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ABSTRACT
We introduce a quantum data embedding protocol based on the preparation of a ground state of a parameterized Hamiltonian. We analyze
the corresponding quantum feature map, recasting it as an adiabatic state preparation procedure with Trotterized evolution. We compare
the properties of underlying quantum models with ubiquitous Fourier-type quantum models and show that ground state embeddings can
be described effectively by a spectrum with a degree that grows rapidly with the number of qubits, corresponding to a large model capacity.
We observe that the spectrum contains massive frequency degeneracies and the weighting coefficients for the modes are highly structured,
thus limiting model expressivity. Our results provide a step toward understanding models based on quantum data and contribute to fun-
damental knowledge needed for building efficient quantum machine learning (QML) protocols. As non-trivial embeddings are crucial for
designing QML protocols that cannot be simulated classically, our findings guide the search for high-capacity quantum models that can
largely outperform classical models.

© 2026 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0301000

I. INTRODUCTION

Quantum computing offers a powerful platform for data pro-
cessing and artificial intelligence (AI) solutions. Quantum machine
learning (QML) has been established as a field of research, where
AI problems are solved with the help of quantum circuits.1,2 To
date, QML has been applied to various machine learning problems
and applications. These include classification,3–5 regression,6 gener-
ative modeling,7–9 scientific computing,10 graph analysis,11 federated
learning,12 and many others. Here, quantum computers are sug-
gested as potential linear algebra accelerators,1 or as a platform
for building quantum models with improved expressivity or gen-
eralization properties.13,14 The success of QML implementations
depends on many ingredients and there are key challenges to be
resolved.

One of the challenges of quantum machine learning corre-
sponds to loading data into quantum states. Here, the power of
QML ultimately relies on the way models are built and the choice
of data embedding.13–16 This is often done in the form of quantum
feature maps—circuits that map data points into quantum states,
for instance, via parameterized operations. Major examples include
rotation-based quantum feature maps and amplitude-encoded data.
However, the former are associated with Fourier models15,17 that

may become tractable by other approaches,18 while the latter are
based on quantum RAM or access to oracles, which are diffi-
cult to implement.1,19 Recently, new approaches were put forward,
including feature maps based on linear combinations of unitaries
(LCUs).20–22 Finally, there is a significant part of research in QML
that concerns quantum data3,14,23,24—access to quantum states (pure
or mixed) that originate from quantum processes or low energy
states of some quantum systems. Intrinsically, these data emerge
from state preparation that depends on system’s properties.25

Recent studies have shown great promise of analyzing quantum
data and learning from experiments.14,24,26 They have identified the
generalization advantage and ability to learn from smaller numbers
of samples. At the same time, the relation between QML models for
learning on quantum and classical data remains missing, in particu-
lar regarding the data embedding step. The emerging understanding
of QML is that quantum embedding can be the prime source
of advantage27 and is needed for designing classically intractable
models with trainable variational Ansatze.

In this work, we present and formalize a protocol for embed-
ding data x into a ground state ∣ψG⟩ of a nontrivial Hamiltonian
Ĥ(x). As we prepare the ground state with some process, this can be
seen as a quantum feature map based on a ground state preparation
(GSP) protocol. We analyze properties of ground state-based feature
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maps. In particular, we ask the following question: can we repre-
sent models with GSP-based embeddings as Fourier-type quantum
models? To answer this question, we establish a formal connection
of GSP embedding with adiabatic state preparation. We find that
ground state-based feature maps can be seen as models with a fre-
quency gap spectrum that grows at least as a high-degree polynomial
in the number of qubits, N, and can be exponential for complex
Hamiltonians Ĥ(x). We describe this as a QML model with high
capacity. Simultaneously, this spectrum features a large degener-
acy of frequencies (scaling combinatorially) and highly structured
coefficients for the emerging basis that lead to specific models
and limited expressivity. Our results indicate that QML models of
similar performance can be built once multiple re-uploadings and
structured circuits are used.

