
1

Send Message to the Future? Blockchain-based
Time Machines for Decentralized Reveal of Locked

Information
Zhuolun Li∗, Srijoni Majumdar∗, Evangelos Pournaras∗

∗School of Computing, University of Leeds

Abstract—Conditional information reveal systems automate
the release of information upon meeting specific predefined
conditions, such as a designated time in the future. By designing
a new practical timed-release cryptography architecture and
a secret sharing scheme with verifiable information reveal, a
novel data sharing system is devised on smart contracts that
“sends messages in the future” with highly accurate decryption
times. Using the same architecture, this paper also introduces
a breakthrough in the understanding, design, and application of
conditional information reveal systems that are highly secure and
decentralized. A complete evaluation portfolio is provided to this
pioneering paradigm, including analytical results, a validation
of its robustness in the Tamarin Prover and a performance
evaluation of a real-world, open-source system prototype de-
ployed across the globe. Using real-world election data, we also
demonstrate the applicability of this innovative system in e-
voting, illustrating its capacity to secure and ensure fair electronic
voting processes.

Index Terms—Blockchain, timed release cryptography, secret
sharing, e-voting, distributed system

I. INTRODUCTION

CONDITIONAL information reveal uses computer sys-
tems to automatically reveal information upon the veri-

fication of certain requirements. From releasing information
after a certain point of time [1], [2], to disseminating in-
formation based on geographical location [3], [4], [5] and
restricting access to classified documents based on identity [6],
[7], these are all instances of information reveal dictated by a
certain condition of time, location, or access right. One such
condition, pivotal in its role across a multitude of applications,
is time.

The study of time-based conditional information reveal
systems is known as timed-release cryptography or time lock
encryption. It guarantees the confidentiality of a message
until a specific point in time, upon which the message is
automatically decrypted and becomes accessible to the in-
tended parties. Despite its practical potential, its journey from
theory to widespread usage has been hindered by the need
to ensure accurate decryption time, message confidentiality
against adversarial parties, and energy efficiency [1], [2].

This paper introduces a smart-contract-based timed-release
cryptography system with improvements in security and effi-
ciency compared to the existing proposals [8], [9], [10], [11],

Manuscript created October 2024; This work was developed by the School
of Computing, University of Leeds. The opinions expressed here are entirely
those of the authors. No warranty is expressed or implied. User assumes all
risk.

[12], [13]. Moreover, this paper shows how general conditional
information reveal systems can be secured using the same ar-
chitecture as the proposed timed-release cryptography system.

Smart contract and threshold cryptography are used in the
proposed system to allow a consortium of distributed secret
holders to safeguard sensitive information with a minimum
level of trust. The decentralization, immutability, and trans-
parency nature of blockchains ensures authenticity, availability
and assurance in the communication among clients and secret
holders. Furthermore, a blockchain-based incentive mecha-
nism is applicable to ensure secret holders’ honesty, thereby
enhancing the overall system reliability.

Notably, this paper proposes a secret sharing scheme with
reveal-verifiability for conditional information reveal systems
to enhance their efficiency and security. The common defini-
tion of verifiable secret sharing (VSS) and publicly verifiable
secret sharing (PVSS) in existing literature [14] only provides
verifiability of the generation and dissemination of secret
shares. However, in timed-release cryptography, verifiability
of the revealed secret shares is also required to ensure the
reconstructed secret is correct. This novel secret sharing
scheme introduces such a property named reveal-verifiability,
that provides public verifiability in the secret reconstruction
stage.

The main contributions of this paper are listed below:

• A novel secret sharing scheme with reveal-verifiability to
provide verifiability in secret reconstruction and efficient
communication under a public communication model.

• A secure timed-release cryptography system is con-
structed using smart contract and the proposed secret
sharing scheme. The same architecture is applicable to
achieve secure conditional information reveal systems in
general.

• An open-source software prototype [15] of the proposed
timed-release cryptography system that is deployed and
tested across the globe.

• A complete evaluation portfolio that includes analytical
results, a validation of robustness in the Tamarin Prover
and a real-world performance evaluation in a testnet
processing more than 1,000 transactions.

• A real-world e-voting scenario to showcase the vulnera-
bilities of elections by strategic voting addressed by the
proposed system to provide strong fairness to e-voting
with highly secured ballots.

ar
X

iv
:2

40
1.

05
94

7v
4

 [
cs

.C
R

]
 2

5
Ja

n
20

25

2

The rest of the paper is structured as follows: Section 2
reviews the related work in conditional information reveal
systems and timed-release cryptography. Section 4 presents a
smart-contract-based timed-release cryptography system. Sec-
tion 3 presents a new secret sharing protocol that secures
the proposed system. Section 4 presents a smart-contract-
based timed-release cryptography system. Section 5 applies
the proposed architecture to secure general conditional in-
formation reveal systems using smart contracts and secret
sharing. Section 6 shows the advantages of the proposed
system compared to the existing methods. Section 7 showcases
the applicability of the proposed system in an e-voting scenario
and Section 8 concludes the paper with an outline of future
work.

II. RELATED WORK

The focus of this section is placed on existing timed-release
cryptography systems. This section also provides the necessary
background in related cryptographic primitives based on which
the proposed timed-release cryptography systems are designed.

A. Timed-Release Cryptography Systems

Among various conditional information reveal systems,
timed-release information methods have gained attention due
to their potential applicability in real-world scenarios such
as auctions [16] and voting [17]. However, practical imple-
mentation of these methods has been challenging, primarily
in balancing security and performance requirements.

Existing research in the field is known as time lock en-
cryption or timed-release cryptography [2]. These systems in-
volve clients encrypting messages and secret holders managing
the release of encrypted messages at a client-specified time.
Cryptographic literature has identified two main approaches
introduced below to building such systems: the time lock
puzzles approach and the secret holder approach.

1) The Time Lock Puzzles Approach: In the time lock
puzzles approach, the answer to the computational puzzle
serves as the decryption key to the message [18], [19]. The
computational difficulty of the puzzle is set to adjust the
expected puzzle-solving time given an estimation of available
computational resources.

One advantage of this approach is that it eliminates the
need for trust in keeping the message secret before the client-
specified decryption time. As a result, several studies have
explored time lock encryption using time lock puzzles. How-
ever, related proposals [20], [21], [22], [23], [24], [25], [26]
face a critical challenge in ensuring that the decrypter does
not exploit additional computing power to expedite decryption,
making them impractical.

In recent years, the emergence of blockchain technology
has advanced research in constructing time lock puzzles. The
proof-of-work consensus mechanism [27] offers a new way to
construct time lock puzzles with more stable puzzle-solving
times. Inspired by proof-of-work blockchains, researchers have
studied the challenge of dynamically controlling puzzle diffi-
culty by finding a “computational reference clock” [18]. This
clock measures the mapping between computational difficulty

and real-world time. For example, Bitcoin is designed to map
a puzzle to ten minutes of real-world time by adjusting its
difficulty according to the available computational resources.
Various methods are proposed in existing work to convert the
proof-of-work consensus to a time lock puzzle system [28],
[18], [29], [30], [31], [32].

Existing works try to produce a more accurate mapping
between puzzle difficulty and the required time to solve
the puzzle, for example, by using verifiable delay functions
(VDF) to create “proof of sequential work” systems [30],
[31], [32] that reduces the randomness involved in the puzzle
solving time. However, to the best of our knowledge, there
are no studies to improve the puzzle difficulty adjustment
mechanism, which is found to be problematic in the proof-of-
work consensus when requiring a stable puzzle-solving time.

Fig. 1. Bitcoin block time distribution from July 2022 to July 2023

As the largest computational reference clock in the world
that aims to solve a puzzle every ten minutes, the reality is
far from its target. According to the Bitcoin block data from
July 2022 to July 2023 provided by Google BigQuery [33],
although the average block time is computed as around 9.8
minutes, which is close to the target of 10 minutes per block,
Figure 1 indicates that creation time for individual blocks is
not stable. The chance of a new block being created in 1
minute is more than two times larger than being created in
exactly 10 minutes. Although with recent works on proof of
sequential work, a better distribution can be achieved, it is still
difficult to have a robust and dynamic difficulty adjustment
mechanism to adjust the puzzle difficulties with the available
computing powers. Current proof-of-work consensus adjusts
puzzle difficulties based on the average block time of the
previous 2016 blocks. When applied to time lock encryption,
a malicious party can decide to use less or more computing
power to slow down or speed up solving a particular puzzle
to affect specific time lock messages with little effect on the
difficulties of subsequent puzzles.

