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ABSTRACT
Objective  To develop and compare four explainable 
artificial intelligence methods to visualise the influence 
of electronic health records (EHRs) on predicting hip 
replacement risk.
Methods and analysis  We used a pretrained temporal 
graph-based convolutional neural networks (TGCNN) 
model to generate explainable graph visualisations 
through four methods: the original gradient-weighted 
class activation mapping (Grad-CAM) applied to graphs, 
a modified Grad-CAM using absolute weights (Grad-CAM 
(abs)), sliding element-wise multiplication of feature maps 
with patient graph inputs (fm-act) and of 3D convolutional 
neural networks filters/kernels with patient graph inputs 
(edge-act). These methods visually explain the TGCNN 
model’s predictions regarding a person’s risk of needing 
a hip replacement within 5 years, based on clinical codes 
from EHRs. We evaluated these models through human 
qualitative analysis studies, sensitivity quantification, edge 
detection bias and sparsity.
Results  The edge-act methods performed best in terms 
of graph sparsity and model sensitivity. Subgraph analysis 
indicated that prescriptions highly influenced predictions. 
Clinicians found the visualisations useful for explaining 
model predictions but too complex for clinical decision-
making, particularly with extensive patient EHRs.
Conclusions  The fm-act and Grad-CAM (abs) methods 
led to graphs with zero sparsity; these graphs could be 
difficult to interpret if the patient has a long EHR history. 
The edge-act median method had the highest sparsity; 
therefore, this method might be the easiest to interpret for 
long EHR histories. We improved the explainability of hip 
replacement risk predictions using four post hoc methods 
on the TGCNN model. Further refinement could enhance 
their utility in clinical decision-making.

INTRODUCTION
Primary hip replacement can be life-changing 
for people, improving both joint function 
and quality of life by reducing pain.1 Primary 
hip replacements have risen in the UK from 
48 700 per year in 2006 to 101 828 per year in 
2019, which is mostly due to an ageing popu-
lation and rising rates of hip osteoarthritis.1 2 
The increasing demand for hip replacements 

is resource intensive within the UK’s National 
Health Service (NHS), leading to long 
waiting lists.3 If we can predict who requires a 
replacement well in advance, we can suggest 
preventative care or pain management and 
triage patients. In our previous work, we 
predicted hip and knee replacement risk 1 
and 5 years in advance from electronic health 
records (EHRs) using temporal graph-based 
convolutional neural networks (TGCNNs).4 
Compared with traditional prediction 
models, this type of neural network is unique 
in that the entire patient history (including 
the sequence and timing of events) is used.

The complexity of the model means that 
one model prediction from the TGCNN is not 
readily explainable. Simple approaches, such 
as feature importance, are not possible. The 
work described here focuses on adding post 
hoc explainability methods to the existing 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Artificial intelligence (AI) is becoming more widely 
used in healthcare applications. Explainability and 
interpretability will become vital to improve clini-
cian and patient trust in machine-based decisions. 
Currently, only three graph-based AI models have 
explainability; however, these three methods are dif-
ficult to interpret without technical knowledge.

WHAT THIS STUDY ADDS
	⇒ This study describes the development and compari-
son of four methods to explain the predictions from a 
graph-based hip replacement risk prediction model 
visually.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Results from this study demonstrate four post hoc 
explainability methods, with simple visualisation 
outputs to help explain internal AI decision-making, 
which does not require a technical background to 
interpret.
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TGCNN model and investigating their effectiveness in a 
cohort of clinicians.

Contributions: (1) We use four post hoc explainability 
methods to visually show TGCNN prediction decision 
influence for individual patients. (2) We create an inter-
active graph visualisation that allows clinical users to 
interact with historical patient EHRs. (3) We evaluate 
these graphs using human/clinician evaluation feedback 
alongside edge detection bias (EDB), sensitivity and spar-
sity. (4) We perform subgraph analysis to find frequent 
subgraphs that have an impact on the model decision.