II. MODEL
A feature map is the operator Ûφ(x), which embeds the clas-

sical data x into a state in the Hilbert space. This corresponds to
the map x ↦ ∣ψ(x)⟩ = Ûφ(x)∣ψ0⟩, where ∣ψ0⟩ is some trivial initial
state.6,13,16 A standard choice is the rotation-based embedding, made
up of single-qubit Pauli rotations,

∣ψ(x)⟩ =
N

∏

i=1
R̂i
α(ϕi(x))∣ψ0⟩, (1)

with α ∈ {X, Y, Z}. If we set ϕi(x) = ϕ(x) = ηx, where η is some con-
stant, this encoding naturally leads to a Fourier-type model with a
simple frequency spectrum (see Ref. 15 and also the discussion later
in the text). If we wish to extend the frequency spectrum, we can
add more x-dependent rotations to extend the spectrum, in the pro-
cess known as data re-uploading.28 We visualize an example of a
rotation-based QML circuit in Fig. 1(a), also demonstrating in the
following a few model instances that show harmonic behavior. We
note that rotation-based quantum feature maps are widespread in
the near-term QML pipeline, as they do not require many resources

(deep circuits), typically have good generalization,14 and their model
capacity (number of available frequencies) can be readily controlled.
However, these can be prone to classical simulability in the absence
of deep variational circuits.27

Another approach used to embed data corresponds to an
amplitude-based encoding,1 where one directly encodes the inputs
into the 2N different amplitudes of the quantum state in the com-
putational basis, ∣ψ(x)⟩ = ∑2N

j=1 cj(x)∣ j⟩, where {∣ j⟩} represents the
computational basis elements and ∑jcj(x)2

= 1. The amplitude-
based encoding is more suitable to large-scale fault-tolerant quan-
tum computers due to the resources needed to implement it.
Depending on the structure of the set of amplitudes, this data
encoding method requires either arbitrary state preparation strate-
gies or qRAM,1,19 both non-trivial protocols. The x-dependence
is now found in exponentially many amplitudes of the state.
One can also connect amplitude-based QML with rotation-based
models by introducing a phase feature map and utilizing the
quantum Fourier transform.9 Then, the rotation-based map (1)
follows ϕj(x) = 2πx/2 j scaling and leads to exponentially many fre-
quencies that are non-degenerate. We visualize a circuit with an
amplitude-based feature map in Fig. 1(b).

A qualitatively distinct way to embed data relies on effec-
tively non-unitary maps.20 Namely, we may encode our inputs using
a non-unitary operator, Âφ(x), rather than the unitary circuit,
Ûφ(x), which is typically used. We can decompose any operator as
a linear combination of unitaries (LCU), Âφ(x) = ∑k αk(x)Ûk(x),
encoding this operator into an extended Hilbert space using ancilla
qubits.21,22 This type of embedding protocol is useful when we
desire to generate a quantum model with non-Fourier modes. For
example, an LCU circuit is used for implementing an orthogonal
Chebyshev feature map, which encodes Chebyshev polynomials of
exponentially growing degree into the computational basis state
amplitudes.20 We visualize an example of the LCU-based quantum
feature map in Fig. 1(c) and show several model instances in the
following, which demonstrate non-harmonic behavior coming from
x-dependent normalization.

FIG. 1. Different classes of quantum feature maps for data embedding. (a) Rotation-based feature maps as quantum circuits that lead to Fourier-type models. Here and
hereafter, examples of models are shown below each circuit. (b) Amplitude encoding, where x-dependence is embedded into (exponentially many) amplitudes of an input
quantum state. (c) LCU-based feature maps provide non-Fourier spectrum due to measurement. (d) Ground state feature maps embed data into very specific states and
can be considered as quasi-Fourier models with exponentially scaling of the spectrum (discussed in this work).
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Finally, in this study, we formalize another data encoding
method considering the ground state preparation process on quan-
tum computers. Here, the feature x parameterizes a quantum Hamil-
tonian Ĥ(x) and the mapping process assumes preparing its ground
state ∣ψG(x)⟩. This can be achieved by several procedures, including
either non-unitary (cooling) or unitary state preparation, ∣ψG(x)⟩
= Ûφ(x)∣ψ0⟩, with a map Ûφ(x). We note that this process is often
assumed when working with so-called quantum data3,14,23,24 and has
recently been connected to a hidden feature map process.25 How-
ever, there is an open question: how can one prepare the ground
state-based datasets and how does the corresponding QML model
compare to other approaches? We visualize an exemplary quan-
tum circuit for the GSP-based feature map in Fig. 1(d), elucidating
details in the following, and show the related models below the
circuit.

A. Ground state preparation and feature maps
To analyze formally the process of data embedding into ground

states of parameterized Hamiltonians, we need to establish a suit-
able framework. Here, we discuss possible options and motivate the
choice of adiabatic quantum state preparation as a bridge to QML
based on Fourier-type models that is universally adopted.

