp1

N∑
k=1

N∑
l=1
l �=k

√
γ̃ k,l

gep σ̂
k
rcrc

, (91)

L̂l
gep

=
N∑

k=1
k �=l

√
γ̃ k,l

gep σ̂
k
rcrc

, (92)

where the dephasing rate of the Rydberg state of atom k due
to the decay of atom l is given by

√
γ̃ k,l

gep = − i
2√
dp1

dk,l
b1,pαin,pDk,l

b,p, (93)

and Dk,l
b,p = ∑l

l ′=1 dk,l ′
b1,pe− ∑l

l′′=l′ dk,l′′
b1,p − 1 is the blockaded op-

tical depth attenuation due to propagation of the probe in
the atomic medium past the lth atom due to the Rydberg
excitation of kth atom.

These operators represent the dephasing of control excita-
tions due to a change in the transmission and the dephasing
due to spontaneous emission from the probe excited state
|ep〉 of the lth atom, respectively. The dephasing rates on the
kth atom, associated with the two processes, are given by
γ k

i = 〈rk
c | 1

2 L̂†
i L̂i|rk

c 〉/〈rk
c |rk

c 〉 and read

γ k
dp

= dp1

2

∣∣∣∣∣∣∣∣
N∑

l=1
l �=k

√
γ̃ k,l

gep

∣∣∣∣∣∣∣∣

2

= 2

∣∣∣∣∣∣∣∣
N∑

l=1
l �=k

dk,l
b1,pDk,l

b,pαin,p

∣∣∣∣∣∣∣∣

2

, (94)

γ k,l
gep

= 1

2

∣∣√γ̃ k,l
gep

∣∣2 =
N∑

k=1
k �=l

2|αin,p|2
dp1

∣∣dk,l
b1,pDk,l

b,p

∣∣2
. (95)

Let us first consider the dephasing operator L̂l
gep

due to the
spontaneous emission of the lth atom from the probe excited
state |ep〉. Similar to the description in Sec. II B, this operator
depends on the specific atom that has undergone decay, and
thus imparts information to the environment regarding the
collective Rydberg excitation’s spatial position. This results
in the localization of the stored control excitation around the
decayed atom. This localization extends the lifetime of the
stored control excitation (see Sec. III E).
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The second dephasing operator L̂dp acts on the stored exci-
tation due to a change in transmission. This dephasing process
reveals information about the presence of the stored excitation
via the change of the transmitted probe field, which can be
detected. The transmission change becomes significant, for
large values of the blockaded optical depth, i.e., db,p � 1, as
seen in Eq. (94). This is the detectable process that allows the
readout of the signal (see Sec. III E). Unlike the cavity case,
this operator also leads to localization, since the storage oc-
curs in an exponentially decaying mode due to the decreasing
probability of an excitation propagating through the ensemble
without being dephased.

Lastly, we define the total dephasing rate on the kth atom
of the control stored Rydberg excitation resulting from the
Rydberg-mediated decay processes in the probe branch as

γ k
r = γ k

dp
+

N∑
l=1
l �=k

γ k,l
gep

. (96)

The average total dephasing rate γ r = 1
N

∑N
k=1 γ k

r is pro-
portional to the strength of the probing field |αin,p|2.
Consequently, we can optimize the impedance matching con-
ditions for control-photon storage by appropriately adjusting
the strength of the probing field |αin,p|2, as discussed in the
following section.

C. Impedance matching

A crucial aspect of the SPT protocol, as also demonstrated
for the case of the cavity, is the efficient conversion of an
incident control photon into a Rydberg collective excitation
with a high probability. To accomplish this, we examine the
scattering dynamics occurring in the control branch and derive
an analytical estimate for the optimal impedance-matching
conditions.

The dynamics of the control branch are described by the
EOMs for the corresponding operators derived from Ĥcontrol,
the Maxwell equation for light propagation in the medium and
the Lindblad jump operators

L̂gec (z) = √
2γec σ̂gec (z), (97)

L̂rcrc (z) =
√

2γr σ̂rcrc (z). (98)

The first Lindblad operator accounts for the losses to the en-
vironment via spontaneous emission from the control excited
state |ec〉 of the atom located at point z. The second Lindblad
operator (98) characterizes the total effective dephasing of the
control Rydberg state |rc〉, induced by the decay effects of the
probe branch’s Lindblad operators (91) and (92) mediated by
the Rydberg interaction, derived in Sec. III B. In addition, the
Lindblad jump operator describing the loss of a control photon
via transmission through the ensemble, analogous to Eq. (75)
for probe photons, is given by

L̂dc = √
2dc1γec

∫ L

0
dzn(z)σ̂gec (z). (99)

The EOMs for the operators associated with the control
branch are derived using the Heisenberg equation (7) and read