RELATED WORK
Post hoc explainability methods include backpropagation-
based,5 approximation-based and perturbation-based 
methods.6–8 Ante hoc methods include attention-based, 
causality-based and physics rule-based models. Liu et al 
categorise methods for explaining graph neural networks 
(GNNs): model-agnostic methods, including subgraph-
based approaches, which identify influential subgraphs,9 
feature attribution methods that assess node/edge 
importance and their interactions7 and counterfactual 
explanations that explore minimal changes leading to 

Figure 1  Process from a sample patient EHR to graph representation, model architecture and explainable prediction: a 
patient with five clinical codes over four visits is predicted with 0.89 probability to need a hip replacement within 5 years. CNN, 
convolutional neural network; CTV3, clinical terms version 3; IMD, index of multiple deprivation; EHR, electronic health record; 
ReLU, rectified linear unit; LSTM, long-short term memory.
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different predictions. Model-specific methods include 
attention-based models, graph masking approaches and 
self-explaining GNNs that integrate explanation genera-
tion into their predictions.

Contrastive gradient-based saliency maps generate 
heatmaps by differentiating the output of the model with 
respect to the model input, where the positive values in 
the heatmap represent the input feature importance.10 
Class activation mapping (CAM) provides a slight modi-
fication for convolutional neural networks (CNNs) by 
taking the gradients of the output of the model with 
respect to the output of the final CNN layer; this is 
thought to return more meaningful features in the input 
data. However, CAM requires the final CNN layer to be 
just before the final output layer of the model, with only 
a global average pooling layer in between. Gradient-
weighted CAM (Grad-CAM) improves on this further 
by allowing layers between the final CNN layer and the 
output by weighting feature maps, while also considering 
feature map activations rather than just gradients.10 11 
Explainability methods, including contrastive gradient-
based saliency maps, CAM, Grad-CAM, Grad-CAM Avg 
and excitation backpropagation, have been adapted 
from CNNs to graph CNNs.10

We conducted a literature review (online supplemental 
material appendix A), which identified three papers 
that implement graphs and artificial intelligence (AI) 
with explainability methods using EHRs for healthcare 
prediction.12–14 A PRISMA diagram showing a flow chart 
of the literature search can be found in figure 1 of online 
supplemental appendix A. All of these papers used atten-
tion mechanisms and incorporated temporality into their 
explainable models.

Su et al presented the GATE model, a graph-
attention augmented temporal neural network 
for medication recommendation, which captures 
relationships among symptoms, medications and 
temporal changes in medical history at each admis-
sion. The graph attention mechanism enables the 
model to prioritise important aspects of the medical 
history, particularly the temporality. Similarly, Sun et 
al integrated medical event temporality, frequency 
and attention mechanisms on graph structures to 
predict outcomes such as mortality and readmission, 
with graph nodes representing diagnoses, symptoms 
and treatments.13 Smith et al use GNNs, recurrent 
neural networks and attention mechanisms to predict 
patient survival times.14

METHODS

Model
The original TGCNN model was trained using NHS 
EHR data from ResearchOne, managed by The 
Phoenix Partnership.15 The ResearchOne data are not 
distributable under licence and are not publicly avail-
able. The code for the following methodology can 
be found here (https://github.com/ZoeHancox/​

explainable_TGCNN). This work adapts the existing 
TGCNN model with four explainability methods, 
using a training cohort of 5243 patients who have 
a hip replacement and 5243 who do not have a hip 
replacement within a 5-year window. For more details 
on the cohort, we refer readers to our previous work.4

Figure 1 illustrates the process from data to prediction 
to explanation and the four explainability methods we 
investigated are described below.

Maximum activation difference
The TGCNN model looks at the input data and breaks 
it down into feature maps that highlight various 
patterns in the patient history. For each pattern, 
the model checks how strongly it reacts to patients 
(called ‘activation’) who either get a hip replace-
ment or do not get a hip replacement. It calculates 
the average strength of this reaction for each group, 
then compares these averages to see which feature 
map shows the biggest activation difference between 
the two groups. The most distinctive feature map is 
considered the most useful for understanding what 
separates the groups and is used in the explainability 
methods to help explain the model’s decisions.

The TGCNN model creates ﻿‍M ‍ feature maps out from 
its 3D CNN layer. Let ﻿‍Am ‍ be one of the ﻿‍M ‍ feature maps 
from the 3D CNN layer, the mean activation is calculated 
as shown in equation 1.