Additionally, clients have limited flexibility in choosing
decryption times due to the alignment of puzzle-solving inter-
vals with block creation times. Furthermore, time-lock puzzles
inherently require significant computational resources, mak-

3

ing them energy-inefficient. As energy consumption becomes
a growing concern, blockchain consensus mechanisms are
transitioning to more efficient and environmentally friendly
alternatives. Therefore, there is a need to develop time lock
encryption methods that are more energy-efficient.

2) The Secret Holders Approach: The other way is to make
use of independent third parties to keep the secret. These
parties hold decryption keys for clients and release them at
the client-specified decryption time. This method relies on
secret holders and provides a more accurate decryption time
when the holders are honest and active. Therefore, efforts
in existing work are put into securing the network from
adversarial parties.

Centralized designs [1], [34], [35], [36], [37], [38], [39]
rely on one independent party acting as a secret holder.
These methods focus on cryptographic-level security under
the assumption of the honesty and activeness of the single
secret holder. Security and robustness at a system level are not
considered, such as potential single point of failure, and high
level of trust required for the secret holder. The decentralized
methods [40], [2], [41], [42], [43], [8], [9], [10], [11], [12],
[13] utilize threshold cryptography to provide fault tolerance
while involving multiple secret holders to guard a secret.

Although trust is distributed to multiple holders in decentral-
ized solutions, there are yet security problems in early secret
holder proposals. The first problem is the lack of reliability due
to a lack of incentives. The question of “why should clients
trust the honesty of secret holders” is not addressed in the early
proposals. Nothing stops secret holders from cheating. The
second problem is data availability and authenticity. The need
for “public bulletin board” [41] or “publicly available location”
to store data [2] is documented in existing proposals, but the
robustness and authentication are not explicitly addressed.

The development of blockchains and smart contracts ad-
dresses the challenges of incentives, data availability and
authenticity. Recent proposals [8], [9], [10], [11], [12], [13]
use smart contracts that integrate cryptocurrencies to provide
incentives for secret holders, and ensure secret shares are
immutable and available after revealing. However, none of
these proposals provides reveal-verifiability. The definition
of reveal-verifiability for secret sharing schemes is presented
below.

Definition 1. Reveal-verifiability: Let k be a secret distributed
among n participants using a secret-sharing scheme, and let
R represent the reconstruction transcript, which includes the
t pieces of information used for reconstructing the secret. The
reconstruction process is defined by a deterministic recon-
struction function R:

k∗ = R(R),

where R is the reconstruction transcript comprising the t
secret shares used for reconstruction, and k∗ is the output
of the reconstruction function.

Then, a secret-sharing scheme satisfies reveal-verifiability if
there exists a deterministic verification function V , accessible

to all participants, such that:

V(R) =

{
true, if R(R) = k,

false, otherwise.

a) The reveal-verifiability problem: To ensure a secret
share revealed by a secret holder is correct, certain information
as the witness is required. For example, Bacis et al. [12]
propose that a client publish the cryptographic hashes of the
secret shares as witnesses. This allows the revealed shares to
be hashed and compared against the witnesses for verification.
However, this approach assumes the client is honest and does
not account for the possibility of a malicious client publishing
false witnesses. If a client publishes random hash values,
the revealed secret shares are mistakenly deemed incorrect,
leading to punishment of honest secret holders and compro-
mising the integrity of the system. While malicious clients are
modeled by Ning et al. [9], but a solution to prevent such
cases is not proposed. Other proposals [8], [10], [11], [12],
[13] similarly fail to address the threat of malicious clients,
leaving them free to publish false witnesses without detection.

b) Comparison of Existing Secret Holder Approaches:
We provide a comparative analysis of the proposed method
against existing secret holder methods in Table I, focusing on
several critical security features. Each approach is evaluated
based on the following perspectives: resistance to single points
of failure, incentives for honesty among participants, resilience
to time source poisoning (changing secret holders local time
by attacking the time servers), resilience to Sybil attacks, and
reveal-verifiability under malicious clients.

Although the single secret holder approaches are resistant
to Sybil attacks due to the centralized, permissioned nature of
the secret holder, the most critical problem they suffer from
is a lack of resistance to single points of failure.

Decentralized regular supply approaches use multiple se-
cret holders to periodically supply key pairs for encrypting
and decrypting secrets. They improve upon the single secret
holder’s model by distributing the responsibility across mul-
tiple entities, thus enhancing resistance to single points of
failure. However, they introduce opportunities for Sybil attacks
by allowing any parties to become secret holders with no
restriction. Moreover, they still do not provide incentives for
honesty, nor are they designed to resist time source poisoning.

The decentralized on-demand approach only provides ser-
vices upon receiving clients’ requests. The existing pro-
posal [2] is closest to our approach as our approach also
falls into this category. However, it does not offer incentives
for honesty, resistance to time source poisoning, or Sybil
attack resistance. Incentives and Sybil attack resistance are
resolved in the smart-contract-based proposals [8], [9], [10],
[11], [12], [13], but there lack of discussion on more secure
time references of decryption time. More importantly, they
also fall short in terms of reveal-verifiability in the presence
of malicious clients.

Presented in the remaining sections, our approach distin-
guishes itself by leveraging security features from smart con-
tracts and incorporating secret sharing with reveal-verifiability
under malicious clients, providing security features with flaw-

4

TABLE I
SECURITY COMPARISON OF DIFFERENT SECRET HOLDER APPROACHES

Method Single point of
failure resistance

Incentives
for honesty

Time source poisoning
resistance

Sybil attack
resistance

Reveal-verifiability under
malicious clients

Single secret holder: [34], [35],
[36], [37], [38], [39]

No No No Yes Yes

Decentralized regular supply:
[43], [42]

Yes No No No Yes

Decentralized on-demand (off-
chain): [2]

Yes No No No No

Decentralized on-demand
(smart-contract-based): [8], [9],
[10], [11], [12], [13]

Yes Yes No Yes No

Our approach Yes Yes Resists early decryption Yes Yes

less incentives that are not achieved in other existing ap-
proaches.

B. Secret Sharing Schemes for Secret Holders Approach

Secret sharing schemes, in particular Shamir’s Secret Shar-
ing [44], are the core of multi-secret-holder timed-release
cryptography systems.

Shamir’s Secret Sharing splits a secret s into n shares, such
that the secret can be reconstructed using t out of n shares,
where t is the threshold and n is the total number of shares.
This is achieved by constructing a polynomial with a degree of
t−1. The client generates t−1 random numbers C1, ..., Ct−1,
along with s = C0 as the coefficients of the polynomial P :

P (x) = C0 + C1 · x1 + ...+ Ct−1 · xt−1

. The evaluations of P at different points are shared with
the secret holders, such that each secret holder i possesses
(i, P (i)), a unique point on P , as its own secret share. With
any t out of n points, the polynomial can be reconstructed via
Lagrange interpolation, thus revealing s = P (0).

The original Shamir’s Secret Sharing scheme [44] lacks
a mechanism to verify the correctness of the secret shares
distributed to the secret holders. While verifiable secret sharing
protocols [45], [46] introduce verification in the distribution
phase to ensure that holders receive valid shares, they do not
address the need for verifiability in the reveal phase, where
the correctness of the recovered secret must be confirmed. Re-
cent secret sharing protocols for smart-contract-based timed-
release cryptography systems introduce various variants of
secret sharing, for example, Li and Palanisamy [11] proposed
an interactive protocol that enables secret holders to select
points on the polynomial to use as shares without revealing
them to the client; Jiang et al. [13] incorporate identity-
based encryption into the secret sharing process. However,
these variants still fail to achieve reveal-verifiability, allowing
malicious clients to frame honest secret holders in the reveal
stage.

Moreover, secret sharing schemes often require peer-to-
peer communication channels to distribute secret shares. When
applied to timed-release cryptography, clients send secret
shares to secret holders and also the time to reveal the shares.
It is hard to ensure each secret holder receives the correct
secret share and the same reveal time via a peer-to-peer
channel. Applying existing secret sharing schemes in a public

communication channel results in significant communication
overhead, given that clients are required to publish all en-
crypted shares to deliver a unique secret share to each secret
holder. This results in a large message size of n · |s|, where n
is the number of holders and |s| is the size of a secret share.
Each holder receives all n encrypted secret shares, even though
only one share is relevant to each holder.

