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ABSTRACT

Objective To develop and compare four explainable
artificial intelligence methods to visualise the influence

of electronic health records (EHRs) on predicting hip
replacement risk.

Methods and analysis We used a pretrained temporal
graph-based convolutional neural networks (TGCNN)
model to generate explainable graph visualisations
through four methods: the original gradient-weighted
class activation mapping (Grad-CAM) applied to graphs,

a modified Grad-CAM using absolute weights (Grad-CAM
(abs)), sliding element-wise multiplication of feature maps
with patient graph inputs (fm-act) and of 3D convolutional
neural networks filters/kernels with patient graph inputs
(edge-act). These methods visually explain the TGCNN
model’s predictions regarding a person’s risk of needing
a hip replacement within 5 years, based on clinical codes
from EHRs. We evaluated these models through human
qualitative analysis studies, sensitivity quantification, edge
detection bias and sparsity.

Results The edge-act methods performed best in terms
of graph sparsity and model sensitivity. Subgraph analysis
indicated that prescriptions highly influenced predictions.
Clinicians found the visualisations useful for explaining
model predictions but too complex for clinical decision-
making, particularly with extensive patient EHRs.
Conclusions The fm-act and Grad-CAM (abs) methods
led to graphs with zero sparsity; these graphs could be
difficult to interpret if the patient has a long EHR history.
The edge-act median method had the highest sparsity;
therefore, this method might be the easiest to interpret for
long EHR histories. We improved the explainability of hip
replacement risk predictions using four post hoc methods
on the TGCNN model. Further refinement could enhance
their utility in clinical decision-making.

INTRODUCTION

Primary hip replacement can be life-changing
for people, improving both joint function
and quality of life by reducing pain.' Primary
hip replacements have risen in the UK from
48700 per year in 2006 to 101828 per year in
2019, which is mostly due to an ageing popu-
lation and rising rates of hip osteoarthritis."*
The increasing demand for hip replacements

.2 Sarah R Kingsbury,* Philip G Conaghan,’?

WHAT IS ALREADY KNOWN ON THIS TOPIC

= Artificial intelligence (Al) is becoming more widely
used in healthcare applications. Explainability and
interpretability will become vital to improve clini-
cian and patient trust in machine-based decisions.
Currently, only three graph-based Al models have
explainability; however, these three methods are dif-
ficult to interpret without technical knowledge.

WHAT THIS STUDY ADDS

= This study describes the development and compari-
son of four methods to explain the predictions from a
graph-based hip replacement risk prediction model
visually.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= Results from this study demonstrate four post hoc
explainability methods, with simple visualisation
outputs to help explain internal Al decision-making,
which does not require a technical background to

interpret.

is resource intensive within the UK’s National
Health Service (NHS), leading to long
waiting lists.” If we can predict who requires a
replacement well in advance, we can suggest
preventative care or pain management and
triage patients. In our previous work, we
predicted hip and knee replacement risk 1
and 5 years in advance from electronic health
records (EHRs) using temporal graph-based
convolutional neural networks (TGCNNs).*
Compared with traditional prediction
models, this type of neural network is unique
in that the entire patient history (including
the sequence and timing of events) is used.
The complexity of the model means that
one model prediction from the TGCNN is not
readily explainable. Simple approaches, such
as feature importance, are not possible. The
work described here focuses on adding post
hoc explainability methods to the existing
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TGCNN model and investigating their effectiveness in a
cohort of clinicians.

Contributions: (1) We use four post hoc explainability
methods to visually show TGCNN prediction decision
influence for individual patients. (2) We create an inter-
active graph visualisation that allows clinical users to
interact with historical patient EHRs. (3) We evaluate
these graphs using human/clinician evaluation feedback
alongside edge detection bias (EDB), sensitivity and spar-
sity. (4) We perform subgraph analysis to find frequent
subgraphs that have an impact on the model decision.