	﻿‍
z̄m,c =

1��S��
∑
i∈S

max
(
zi
)
‍�

(1)

where ‍zi ‍ is the vector of activations for the ‍i ‍-th patient, 
‍m ‍ is the feature map number and ‍S =

{
Am

i where yi = c
}
‍ is 

the set of all feature maps where the collection of feature 
maps in ‍S ‍ is grouped by class, ﻿‍Am ‍, for the patients in class 
‍c ‍.

The absolute difference in mean activations between 
the classes for each feature map is:

	﻿‍ ∆Am =
∣∣̄zm,c1 − z̄m,c2

∣∣
‍� (2)

where ‍Am ∈ RT1‍ is the flattened feature map for the ‍m
‍-th filter, ‍c1‍ is class 1 (hip replacement received) and ‍c2‍ is 
class 2 (no hip replacement received).

Explainability methods

Grad-CAM
We adapt the Grad-CAM methodology16 for our 3D 
graph representations. We show activation along the 
axis ‍k ‍, showing which time steps were activated. Given 
activated time steps, we can observe which primary 
care visits contributed to the prediction.

We save the optimised weights from the trained 
TGCNN model and then load them into a Grad-CAM 
model. We apply the Grad-CAM model to a patient’s 
graph, ‍Gp ∈ RN×N×T2

‍, where ‍N ‍ is the number of clin-
ical codes and ‍T2‍ is the number of visits, and retrieve 
the gradients to calculate the localisation map: the 
size ‍T1‍ of each 1D CNN feature map is:
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	﻿‍ T1 = T2−filtersize
stride + 1‍� (3)

where filter size refers to how many patient visits the 
model examines at once using each filter and the stride 
indicates how far the filter shifts forwards (in visits) each 
time it performs a calculation.

Grad-CAM computes the gradient of the output, ﻿‍Y ‍, 

with respect to the feature map 
‍
∇AmY :

⟨
∂Y
∂Am

1
, . . . , ∂Y

∂Am
T1

⟩

‍
, where ‍A

m
e ‍ denotes the ‍e ‍-th element of the feature map 

(‍e : 0 < e ≤ T1‍) and ‍∇Am‍ is the vector of partial derivatives 
with respect to all the elements in the feature map ‍m ‍.

It then averages the gradients over each single feature 
map to get the weight ‍αm ‍: 

	﻿‍
αm =

1
M

∑
e

∂Y
∂Am

e ‍�
(4)

where ‍αm ‍ is the weight for the ‍m ‍-th filter.
In standard Grad-CAM, the weighted sum of the 

feature maps using the weights ‍αm ‍ are calculated and 
passed through a ReLU. This ignores negative weights, 
which are associated with decreases in risk. Alongside 
this, we use the following modified version (method (b) 
Grad-CAM (abs)) to observe the difference between the 
methods:

	﻿‍
LGrad-CAM = abs

(∑
m

αmAm

)

‍�
(5)

The resulting 1D localisation map ‍LGrad-CAM‍ can be 
used to understand the input sequence location most 
important for the classification decision.

An average weight for each time step is calculated using 
the time steps that correspond to the filter window. To 
assign the ‍LGrad-CAM‍ values to the original patient graph 

‍Gp‍, we spread the value equally across the d time steps in 

‍Gp‍ which form each element of ‍V ‍. Where ‍V ∈ RT2‍ is the 
vector of ‍LGrad-CAM‍ values at each time step (visit) ‍k ‍.

Let ‍w ∈ RT2‍ be the weight at each time step in ‍Gp‍.
Let ‍Xm ‍ be the indicator function and ‍vm ‍ is each value 

within ‍V ‍.

	﻿‍

Xm(i) =




1∧, if ki ∈ Gp contributes to vm,

0∧, otherwise. ‍�
then

	﻿‍
wi =

1
d

T1∑
m=1

Xm
(
i
)

vm
‍�

(6)

Fm-act graphs
The feature maps from the CNN layer can indicate the 
patterns learnt by the TGCNN model. We propose the 
fm-act methodology as below:

Extract the feature maps ‍
(
Am

)
‍ from the 3D CNN layer 

of the TGCNN model.
Let ﻿‍A‍ denote one of the following summaries: the flat-

tened feature map with the strongest class differentiation 
‍max(∆Am), mean(A), or median(A)‍.