Based on the unique requirements of reveal-verifiability and
public communication channels to apply secret sharing in
timed-release cryptography, a new cryptographic protocol is
introduced in this work to fulfill these two requirements.

1) Required Background: The cryptographic protocol pro-
posed in this paper advances secret sharing schemes under
a public communication channel to achieve verifiability of
recovered secrets using the necessary cryptographic primitives
here.

a) Diffie-Hellman Key Exchange: The Diffie-Hellman
key exchange enables two parties to derive a shared secret.
The security of the protocol is based on the hardness of the
discrete logarithm, which means it is difficult to find a given
ga in a group where the discrete logarithm is hard. To share a
secret between two parties, Alice and Bob, using the protocol,
Alice generates a secret a and sends ga to Bob, and Bob
generates a secret b and sends gb to Alice, where a and b are
random secret elements generated by Alice and Bob, and g
is a public parameter. Alice and Bob both obtain gab as their
secret, while adversaries cannot obtain any information about
the secret given g, ga, gb.

b) Bilinear Pairings: Bilinear pairings create a field
where the computational Diffie-Hellman problem is hard but
the decisional Diffie-Hellman problem is easy [47]. That
is, given ga and gb, it is hard to find out what is ga·b

(computational Diffie-Hellman is hard), but it is easy to find
out whether gc = ga · gb holds (decisional Diffie-Hellman is
easy).

In a pairing-friendly elliptic curve [48], such as BLS12-381,
one can construct a pairing e that inputs an element on a field
G1 with a generator g1 and an element on a field G2 with a
generator g2, and outputs an element on GT = G1×G2, which
is a multiplicative group of a field extension. The pairing e is a
bilinear map that comes with an important property: e(ac, b) =
e(a, bc), which is used to efficiently solve decisional Diffie-
Hellman in these fields.

5

TABLE II
MATHEMATICAL NOTATIONS.

Symbol Meaning
sk Secret key
pk Public key
t Threshold number of secret holders required for decryption
n Total number of secret holders
s Secret share
k Symmetric key to encrypt and decrypt the message
m Message plaintext
c Message ciphertext
g Generator of a group
g1 Generator of the first curve in BLS12-381
g2 Generator of the second curve in BLS12-381
P Lagrange polynomial
α Ciphertext of a polynomial evaluation

III. SECRET SHARING WITH REVEAL-VERIFIABILITY ON
PUBLIC COMMUNICATION CHANNEL

The proposed protocol in this section is not only applicable
to the timed-release cryptography system. This protocol itself
makes an independent contribution to cryptographic secret
sharing techniques by achieving reveal-verifiability and can be
applied to other scenarios where verifiable message recovery
is required.

A vital requirement in designing the proposed system is to
provide verifiability to the correctness of message decryption.
This section presents a new cryptographic protocol to fulfill
this requirement. The proposed protocol achieves linear com-
munication cost when the number of participants increases,
without the need for a peer-to-peer communication channel.
The relevant math symbols are listed in Table II.

A. Problem Modeling and Assumptions

The objective of the cryptographic protocol is to distribute
preserve confidentiality of a fixed-length information k. When
applied to the timed-release cryptography system, k is a
symmetric key to encrypt and decrypt a time-sensitive message
m. Two roles are involved in this protocol, including the
client that owns k and the n secret holders that receive secret
shares of k denoted as s1, ..., sn. Here we define this required
confidentiality property:

Definition 2. Confidentiality: For any probabilistic
polynomial-time (PPT) adversary A, the adversary’s
advantage in obtaining k fewer than t shares is negligible.
That is:

Pr
[
A(s1, s2, . . . , st−1) → k

]
≤ ϵ,

where ϵ is a negligible function, s1, s2, . . . , st−1 are the
shares available to the adversary, and t is the reconstruction
threshold of the secret-sharing scheme.

Unlike existing secret sharing protocols, since the proposed
architecture is blockchain-based, it is required that clients and
secret holders only communicate via sending permissionless
blockchain transactions, i.e. in a publicly available broadcast-
ing channel. Moreover, reveal-verifiability (Definition 1) is

an additional requirement compared to existing secret sharing
methods.

We make the following cryptographic and system level
assumptions as the security foundations of the proposed pro-
tocol:

• We assume the discrete logarithm problem is hard, that
is, Let G1 and G2 be cyclic groups of prime order p with
generators g1 and g2, respectively. Given g1 and gx1 , it is
computationally infeasible for a probabilistic polynomial-
time adversary to compute x ∈ Zp.

• At the system level, we assume at least a threshold t out
of n secret holders are honest.

• The randomly generated values, including private keys
sk1, ..., skn from secret holders and the clients’ random
values r (introduced below), are assumed to be secure
and confidential.

• The broadcasting channel is assumed to be reliable such
that all messages are eventually delivered to all parties.

B. Design

The design of this protocol is broken down into three
steps: (i) Finding the most efficient approach for the client
to share with each holder a piece of secret information s via
a broadcasting channel. (ii) Connecting the secret shares to k,
so that any t different pieces of s can be used to recovery k.
(iii) Publicly verifying the correctness of the recovered k.

Diffie-Hellman key exchange allows a client to efficiently
share with each holder a piece of secret share. As a setup,
each secret holder is required to have an asymmetric key
pair (sk, pk), where the public key pk = gsk is known
by clients and other holders. This is ensured in the secret
holder registration process. Each holder must provide pk and a
digital signature of a message using this key pair to prove the
procession of the corresponding sk. Moreover, each holder
has a publicly known index i, given by the smart contract.
The key pair of the ith holder is represented by (ski, pki).
By publishing the public keys of the holders, a client can
send secret shares to all holders using a single short message,
regardless of the number of holders. The public key of a holder
can be utilized as the Diffie-Hellman shared message from
the holder to the client. Specifically, the client can generate
a random value r and broadcast the value gr. Consequently,
each holder i obtains a secret value si = gr·ski , where ski
represents the private key of holder i. The confidentiality of
si is ensured by the computational difficulty of the Diffie-
Hellman problem.

With secret shares communicated through Diffie-hellman,
bilinear pairing can be adopted to achieve verifiability of the
secret shares, i.e. si revealed by holder i is correct. Note that
Diffie-Hellman key exchange is secure against attackers that
aim to find out the exchanged keys in any fields where discrete
logarithm is hard to compute, therefore, it is applicable in
BLS12-381, a pairing-friendly curve, on which discrete loga-
rithm is hard. Therefore si should be computed by si = gr·ski

1

and the client should also broadcast gr1 . On BLS12-381, si
can be verified by comparing e(pki, g

r
2) and e(si, g2). This

is correct because e(pki, g
r
2) = e(gski

1 , gr2) = e(gr·ski
1 , g2).

6

To perform this check, a client only needs to publish gr2 ,
regardless of the number of holders.

The next step is to establish a connection between these
secret shares and k, such that any t out of n secret values
can recover k. Similar to the existing secret sharing schemes,
we hide k in the evaluation of a t − 1 degree polynomial.
This polynomial P is constructed by interpolating the points
(1, s1), ..., (t − 1, st−1) along with (0, k). The remaining
shares, st, ..., sn form a relation with k by transforming
them into P (t), ..., P (n). The transformation is achieved with
encryption and decryption. Regard P (t), ..., P (n) as messages
to encrypt, st, ..., sn are the symmetric keys to encrypt these
messages, the ciphertexts denoted as αt, ..., αn can be obtained
and published. This means the owner of si, holder i, can use
si to decrypt αi to obtain the evaluation of P at i. Since
si is a one-time key, the encryption scheme is essentially a
one-time pad. As a concrete example, the exclusive OR op-
eration can be used as the encryption and decryption method,
i.e. αi = P (i) ⊕ si. Therefore, computing and publishing
αt, ..., αn allows holder t to holder n to obtain P (t), ..., P (n).
To conclude, the secret share si gives each secret holder a
distinct evaluation on P . For holder 1 to holder t−1, si equals
to P (i); for holder t to holder n, si is the key to decrypt the
ciphertext αi to obtain the plaintext P (i).

1. Generate ! at random.
2. Compute secret shares "!… "", where "#= %&#$
3. Create ' using Lagrange interpolation on &, "!, "%:
4. Encrypt '(3) and '(4) with "& and "", get ciphertext
-& and -":

(0, $) (1, '!)
(2, '")

(3, *#⨁'#)

(4, *$⨁'$)

Broadcast .!$, .%$, -&, -".

Client

Secret
holdersClient

Secret holders
1. Holders . computes and broadcasts "# = /!$'()+ .