RELATED WORK

Posthoc explainability methodsinclude backpropagation-
based,” approximation-based and perturbation-based
methods.”™ Ante hoc methods include attention-based,
causality-based and physics rule-based models. Liu et al
categorise methods for explaining graph neural networks
(GNNs): model-agnostic methods, including subgraph-
based approaches, which identify influential subgraphs,’
feature attribution methods that assess node/edge
importance and their interactions’ and counterfactual
explanations that explore minimal changes leading to

Patient Number | Record Date CTV3 Code CTV3 Code Description

1 02/07/2001 N094. Joint: pain or ache

. 1 29/05/2001 X00SO Depressive disorder

EHR extraction
1 16/05/2001 X751v Hip pain
1 02/05/2001 22K4. Overweight
1 02/05/2001 XEO0Ub Hypertension
Ci8>o_0 =2 Ak ’ Pre-processing & 3-tensor construction =

Patient 1’s graph representation

Node start
vs)

|

Node end
ve)

Patient 1’s sparse 3D tensor

=

XEOUb

Timestep (T

Batch patients

Feature Maps

Tensor Input
into Model

Model training

Graph-level hip prediction

Dense Layer Dense Layers Dense Layer

Binary
Output

Dropout RelLU ‘ RelLU
Sigmoid
Demographics

Age at prediction
Sex (F or M)

IMD (quintile 1, 2, 3,4, 5)

Most Distant

}u’

Most Recent

Visit 1 14 Visit2 13 Visit3 34 Visit4

Hip replacement prediction

Category Hip Replacement

Probability

Model prediction 0.89

5.1%

Figure 1

days days

22.6%

o)
o
Influence Read Codes had on Model
Prediction

days

112%  61.1% 0

Process from a sample patient EHR to graph representation, model architecture and explainable prediction: a

patient with five clinical codes over four visits is predicted with 0.89 probability to need a hip replacement within 5 years. CNN,
convolutional neural network; CTV3, clinical terms version 3; IMD, index of multiple deprivation; EHR, electronic health record;

ReLU, rectified linear unit; LSTM, long-short term memory.
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different predictions. Model-specific methods include
attention-based models, graph masking approaches and
self-explaining GNNs that integrate explanation genera-
tion into their predictions.

Contrastive gradient-based saliency maps generate
heatmaps by differentiating the output of the model with
respect to the model input, where the positive values in
the heatmap represent the input feature importance.'’
Class activation mapping (CAM) provides a slight modi-
fication for convolutional neural networks (CNNs) by
taking the gradients of the output of the model with
respect to the output of the final CNN layer; this is
thought to return more meaningful features in the input
data. However, CAM requires the final CNN layer to be
just before the final output layer of the model, with only
a global average pooling layer in between. Gradient-
weighted CAM (Grad-CAM) improves on this further
by allowing layers between the final CNN layer and the
output by weighting feature maps, while also considering
feature map activations rather than just gradients.'” '
Explainability methods, including contrastive gradient-
based saliency maps, CAM, Grad-CAM, Grad-CAM Avg
and excitation backpropagation, have been adapted
from CNNs to graph CNNs."

We conducted a literature review (online supplemental
material appendix A), which identified three papers
that implement graphs and artificial intelligence (Al)
with explainability methods using EHRs for healthcare
prediction."** A PRISMA diagram showing a flow chart
of the literature search can be found in figure 1 of online
supplemental appendix A. All of these papers used atten-
tion mechanisms and incorporated temporality into their
explainable models.