(∂t + c∂z )Êc(z, t ) = igcn(z)Lσ̂gec (z, t ), (100)

∂t σ̂gec (z, t ) = −(γec + i�)σ̂gec (z, t ) + ig∗
cÊc(z, t )

+ i�cσ̂grc (z, t ), (101)
∂t σ̂grc (z, t ) = −(γr + iδ)σ̂grc (z, t ) + i�∗

c σ̂gec (z, t ). (102)

Moving to a comoving frame under the transformation
t ′ = t − z/c, absorbing a factor

√
c/Lγec in the definition of

Êc and assuming gc real without loss of generality, we define
the optical depth of a single atom for the control branch as
dc1 = g2

cL/cγec . Dropping the primes on the time coordinate,
the EOMs of the operators associated with the control branch
are then found to be

∂zÊc(z, t ) = i
√

dc1n(z)σ̂gec (z, t ), (103)

∂t σ̂gec (z, t ) = −(γec + i�)σ̂gec (z, t )

+ i
√

dc1γec Êc(z, t ) + i�cσ̂grc (z, t ), (104)

∂t σ̂grc (z, t ) = − (γr + iδ)σ̂grc (z, t ) + i�∗
c σ̂gec (z, t ). (105)

Subsequently, we move to the frequency domain under the
Fourier transform (13). Solving these EOMs of the control
branch, we obtain the transmission coefficient and the suscep-
tibilities corresponding to transitions from the ground state to
the excited state |ec〉 and to the Rydberg state |rc〉,

Tc[ω] = exp

{
− γec dc[γr + i(δ − ω)]

[γec + i(� − ω)][γr + i(δ − ω)] + |�c|2
}
,

(106)

χec [ω] = i
√

dc1[γr + i(δ − ω)]

[γec + i(� − ω)][γr + i(δ − ω) + |�c|2]
Tc[ω],

(107)

χrc [ω] = −√
dc1�

∗

[γec + i(� − ω)][γr + i(δ − ω) + |�c|2]
Tc[ω],

(108)

respectively. These proportionality factors relate the control
branch’s operators to the control input field through Êc(L) =
TcÊc(0),

∫ L
0 dzσ̂gec = χec Êc(0), and

∫ L
0 dzσ̂grc = χrc Êc(0).

Conservation of probability dictates the balancing of the
incoming and outgoing scattering processes of the system. For
the scattering effects of the control branch, this reads

〈(Êc(0))†Êc(0)〉 = 〈(Êc(L))†Êc(L)〉 +
∫ L

0
dz

〈
L̂†

gec
(z)L̂gec (z)

〉
γec

+ 1

γec

∫ L

0
dz

〈
L̂†

rc
(z)L̂rc (z)

〉
. (109)

By the use of the proportionality factors (106)–(108), which
are independent of the spatial coordinate z, Eq. (109) can be
expressed as

|Tc[ω]|2 + 
ec [ω] + 
rc [ω] = 1, (110)
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where we have introduced the loss probability via spon-
taneous emission of the control excited state |ec〉 for an
incident photon 
ec [ω] = 2|χec [ω]|2, the dephasing probabil-
ity of the Rydberg control state |rc〉 of an incident photon

rc [ω] = 2γr |χrc [ω]|2/γec and the transmittance of the incom-
ing control field |Tc[ω]|2. Equation (110) naturally reflects the
expected behavior, as it simply expresses the conservation of
probability.

To be impedance matched, the dephasing probability of
the Rydberg control state 
rc should be close to unity and,
accordingly, the transmittance and the decay rate through the
excited state should be close to zero. In the same way as for
the cavity case, we adjust the probe field strength so that the
dephasing rate is equal to the decay rate of a fully delocalized
Rydberg state, which represents the maximum speed at which
excitations can enter the system,

γr = dcγec�
2
c/�

2, (111)

where dc = dc1N is the total optical depth of the control
branch [54]. Furthermore, similar to the cavity case, the de-
tuning is chosen to be large compared with the effective decay
rate from the control excited stated, i.e., � � dcγec . Under
this condition, the effective escape rate at the end of the
ensemble is proportional to the number of atoms participating
in the collective excitation [56,60], allowing localization to
suppress this type of decay. Finally, in order to account for
the ac Stark shift, which is present due to the control branch’s
driving field �c, the two-photon detuning is set to be equal to
the ac Stark shift, i.e., δ = |�c|2/�.