2. Verify others secret shares by comparing 0("#, /%) and 0(%&#, /%$).
3. Use any three points to interpolate ', recover & by evaluating %(0).

Fig. 2. An example of the proposed secret sharing method with four secret
holders

Figure 2 presents an example of a client sharing k to
four holders with a threshold of three holders to recover k.
A second degree polynomial P is generated by the client
using (0, k), (1, s1), (2, s2); s3 and s4 are used to encrypt and
decrypt P (3) and P (4).

The reveal-verifiability of the recovered secret is provided
by the verifiability of each individual secret share from bilinear
pairing evaluation. Given that the secret shares are verifiably
correct and the αs are public, anyone can use the same inputs
on Lagrange interpolation to reproduce k.

Note that this protocol is also a traditionally defined veri-
fiable secret sharing in the sense that clients cannot commu-
nicate incorrect secret shares to secret holders, as the secret
shares are all derived deterministically from the same value
gr1 .

C. Applying to Timed Release Cryptography

Combining all components in the design, we go over the
entire process of the proposed cryptographic protocol when it
is applied to the timed-release cryptography system. Suppose
the client has a message m to encrypt for a period of time;
through the published smart contract that stores information
of the system, the client knows the public keys of the secret
holders pk1, ..., pkn.
Actions of Clients

1) The client generates two random values (k, r).
2) The client uses k to encrypt the message m with

symmetric encryption, denote the ciphertext as c.
3) The client computes secret shares (s1, ..., sn) =

(pkr1, ..., pk
r
n).

4) The client computes the polynomial P using Lagrange
interpolation on points (0, k), (1, s1), (2, s2), ..., (t −
1, st−1).

5) The client computes αt = P (t)⊕st, ..., αn = P (n)⊕sn,
which are the ciphertexts of P (i) for t ≤ i ≤ n.

6) The client computes two more values: gr1 for the secret
holders to derive secret shares, and gr2 to verify shares
revealed by the secret holders.

7) Broadcast a request to all holders including the cipher-
text of the message c; decryption condition time; gr1;
gr2 , and αt, ..., αn.

Actions of Secret Holders
1) When receiving a request from a client, get the secret

share si = pkri = gr·ski
1 .

2) Wait until the client specified time is reached and
publish si.

3) Verify secret shares submitted by other secret holders by
evaluating whether e(si, g2) = e(pki, g

r
2) holds.

4) Once t pieces of si are received and verified as correct
shares, the secret holders recover k by evaluating P (0)
using t points on P . The t points are obtained as follows:
for s1, ..., st−1, the point is (i, si); for st, ..., sn, the
point is (i, si ⊕ αi).

5) Decrypt the ciphertext c with k and publish m.

IV. A SMART-CONTRACT-BASED TIMED-RELEASE
CRYPTOGRAPHY SYSTEM

This section illustrates a timed-release cryptography sys-
tem using the decentralized conditional information reveal
architecture. Sharing a similar basic idea with other smart-
contract-based constructions [8], [9], [10], [11], [12], [13], Our
system additionally achieves higher reliability and security by
making uses of the blockchain clock and achieving reveal-
verifiability to prevent malicious clients from framing honest
secret holders.

A. The Smart-Contract-based Architecture

Figure 3 shows a high-level overview of the system with an
example. To use the system, clients submit encrypted messages
to the smart contract, and secret holders store the messages
in encrypted form. The holders then decrypt and publish
the messages on the blockchain at the specified decryption

7

time determined by the client. Clients are not responsible for
decrypting secret messages, allowing them to exit the process
after submitting the encrypted message. For example, a client
can send an encrypted message at 3 o’clock and ask it to be
committed at 4 o’clock.

Smart contract

Client

Blockchain

Unlock at
four o'clock Time-sensitive

secret

Secret holders

1. A client sends an encrypted
secret to the smart contract

2. Secret holders interact with the smart
contract and reveal the secret at four

Fig. 3. The high-level process of sending a timed-release message

B. Improved Clock Reliability with On-Chain Timestamps

The system employs two references of time to verify
time conditions. The first source is the synchronized time
with a centralized global clock through the network time
protocol [49]. This is a built-in functionality of modern com-
puters [50], providing high-precision time references. Secret
holders within our system utilize this centralized clock to
verify time conditions specified by clients. Notably, numerous
reliable time servers are readily available on the Internet,
further enhancing the robustness of this time reference.

In addition to the centralized global clock, the system uses
the power of the decentralized blockchain clock as an auxiliary
time source. While distributed systems such as blockchains
do not achieve perfect clock synchronization, they offer a
resilient and available time reference with bounded drift given
the safety and liveness of the blockchain [51], [52], [53]. This
blockchain clock is grounded in the concept of block time,
which is manifested as timestamps embedded within block
headers.

The blockchain clock plays a crucial role as a fail-safe
mechanism in our system to ensure that secrets are not
revealed earlier in time. Tzinas et al. [51] have shown that
timestamps produced from blockchains have high accuracy.
Take Ethereum as an example, the network mandates val-
idators to synchronize their time with the network upon
joining [54], [55]. In cases where a validator’s local time
deviates significantly from the network time, it results in
isolated blocks that are not accepted by the majority of the
network. Implementation-wise, it only accommodates a 15-
second forward time difference between a validator’s local
clock and the clock of the block proposer [56], which means
a malicious block proposer can only advance the Ethereum
network’s time by a bounded 15-second window. This provides
additional resistance against early message decryption. In the
extreme case where a majority of secret holders’ local clock
failed and an attacker is chosen as the block proposer involving
message decryption, Ethereum still serves as an effective tool

in preventing the 15-second onward advanced disclosure of
the message. By incorporating these two complementary time
references, the proposed system strikes a balance between
precision and robustness, ensuring the secure and timely
release of confidential information.

C. Verifiability of Revealed Information

To ensure the messages are reconstructed correctly by
the secret holders and prevent malicious behavior from both
holders and clients, the proposed secret sharing protocol is
adopted.

While smart contracts possess the capability to verify se-
cret shares on-chain, this process is offloaded to holders for
off-chain execution to reduce the gas costs incurred in the
on-chain computation. A parallel in design can be drawn
to the optimistic rollup, a well-known blockchain scaling
methodology [57]. Mirroring the fault proof mechanisms in
an optimistic rollup, in the proposed system, a secret share
submission enters a provisional state for a set duration, for
example, an hour. This interim period allows holders to verify
the submission and possibly raise disputes. If unchallenged
within this window, the secret share gains validation and the
submitter is rewarded.

D. Example Workflow

Combining all the design components, here we introduce
as an example the workflow of the network on Ethereum.
The example system consists of four independent parties as
holders. The four parties deposit Ethers to the smart contract
and register as holders. At the same time, they setup Ethereum
nodes or use APIs from Ethereum node providers to monitor
events of the smart contract. Figure 4a and 4b illustrate two
scenarios, when all holders are honest and when a holder is
adversarial.

In the proposed system, the process begins when a client
sends a timed-release message request to the smart contract.
Upon receiving the request, the holders individually compute
their own secret shares and wait until the client-specified
decryption time to submit their shares to the smart contract.

To ensure the integrity of the system, if a member attempts
to submit their shares before the decryption time specified by
the client, it is automatically identified as a dishonest holder
by the smart contract. In such cases, these holders are removed
from the list of eligible holders and lose their deposit.

Upon reaching the client-specified decryption time, honest
holders proceed to submit their shares to the smart contract,
signifying the reveal of the secret. Subsequently, holders re-
trieve and locally verify the shares submitted by peer holders.
If no disputes are raised, the smart contract allocates rewards
to the first three holders who successfully submit their shares.
Despite submitting a correct share, the fourth holder does not
receive a reward, as its contribution is redundant for the secret
reveal. This reward strategy incentivizes timely submissions of
secret shares.

8

4

Send locked secret
(decrypt at 4:00)

Store request
information

321

Secret Holders Smart Contract Client

3:00

4:00

Fetch locked secret,
compute secret shares

Submit secret shares Verify time
Store secret shares

Fetch and verify other shares

...

(a) 4 honest secret holders

Case 1:
Attempt to submit secret share

before client specified time

Case 2:
Attempt to submit an incorrect share

Dispute the share from holder 2
Remove holer 2

reward holer 1, 3, 4

Verify time (invalid)
Reject the share
Remove holder 2

3:00

4:00

Store request
information

Fetch message,
compute secret shares

Submit secret shares Verify time
Store secret shares

Fetch shares,
Off-chain verify shares

...