We begin by recalling the different methods for GSP. One
choice is to employ variational approaches, using either the vari-
ational quantum eigensolver (VQE) or the quantum approximate
optimization algorithm (QAOA).29–31 If we wish to prepare ground
states for a set of feature values, we have to train the varia-
tional circuit for each input value separately. This means that the
x-dependence is implicitly hidden within the optimized para-
meters of the Ansatz, ∣ψG(x)⟩ = Û(θopt(x))∣ψ0⟩, and the functional
dependence of the optimal angles θopt(x) is generally non-trivial
(and potentially has non-analytic jumps). This means that
QML models built on top of ground states prepared in this fashion
do not pertain well to analysis as a Fourier model. Next, GSP pro-
tocols based on effective thermalization or imaginary time evolution
are of the LCU type and thus cannot be connected to Fourier-type
models. For the unitary GSP options, one possibility is to postulate
that there exists a fixed circuit that connects an input state to the
ground state. We analyze this approach in Sec. IV and Appendix A.
Finally, one of the widespread ground state preparation methods
that can help us unravel the properties of GSP embedding is the
ground state preparation procedure based on an adiabatic quantum
protocol. This is the framework we concentrate on hereafter, but we
stress that our conclusions apply to ground states prepared by an
arbitrary GSP protocol.

B. Adiabatic ground state preparation
as a feature map

Let us proceed by describing the adiabatic quantum ground
state preparation. Here, we follow the standard description from
Albash and Lidar.32 The adiabatic GSP represents an annealing-
type strategy, where a Hamiltonian is gradually tuned in time
from a simple one (Ĥ0) to a difficult one (target Hamiltonian
Ĥ1). In particular, we consider a feature-dependent target Hamil-
tonian that embeds a scalar parameter x (we discuss a possible

extension to multi-dimensional data in Appendix C), and the full
time-dependent operator reads

Ĥ(t; x) = (1 − t/T)Ĥ0 + (t/T)Ĥ1(x), (2)

where T is a total evolution time. The corresponding quantum
propagator can be written as

ÛT(x) = T
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

exp
⎡
⎢
⎢
⎢
⎢
⎣

T

∫

0

dt Ĥ(t; x)
⎤
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪
⎬
⎪⎪⎪
⎭

, (3)

where T {⋅} denotes the time-ordering operator and effectively rep-
resents a ground state-based x-feature map. Acting on the suitable
initial state ∣ψ0⟩, that is, the ground state of Ĥ0, we prepare the
ground state of Ĥ1(x) as ∣ψG(x)⟩ = ÛT(x)∣ψ0⟩, assuming that adia-
baticity conditions are met (discussed later). Intrinsically, ÛT(x) is
a non-Fourier map, as it contains generally non-commuting parts
Ĥ0,1, such that the diagonalization becomes basis-dependent (dis-
cussed in Ref. 33). As our goal is to analyze its properties while
comparing with previously known models, we recast ÛT(x) into
the form that admits an approximate Fourier-type representation.
To break up the evolution with the non-commuting target and
easy Hamiltonians, we employ a Trotter decomposition of the adi-
abatic state preparation, as is routinely done when implementing it
digitally.32,34 The corresponding feature map (3) is decomposed into
M short steps,

ÛT(x) ≈
M

∏

m=1
[e−i(Δt2m/T) Ĥ1(x)

⋅ e−iΔt(1−mΔt/T) Ĥ 0
], (4)

where the time step Δt = T/M. The number of required steps
for the high-fidelity GSP scales as M = O(T2poly(N)).32 We can
rewrite the digital evolution operator in the form where x-dependent
operators and other basis transforms are separated, recasting (4)
as ÛT(x) ≈∏M

m=1 [exp{−itmxĤG} ⋅ Ŵm]. Here, we introduce step-
dependent operators, Ŵm, absorbing x-independent evolution, set
tm = Δt2m/T, and assign a generator for the x-dependent unitary as
ĤG.

C. Feature map spectrum
To analyze formally the properties of the ground state-based

feature map, we use the spectral decomposition,

exp{−itmxĤG} = V̂
⎛

⎝

∣Λ∣
∑

ℓ=1
exp (−itmλℓx)P̂ℓ

⎞

⎠

V̂†, (5)

where ĤG is diagonalized by the basis transformation V̂ and
Λ = {λℓ}ℓ is a set of unique (non-repeated) eigenvalues with car-
dinality ∣Λ∣. We introduce the corresponding subspace projectors
{P̂ℓ}ℓ that collect eigenstate projectors for the same eigenvalue λℓ (if
it is degenerate), noting that∑∣Λ∣ℓ=1 P̂ℓ = 𝟙. Then, similar to the proce-
dure used by Schuld et al.,15 the products of operators in ÛT(x) can
be recast as Ŵm+1 exp{−itmxĤG}Ŵm = ∑