Su et al presented the GATE model, a graph-
attention augmented temporal neural network
for medication recommendation, which captures
relationships among symptoms, medications and
temporal changes in medical history at each admis-
sion. The graph attention mechanism enables the
model to prioritise important aspects of the medical
history, particularly the temporality. Similarly, Sun et
al integrated medical event temporality, frequency
and attention mechanisms on graph structures to
predict outcomes such as mortality and readmission,
with graph nodes representing diagnoses, symptoms
and treatments.'®> Smith et al use GNNs, recurrent
neural networks and attention mechanisms to predict
patient survival times."*

METHODS

Model

The original TGCNN model was trained using NHS
EHR data from ResearchOne, managed by The
Phoenix Partnership.'” The ResearchOne data are not
distributable under licence and are not publicly avail-
able. The code for the following methodology can
be found here (https://github.com/ZoeHancox/

explainable_TGCNN). This work adapts the existing
TGCNN model with four explainability methods,
using a training cohort of 5243 patients who have
a hip replacement and 5243 who do not have a hip
replacement within a 5-year window. For more details
on the cohort, we refer readers to our previous work.*

Figure 1 illustrates the process from data to prediction
to explanation and the four explainability methods we
investigated are described below.

Maximum activation difference

The TGCNN model looks at the input data and breaks
it down into feature maps that highlight various
patterns in the patient history. For each pattern,
the model checks how strongly it reacts to patients
(called ‘activation’) who either get a hip replace-
ment or do not get a hip replacement. It calculates
the average strength of this reaction for each group,
then compares these averages to see which feature
map shows the biggest activation difference between
the two groups. The most distinctive feature map is
considered the most useful for understanding what
separates the groups and is used in the explainability
methods to help explain the model’s decisions.

The TGCNN model creates M feature maps out from
its 3D CNN layer. Let A™ be one of the M feature maps
from the 3D CNN layer, the mean activation is calculated
as shown in equation 1.

1
Zim,c = E Z max (z,) (1)
SN

where z; is the vector of activations for the i-th patient,
m is the feature map number and S= {A” wherey; = c} is
the set of all feature maps where the collection of feature
maps in S is grouped by class, A™, for the patients in class
c.

The absolute difference in mean activations between
the classes for each feature map is:

AA™ = ‘Em,q - Em,Q’ (2)

where A™ € Rl is the flattened feature map for the m
-th filter, ¢ is class 1 (hip replacement received) and o is
class 2 (no hip replacement received).

Explainability methods

Grad-CAM

We adapt the Grad-CAM methodology'® for our 3D
graph representations. We show activation along the
axis k, showing which time steps were activated. Given
activated time steps, we can observe which primary
care visits contributed to the prediction.

We save the optimised weights from the trained
TGCNN model and then load them into a Grad-CAM
model. We apply the Grad-CAM model to a patient’s
graph, G, € RVMT2 where N is the number of clin-
ical codes and 75 is the number of visits, and retrieve
the gradients to calculate the localisation map: the
size 11 of each 1D CNN feature map is:
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Ty —filtersize
Tl == stride +1 (3)

where filter size refers to how many patient visits the
model examines at once using each filter and the stride
indicates how far the filter shifts forwards (in visits) each
time it performs a calculation.

Grad-CAM computes the gradient of the output, Y,

oY oY
W,...,Wrﬁ

, where A}" denotes the e-th element of the feature map

with respect to the feature map VynY:

(e: 0 < e< T7) and V 4n is the vector of partial derivatives
with respect to all the elements in the feature map m.

It then averages the gradients over each single feature
map to get the weight ov,:

= 4
M2~ Ay ()

where ay, is the weight for the m-th filter.

In standard Grad-CAM, the weighted sum of the
feature maps using the weights «y, are calculated and
passed through a ReLU. This ignores negative weights,
which are associated with decreases in risk. Alongside
this, we use the following modified version (method (b)
Grad-CAM (abs)) to observe the difference between the
methods:

Lerad-cau = abs (Z amA’”> (5)

The resulting 1D localisation map Lgrd.cam can be
used to understand the input sequence location most
important for the classification decision.

An average weight for each time step is calculated using
the time steps that correspond to the filter window. To
assign the Lgraq-cam values to the original patient graph
Gy, we spread the value equally across the d time steps in
Gy which form each element of V. Where V& R™2 is the
vector of Lgrad.cam values at each time step (visit) k.

Let w € R™ be the weight at each time step in Gp.