...

3:30

4321

Secret Holders Smart Contract Client

Send locked secret
(decrypt at 4:00)

(b) 3 honest holders and 1 adversarial holder

Fig. 4. Example workflow in the view of on-chain activities

V. TOWARDS SECURE CONDITIONAL INFORMATION
REVEAL SYSTEMS

Taking a step back from timed-release cryptography, this
section introduces a paradigm to show that smart contract
platforms and the proposed secret sharing scheme also apply
to generic conditional information reveal systems with key
security advantages.

A. Security Challenges

While existing conditional information reveal systems ex-
hibit certain similarities, their design is confronted by distinct
challenges. For instance, as a widely used identity-based con-
ditional information reveal system, a foundational presumption
in prevailing single-sign-on (SSO) systems is the implicit
trust required between service providers and clients towards
authentication service providers. Consequently, its centralized
architecture introduces vulnerabilities, most notably, a single
point of failure. In the realm of location verification, it is chal-
lenging to identify a method that is simultaneously reliable,
efficient, and precise for positioning. Despite the prevalence of
conditional information reveal systems, a systematic approach
to identifying the challenges they face is absent.

In summarizing the core components of conditional infor-
mation reveal systems, we identify that the key security re-
quirements for conditional information reveal systems include:

1) Reliable communication channel: Establishing a reli-
able communication channel is crucial to ensure the
authenticity of messages exchanged between clients and
information holders.

2) Reliable condition check: Some conditions may require
additional facilities, devices, or protocols. For example,
a location-based conditional information reveal system

may need specific positioning devices. In a decentral-
ized environment involving multiple holders, reaching a
consensus on whether a condition is met becomes more
challenging.

3) Verifiable reveal: The correctness of the revealed infor-
mation shared by holders should be verifiable by other
parties to ensure that clients’ requests are accurately
served.

4) Activeness and honesty of information holders: The
above three challenges are related to the execution pro-
cess of the systems, however, to establish such systems,
it often requires benefits to encourage participation of
honest holders.

B. Decentralizing Conditional Information Reveal Systems

Considering the smart-contract-based proposals in time-
based conditional information reveal system [8], [9], [10], [11],
[12], [13] in a generalized view, this architecture can in fact be
applied to all types of conditional information reveal systems.
The only difference is that the secret holders require different
methods to check if the required conditions are met.

Involving multiple secret holders through secret sharing
and communicating through smart contracts improves system
reliability. It provides a reliable communication channel where
data authenticity and availability are ensured. Combining
incentive mechanisms with cryptocurrencies and the proposed
secret sharing protocol that provides reveal-verifiability, honest
and active secret holders are always incentivized to secure the
protocol.

Computation of
own secret

shares

Verification of
other secret

shares

Blockchain & smart contract

Reliable
communication

Incentive
management

Dispute
mechanism

Off-chain computation On-chain communication

Fig. 5. Modules in the decentralized architecture for conditional information
reveal systems using smart contract and secret sharing

Figure 5 illustrates the modules of the smart-contract-based
conditional information reveal architecture. Computation and
verification of secret shares can be executed locally by holders
to reduce on-chain computation costs; holders communicate
and self-organize the network through a smart contract. This
generic architecture provides adaptability to different con-
ditional information reveal systems, accommodating various
information sharing conditions.

VI. SECURITY ANALYSIS

Going back into the proposed timed-release cryptography
system, this section outlines an attack model for the proposed
system and provides formal proof of security within this
framework. Moreover, a comparative analysis of different
secret holder approaches is provided to demonstrate the ad-
vantage of the proposed system on critical security features.

9

A. Attack Model

Three types of adversaries are taken into account.
• External adversaries are malicious parties that aim to

breach confidentiality (see Definition 2) using public
knowledge.

• Malicious secret holders are parties that aim to breach
confidentiality using public knowledge along with their
secret shares. We assume at most t − 1 secret hold-
ers are considered malicious. This assumption can be
upheld through various measures, tailored to specific
application contexts. For instance, in a voting scenario,
voters themselves could act as secret holders, while
in more general applications, monetary incentives via
cryptocurrency could encourage honest behavior. Under
these conditions, whether a minority of malicious secret
holders could compromise the secrecy of a time lock
message is assessed.

• Malicious clients are parties that aim to breach reveal-
verifiability (see Definition 1) of the protocol. The system
fails if clients can falsely accuse honest secret holders of
submitting incorrect shares. In this case, honest secret
holders are punished and disqualified even if they fol-
low the protocol. Therefore, the proposed protocol must
ensure reveal-verifiability in the presence of malicious
clients.

B. Confidentiality

Three lemmas are provided to prove the confidentiality of
the proposed protocol. Lemma 1 and 2 combined is a proof by
induction showing that confidentiality holds against external
adversaries regardless of the number of secret holders in the
system. Lemma 3 shows that confidentiality also holds against
a minority of malicious secret holders.

The Tamarin Prover [58] is used to model the system with
three secret holders, verifying the impossibility for external
adversaries to access two secret shares before their release.
The Tamarin Prover is a tool for formal verification of crypto-
graphic protocol. Unlike other commonly used cryptographic
verification tools such as ProVerif [59] and CryptoVerif [60],
Tamarin offers flexible support for adversary modeling. The
blockchain communication model imposes restrictions on ad-
versaries, preventing them from modifying public messages
due to the security guarantees provided by the underlying
blockchain. The Tamarin Prover accurately models this com-
munication channel and verifies the authenticity of all public
messages within our protocol.

Lemma 1. When n = 3, t = 2, For any PPT external
adversaries A that have access to the public knowledge
(g1, g2, pk1, pk2, pk3, g

r
1, g

r
2, α3) and at most one secret share

(si, i ∈ {1, 2, 3}), the probability of knowing k is negligible.

Proof. Suppose A can obtain k with the public knowledge and
an si with non-negligible probability, A must be able to get
an additional secret share sj = pkrj . Then A must be able to
get r from gr1 or gr2 with non-negligible probability, that is, A
must be able to solve the discrete logarithm problem with non-
negligible probability, which contradicts to our assumption.

The lemma is also successfully proven by the Tamarin
Prover. Source code can be found in the open-source reposi-
tory [15] of this project.

With this base case of three secret holders. We extend this
proof to show that message secrecy holds for any size of secret
holder.

Lemma 2. For any n > 3, any PPT external adversaries
A has negligible probability of obtaining any secret share si
before its respective holder submits it.

Proof. For A to access a secret share si before holder i
submits it in a system with n > 3 holders (i < n), it
must obtain a secret share prematurely from n − 1 holders.
The additional knowledge provided by the nth holder is
pkn = gskn

1 and αn = gskn∗r
1 ⊕ P (n). Based on the hardness

of discrete logarithm problem, A has negligible probabilities
to obtain skn and r, and therefore has negligible probability
to obtain si = gski∗r

1 . Similarly, the adversary must also be
able to prematurely access a secret share with n− 2 holders.
Therefore, the adversary must always be able to access a secret
share without the presence of one holder. When the number
of secret holders is decreased to n = 3, the adversary cannot
obtain a secret share as proven in Lemma 1. Hence, an external
adversary has a negligible probability of prematurely accessing
a secret share before the holder submits it at any system size
of n.

We further provide proof that the secrecy of the message
key k holds in the present of malicious secret holders below
the threshold.

Lemma 3. Any t − 1 PPT malicious secret holders has
negligible probability of knowing k.

Proof. Suppose the collaborating malicious secret holders can
obtain k before honest holders submit shares, they must be
able to gain one extra secret share belonging to the honest
holders. That is, they are able to get the secret share using
the public knowledge g1, g2, g

r
1, g

r
2, pk1, ..., pkn, αt+1, ..., αn

along with their own secret keys. Since their own secret keys
are randomly generated values, which are irrelevant to any
other honest holders’ secret share, they must be able to obtain
the secret share using public knowledge. However, lemma 2
shows that it is not possible to obtain a secret share using
public knowledge, which contradicts the initial assumption and
proves the lemma.

C. Reveal-Verifiability

Shares published by honest secret holders should be verified
as correct even if the encryption request is initiated by a mali-
cious client. Below we present possible actions of a malicious
client and show that reveal-verifiability is not violated.

Denote a = gr1 for secret holders to compute the share as
s = ask and another value b = gr2 for the public to verify
secret shares. In this notation, the verification process is to
check whether e(pk, b) = e(s, g2) holds. A malicious client
can attempt to violate the protocol by publishing a or b as any
other values other than a = gr1 and b = gr2 .