Under these conditions, the transmittance on resonance is
found to be

|Tc[ω = 0]|2 = exp

⎧⎨
⎩−2

γ 2
e d3

c
�2 + d2

c + dc

(1 + dc)2

⎫⎬
⎭, (112)

which goes to zero for large values of the optical depth, i.e.,
dc � 1. Accordingly, the dephasing probability of the Ryd-
berg state 
rc goes to unity for large optical depth, i.e., dc � 1,
since


rc [ω = 0] = dc

1 + dc
(1 − |Tc[ω = 0]|2), (113)

resulting in the fulfillment of the impedance-matching condi-
tion. Furthermore, the spontaneous emission loss probability

ec goes to zero in the limit of large optical depth dc � 1,
since


ec [ω = 0] = 1

1 + 1
dc

(1 − |Tc[ω = 0]|2). (114)

This analytical estimate is confirmed by numerical simula-
tions discussed in Sec. III E.

D. Numerical simulation

In the current section, we describe the wave-function
Monte Carlo (wfMC) approach used to simulate the system.
The system is sketched in Fig. 6 and assumes the propagation
of both probe and control signals in the Rydberg medium
along the z axis. The atomic medium consists of 1000 atoms
randomly placed with a Gaussian distribution in 1D over the
length L along the z axis. We keep the total optical depth dc

much less than the total number of atoms to represent a sit-
uation with weakly coupled atoms. The random neighboring
distance between the atoms due to the Gaussian distribution
leads to different values of the single-atom blockaded opti-
cal depths dk

b,p depending on the location of each atom. We
thus describe the system using the average blockaded optical
depth, defined as db,p = 1

N

∑N
k=1 dk

b,p.
The system is described by the control Hamiltonian (65),

two decay operators (99) and (97) and two dephasing oper-
ators (91) and (92). The two dephasing operators effectively
account for the probe branch, which has been adiabatically
eliminated using the results of Sec. III B. The non-Hermitian
Hamiltonian of the full effectively described system in dis-
crete form reads

ĤNH = Ĥcontrol − i

2
L̂†

dc
L̂dc − i

2

N∑
l=1

(
L̂l

gec

)†
L̂l

gec

− i

2
L̂†

dp
L̂dp − i

2

N∑
l=1

(
L̂l

gep

)†
L̂l

gep
. (115)

The basis of the Hilbert space associated with
the system is given by the 2N-dimensional vector
{(|e1

c〉, . . . , |eN
c 〉, |r1

c 〉, . . . , |rN
c 〉}. The non-Hermitian

Hamiltonian projected onto this basis can be written in
matrix form as the 2N × 2N matrix

HNH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� − γ̃ec 0 · · · 0 � 0 · · · 0

−idc1γec � − iγ̃ec 0 · · · 0 �
.. .

...
...

. . .
. . .

. . .
...

. . .
. . . 0

−idc1γec · · · −idc1γec � − iγ̃ec 0 · · · 0 �

� 0 · · · 0 δ − iγ 1
r 0 · · · 0

0 � 0 · · · 0 δ − iγ 2
r

. . .
...

...
. . .

. . .
. . .

...
. . .

. . . 0
0 · · · 0 � 0 · · · 0 δ − iγ N

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where γ k
r = γ k

dp
+ ∑N

l=1
l �=k

γ k,l
gep

is the effective dephasing rate resulting from decay processes on the probe branch (91) and (92),

and γ̃ec = (1 + dc1)γec is the total excited-state decay.
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In a similar manner as above, the wave function describing the system at time t is

|�(t )〉 =
N∑

l=1

cl
ec

(t )|ec〉l +
N∑

l=1

cl
rc

(t )|rc〉l . (116)

The system is not excited initially, i.e., cl
ec

(t0) = cl
rc

(t0) = 0,
for l ∈ [1, N]. The control excitation is introduced by a long
single-photon pulse with a Gaussian profile, as defined in
Eq. (51).

Subsequently, the system evolves under the non-Hermitian
Hamiltonian and in the presence of the input pulse is given by
the equation

d

dt
|�(t )〉 = −iHNH|�(t )〉 + i

√
2dc1γec cin(t )

N∑
l=1

|ec〉l .

(117)

The norm of the system’s wave function and the input pulse at
time t is

〈�(t )|�(t )〉 +
∫ tmax

t
dt〈�in(t )|�in(t )〉

=
N∑
l

∣∣cec (t )
∣∣2 +

N∑
l

∣∣crc (t )
∣∣2 +

∫ tmax

t
|cin(t )|2. (118)

The value of the norm is unity at t = t0 and is gradually
reduced under the evolution of the non-Hermitian dynamics,
while the input enters the dissipative system.

The process begins with a quantum jump, which always
occurs since the incident control photon will either be subject
to a dephasing quantum jump or the photon will leave the
system, corresponding to a decay jump. The time of the jump
is determined by the standard stochastic wfMC procedure. A
value between 0 and 1 is randomly chosen, and the time of the
jump is set to the temporal point when the norm reaches that
value.