Map the feature map weights to the time steps and get 
an average of the weights for each sliding window recur-
rence on each time step:

	﻿‍

W̄k =
1��Wk
��

∑
(
i
)
∈Wk

Ai

‍�
(8)

where ‍Wk‍ is the set of all sliding windows that include 
time step ‍k ‍.

Normalise the weights to get the percentage influence 

of each time step: 
‍
Wk

% = W̄k∑
k Wk

× 100
‍
.

Edge-act graphs
As another way of obtaining feature importance, we can 
look at the filters from the CNN layer and use these along-
side the original input graph to find edge importance.

Extract the filters: ‍F = f1, f2, . . . , fm ‍ from the 3D CNN 
layer of the TGCNN model.

Let ‍f ‍ denote as one of the following three options: 
the filter ‍fm ‍ with the feature map with the strongest 
class differentiation the feature map with the stron-
gest class differentiation (‍max

(
∆Am

)
‍, the mean of the 

filters‍
(
mean

(
F
))

‍ or the median of the filters‍
(
median

(
F
))

‍. Compute the edge-act via a 3D sliding window:

	﻿‍

Ei,j =
1��Wi, j, k

��
∑

(
a,b,c

)
∈Wi,j,k

(
Ga,b,c ⊙ fa,b,c

)

‍�
(9)

where ‍Wi,j,k‍ is the 3D sliding window over the input graph 
‍G ‍ for each filter position ‍

(
i, j, k

)
‍ and ‍⊙‍ is elementwise 

multiplication.
Normalise the weights to get percentage influence of 

each edge: 
‍
Ei,j

% =
Ei,j∑

i
∑

j Ei,j
× 100

‍
.

Interactive visualisations
We use Plotly (V.5.23.0) and NetworkX (V.3.2.1) to plot 
interactive graphs. A patient’s individual graph is shown 
where the nodes are the clinical codes, stacked clinical 
codes occurred during the same visit and the edges show 
the days between visits. A patient’s risk of requiring a hip 
replacement in 5 years is also provided.

Graph visualisations metrics
Saliency maps may not always be reliable for under-
standing model decision-making as they rely on intu-
ition, have poor falsifiability11 and tend to represent 
noise rather than signals.9 For this reason, we score the 
methods using the evaluation metrics below.

Sensitivity
For the Grad-CAM and fm-act methods, we add a node 
with a random clinical code assignment to a random 
existing visit 10 times, then obtain the mean L1 distance 
between the original and edited visit. For the edge-act 
model, we randomly change a node’s clinical code and 
compare the influence of the connected edge going into 
the node to the original edge influence. Higher values 
determine higher methodology sensitivity.
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Edge detection bias (EDB)
We changed the model weights by randomly adding 
noise (with the same mean and SD as observed from the 
trained model weights) to observe changes in the heat-
maps, which are used to suggest the observed influence 
of edges and visits. If EDB (false saliency) is present, 
then the heatmaps will not change or will be very similar. 
Ideally, the percentage influence will be dependent 
on the weights of the model. We calculate the mean 
absolute error (MAE) for the difference between the 
heatmap from the trained model and the heatmap from 
the random weighted model for each of the methods, 
then get the mean and SD of the differences across the 
patients. A higher EDB value indicates false saliency is 
less likely.

Sparsity
We calculate node and edge weight sparsity by binarising 
the heatmaps, setting values over 0 to 1 and others to 0. 
The sparsity for each graph is defined as the percentage of 
non-zero entries. A higher sparsity value reflects a greater 
number of nodes or edges that contribute nothing (ie, 
have zero weights) to the model’s prediction,10 which 
may be better for larger graphs, to make visual focus 
more obvious due to node/edges with values of zero not 
being visualised.

Graph visualisation human evaluations
We carried out qualitative human evaluation studies to 
assess the interpretability versus truth trade-off of the 
four explainability methods, while gauging user interac-
tion experience.17 We asked seven clinicians to complete 
a survey which showed the four graph methods visualised 
(a=Grad-CAM original, b=Grad-CAM (abs), c=fm-act and 
d=edge-act) for five different patient cases. A clinical 
vignette was provided to explain the visualisation (figures 
2 and 3) in online supplemental appendix B. The survey 
questions we asked the clinicians are in online supple-
mental appendix B; this included free-text questions 
and Likert scales (no statistical significance testing was 
carried out).