Let X, be the indicator function and vy, is each value
within V.

) 1A, ifk; € Gy contributes to v,
X (2) =
OA, otherwise.
then
1
w; = QZXm(i) U (6)
m=1

Fm-act graphs
The feature maps from the CNN layer can indicate the
patterns learnt by the TGCNN model. We propose the
fm-act methodology as below:

Extract the feature maps (A,) from the 3D CNN layer
of the TGCNN model.

Let A denote one of the following summaries: the flat-
tened feature map with the strongest class differentiation
max(AAy), mean(A), or median(A).

Map the feature map weights to the time steps and get
an average of the weights for each sliding window recur-
rence on each time step:

_ 1

Wy =+— A;

] 2 ®
(1) eWi

where W is the set of all sliding windows that include

time step k.
Normalise the weights to get the percentage influence

; . - W
of each time step: W& abomie 100.

Edge-act graphs

As another way of obtaining feature importance, we can
look at the filters from the CNN layer and use these along-
side the original input graph to find edge importance.

Extract the filters: F=f, fo,..., f from the 3D CNN
layer of the TGCNN model.

Let f denote as one of the following three options:
the filter f, with the feature map with the strongest
class differentiation the feature map with the stron-
gest class differentiation (max (AAm), the mean of the
ﬁlters(mean (F)) or the median of the ﬁlters(median (F))
. Compute the edge-act via a 3D sliding window:

1
E = —— E
VWi gk ( y
a,b,c) € Wijk

(Gae®fand) ()

where W is the 3D sliding window over the input graph
G for each filter position (i, 7 k) and © is elementwise
multiplication.

Normalise the weights to get percentage influence of

each edge: Eli = Z,ET”]EM x 100.

Interactive visualisations

We use Plotly (V.5.23.0) and NetworkX (V.3.2.1) to plot
interactive graphs. A patient’s individual graph is shown
where the nodes are the clinical codes, stacked clinical
codes occurred during the same visit and the edges show
the days between visits. A patient’s risk of requiring a hip
replacement in 5 years is also provided.

Graph visualisations metrics

Saliency maps may not always be reliable for under-
standing model decision-making as they rely on intu-
ition, have poor falsifiability'’ and tend to represent
noise rather than signals.” For this reason, we score the
methods using the evaluation metrics below.

Sensitivity

For the Grad-CAM and fm-act methods, we add a node
with a random clinical code assignment to a random
existing visit 10 times, then obtain the mean L1 distance
between the original and edited visit. For the edge-act
model, we randomly change a node’s clinical code and
compare the influence of the connected edge going into
the node to the original edge influence. Higher values
determine higher methodology sensitivity.
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Edge detection bias (EDB)

We changed the model weights by randomly adding
noise (with the same mean and SD as observed from the
trained model weights) to observe changes in the heat-
maps, which are used to suggest the observed influence
of edges and visits. If EDB (false saliency) is present,
then the heatmaps will not change or will be very similar.
Ideally, the percentage influence will be dependent
on the weights of the model. We calculate the mean
absolute error (MAE) for the difference between the
heatmap from the trained model and the heatmap from
the random weighted model for each of the methods,
then get the mean and SD of the differences across the
patients. A higher EDB value indicates false saliency is
less likely.

Sparsity

We calculate node and edge weight sparsity by binarising
the heatmaps, setting values over 0 to 1 and others to 0.
The sparsity for each graph is defined as the percentage of
non-zero entries. A higher sparsity value reflects a greater
number of nodes or edges that contribute nothing (ie,
have zero weights) to the model’s prediction,'” which
may be better for larger graphs, to make visual focus
more obvious due to node/edges with values of zero not
being visualised.