Once the time of the first jump t j is set, the nature of the
jump is determined through a second stochastic process. It
can be one of the four, described by the jump operators (75),
(97), (91), and (92). The non-normalized probabilities of these
jumps are

pγgec
(t j ) = 2γec

N∑
k=1

∣∣ck
ec

(t j )
∣∣2

, (119)

pdc (t j ) =
∣∣∣∣∣i
√

2dc1γec

N∑
k=1

ck
ec

(t j ) − cin(t j )

∣∣∣∣∣
2

, (120)

pdp (t j ) = dp1

N∑
k=1

∣∣∣∣∣∣∣∣
N∑

l=1
l �=k

√
γ̃ k,l

gep

∣∣∣∣∣∣∣∣

2

∣∣ck
rc

(t j )
∣∣2

, (121)

pγgep
(t j ) =

N∑
k=1

N∑
l=1
l �=k

∣∣∣∣
√

γ̃ k,l
gep

∣∣∣∣
2∣∣ck

rc
(t j )

∣∣2
, (122)

where the dephasing rate γ̃ k,l
gep

was introduced in Eq. (93).
Furthermore, the normalized probabilities �i for i =

{γgec , dc, dp, γgep} are given by a normalization process as
�i = pi(t j )/

∑
i pi(t j ). Depending on the nature of the jump,

the evolution of the system is determined. The possible out-
comes are categorized as follows:

Decay jumps L̂dc , L̂γgec
. If either of the two decay jumps

occurs, the incident control photon exits the system through
spontaneous emission from the excited state or transmission
through the atomic ensemble. This type of decay jump marks
the end of the trajectory, and the simulation is concluded.

Dephasing jump L̂γdp
. In the event of a dephasing jump due

to a change in transmittance of the probe, the control input
photon is absorbed by the system, and the state of the system
reads

|� ′(t j )〉 = L̂dp |�(t j )〉√
pκp (t j )

. (123)

Subsequently, the process is repeated in order to determine
the time and nature of the following jump. Since the incident
input photon pulse was absorbed, we set cin(t ) = 0 for t > t j

and the system evolves according to the equation d
dt |� ′(t )〉 =

−iHNH|� ′(t )〉.
Dephasing jump L̂γgep

. When a dephasing jump occurs due
to the spontaneous emission of an excited atom in the probe
branch, an additional stochastic process becomes essential
to determine which specific atom among the ensemble of N
atoms decayed from the excited state |ep〉 of the probe branch.
This process enables the identification of the atom responsible
for the effective dephasing. The normalized probability of the
lth atom to decay is given by Eq. (59). After identifying the
atom l that decayed, the input control photon is absorbed by
the system, resulting in the preparation of the state described
in Eq. (60). This state exhibits localization around the lth atom
that underwent decay, as explained in Sec. III B. The afore-
mentioned process is then repeated to determine the timing
and nature of the subsequent jump.

The process is repeated as many times as necessary until
the control excitation undergoes decay via either of the two
decay jumps (L̂gec , L̂dc ), or until three dephasing jumps (L̂dp )
occur, which we again take as the threshold for a successful
trajectory.

The numerical results are averaged over Ntraj = 2000 tra-
jectories for each value of the optical depth dc of the
control branch and the average blockaded optical depth db,p =
1/N

∑N
k dk

b,p of the probe branch. The 20 first trajectories of

the dc = 100, db,p = 2 simulation for an atomic ensemble
with a 1D Gaussian distribution are presented in Fig. 7. It
is evident that every trajectory ultimately is concluded either
as successful, characterized by three L̂dp dephasing jumps
(green dots), or as unsuccessful, indicated by one of the decay
jumps (pink and red dots). Moreover, it is noteworthy that the
event of a L̂gep dephasing jump due to spontaneous emission
of a probe photon is rarely succeeded by a L̂dc decay jump,
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FIG. 7. First 20 trajectories of the Monte Carlo simulation for
1D Gaussian distribution of N = 1000 atoms in free space for optical
depth dc = 100 and blockaded optical depth db,p = 2. The color of
the dots indicates the nature of the jump that occurred at the specific
time. The parameters are fixed to �/γec = 40, d1p = d1c = γep/

γec = 1, �c/� = 0.05, �p/γec = 10, δ/γec = 0.113, |αin,p|2/γec =
0.32.

denoting the loss of the control photon by transmission
through the ensemble. This is due to the fact that the localiza-
tion effect induced by the dephasing jump strongly suppresses
the propagation of the photon.

E. Results

The first part of this section focuses on the impedance
matching conditions, which are numerically optimized and
compared with our analytical estimate derived in Sec. III C.
The second part of the section discusses the numerical opti-
mization of the efficiency of the SPT versus the optical depth
dc of the control branch and the average blockaded optical
depth db,c of the probe branch.