Subgraph frequency analysis
Once we have collected the sensitivity, EDB and spar-
sity of each method, we select the optimum method 
and perform subgraph analysis on it. To analyse the 
frequency of subgraphs across the patients, we first find 
all of the edges with a percentage influence of more than 
0 (we denote these as ‘activated’ nodes). We then take 
the collections of connected activated nodes and their 
connection edges, repeating this for all patient graphs. 
The subgraph frequency is counted by prevalence per 
class ‍N+s,N−s‍ for subgraph ‍s ‍, then we obtain the ratio 

to give subgraph prevalence by class: 
‍
R+s =

N+s

N+s + N−s ‍
, 

‍R−s = N−s

N+s +N−s ‍ using equations from.10 Please note that 
the subgraphs obtained have not been established as defi-
nite patient trajectories that influence hip replacement 
risk; we use these subgraphs to illustrate how the model 
infers its prediction globally.

RESULTS
Methodology comparison
The distribution of maximum activation values from each 
CNN feature map for all patients exhibits non-Gaussian 
characteristics with noticeable skewness. Among the 
feature maps, feature map 30 demonstrates the most 
significant difference in activation between the classes.

Table 1 shows the results from evaluating the different 
methodologies, with the average scores being calculated 
across 10 486 patient graphs.

Figure 2 shows the heatmaps for one patient with the 
four explainable methodologies, indicating the influence 
of each visit or edge depending on the filter and method.

Interactive visualisations
Figure  3 shows the graphs used to show an example 
patient pathway and influence healthcare records have 
on model prediction. When these models are inter-
acted with as HTML files, users can hover over nodes 
(Grad-CAM and fm-act graphs) and edges (edge-act 
graphs) to show the percentage influence on the model 

Table 1  Evaluation results mean (SD)

Sensitivity ‍↑‍ EDB MAE ‍↑‍ Sparsity ‍↑‍

(a) Grad-CAM ReLU 4.59 (5.94) 4.40 (10.92) 0.30 (0.43)

(b) Grad-CAM Abs 5.80 (5.90) 2.16 (4.53) 0.00 (0.00)

(c) Fm-act

Mean 6.05 (6.19) 2.25 (1.85) 0.00 (0.00)

Median 5.96 (5.75) 1.65 (1.32) 0.00 (0.00)

Max 6.18 (5.95) 0.03 (0.03) 0.00 (0.00)

(d) Edge-act

Mean 25.00 (23.97) 9.82 (21.07) 0.53 (0.32)

Median 23.64 (23.26) 4.40 (4.56) 0.55 (0.31)

Max 23.78 (23.20) 15.89 (26.77) 0.51 (0.33)

Bold values indicate the best performing method for each of the key performance metrics.
EDB, edge detection bias; Grad-CAM, gradient-weighted class activation mapping; MAE, mean absolute error; ReLU, rectified linear unit.
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decision and the clinical code descriptions. Interactive 
versions of these graphs (https://zoehancox.github.io/​
graph-survey/index.html) are available for readers to 
explore.

Clinical feedback
Some patients had long EHR histories, which led to 
complex graph visuals, while others were simpler and 
easier to visualise without zooming or panning to specific 
areas of the graph.

Overall, the fm-act method (c) was voted as the 
easiest graph to interpret (n=15/35) and Grad-CAM 

(abs) (b) the hardest (n=1/35) (online supplemental 
appendix C—figure 6). There were varying opinions on 
the effectiveness of methods in highlighting key factors 
influencing model predictions across different patient 
graphs, with the two longest patient graphs having 
the worst feedback (online supplemental appendix 
C—figure 4). Overall, satisfaction with the methods 
decreased as the length of the patient history increased 
(online supplemental appendix C—figures 4 and 5). 
Patient graphs 2 and 3 had the most agreement from 
clinicians for expected trajectory alignment. There was 

Figure 2  Heatmaps showing the percentage influence of features on model predictions using different methods. Grad-CAM, 
gradient-weighted class activation mapping; ReLU, rectified linear unit.