∣Λ∣
ℓ=1 exp (−itmλℓx)ŵ(m)ℓ ,

with ŵ(m)ℓ = Ŵm+1V̂ †P̂ℓV̂Ŵm being the transition matrix that per-
forms a basis change at the m→ m + 1 step for the ℓth eigensector.
The full product in ÛT(x) then involves different combinations
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of x-dependent exponents, generating a mode spectrum for the
embedding, which we denote as Σ. This is a set of frequencies
formed by different combinations of elements in the set of sets

(Δt2
/T){{mλℓ}

∣Λ∣
ℓ=1}

M

m=1
. The largest element of Σ is called the degree

of the spectrum,15,33 which in this case corresponds to the largest
eigenvalue of Λ multiplied by∑M

m=1 m. This leads to the mode spec-
trum degree DΣ = max (Λ)M(M+1)

2
Δt2

T . Similarly, the width of the
spectrum is defined as the number of distinct frequencies, denoted
as KΣ := (∣Σ∣ − 1)/2. Next, we note that quantum models based on
the embedding ÛT(x) are typically built as expectation values over
the feature state,

fθ(x) = ⟨ψG(x)∣M̂θ∣ψG(x)⟩, (6)

where M̂θ is a measurement operator (can be adjusted variation-
ally). As in (6) the embedding appears twice, the corresponding
model fθ(x) = ∑ωk,k′ ∈Σ ck,k′ exp [−i(ωk − ωk′)x] involves frequency
differences—gaps—with coefficients ck,k′ being products of associ-
ated basis changes contracted with the input state and the mea-
surement operator. The relevant gap spectrum for the model is
Ω = {ωk − ωk′ : ωk,k′ ∈ Σ}. The degree for the GSP gap spectrum is
DΩ = max(Λ)M(M + 1)Δt2

/T. We remind that given that the num-
ber of steps scales as M ∝ T2poly(N), this leads to the spectrum
degree DΩ ∝ max(Λ)T, i.e., proportional to the annealing time T.
To meet the adiabaticity conditions, one requires T = Õ(1/Δ2

min),
where Δmin is the minimal annealing gap of Ĥ(t; x) (over the inter-
val from t = 0 to T) defined as a distance between instantaneous
first excited and ground states. This has tremendous consequences
for the ground state-based feature maps, namely, because of the fast
growth of T with the system size. We expand on this point with some
GSP embedding calculations in Sec. III.

III. RESULTS
We proceed by considering a concrete example and show the

practical aspects of GSP-based feature mapping, as well as visual-
izing the scaling. For this, we have chosen to work with the Ising-
type Hamiltonian for a chain of N qubits with periodic boundary
conditions. The data-dependent Hamiltonian reads

Ĥ(x) =
N

∑

j=1
Ẑ jẐ j+1 + x

N

∑

j=1
Ẑ j + h

N

∑

j=1
X̂ j , (7)

where x is the parameter (feature) that we embed into the longi-
tudinal part of the Hamiltonian, ĤZ := ∑N

j=1 Ẑ j . Here, we assume
ẐN+1 ≡ Ẑ1 (periodic boundary) and note that the transverse part of
the field described by ĤX := ∑N

j=1 X̂ j is introduced with h < 1, such
that the basis deviates from the computational one. The interacting
Ising-type Hamiltonian ĤZZ := ∑N

j=1 Ẑ jẐ j+1 is of the antiferromag-
netic type. Here, we set the prefactor in front to be unity, implying
that units of Ising interaction are used everywhere for measur-
ing energy and time is measured as inverse interaction strength
set to one for convenience. The model features a phase transition
as a function of x, where ground state ordering changes from the

FIG. 2. Analysis of the adiabatic ground state preparation for the Ising model with a
longitudinal field and associated basis quality. (a) Expectation value of the magne-
tization operator for the exact ground states of the Ising model with a longitudinal
field (absolute value). (b) Fidelity of the adiabatic ground state as a function of x,
plotted for different total evolution times T . Quality of the ground state deteriorates
rapidly around the critical point, but the range of x at which the full fidelity remains
high increases with T . (c) Infidelity of the adiabatic ground state as a function of
T . Only with sufficient Trotter steps can we converge to an accurate ground state
at late times. For panels (b) and (c), the solid curves show the full (in)fidelity while
the dashed curves depict the approximate (in)fidelity. (d) Exact vs adiabatic basis
functions. The errors introduced via Trotterization lead to highly oscillatoric basis
functions for x around the critical point.

antiferromagnetic one to the staggered ferromagnetic. In Fig. 2(a),
we plot the absolute value of magnetization in Z direction over the
ideal ground state ∣ψ(i)G (x)⟩ of the Hamiltonian (7). In practice, this
is obtained by the imaginary time evolution procedure ∣ψ(i)G (x)⟩ ∼
exp [−τ Ĥ(x)]∣ψ0⟩ with consequent state normalization. Here and
hereafter, we consider h = 0.2 and N = 4, such that a small scale sys-
tem can be readily analyzed and visualized. The input state is chosen
as ∣ψ0⟩ = ∣+⟩

⊗N being an equal superposition of all computational
states, and we use τ = 20.