Impedance matching. Similar to the cavity case, the
impedance matching probability PIM is defined as the ratio of
the probability of the first jump being a dephasing jump (L̂gep ,
L̂dp ), instead of a decay jump (L̂gec , L̂dc ). This is given by the
relation

PIM =
∫ tmax

t0
dt

(
pγdp

(t ) + pγgep
(t )

)
∫ tmax

t0
dt

(
pγgec

(t ) + pdc (t ) + pγdp
(t ) + pγgep

(t )
) , (124)

where the probabilities for each jump are defined in
Eqs. (119)-(122). PIM being close to unity plays a critical role
in the operation of the SPT and serves as an upper limit for its
efficiency, as it gives the probability of successful absorption
of the control photon by the atomic ensemble.

In Fig. 8(a) we plot the impedance-matching probability
versus the probe’s strength. As seen in the figure, the PIM can
be optimized by varying the strength of the incident probe
input field strength. In the optimization, the parameters are
chosen such that the derived conditions for the detunings
are also fulfilled. The simulations are repeated for differ-
ent values of the control branch’s optical depth, i.e., dc =
20, 40, 100, 200, 500, and the probe branch’s blockaded co-
operativity, i.e., Re[db,p] ≈ 0.25, 0.5, 1, 2, 3, 4, 5 for the 1D
Gaussian atomic distribution.

The value of PIM observed is very close to the theoretically
estimated value in Eq. (113). The maximum value PIM =

FIG. 8. Impedance-matching results for the free-space model
with N = 1000 atoms distributed in a Gaussian profile along the z
axis. (a) Impedance-matching probability PIM as a function of probe
strength for Re[db,p] = 2, with multiple curves corresponding to
different values of optical depth dc = 20, 40, 100, 200, 500 (lower
curves correspond to lower dc). (b) Numerically optimized probe-
induced dephasing rate (dots) and theoretical estimate (solid line)
as a function of the blockaded optical depth, shown for the same
values of dc. The parameters are fixed to �/γec = 4dc, �c = �/40,
and �p/γec = 10, with d1p = d1c = γep/γec = 1. The detuning δ is
optimized at each point to enhance PIM.

0.992 is obtained for dc = 500, being close to the theoretical
estimate, which is PIM = 0.998. The difference is attributed to
the nonhomogeneous nature of the Gaussian distribution.

Moreover, in Fig. 8(b), we plot the numerically optimized
impedance matching conditions for the average dephasing
rate γ

opt
r = 1

N

∑N
k (γ k

dp
+ ∑N

l γ k,l
ep

) (dots) and the theoretical
estimate (solid line) in Eq. (111), versus the blockaded optical
depth. We find good agreement between the two, with only a
slight deviation attributable to the system’s inherent inhomo-
geneity. For lower values of db,p and large dc, the deviation
that is observed is due to a long plateau of almost constant
PIM, where we have chosen the highest value.

Efficiency. As in the cavity case, the efficiency is defined
as the number of trajectories in which at least three L̂dp jumps
occur over the total number of trajectories:

η =
Ntraj

(
N th

γdp
� 3

)
Ntraj

. (125)

Gain. The gain G is defined as the number of probe-
induced dephasing L̂dp jumps occurring before the control
excitation decays, averaged over all trajectories contributing
to the efficiency.

In Fig. 9, the results are depicted for different values
of the control optical depth, i.e., dc = 20, 40, 100, 200, 500
and the probe blockaded optical depth, i.e., Re[db,p] ≈
0.25, 0.5, 1, 2, 3, 4, 5 for 1D Gaussian atomic distribution. As
shown Fig. 9, the maximum efficiency is obtained for the
highest considered value of the optical depth dc = 500 and
db,p ≈ 5, reaching 0.954 with an associated gain of G = 312.
Higher values of control optical depth are observed to re-
sult in increased efficiency and gain. Consequently, further
performance improvements can be achieved by increasing
the optical depth. The observed efficiency exceeds that of
previous Rydberg-based SPTs by more than 15% [31] and
is achieved at an optical depth that has been demonstrated
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FIG. 9. Performance of the free-space model with N = 1000
atoms distributed in a Gaussian profile along the z axis. (a) SPT
efficiency as a function of blockaded optical depth, for control branch
optical depths dc = 20, 40, 100, 200, 500 (lower curves correspond
to lower dc). (b) SPT efficiency (solid) and gain (dashed) as functions
of dc, with the blockaded optical depth fixed to its optimal value at
each point. The parameters are fixed to �/γec = 4dc, �c = �/40,
and �p/γec = 10, with d1p = d1c = γep/γec = 1. The detuning δ and
probe strength |αin,p|2 are optimized at each point to enhance effi-
ciency. Solid curves are polynomial fits provided as guides to the
eye; points correspond to simulation data.

experimentally [61]. Relevant physical values and experimen-
tal parameters are discussed in Appendix B.