Figure 3  Percentage influence on features using four methods: (a) gradient-weighted class activation mapping (Grad-CAM) 
(rectified linear unit), (b) Grad-CAM (abs), (c) max fm-act and (d) median edge-act. Here, the patient’s predicted risk was 3.61% 
and they did not receive a hip replacement. Clinical code descriptions: XE0U=essential hypertension and N05zL=osteoarthritis 
of knee.
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57% agreement in all the patient graphs that trajectories 
met expectations; however, some methods were selected 
as not aligning with expectations (online supplemental 
appendix C—figure 5). When we asked clinicians to what 
extent the graphs supported understanding the model’s 
decision-making process, one said it ‘greatly supported’, 
two said it ‘moderately supported’, three said it ‘slightly 
supported’ and one scored it as ‘neutral’. Three clini-
cians felt that these graph visualisations had ‘neutral’ 
input for aiding decision-making in a clinical setting, one 
thought they were ‘very useful’, one thought they were 
‘somewhat useful’ and two clinicians felt they were ‘some-
what useless’. These graphs appeared useful to demon-
strate model decision-making but were less helpful for 
aiding clinical decision-making.

The survey feedback highlighted that the fm-act 
method (c) stands out for its subtle differences and ease of 
engagement, with better colour discrimination between 
nodes. Methods a–c (Grad-CAM (ReLU), Grad-CAM 
(abs) and fm-act) more effectively addressed model 
complexity. However, there was a general consensus that 
the colour scale should be given more emphasis across all 
methods. Method d (edge-act) received mixed reviews: 
while one clinician found it visually unappealing, another 
preferred it over the Grad-CAM methods (a and b) for 

its visual clarity. Additionally, there was some confusion 
from a clinician regarding the model’s decision process, 
specifically questioning the connection between hyper-
tension and hip replacement.

The survey results suggest that the current graph layout 
is too crowded and detailed for general practitioners to 
effectively use within the time constraints of a primary 
care appointment. A visual summary of the most influen-
tial factors is recommended to facilitate quicker decision-
making and patient communication. While detailed 
graphs are valuable for understanding model decision-
making, a focus on summary risk prediction scores is 
deemed more practical. Simplifying the colour coding 
could improve clarity and distinction where percentages 
are similar, though this may limit the ability to compare 
multiple patients visually.

Subgraph frequency analysis
We collected subgraphs using the median edge-act 
method. A total of 13 383 subgraphs were identified. 
10 594 subgraphs only appeared once (79.2%). The most 
frequent subgraph for patients with high hip replace-
ment risk was Non-opioid analgesic ﻿‍→‍ non-steroidal anti-
inflammatory drugs (NSAIDs) prescription, with many of 
the most frequent subgraphs containing prescriptions. 

Figure 4  The 10 most frequent subgraphs that influence model prediction for each class. NSAIDs, non-steroidal anti-
inflammatory drugs.

B
M

J D
igital H

ealth &
 A

I: first published as 10.1136/bm
jdhai-2025-000136 on 27 January 2026. D

ow
nloaded from

 https://bm
jdigitalhealth.bm

j.com
 on 5 F

ebruary 2026 by guest.
P

rotected by copyright, including for uses related to text and data m
ining, A

I training, and sim
ilar technologies.

https://dx.doi.org/10.1136/bmjdhai-2025-000136
https://dx.doi.org/10.1136/bmjdhai-2025-000136


8 Hancox Z, et al. BMJ Digit Health 2026;2:e000136. doi:10.1136/bmjdhai-2025-000136

BMJ Digital Health & AI

See figure  4 for the 10 most frequent subgraphs influ-
encing model prediction for each class.

DISCUSSION
The four explainability methods described in this paper 
aim to produce a clinician-interpretable justification for 
each output. These methods may increase decision confi-
dence if the results match clinical expectations. However, 
the absence of a plausible explanation does not imply an 
inaccurate model. As these methods are post hoc, impor-
tant features may be spuriously correlated with replace-
ment risk or non-causal.18

Explainable TGCNN models are valuable for offering 
intuitive insights into how clinical code pairs or GP 
visits affect predictions, using simple percentages. This 
accessibility helps medical professionals understand and 
trust the model. Often, ‘explainable’ methods require 
advanced technical knowledge, making them inacces-
sible to users without a machine learning or data science 
background.8

The max edge-act method gave the highest MAE 
between the trained/original model and the random 
weighted model. The fm-act method is more prone to 
EDB than the other methods, as shown by its smaller 
MAE values, and max edge-act is the least likely to have 
EDB.