A. Ising ground state preparation with Trotterized
adiabatic evolution

Next, we proceed to consider the unitary state preparation.
We construct the adiabatic Hamiltonian Ĥ(t; x) using Ĥ1(x) from
Eq. (7) and setting the initial Hamiltonian and state as Ĥ0 = −ĤX
and ∣ψ0⟩ = ∣+⟩

⊗N . We simulate the Trotterized unitary evolution (4)
considering different annealing times T and number of steps M.
We perform ground state preparation for a full range of x para-
meters and test the fidelity for the GSP procedure. In particular,
we adopt two types of fidelity. First, we check a full overlap of the
adiabatically prepared state ∣ψG(x; T, M)⟩ with the ideal state, F(x)
= ∣⟨ψ(i)G (x)∣ψG(x; T, M)⟩∣2. Note that this metric is demanding, as
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phases of individual components must match to yield unity fidelity
for all x. Second, we also test the difference between computa-
tional state occupations, where the approximate fidelity is F̃(x) = 1
−∑

2N

j=1 ∥⟨ j∣ψG(x; T, M)⟩∣2 − ∣⟨ j∣ψ(i)G ⟩∣
2
∣/2N , where probability vec-

tors are compared.
In Fig. 2(b), we show fidelities for several annealing sched-

ules. First, when setting T = 10 and M = 100, we observe that the
full fidelity remains very close to 1 outside of the critical region,
but experiences a large drop in the window of x surrounding the
critical point xcr = 2 [solid magenta curve in Fig. 2(b)]. The corre-
sponding approximate fidelity remains high throughout, but visibly
deviates from unity (dashed magenta curve). Increasing the anneal-
ing time to T = 100 and M = 1000, we observe that fidelities are
largely improved [purple curves in Fig. 2(b)], but the full fidelity
remains poor in the narrow critical window. This behavior contin-
ues even for T = 1000 and M = 10 000, albeit in the narrow window
around xcr [blue solid curve, Fig. 2(b)].

We select a feature value of x = 1.9 and plot the infidelity (being
1 − F) as a function of T. The results are shown in Fig. 2(c). The blue
curves and points show that infidelity drops to very low values as
we make T large (and significantly larger than N, assuming fine dis-
cretization with M = 10 000). Similar GSP with the number of steps
reduced to M = 100 shows that infidelity remains very large and the
prepared state deviates from the ideal one even at x = 1.9 [Fig. 2(c),
yellow solid curve and dots]. This confirms the analytical prediction
that M ∝ T2 is needed for the mapping to work.

Finally, we test the consequences of imperfect state prepara-
tion on quantum machine learning models and their basis sets. In
Fig. 2(d), we show projections of the prepared state on the com-
putational basis, ϕj(x) ≡ ∣⟨ j∣ψG(x; T, M)⟩∣2, setting T = 1000 and
M = 10 000 for the high fidelity GSP. This is also overlayed with ideal
ground state projections indicated by the red curves in Fig. 2(d).
We reveal that the corresponding adiabatic GSP basis is effectively
smooth, but at the critical region, the functions experience rapid
oscillations [see the inset in Fig. 2(d)]. This shows that intrin-
sically the QML model for the adiabatic GSP works with high
frequency components, but structures the coefficients in such a
way that oscillations are suppressed, and largely degenerate low fre-
quency modes are predominantly exploited. This also confirms the
discussion of the spectral properties of ground state-based feature
maps.

B. Spectrum of the Ising ground state feature map
We proceed to study and visualize the underlying spectrum

of QML models, now for the concrete example of the Ising-type
embedding given by Ĥ(x). Here, the generator corresponds to
ĤG = ĤZ, and other x-independent parts of Ĥ(x) are absorbed into
basis changes upon Trotterization. There are ∣Λ∣ = N + 1 unique
eigenvalues of ĤG corresponding to Λ = {λℓ = −N + 2(ℓ − 1)}N+1

ℓ=1 ,
starting from a non-degenerate polarized state and increasing
degeneracy peaking at zero eigenvalue.35 Based on the maximal
eigenvalue for the chosen ĤG being max(Λ) = N, we observe that
the degree for the mode spectrum grows as DΣ = NTM(M + 1)/2M2

and DΩ = NTM(M + 1)/M2. The associated width of these spectra
are equal to half-the-degree, KΣ,Ω = DΣ,Ω/2, as a consequence of the
generator’s spectrum.