IV. CONCLUSIONS

We have conducted a comprehensive analysis and charac-
terization of different variants of all-optical SPTs capable of
operating in the cw regime. These SPTs are based on ensem-
bles of Rydberg atoms and span both free space and cavity
configurations with varying geometries. We analyzed the opti-
mal impedance-matching conditions required for the efficient
capture of a single photon, which control the transmission
and reflection of the probe field. Additionally, we utilized
engineered probe-induced dephasing to optimize the overall
efficiency and gain of the devices. The estimated efficiencies
reach up to 95.4% with a corresponding SPT gain of up to
312, although a full optimization over all parameters has not
been performed and further improvement may be possible.
The estimated efficiencies exceed previous Rydberg-based
SPT realizations by more than 15%, with a gain more than
three times higher [31], using experimentally demonstrated
parameters [59,61]. While our numerical simulations were
limited by computational constraints, we expect the efficiency
and gain to further increase with larger ensemble sizes. The
proposed devices may expand the frontiers of cw control at
the single-photon level, leading to the development of novel
tools for optical control and quantum information processing.
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APPENDIX A: INTERATOMIC RYDBERG-
RYDBERG INTERACTION

In this appendix, we examine the interaction between
atoms excited to Rydberg states and analyze its dependence
on the principal quantum numbers of the states. This analysis
serves to justify the assumption of neglecting same-branch
interactions between atoms in state |rp〉, as stated in Secs. II A
and III A.

When considering two atoms in Rydberg states |r〉 and |r′〉,
characterized by principal quantum numbers n and n′, respec-
tively, the primary electrostatic interaction between them is
the dipole-dipole interaction. This interaction predominates
at interatomic distances exceeding their respective radii, i.e.,
R/a0 � max(n2, n′2), where R is the interatomic distance and
a0 the Bohr radius. The dipole-dipole interaction is described
by the operator

V̂dd = 1

4πε0

d̂1 · d̂2 − 3(d̂1 · eR )(d̂2 · eR )

R3
, (A1)

where ε0 is the vacuum permittivity, eR is the unit vector along
the relative coordinate between the two atoms, and d̂1 and d̂2
are the electric-dipole operators of the first and second atom,
respectively.

The dipole-dipole interaction induces transitions between
the initial two-atom state |r〉|r′〉 and other two-atom states,
governed by the conventional dipole selection rules. However,
in practice, this interaction predominantly couples a limited
number of the closest two-atom states satisfying these se-
lection rules to the initial state, which have small energy
differences and large dipole matrix elements. To a good
approximation, we can consider the long-range interaction be-
tween Rydberg atoms as predominantly arising from coupling
to a neighboring two-atom state, i.e., |r〉|r′〉 ↔ |ra〉|rb〉, where
the principal quantum numbers of states |ra〉 and |rb〉 are na =
n + 1 and nb = n′ − 1, respectively. The energy difference
between the two two-atom states is given by the Förster defect
δF = Er + Er′ − Era − Erb , where Ei denotes the energy of
state |i〉.

The time-independent Schrödinger equation describing the
dipole interaction between the two-atom states in matrix form
reads (

δF Vdd

V †
dd 0

)( |r〉|r′〉
|ra〉|rb〉

)
= U

( |r〉|r′〉
|ra〉|rb〉

)
. (A2)

Solving for |ra〉|rb〉 and substituting into the second row leads
to an eigenvalue equation for |r〉|r′〉,

V̂ †
ddV̂dd

U − δF
|r〉|r′〉 = U |r〉|r′〉. (A3)

Using Eq. (A1), we have that

〈rarb|V †
ddVdd |rr′〉 = (〈ra|d̂1|r〉)2(〈rb|d̂2|r′〉)2

R6

≈ e2n4n′4a2
0Dφ

R6
, (A4)
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FIG. 10. (a) Absolute value of the ratio of the interaction co-
efficient between 87Rb atoms in state |25S1/2〉 and in state |n′S1/2〉
over the interaction coefficient between 87Rb atoms in state |25S1/2〉,
as a function of the principal quantum number n′ (solid line). The
function (n′/25)4/13 is shown as a dashed line. (b) Absolute value
of the ratio of the interaction coefficient between 87Rb atoms in state
|67S1/2〉 and in state |n′S1/2〉 over the interaction coefficient between
87Rb atoms in state |67S1/2〉, as a function of the principal quantum
number n′.

where is e the electron charge and Dφ a coefficient arising
from the angular part of the dipole operators [45]. Using
Eq. (A4), we can solve Eq. (A3), and the interaction energy
is found to be

Urr′ (R) ≈ δF

2
− sgn(δF )

√
δ2

F

4
+ e2n4n′4a2

0Dφ

R6
, (A5)

which, for large interatomic distances, takes the van der Waals
form

Urr′ (R) ≈ e2n4n′4a2
0Dφ

δF R6
. (A6)