10

Lemma 4. There exists a deterministic verification function
V , accessible to all participants, that identifies a = gr1 and
b = gr

′

2 for any r ̸= r′.

Proof. A deterministic verification function V is defined be-
low:

V(a, b, g1, g2) =

{
true, if e(g1, b) = e(a, g2),

false, otherwise.

V always output true for any r ̸= r′ when a = gr1 and b =
gr

′

2 .

As a result, malicious clients are not able to corrupt the
verifiability of secret shares.

VII. PERFORMANCE EVALUATION

The most fundamental requirement for a timed-release
cryptography system is to decrypt messages at the time users
specify. Therefore, decryption time deviation, computed as the
difference between the expected decryption time and actual
decryption time is measured in this section under various
scenarios. Moreover, we provide an estimation of the energy
consumption of the proposed system, showing its advantage
in energy efficiency.

The following performance data of the proposed system are
obtained from a geographically distributed testbed in which
the secret holder servers are well distributed across East US,
West US, UK, North Europe and Australia. Microsoft Azure
and Google Cloud Platform are used as server providers. Each
secret holder runs an Ubuntu 20.04 server with 2 vCPU of
2.1 GHz and 4GB RAM. This showcases the low hardware
requirement of the proposed system, enabling a low-cost
formation of a distributed environment in practice. The code
run by the secret holders is accessible in the project open-
source repository [15].

The smart contract is deployed on the Arbitrum Sepolia
testnet [61], a layer-2 blockchain for testing decentralized
applications with a fast block time of less than 1 second. The
secret holder servers use public RPC node endpoints provided
by Alchemy [62] to communicate with the blockchain.

Arbitrum

2557 ms 2321 ms

2160 ms

1498 ms
1177 ms

Fig. 6. Locations of the secret holder servers and their average latency of
submitting secret shares to Arbitrum Sepolia

Over 1,000 transactions were submitted to the blockchain
during the experiment. As shown in Figure 6, on average it

takes around one to three seconds, depending on the physical
location, for a secret holder to complete a transaction of
submitting a secret share to the blockchain.

A. Decryption Time Stability

Using the illustrated testbed, we compare the decryption
time stability between time lock puzzle approaches and the
proposed approach with decryption time deviation. For the
time lock puzzle system, understood in the context of the
Proof of Work consensus mechanism [28], [18], [29], its
decryption time deviation is represented using the block time
data of the Bitcoin blockchain [33]. Given the large scale of
the Bitcoin blockchain, it is considered the most stable time
lock puzzle construction in reality. As the average time to
produce one block in the Bitcoin blockchain is 10 minutes,
it is also the minimum encryption duration of the system. An
instance of the proposed system with ten secret holders is used
to compare against the time lock puzzle approach. Requests
with an encryption duration of ten minutes to one week are
generated for both systems, with twenty dummy requests for
each specified duration.

30

Late
decryption

Early
decryption

Fig. 7. Decryption time deviation of two systems in logarithmic scale

As indicated in Figure 7, the time lock puzzle approach
exhibits unreliable decryption time. Its performance deteri-
orates with increasing encryption duration; for instance, a
one-week encryption period results in an average decryption
time deviation exceeding two hours. The result indicates two
disadvantages of time lock puzzle systems. First, the long
error bars illustrate the unstable puzzle-solving time. Second,
the average lines at the early decryption area far from zero
deviation show that the puzzle difficulty cannot be adjusted
perfectly to achieve the desired average solving time. In the
case of the Bitcoin blockchain, the hash rate of the network
is in a strong increasing trend over time, while the increase
of the puzzle difficulty does not strictly follow, resulting in an
average block time shorter than expected, thus an accumulated
deviation as the encryption duration increases.

In stark contrast, our approach maintains a consistently low
decryption time deviation from 18 seconds to 30 seconds,
irrespective of the encryption duration. The nature of the
secret holder-based approach provides a stable decryption
time regardless of the encryption duration. A majority of the

11

deviation is attributed to the local verification of secret shares
on the secret holder servers (see Figure 8 for more details).
Therefore, this deviation can be further reduced by employing
more computationally powerful servers.

B. Scalability

An advantage of the time lock puzzle approach is that it
is highly scalable regarding the computing power to solve
puzzles as a result of the adaptability of puzzle difficulty;
it is also highly scalable regarding the number of message
requests, since all messages with the same decryption time
are encrypted using the same puzzle.

In the case of the proposed system, the latency in the
decryption process comprises two elements: the time needed
for holders to submit secret shares to the blockchain and
the time to verify a sufficient number of secret shares. To
understand the influence of scaling the number of secret
holders on decryption latency, experiments of 3, 10, 20, 30,
and 40 secret holders are conducted to process dummy time
lock messages.

3 10 20 30 40
Number of secret holders

0

20

40

60

80

100

De
cr

yp
tio

n
tim

e
de

vi
at

io
n

(s
ec

on
ds

)

Local verification time
Shares publishing time

Fig. 8. Secret shares submission and verification latency at 3, 10, 20, 30, 40
secret holders

In Figure 8, the publishing time of the secret shares shows
the latency of publishing a sufficient number of shares on
the blockchain; the local verification time shows the latency
of a secret holder getting enough secret shares verified. As
holders process requests concurrently, increasing the number
of holders does not extend the time required for the blockchain
to accumulate a sufficient number of secret shares. However,
as it requires more secret shares to validate a message when
the number of secret holders scales, the time required for the
secret holders to locally ensure the correct reconstruction of
messages increases linearly.

In practice, the increase of local verification time for a secret
holder can be improved by employing additional computation
resources to verify secret shares instead of fully relying on
the secret holders, given that the secret shares are publicly
verifiable. Having a low latency in shares reveal means parties
interested in certain messages can recover them with low

latency, with an option to verify the correctness by themselves
if they run faster computation than the secret holders.

C. Energy Efficiency

The testbed of the proposed system requires each secret
holder to run the script [15] that occupies less than 10% load
on the server, which is estimated to consume 0.005 kWh [63]
given the server specifications and resource utilization rates.
Such a system with 100 holders consumes 0.5 kWh. The power
consumption of the system in a hundred years is less than the
power consumption of Bitcoin [64] (representing a time lock
puzzle system) in one second.

VIII. RESILIENCE TO MALICIOUS VOTING

In this section, we demonstrate how the proposed timed-
release cryptography preserves the integrity of an election in
the presence of malicious voting attacks.

Cryptographic methods are employed to preserve the secu-
rity of e-voting systems as they are susceptible to hacking
activity and cyberattacks. These include safeguarding the
privacy of voters [65], ensuring fairness in outcomes, allowing
individuals to verify their votes, and enhancing the overall
resilience of the system [66], [67], [68], [3].

Malicious voters can gain access to existing votes and
can strategically vote for an alternative that is not ranked
highest in their preference ordering to prevent a candidate
from winning. This jeopardizes the election outcome and
compromises the overall fairness of an election. Through
established cryptographic methods such as bit commitments
and blind signatures [69], voters maintain the confidentiality
of their votes until the voting phase concludes. However, a
drawback is that vote reveal is not automated and necessitates
action from the holders. While some suggest combining zero-
knowledge proofs and homomorphic encryption to keep ballots
encrypted during voting [66], [67], [68], it is not scalable due
to the significantly high computation cost of homomorphic
encryption.

Therefore, time-based conditional information reveal is the
only secure, automated, and scalable ballot protection method
for electronic voting. Time-based conditional information re-
veal systems encrypt ballots till the voting phase ends, after
which they are automatically decrypted by the network allow-
ing relevant parties to tally them and determine the outcome.

With the idea of timed-release ballots, a system with accu-
rate decryption time (especially resistant to early decryption)
is vital. Otherwise, malicious voters can gain access to the
early-decrypted ballots of a large population and jeopardize
the election outcomes. In the following text, we model the
malicious voting scenario considering real-world datasets and
discuss if prevention is possible using the proposed system.

a) Simulating malicious voting: . Each of the N voters
selects from K alternatives. Each voter i = 1, . . . ,N can
provide a complete or partially complete strict preferential
order over the alternatives. The plurality rule determines the
winner.

The sincere and malicious population of voters: In every
simulation, a certain population of voters turn into malicious

12

and change their votes based on the winners of the remaining
population. So if l% of N voters are sincere, (1− l)% of N
voters change their votes to jeopardize the decision outcomes
of the l% of the voters. We have a total of 100 simulations,
where l is varied from 1 to 100, with an increment of 1.
In every simulation, we have 100 iterations, wherein the set
of malicious voters ((100 − l)%) changes due to random
sampling.