Graph visualisation human evaluations

We carried out qualitative human evaluation studies to
assess the interpretability versus truth trade-off of the
four explainability methods, while gauging user interac-
tion experience.'” We asked seven clinicians to complete
a survey which showed the four graph methods visualised
(a=Grad-CAM original, b=Grad-CAM (abs), c=fm-act and
d=edge-act) for five different patient cases. A clinical
vignette was provided to explain the visualisation (figures
2 and 3) in online supplemental appendix B. The survey
questions we asked the clinicians are in online supple-
mental appendix B; this included free-text questions
and Likert scales (no statistical significance testing was
carried out).

Subgraph frequency analysis

Once we have collected the sensitivity, EDB and spar-
sity of each method, we select the optimum method
and perform subgraph analysis on it. To analyse the
frequency of subgraphs across the patients, we first find
all of the edges with a percentage influence of more than
0 (we denote these as ‘activated’ nodes). We then take
the collections of connected activated nodes and their
connection edges, repeating this for all patient graphs.
The subgraph frequency is counted by prevalence per
class Nys y—s for subgraph s, then we obtain the ratio

. Nis
to give subgraph prevalence by class: R = ﬁ,
N_s . . 10 s+ LN
R s = NN using equations from." Please note that

the subgraphs obtained have not been established as defi-
nite patient trajectories that influence hip replacement
risk; we use these subgraphs to illustrate how the model
infers its prediction globally.

RESULTS
Methodology comparison
The distribution of maximum activation values from each
CNN feature map for all patients exhibits non-Gaussian
characteristics with noticeable skewness. Among the
feature maps, feature map 30 demonstrates the most
significant difference in activation between the classes.
Table 1 shows the results from evaluating the different
methodologies, with the average scores being calculated
across 10486 patient graphs.
Figure 2 shows the heatmaps for one patient with the
four explainable methodologies, indicating the influence
of each visit or edge depending on the filter and method.

Interactive visualisations

Figure 3 shows the graphs used to show an example
patient pathway and influence healthcare records have
on model prediction. When these models are inter-
acted with as HTML files, users can hover over nodes
(Grad-CAM and fm-act graphs) and edges (edge-act
graphs) to show the percentage influence on the model

Table 1 Evaluation results mean (SD)
Sensitivity T EDB MAE 1 Sparsity 1
(a) Grad-CAM ReLU 4.59 (5.94) 4.40 (10.92) 0.30 (0.43)
(b) Grad-CAM Abs 5.80 (5.90) 2.16 (4.53) 0.00 (0.00)
Mean 6.05 (6.19) 2.25(1.85) 0.00 (0.00)
Median 5.96 (5.75) 1.65 (1.32) 0.00 (0.00)
(c) Fm-act Max 6.18 (5.95) 0.03 (0.03) 0.00 (0.00)
Mean 25.00 (23.97) 9.82 (21.07) 0.53 (0.32)
Median 23.64 (23.26) 4.40 (4.56) 0.55 (0.31)
(d) Edge-act Max 23.78 (23.20) 15.89 (26.77) 0.51 (0.33)

Bold values indicate the best performing method for each of the key performance metrics.
EDB, edge detection bias; Grad-CAM, gradient-weighted class activation mapping; MAE, mean absolute error; ReLU, rectified linear unit.
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Filter Number

Figure 2 Heatmaps showing the percentage influence of features on model predictions using different methods. Grad-CAM,
gradient-weighted class activation mapping; ReLU, rectified linear unit.

decision and the clinical code descriptions. Interactive
versions of these graphs (https://zoehancox.github.io/
graph-survey/index.html) are available for readers to
explore.

Clinical feedback
Some patients had long EHR histories, which led to
complex graph visuals, while others were simpler and
easier to visualise without zooming or panning to specific
areas of the graph.