Expressing the interaction energy as Urr′ (R) = C6,rr′/R6, and
using the fact that the energy difference between neighbor-
ing Rydberg states scales with the inverse of the principal
quantum number to the power of 3, i.e., Er − Ea ∝ n−3 and
Er′ − Eb ∝ n′−3, leading to δF ∝ min(n, n′)−3, we deduce that
the relation for the interaction coefficient scales as

C6,rr′ ∝ n4n′4 min(n, n′)3. (A7)

It follows that the interaction coefficient between two atoms
in state |r〉, characterized by the principal quantum number
n, reads C6,rr ∝ n11. Consequently, angular parts of the wave
functions, the ratio of the interaction coefficient between two
atoms in states |r〉 and |r′〉 relative to that between two atoms
both in state |r〉, for n′ > n, obeys the scaling relation

|C6,rr′ |
|C6,rr | ∝ (n′/n)4. (A8)

As a result, when the principal quantum number of state |r′〉
greatly exceeds that of |r〉, the interaction between atoms
in states |r〉 becomes much weaker compared with the in-
teraction between atoms in states |r〉 and |r′〉, rendering it
negligible.

We illustrate this in Fig. 10(a) by plotting the absolute
value of the ratio of the interaction coefficient between 87Rb
atoms in state |25S1/2〉 and in state |n′S1/2〉 over the interaction
coefficient between 87Rb atoms in state |25S1/2〉, versus the
principal quantum number n′. These interaction coefficients
were calculated using the Alkali Rydberg Calculator (ARC)

python package [62], assuming that the angular parts of the
wave functions are identical. By fitting the calculated results,

we find that |C6,25S1/2n′S1/2

C6,25S1/225S1/2
| ≈ ( n′

25 )4/13 for 40 � n′ � 130. We

note that we are interested in the absolute value of the in-
teraction coefficient C6,rr′ , as the sign does not affect the
interaction’s purpose of shifting the probe branch out of EIT
resonance. This holds true regardless of whether the resonance
is shifted upward or downward in energy. Consequently,
the Rydberg-Rydberg interaction can be either attractive or
repulsive.

We have demonstrated that interaction between atoms in
state |r〉 can generally be neglected compared with the in-
teraction between atoms in states |r〉 and |r′〉 when n′ � n.
However, we can relax this condition for special values of n
and n′, when states |r〉 and |r′〉 are close to a Förster resonance
together with two neighboring states. A Förster resonance has
a nearly zero Förster defect δF among the four states, resulting
in a very large interaction coefficient C6,rr′ . The significant
disparity between C6,rr′ and C6,rr again allows us to neglect
the interaction between atoms in states |r〉, this time without
the precondition of n′ � n.

We demonstrate the effect of a Förster resonance in
Fig. 10(b), where we plot the absolute value of the ratio of the
interaction coefficient between 87Rb atoms in state |67S1/2〉
and state |n′S1/2〉 over the interaction coefficient between 87Rb
atoms in state |67S1/2〉, as a function of the principal quan-
tum number n′. We observe a Förster resonance occurring at
n′ = 69 between 87Rb atoms in states |67S1/2〉 and |69S1/2〉,
resulting in a much larger interaction coefficient compared
with other values of n′. We note that this Förster resonance
was utilized in Ref. [28].

In connection with Secs. II A and III A, we designate
the Rydberg state |r′〉 as |rc〉 and |r〉 as |rp〉. Consequently,
when the principal quantum number of state |rc〉 significantly
exceeds that of |rp〉 or alternatively when |rc〉 and |rp〉 are close
to a Förster resonance, the interaction between atoms in state
|rp〉 becomes negligible compared with that between atoms
in states |rp〉 and |rc〉. It’s important to note that since we
consider a single photon in the control branch, interactions
between atoms in states |rc〉 are absent. Therefore, we
exclusively consider interactions between atoms in Rydberg
states from different branches, i.e., between atoms in states
|rp〉 and |rc〉.

APPENDIX B: EXPERIMENTAL CONSIDERATIONS

In this appendix, we consider the relative physical values
and experimental parameters for the two schemes of the pro-
posed device, as described in Secs. II and III, inspired by
similar experimental setups.

Initially we focus on the cavity scheme, following the
experimental setup of Ref. [57]. An atomic ensemble of
800 87Rb atoms with relevant level structure described in
Sec. II A is placed inside a cavity with a decay rate of κp ≈
κc = 2π × 2.9 MHz. The ensemble has a Gaussian root mean
square radius σ = 5 µm in all three dimensions. The ground
state of 87Rb is |g〉 = |5S1/2〉. For excited states of the probe
and control branch, we use states |ep〉 = |5P1/2〉 and |ec〉 =
|5P3/2〉, respectively, with radiative decays of γep ≈ γec ≈
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FIG. 11. The blockaded radius due to interaction between 87Rb
atoms in (a) state |25S1/2〉 and state |n′S1/2〉, (b) state |67S1/2〉 and
state |n′S1/2〉, as a function of the principal quantum number n′.
�p/γep = 10, and γep = 2π × 3 MHz.