FIG. 3. Spectrum of the ground state feature map. (a) Mode spectrum Σ for the
Ising-type ground state embedding, showing available frequencies (in the units
of Δt2

/T) with corresponding counts of degenerate modes. Here, we set M = 5.
(b) Gap spectrum Ω for the same Ising-type ground state embedding. (c) Gap
spectrum for the rotation-based embedding ΩR based on the tower-type feature
map of N single-qubit rotations, where prefactors of x increase linearly with the
qubit index. (d) Scaling of the gap spectral degree with the system size N, showing
∝ N2 scaling for the rotational embedding (blue solid curve) and ∝ N3-to-N2N

scaling for GSP-type embedding, assuming different annealing gap scaling.

We proceed to visualize the shape of the GSP feature map spec-
trum in Fig. 3. The histogram of frequencies for the mode spectrum
is presented in Fig. 3(a). Here, we have assumed a modest num-
ber of Trotter steps (M = 5) to aid the analysis and plot frequency
values in units of Δt2

/T. We observe the characteristic shape of nor-
mally distributed frequencies with a notable degeneracy. As we go
from the mode spectrum to the gap spectrum, the shape remains the
same, while the degeneracy grows to large numbers [Fig. 3(b)]. This
behavior is only more pronounced for larger M required for GSP
and underlines a huge QML model capacity based on ground state
embeddings.

To put these results into perspective, we compare GSP-based
spectra with the standard rotation-based feature map. We consider
a feature map of the type shown in Eq. (1), where N rotations have
an increasing prefactor corresponding to the tower feature map.10

In this case, we have ∣ΛR∣ = N(N + 1)/2 + 1 unique eigenvalues and
in the absence of re-uploading, the corresponding mode spectrum
is flat (frequencies are non-degenerate). The gap spectrum ΩR for
the rotation-based feature map is shown in Fig. 3(c) and features
a linear decay of counts from zero frequency to the maximal fre-
quency (degree) of DΩR = N(N + 1), as well as showing an overall
low degeneracy. Therefore, the associated mode capacity and expres-
sivity are poor, compared to the GSP embedding even at small
system sizes.
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Finally, we visualize scaling for spectral properties for the GSP-
embedding and contrast it to the rotational embedding. Choosing
the spectral degree as a metric, in Fig. 3(d) we plot the DΩR ∝ N2

scaling as a blue curve for the tower-type feature map. We compare
this with the GSP-based feature map, remembering that frequencies
scale with T ∝ Δ−2

min, and thus, the annealing time has a strong sys-
tem size dependence. At the very least, the minimal annealing gap
drops as Δmin ∝ N−1 for simple instances of the ground state prepa-
ration.32 We indicate this by an orange curve in Fig. 3(d), where
DΩ ∝ N3 (and stress that the degeneracy is largely superior to the
rotation-based embedding). The second scenario is the exponen-
tially minimal annealing gap closing as Δmin ∝ 2−N/2, the typical
scaling for hard instances.32 This case is depicted by the dark red
curve in Fig. 3(d) and further highlights the difference of associated
QML models. We show further analysis of the scaling of T with the
system size in Appendix B.

C. Coefficients of the Ising ground state feature map
We have seen that the quantum model based on ground states

produced by adiabatic evolution (6) can be written as a trun-
cated Fourier series, fθ(x) = ∑ω∈Ωcω exp[−iωx], with the degree of
the spectrum bounded by the model eigenvalues, total evolution
time, and number of Trotter steps; but, what about the coefficients
cω? Their size is determined by the ŵ(m)ℓ operators, which depend
on both the x-dependent and x-independent operators, as well as
the measurement operator M̂θ. The magnitude of the coefficients
gives us information about which frequency modes are domi-
nant in a particular QML model and their variance defines model
expressivity.

To investigate the expressivity of ground state-based QML
models, we set M̂θ as the magnetization operator, ĤZ, with no vari-
ational circuit in between the adiabatic ground state embedding and
the cost operator. This ensures our model fθ(x) is an approxima-
tion to the phase boundary observed in Fig. 2(a). We know that
the model has an integer frequency spectrum because the x depen-
dence is embedded into ĤZ; therefore, we can accurately calculate
the corresponding coefficients using a fast Fourier transform. We
show these coefficients in Fig. 4.