Strategic voting by malicious voters: Consider an election
with K=5 and N =100 voters. At each simulation, l is set to
80%, so we have 20% of malicious voters randomly sampled.
Considering (k1,k2,k3,k4,k5) alternatives, the aggregated pref-
erence of 80 voters (80% of 100 voters) is <k3,k4,k5, k2,k1>
and k3 is the winning alternative. A malicious voter had a
true preference of <k5,k1,k3,k2,k4>. However, the malicious
voters have the intent to promote their first choice, while they
demote and remove any candidate from their votes with higher
aggregate preferences in the population of 80 sincere voters.
This is also possible because the voters do not need to maintain
a strict preferential order over all the alternatives. Following
this, the malicious voter strategically changes their preference
to <k5,k1,k2>. The voter removes k3,k4 from the list as these
candidates have a higher preference than the first choice (k5)
of the voter in the aggregated preference (<k3,k4,k5, k2,k1>)
of 80 voters.

Generating decision outcomes: The aggregated preference
including malicious voters is calculated to assess if it deviates
from the aggregated preference based only on sincere voters
for all 100 iterations of a simulation. The probability of chang-
ing the winner is determined by the frequency of iterations in
which the decision outcome changes due to malicious voting.

b) Impact on real-world voting datasets: We consider
real-world datasets for electing government leaders across dif-
ferent cities or countries (such as UK labor elections, elections
in Dublin, Ireland, Oakland and Minneapolis elections in the
United States [70], [71], [72], [73], where voters provide
either complete or incomplete strict preferential order for
the candidates. The election data are taken from the Preflib
library [74], which hosts benchmarks for real-world voting
and preference data.

We select the datasets to have a mixture of elections that
have different numbers of candidates (varying from 5 to 9)
or voters (varying from 266 to 36655). As demonstrated in
Figure 9, all four elections suffer from a change of winner
in the presence of malicious voters. For example, the UK
Labour Leadership Election, a small-scale election with only
266 voters, shows a change of winner in the present of 40
strategic voters. While larger-scale elections tolerate more
malicious voters, a change of winner is still possible with
the collaboration of potential malicious voters with similar
preferences.

c) Decentralized timed-release ballot system to prevent
malicious voting: With a high probability of early decryption
as shown in the previous section, time lock puzzle systems are
prone to strategic voting. Conversely, the probability of early
decryption in our proposed system is negligible.

In the proposed system, for malicious voters to access
existing ballots prematurely, they must acquire a sufficient

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of strategic voters

0

20

40

60

80

100

Pr
ob

ab
ilit

y
of

 w
in

ne
r r

em
ai

ns
 u

nc
ha

ng
ed

2010 UK Labour
2012 Oakland
2002 Dublin
2009 Minneapolis

Fig. 9. Influence of voting result under different numbers of strategic voters

number of secret shares before the preset decryption time.
This would necessitate manipulating the blockchain clock so
that the smart contract accepts the submitted secret shares
before the end of voting. If this occurs, rational secret holders
might submit their shares before voting ends, thereby enabling
malicious voters to observe existing votes and cast their votes
strategically.

Advancing the blockchain’s time to the end of the voting
period requires a malicious voter to also be a validator, and
specifically, to be fortuitously selected as the block proposer
for the critical block just before voting ends. For instance,
in the Ethereum network, as illustrated in Section IV-B, a
malicious voter could potentially claim the block timestamp
is advanced by up to 15 seconds. Given the current Ethereum
network comprises over one million validators (as of May
2024) [75], the likelihood of a malicious voter being chosen
as the proposer for that precise block is negligible, less than
0.0001%. Furthermore, even in the unlikely event that such an
attack is initiated, the majority of honest secret holders still
rely on their local, accurate clocks to submit their shares at the
designated time, further complicating the feasibility of such an
attack.

Moreover, the decentralized design of the proposed system
allows sincere voters to become secret holders, collectively
guarding each others’ ballots until the end of voting. This fur-
ther prevents malicious voters from compromising the system
to gain early access to existing ballots.

In summary, a model is formulated to define malicious
voting and apply it to real-world election datasets. This model
is tested and validated on real-world datasets. We observe
that if the proposed system is used, the probability of voters
accessing or attacking the votes is negligible. Hence the
proposed method is a secure solution to preserve fairness of
real-world election outcomes.

IX. CONCLUSION AND FUTURE WORK

This paper illustrates a deep understanding of conditional
information reveal systems and provides a resilient solu-

13

tion for secure timed-release cryptography in decentralized
environments. Unlike existing proposals that mainly focus
on the cryptographic protocols, our proposed timed-release
cryptography system is not only secure against cryptographic
attacks but also secure against various attacks against a timed-
release cryptography system, including Sybil attack and time
source poisoning. Moreover, we demonstrate the benefits
of the proposed system through its application in e-voting
scenarios, specifically examining how it mitigates the risks
associated with the premature release of ballots in strategic
voting contexts. The capability to prevent such scenarios
shows the advantage of the proposed system in enhancing
the integrity of e-voting processes. The relevance of our work
extends beyond the specific domains of e-voting; it prompts
further investigation into how the system could be integrated
with various applications that rely on the dissemination of
time-sensitive messages.

A. Future Work

While the proposed system embraces a high degree of
decentralization, underpinned by blockchain technology and
the involvement of multiple secret holders, a notable element
of centralization persists. This centralized aspect involves
reliance on a global clock as the primary time reference.
A promising avenue for future research lies in a fully de-
centralized timekeeping mechanism characterized by elevated
precision and reliability, which further improves the security
of the system.

The proposed system operates as a timed-release mes-
saging service, enabling the public broadcast of messages
upon release. However, it does not specifically explore the
implementations and applications of receiver-specified timed-
release messages. Therefore, another potential direction is to
expand the applicability of the system to offer timed-release
messaging services that are only accessible to certain receivers,
restricting the message availability to specific parties following
the release of messages.

X. ACKNOWLEDGEMENT

This project is funded by a UKRI Future Leaders Fellowship
(MR-/W009560-/1): ‘Digitally Assisted Collective Governance
of Smart City Commons–ARTIO’.

REFERENCES

[1] T. C. May, “Timed-Release Crypto,” 1993. [Online]. Available:
http://cypherpunks.venona.com/date/1993/02/msg00129.html

[2] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release Crypto,” 1996.

[3] E. Pournaras, “Proof of witness presence: Blockchain consensus for
augmented democracy in smart cities,” Journal of Parallel and Dis-
tributed Computing, vol. 145, pp. 160–175, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731520303282

[4] J. Camenisch, D. A. Ortiz-Yepes, and F.-S. Preiss, “Strengthening
authentication with privacy-preserving location verification of mobile
phones,” in Proceedings of the 14th ACM Workshop on Privacy
in the Electronic Society, ser. WPES ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 37–48. [Online].
Available: https://dl.acm.org/doi/10.1145/2808138.2808144

[5] S. Saroiu and A. Wolman, “Enabling new mobile applications with
location proofs,” in Proceedings of the 10th Workshop on Mobile
Computing Systems and Applications, ser. HotMobile ’09. New York,
NY, USA: Association for Computing Machinery, 2009. [Online].
Available: https://dl.acm.org/doi/10.1145/1514411.1514414

[6] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Annual international cryptology conference. Springer, 2001,
pp. 213–229.

[7] A. Pashalidis and C. J. Mitchell, “A taxonomy of single sign-on
systems,” in Information Security and Privacy: 8th Australasian Confer-
ence, ACISP 2003 Wollongong, Australia, July 9–11, 2003 Proceedings
8. Springer, 2003, pp. 249–264.

[8] F. Celebi, P. Fletcher-Hill, and D. Que, “Kimono: trustless secret sharing
using time-locks on ethereum,” 2018.

[9] J. Ning, H. Dang, R. Hou, and E.-C. Chang, “Keeping time-release
secrets through smart contracts,” Cryptology ePrint Archive, 2018.

[10] C. Li and B. Palanisamy, “Decentralized release of self-emerging data
using smart contracts,” in 2018 IEEE 37th Symposium on Reliable
Distributed Systems (SRDS). IEEE, 2018, pp. 213–220.

[11] ——, “Silentdelivery: Practical timed-delivery of private information
using smart contracts,” IEEE Transactions on Services Computing,
vol. 15, no. 6, pp. 3528–3540, 2021.