Overall, the fm-act method (c) was voted as the
easiest graph to interpret (n=15/35) and Grad-CAM

(a)

(b)

()

(d)

(abs) (b) the hardest (n=1/35) (online supplemental
appendix C—figure 6). There were varying opinions on
the effectiveness of methods in highlighting key factors
influencing model predictions across different patient
graphs, with the two longest patient graphs having
the worst feedback (online supplemental appendix
C—figure 4). Overall, satisfaction with the methods
decreased as the length of the patient history increased
(online supplemental appendix C—figures 4 and 5).
Patient graphs 2 and 3 had the most agreement from
clinicians for expected trajectory alignment. There was

100

Influence on Risk Prediction (%)

0

Figure 3 Percentage influence on features using four methods: (a) gradient-weighted class activation mapping (Grad-CAM)
(rectified linear unit), (b) Grad-CAM (abs), (c) max fm-act and (d) median edge-act. Here, the patient’s predicted risk was 3.61%
and they did not receive a hip replacement. Clinical code descriptions: XEOU=essential hypertension and N05zL=osteoarthritis

of knee.
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57% agreement in all the patient graphs that trajectories
met expectations; however, some methods were selected
as not aligning with expectations (online supplemental
appendix C—figure 5). When we asked clinicians to what
extent the graphs supported understanding the model’s
decision-making process, one said it ‘greatly supported’,
two said it ‘moderately supported’, three said it ‘slightly
supported’ and one scored it as ‘neutral’. Three clini-
cians felt that these graph visualisations had ‘neutral’
input for aiding decision-making in a clinical setting, one
thought they were ‘very useful’, one thought they were
‘somewhat useful’ and two clinicians felt they were ‘some-
what useless’. These graphs appeared useful to demon-
strate model decision-making but were less helpful for
aiding clinical decision-making.

The survey feedback highlighted that the fm-act
method (c¢) stands out for its subtle differences and ease of
engagement, with better colour discrimination between
nodes. Methods a—c (Grad-CAM (ReLU), Grad-CAM
(abs) and fm-act) more effectively addressed model
complexity. However, there was a general consensus that
the colour scale should be given more emphasis across all
methods. Method d (edge-act) received mixed reviews:
while one clinician found it visually unappealing, another
preferred it over the Grad-CAM methods (a and b) for

10 Most Common Subgraphs for High-Risk Patients

its visual clarity. Additionally, there was some confusion
from a clinician regarding the model’s decision process,
specifically questioning the connection between hyper-
tension and hip replacement.

The survey results suggest that the current graph layout
is too crowded and detailed for general practitioners to
effectively use within the time constraints of a primary
care appointment. A visual summary of the most influen-
tial factors is recommended to facilitate quicker decision-
making and patient communication. While detailed
graphs are valuable for understanding model decision-
making, a focus on summary risk prediction scores is
deemed more practical. Simplifying the colour coding
could improve clarity and distinction where percentages
are similar, though this may limit the ability to compare
multiple patients visually.

Subgraph frequency analysis

We collected subgraphs using the median edge-act
method. A total of 13383 subgraphs were identified.
10594 subgraphs only appeared once (79.2%). The most
frequent subgraph for patients with high hip replace-
ment risk was Non-opioid analgesic — non-steroidal anti-
inflammatory drugs (NSAIDs) prescription, with many of
the most frequent subgraphs containing prescriptions.

10 Most Common Subgraphs for Low-Risk Patients
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Figure 4 The 10 most frequent subgraphs that influence model prediction for each class. NSAIDs, non-steroidal anti-

inflammatory drugs.
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See figure 4 for the 10 most frequent subgraphs influ-
encing model prediction for each class.

DISCUSSION

The four explainability methods described in this paper
aim to produce a clinician-interpretable justification for
each output. These methods may increase decision confi-
dence if the results match clinical expectations. However,
the absence of a plausible explanation does not imply an
inaccurate model. As these methods are post hoc, impor-
tant features may be spuriously correlated with replace-
ment risk or non-causal.'®

Explainable TGCNN models are valuable for offering
intuitive insights into how clinical code pairs or GP
visits affect predictions, using simple percentages. This
accessibility helps medical professionals understand and
trust the model. Often, ‘explainable’ methods require
advanced technical knowledge, making them inacces-
sible to users without a machine learning or data science
background.”