Just as the fidelity of the adiabatically prepared ground states
are dependent on both the total evolution time T and the number
of Trotter steps M, the same is also true for the size and spread of
the coefficients. When both T and M are small, the quantum model
gives an inaccurate approximation to the phase boundary and the
coefficients are more spread across all frequencies. An increase in
M improves the ground state fidelity significantly, and this mani-
fests itself in an increase in the ratio between low and high-frequency
coefficients. We can explain this by looking at the gap spectrum
in Fig. 3: there is a large degeneracy in the low frequency modes,
so these low frequencies have many more terms contributing to
their coefficients. An increased M enhances this effect, causing the
spectrum to become mode peaked.

We also note that even with high M, if we increase T so that the
time step Δt is too large, the ground state approximation becomes
poor and the coefficients become more spread out again, shown in
Fig. 4(d), where Δt = 1000/1000 = 1.

FIG. 4. Absolute value of the coefficients of the Fourier model from the Trotterized
adiabatic ground state preparation. We consider GSP protocols for (a) M = 100
and T = 100, (b) M = 1000 and T = 100, (c) M = 100 and T = 1000, and (d)
M = 1000 and T = 1000.

IV. DISCUSSION
Once we have formally introduced the ground state-based

embedding for quantum machine learning models, and analyzed
their properties, we are left with a question: where do we go from
here? Ideally, we require QML workflows that are motivated by
preparing non-trivial input states (see Cerezo et al.27) while mak-
ing sure they are advantageous from the learning point of view.
The presented analysis and results show that unitary processes that
include large number of re-uploadings, but have non-variational cir-
cuits in between, can effectively mimic GSP-type feature maps. This
can be a direction to explore from the QML modeling point of view
(capacity and expressivity), as well as classical simulability (testing
if a quantum state follows the area law of entanglement). In addi-
tion, we foresee that effective Hamiltonians for data embeddings can
be designed, such that the basis functions are smooth even away
from the large Trotter number limit (for instance, by playing with
commutativity of terms that comprise Ĥ(x)).

Another point of discussion is the universality of our analy-
sis for the GSP embeddings. A careful reader might wonder if the
described scaling for the spectrum is a consequence of choosing the
adiabatic preparation and its potentially non-optimal N-dependence
on the annealing time and the number of steps. We show that this is
not the case by presenting in Appendix A an alternative analysis,
which leads to the same conclusion about GSP-based QML mod-
els being high-frequency models with massive degeneracies and very
structured coefficients.
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V. CONCLUSIONS
In this study, we have presented and formalized a quantum

data embedding based on the ground state preparation protocols.
We have represented a problem as a digital version of the adiabatic
ground state preparation, which allows us to connect GSP-based fea-
ture maps with rotation-based maps and Fourier-type QML models.
We analyzed properties of the ground state-based quantum machine
learning models, revealing that ground state-based feature maps can
be seen as models with large capacity, where the frequency gap spec-
trum grows at least as a high-degree polynomial in the number of
qubits N. For complex Hamiltonians, this scaling of the degree and
size of the spectrum becomes exponential. We observed that the
spectrum is largely degenerate and frequencies are tied with coeffi-
cients for the emerging basis that are highly structured. This leads to
highly specific models with limited expressivity, where formally large
model capacity is effectively tamed. Given the trade-offs between
expressivity and trainability,36 we expect GSP-type maps to be valu-
able for increasing trainability. Our results point a way for QML
modeling with provably non-simulable input states and improved
generalization.
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APPENDIX A: ALTERNATIVE ANALYSIS
OF GSP FEATURE MAPS

In the main text, we have based the ground state quantum fea-
ture map analysis on the adiabatic state preparation. One of the main

conclusions highlights the large degree and massive degeneracies of
the associated spectrum. Let us show that these conclusions hold,
specifically by presenting an alternative analysis.