There was a non-Gaussian distribution when comparing 
maximum activation differences; therefore, we discard 
the mean edge-act method. The fm-act and Grad-CAM 
(abs) methods lead to graphs with zero sparsity (table 1). 
This means that these graphs could be difficult to inter-
pret if a patient has a long EHR history. The median 
edge-act method gave the best sparsity results, while the 
max edge-act method gives the best EDB and slightly 
higher sensitivity results.

From the results in table  1, we determined that the 
median edge-act and Grad-CAM (ReLU) methods provide 
the best visual explainability for the TGCNN model. The 
Grad-CAM (ReLU) model is useful for showing the influ-
ence of visits, while the edge-act model shows the influ-
ence of edges. We did subgraph frequency analysis on the 
median edge-act method, as its high sparsity suggests the 
subgraphs should be smaller and more common among 
individuals. The fm-act method had the most votes for 
clinical interpretability; however, due to a lack of sparsity, 
we believe this method would not be scalable for long 
EHRs. Clinicians favoured the graphs where the nodes 
were colour-coded rather than the edges; therefore, 
there might be future scope to adapt the edge influence 
onto the node colouring.

Our methodologies have the following limitations: 
(1) Due to the nature of these methods, they are not 
falsifiable without human interpretation. We cannot 
know if the model is predicting based on patterns that 
are reasonable/align with a clinician’s thought process, 
without clinical assessment. (2) Our models do not 
consider causality; however, the model may help us 

identify features that influence hip replacement risk 
that may be currently unknown to clinicians. (3) Our 
method compares heatmaps from an original model and 
a noise-perturbed version to measure EDB. However, 
this approach can be sensitive to the type and amount of 
noise used and may reflect model instability rather than 
the reliability of its explanations. (4) While other path-
based explainable AI methods such as integrated gradi-
ents,19 expected gradients20 and manifold integrated 
gradients21 could be considered to satisfy more axioms in 
explainable AI, we focused on structural patterns rather 
than feature-level attribution. Our approaches do not 
aim to trace prediction paths or assign importance to 
individual features across patients, but rather to identify 
and interpret frequent subgraphs within clinical data. 
As such, applying path-based methods directly would 
require significant adaptation and did not align with our 
analytical goals. Future work could explore how these 
attribution techniques could be extended to graph-based 
settings for complementary insights.

Future work could involve attention mechanisms, 
allowing the model to focus on specific inputs during 
the training process. However, these methods may be 
significantly more computationally expensive. Where 
Grad-CAM focuses on class-specific influence, it is limited 
by its inability to provide an understanding of global 
patterns or relationships within the input. The feedback 
on our suggested methods directs our focus to scalability 
and dimensionality reduction in future iterations of 
these methodologies. Specifically, we aim to adjust how 
the graph visualisations are presented to clinicians, prior-
itising the most informative regions of the EHR history 
visually first.

Clinicians can use this tool to assess the 5-year risk 
of a patient needing a hip replacement based on their 
existing EHR data. For deeper insights into specific 
model decisions, clinicians can interact with the visuali-
sation tools described in this paper to explore a patient’s 
clinical code history and identify key factors influencing 
predictions. This can aid in patient care decisions, such 
as painkiller prescribing, physiotherapy and exercise 
recommendations. Additionally, these methods can assist 
in resource planning by generating lists of patients antic-
ipated to require surgery in 5 years. Clinicians can show 
these graphs to their patients, demonstrating model 
decision-making while providing motivation for patients 
to adhere to treatment plans.

CONCLUSION
We use four methodologies on a temporal graph-based 
CNN model to improve the explainability of hip replace-
ment risk prediction. Our edge-act method provided 
the best results in terms of graph sparsity, sensitivity and 
reduced EDB. Based on our subgraph frequency analysis, 
prescriptions are highly influential to model prediction. 
Clinicians found our visualisation techniques useful to 
explain model outputs.
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