The max edge-act method gave the highest MAE
between the trained/original model and the random
weighted model. The fm-act method is more prone to
EDB than the other methods, as shown by its smaller
MAE values, and max edge-act is the least likely to have
EDB.

There was a non-Gaussian distribution when comparing
maximum activation differences; therefore, we discard
the mean edge-act method. The fm-act and Grad-CAM
(abs) methods lead to graphs with zero sparsity (table 1).
This means that these graphs could be difficult to inter-
pret if a patient has a long EHR history. The median
edge-act method gave the best sparsity results, while the
max edge-act method gives the best EDB and slightly
higher sensitivity results.

From the results in table 1, we determined that the
median edge-actand Grad-CAM (ReLU) methods provide
the best visual explainability for the TGCNN model. The
Grad-CAM (ReLU) model is useful for showing the influ-
ence of visits, while the edge-act model shows the influ-
ence of edges. We did subgraph frequency analysis on the
median edge-act method, as its high sparsity suggests the
subgraphs should be smaller and more common among
individuals. The fm-act method had the most votes for
clinical interpretability; however, due to a lack of sparsity,
we believe this method would not be scalable for long
EHRs. Clinicians favoured the graphs where the nodes
were colour-coded rather than the edges; therefore,
there might be future scope to adapt the edge influence
onto the node colouring.

Our methodologies have the following limitations:
(1) Due to the nature of these methods, they are not
falsifiable without human interpretation. We cannot
know if the model is predicting based on patterns that
are reasonable/align with a clinician’s thought process,
without clinical assessment. (2) Our models do not
consider causality; however, the model may help us

identify features that influence hip replacement risk
that may be currently unknown to clinicians. (3) Our
method compares heatmaps from an original model and
a noise-perturbed version to measure EDB. However,
this approach can be sensitive to the type and amount of
noise used and may reflect model instability rather than
the reliability of its explanations. (4) While other path-
based explainable Al methods such as integrated gradi-
ents,”” expected gradients® and manifold integrated
gradients® could be considered to satisfy more axioms in
explainable Al, we focused on structural patterns rather
than feature-level attribution. Our approaches do not
aim to trace prediction paths or assign importance to
individual features across patients, but rather to identify
and interpret frequent subgraphs within clinical data.
As such, applying path-based methods directly would
require significant adaptation and did not align with our
analytical goals. Future work could explore how these
attribution techniques could be extended to graph-based
settings for complementary insights.

Future work could involve attention mechanisms,
allowing the model to focus on specific inputs during
the training process. However, these methods may be
significantly more computationally expensive. Where
Grad-CAM focuses on class-specific influence, it is limited
by its inability to provide an understanding of global
patterns or relationships within the input. The feedback
on our suggested methods directs our focus to scalability
and dimensionality reduction in future iterations of
these methodologies. Specifically, we aim to adjust how
the graph visualisations are presented to clinicians, prior-
itising the most informative regions of the EHR history
visually first.

Clinicians can use this tool to assess the b-year risk
of a patient needing a hip replacement based on their
existing EHR data. For deeper insights into specific
model decisions, clinicians can interact with the visuali-
sation tools described in this paper to explore a patient’s
clinical code history and identify key factors influencing
predictions. This can aid in patient care decisions, such
as painkiller prescribing, physiotherapy and exercise
recommendations. Additionally, these methods can assist
in resource planning by generating lists of patients antic-
ipated to require surgery in 5 years. Clinicians can show
these graphs to their patients, demonstrating model
decision-making while providing motivation for patients
to adhere to treatment plans.

CONCLUSION

We use four methodologies on a temporal graph-based
CNN model to improve the explainability of hip replace-
ment risk prediction. Our edge-act method provided
the best results in terms of graph sparsity, sensitivity and
reduced EDB. Based on our subgraph frequency analysis,
prescriptions are highly influential to model prediction.
Clinicians found our visualisation techniques useful to
explain model outputs.
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