2π × 3 MHz. The coupling constants between ground and
excited states are gc ≈ gp = 2π × 10 MHz. Subsequently, the
cooperativities of control and probe branches read Cp ≈ Cc =
g2

c/κcγec = 11.5.
The blockaded cooperativity of the probe branch can be

approximated as Cb,p ≈ Cp(Rb,rr′/σ )3, where Rb,rr′ is the
blockaded radius due to interaction between atoms in Rydberg
states |r〉 and |r′〉 defined as Rb,rr′ = (C6,rr′γep/|�p|2)1/6. In
Fig. 11(a), we plot the blockaded radius due to interaction
between atoms in states |25S1/2〉 and |n′S1/2〉 as a function of
the principal quantum number n′.

Considering the following probe and control Rydberg
states, |rp〉 = |25S1/2〉 and |rc〉 = |125S1/2〉, results in a block-
aded radius of Rb,rr′ ≈ 1.3 µm, as shown in Fig. 11(a). This
corresponds to a blockaded cooperativity of Cb,p ≈ 0.2 and
according to the results presented in Fig. 4(c), for Cc = 10,
the device efficiency is expected to be ≈20%. Increasing the
number of 87Rb atoms in the cavity to 7000 or decreasing
the cavity decay rate to κc = 2π × 0.33 MHz would raise the
cooperativity to Cc ≈ Cp ≈ 100. Under these conditions, and
choosing probe and control Rydberg states |rp〉 = |25S1/2〉
and |rc〉 = |85S1/2〉, would yield a blockaded radius Rb,rr′ ≈
1 µm corresponding to a blockaded cooperativity Cb,p ≈ 0.8,
which would result in an efficiency of ≈55% [see Fig. 4(c)].
Further enlargement of the ensemble size or improvement of
the cavity quality factor is projected to further enhance the
device efficiency.

Furthermore, the radiative decay rates of the states
|25S1/2〉, |85S1/2〉, and |125S1/2〉 are 2π × 6.1 kHz, 2π ×
0.12 kHz, and 2π × 0.04 kHz, respectively. These rates are
much smaller than the decay rates of other processes in the
system. Additionally, the maximum observed full protocol
time is of the order of tmax = 103/γep ≈ 53 µs, as shown in
Fig. 2. Moreover, the lifetimes of the Rydberg states |85S1/2〉
and |125S1/2〉 where the control excitation is stored are 0.7 ms
and 2.3 ms, respectively, both of which exceed tmax by orders
of magnitude. Therefore, decay of Rydberg states |rp〉, |rc〉 can
be considered negligible during the protocol.

We then transition to the free space scheme, adopting
parameters from Ref. [29]. In this setup, we consider an
ensemble of 2.5 × 104 87Rb atoms, initially prepared in their
ground state |g〉 = |5S1/2〉. The ensemble has a Gaussian root
mean square radius of σfs = 40 µm along the z axis. For the
excited states of the probe and control branches, we again use
|ep〉 = |5P1/2〉 and |ec〉 = |5P3/2〉, respectively, both having
radiative decay rates of γep ≈ γec ≈ 2π × 3 MHz.

The optical depths for the control and probe branches are
dc ≈ dp = 25. We approximate the blockade optical depth
as db,p ≈ dpRb,rr′/σfs. In Fig. 11(b), we plot the blockaded
radius due to interaction between atoms in states |67S1/2〉 and
|n′S1/2〉 as a function of the principal quantum number n′. By
choosing the states corresponding to the Förster resonance,
|rp〉 = |67S1/2〉 and |rc〉 = |69S1/2〉, as the probe and control
Rydberg states respectively, we achieve a blockade radius
Rb,rr′ ≈ 10.6 µm and subsequently a blockaded optical depth
db,p of 6.6. Based on this set of parameters, and the results
presented in Fig. 9(b), the device efficiency is estimated to
be approximately 70%. If the number of 87Rb atoms in the
ensemble was increased to 105, the efficiency would rise to
≈85%, with further enhancement projected as the ensemble
size grows.

We also note that the radiative decay rates for the states
|67S1/2〉 and |69S1/2〉 are 2π × 0.24 kHz and 2π × 0.22 kHz,
respectively, which are significantly lower than the decay rates
associated with other processes in the system. Furthermore,
the Rydberg state |69S1/2〉, which stores the control excita-
tion, has a lifetime of 0.36 ms, far exceeding the maximum
observed full protocol duration of approximately 40 µs (see
Fig. 7). Thus, the Rydberg states |rp〉 and |rc〉 can be consid-
ered long-lived throughout the protocol.
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