Let us assume that we have full access to the feature state
vector ∣ψG(x)⟩. We can construct an (rather artificial) operator
Û FF
θ (x) = exp [−iθ Ĝ(x)], such that for selected θ∗ and a tailored

generator Ĝ(x), we directly map the input state to the ground
state, ∣ψ⊘⟩↦ ∣ψG(x)⟩. For this, we extend the register with one
ancillary qubit, such that ∣ψ⊘⟩→ ∣ψ⊘⟩⊗ ∣0⟩ ≡ ∣ψ(e)⊘ ⟩ and ∣ψG(x)⟩
→ ∣ψG(x)⟩⊗ ∣1⟩⟩ ≡ ∣ψ(e)G (x)⟩. In this case, we have the initial state
and the target state being orthogonal, ⟨ψ(e)⊘ ∣ψ

(e)
G (x)⟩ = 0. We form

the generator Ĝ(x) = ∣ψ(e)G (x)⟩⟨ψ
(e)
⊘ ∣ + ∣ψ

(e)
⊘ ⟩⟨ψ

(e)
G (x)∣, such that

this enables a rotation in the relevant state space. Note that the
squared generator is a projector, Ĝ 2

(x) ≡ P̂G(x), Ĝ 4
(x) = P̂2

G(x)
= P̂G(x), and that due to state orthogonality, Ĝ(x) ⋅ P̂G(x) = Ĝ(x).
With this, we can expand Û FF

θ (x) as a Taylor series and collect the
terms as

Û FF
θ (x) = [𝟙 − P̂G(x)] + cos (θ)P̂G(x) − i sin (θ) Ĝ(x). (A1)

Setting θ → θ∗ = π/2, we have the unitary state preparation sched-
ule ∣ψ(e)G (x)⟩ = Û FF

π/2(x)∣ψ
(e)
⊘ ⟩ (up to a global phase) and the ancilla

qubit can be disregarded.
What does this artificial GSP give us in terms of the spectral

analysis of the feature map? We observe that the fast-forwarded
GSP operator can be rewritten as a generator Ĝ(x) = ∑4N

k=1 φk(x) P̂k

decomposed into Pauli words P̂k with x-dependent functions φk(x).
Here, the number of possible words goes up to 4N , and as we decom-
pose operators with support on few states, there is a high likelihood
that exponentially many words are indeed involved (as they resem-
ble Behemoth operators discussed in Ref. 37). Next, we can group
Pauli words into commuting groups, S = {{ P̂k∈Γ}}Γ, but the car-
dinality of S for a generic problem will still grow rapidly with
N.38,39 Therefore, representing the fast-forwarded GSP operator still
requires Trotterization, with the number of steps M S dependent on
∣S∣ and the norm of operators in each group, { P̂k∈Γ}, yielding

Û FF
π/2(x) ≈

M S
∏

m=1
[e
−i π

2M S
φ1(x) P̂ 1

⋅ . . . ⋅ e
−i π

2M S
φ4N (x) P̂4N

]. (A2)

Each Pauli word contains only ±1 eigenvalues, and the degree of
the associated spectrum scales as O(4N

), unless the generator is
highly structured. In addition, given that φk(x) has nonlinear depen-
dence (which is usually the case, for instance, looking at the Ising
model basis), the underlying basis is non-Fourier. We conclude that
one cannot represent quantum models based on ground state-based
feature maps as simple Fourier models.18

APPENDIX B: SCALING OF ANNEALING
TIME WITH SYSTEM SIZE

Our main scaling conclusions from our theoretical analysis in
the main text is that the degree of the gap spectrum DΩ scales
linearly with the total evolution time T, which has a scaling of
T = Õ(1/Δ2

min). This indicates the evolution time T required for
accurate adiabatic GSP, and hence, the degree of the gap spectrum,
grows with system size. For further confirmation, we ran simulations
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FIG. 5. Top panel: Infidelity 1 − F of the adiabatic ground state with the true ground
state as a function of total evolution time T for different system sizes. The dashed
black line indicates a threshold infidelity of 10−3; ground states with this infidelity
are considered as well-prepared. Bottom panel: Time T required to reach the
threshold infidelity as a function of system size N. For all simulations, x = 1.9 and
M = 10T .

preparing ground states of the Hamiltonian at various system sizes,
and our results are presented in Fig. 5.

APPENDIX C: MULTI-DIMENSIONAL GROUND STATE
EMBEDDING

Extending the embedding to multi-dimensional data is an
interesting proposition. The Hamiltonian of choice within our study
contains three elements: the Ising Hamiltonian, where we set the
prefactor to unity for simplicity; the longitudinal field, where the
scalar x was embedded; and the transverse field, with h set to
0.2 during our studies. The value of J determines the location of the
phase transition (xcr = 2J), while the ratio h

J determines the sharp-
ness of the transition, as shown in Fig. 6. Hence, we can realize
a variety of transition-type dependencies using ground states with
multi-dimensional data embedded [e.g., ∣ψG(α)⟩], with α = {x, J, h}.

FIG. 6. Expectation value of the magnetization operator for the exact ground states
of the Ising model with longitudinal field, for different coupling constants J and
transverse field strength h.
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