[12] E. Bacis, D. Facchinetti, M. Guarnieri, M. Rosa, M. Rossi, and S. Para-
boschi, “I told you tomorrow: Practical time-locked secrets using smart
contracts,” in Proceedings of the 16th International Conference on
Availability, Reliability and Security, 2021, pp. 1–10.

[13] P. Jiang, B. Qiu, and L. Zhu, “Toward reliable and confidential release
for smart contract via ID-based TRE,” IEEE Internet of Things Journal,
vol. 9, no. 13, pp. 11 422–11 433, 2022.

[14] A. Chandramouli, A. Choudhury, and A. Patra, “A survey on perfectly
secure verifiable secret-sharing,” ACM Computing Surveys (CSUR),
vol. 54, no. 11s, pp. 1–36, 2022.

[15] Z. Li, “Github: Timed-Release-Crypto,” Oct. 2023, original-date: 2023-
10-03T12:40:58Z. [Online]. Available: https://github.com/TDI-Lab/
Timed-Release-Crypto

[16] M. Zhang, M. Yang, and G. Shen, “SSBAS-FA: A secure sealed-bid e-
auction scheme with fair arbitration based on time-released blockchain,”
Journal of Systems Architecture, vol. 129, p. 102619, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1383762122001503

[17] M. N. Uddin, S. Ahmmed, I. A. Riton, and L. Islam, “An blockchain-
based e-voting system applying time lock encryption,” in 2021 Interna-
tional Conference on Intelligent Technologies (CONIT), 2021, pp. 1–6.

[18] J. Liu, T. Jager, S. A. Kakvi, and B. Warinschi, “How to build time-
lock encryption,” Designs, Codes and Cryptography, vol. 86, no. 11, pp.
2549–2586, 2018.

[19] M. Mahmoody, T. Moran, and S. Vadhan, “Time-Lock Puzzles
in the Random Oracle Model,” in Advances in Cryptology –
CRYPTO 2011, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg,
F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, and P. Rogaway, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, vol. 6841, pp. 39–50, series Title: Lecture Notes
in Computer Science. [Online]. Available: http://link.springer.com/10.
1007/978-3-642-22792-9 3

[20] P. Syverson, “Weakly secret bit commitment: Applications to lotteries
and fair exchange,” in Proceedings. 11th IEEE Computer Security
Foundations Workshop (Cat. No. 98TB100238). IEEE, 1998, pp. 2–13.

[21] G. Malavolta and S. A. K. Thyagarajan, “Homomorphic time-lock puz-
zles and applications,” in Annual International Cryptology Conference.
Springer, 2019, pp. 620–649.

[22] C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner, “Tardis:
A foundation of time-lock puzzles in uc,” in Advances in Cryptology –
EUROCRYPT 2021, A. Canteaut and F.-X. Standaert, Eds. Cham:
Springer International Publishing, 2021, pp. 429–459.

[23] M. Arapinis, N. Lamprou, and T. Zacharias, “Astrolabous: A
Universally Composable Time-Lock Encryption Scheme,” in Advances
in Cryptology – ASIACRYPT 2021, M. Tibouchi and H. Wang,
Eds. Cham: Springer International Publishing, 2021, vol. 13091, pp.
398–426, series Title: Lecture Notes in Computer Science. [Online].
Available: https://link.springer.com/10.1007/978-3-030-92075-3 14

[24] W. Mao, “Timed-release cryptography,” in Selected Areas in Cryptog-
raphy: 8th Annual International Workshop, SAC 2001 Toronto, Ontario,
Canada, August 16–17, 2001 Revised Papers 8. Springer, 2001, pp.
342–357.

[25] P. Chvojka, T. Jager, D. Slamanig, and C. Striecks, “Versatile
and sustainable timed-release encryption and sequential time-lock

http://cypherpunks.venona.com/date/1993/02/msg00129.html
https://www.sciencedirect.com/science/article/pii/S0743731520303282
https://dl.acm.org/doi/10.1145/2808138.2808144
https://dl.acm.org/doi/10.1145/1514411.1514414
https://github.com/TDI-Lab/Timed-Release-Crypto
https://github.com/TDI-Lab/Timed-Release-Crypto
https://www.sciencedirect.com/science/article/pii/S1383762122001503
https://www.sciencedirect.com/science/article/pii/S1383762122001503
http://link.springer.com/10.1007/978-3-642-22792-9_3
http://link.springer.com/10.1007/978-3-642-22792-9_3
https://link.springer.com/10.1007/978-3-030-92075-3_14

14

puzzles (extended abstract),” in Computer Security – ESORICS
2021: 26th European Symposium on Research in Computer Security,
Darmstadt, Germany, October 4–8, 2021, Proceedings, Part II. Berlin,
Heidelberg: Springer-Verlag, 2021, p. 64–85. [Online]. Available:
https://doi.org/10.1007/978-3-030-88428-4 4

[26] A. F. Loe, L. Medley, C. O’Connell, and E. A. Quaglia, “Tide: A novel
approach to constructing timed-release encryption,” in Australasian
Conference on Information Security and Privacy. Springer, 2022, pp.
244–264.

[27] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized business review, p. 21260, 2008.

[28] W.-J. Lai, C.-W. Hsueh, and J.-L. Wu, “A fully decentralized time-
lock encryption system on blockchain,” in 2019 IEEE International
Conference on Blockchain (Blockchain). IEEE, 2019, pp. 302–307.

[29] S.-W. Chae, J.-I. Kim, and Y. Park, “Practical time-release blockchain,”
Electronics, vol. 9, no. 4, p. 672, 2020.

[30] S. Jaques, H. Montgomery, R. Rosie, and A. Roy, “Time-release cryp-
tography from minimal circuit assumptions,” in Progress in Cryptology–
INDOCRYPT 2021: 22nd International Conference on Cryptology in
India, Jaipur, India, December 12–15, 2021, Proceedings 22. Springer,
2021, pp. 584–606.

[31] R. W. Lai and G. Malavolta, “Lattice-based timed cryptography,” in
Annual International Cryptology Conference. Springer, 2023, pp. 782–
804.

[32] D. Abram, L. Roy, and M. Simkin, “Time-based cryptography from
weaker assumptions: Randomness beacons, delay functions and more,”
Cryptology ePrint Archive, 2024.

[33] “Bitcoin Cryptocurrency – Marketplace – bitcoin
data – Google Cloud Console.” [Online]. Avail-
able: https://console.cloud.google.com/marketplace/product/bitcoin/
crypto-bitcoin?project=bitcoin-data-392415

[34] G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan, “Conditional
oblivious transfer and timed-release encryption,” in Advances in Cryp-
tology—EUROCRYPT’99: International Conference on the Theory and
Application of Cryptographic Techniques Prague, Czech Republic, May
2–6, 1999 Proceedings 18. Springer, 1999, pp. 74–89.

[35] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity based
encryption with constant size ciphertext,” in Advances in Cryptology–
EUROCRYPT 2005: 24th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Aarhus, Denmark,
May 22-26, 2005. Proceedings 24. Springer, 2005, pp. 440–456.

[36] D. Boneh and M. Naor, “Timed commitments,” in Advances in Cryptol-
ogy—CRYPTO 2000: 20th Annual International Cryptology Conference
Santa Barbara, California, USA, August 20–24, 2000 Proceedings.
Springer, 2000, pp. 236–254.

[37] K. Chalkias, D. Hristu-Varsakelis, and G. Stephanides, “Improved
anonymous timed-release encryption,” in Computer Security–ESORICS
2007: 12th European Symposium On Research In Computer Security,
Dresden, Germany, September 24—26, 2007. Proceedings 12. Springer,
2007, pp. 311–326.

[38] J. H. Cheon, N. Hopper, Y. Kim, and I. Osipkov, “Provably secure timed-
release public key encryption,” ACM Transactions on Information and
System Security (TISSEC), vol. 11, no. 2, pp. 1–44, 2008.

[39] A.-F. Chan and I. F. Blake, “Scalable, server-passive, user-anonymous
timed release cryptography,” in 25th IEEE International Conference on
Distributed Computing Systems (ICDCS’05). IEEE, 2005, pp. 504–513.

[40] M. Bellare and S. Goldwasser, “Verifiable partial key escrow,” in Pro-
ceedings of the 4th ACM Conference on Computer and Communications
Security, 1997, pp. 78–91.

[41] M. O. Rabin and C. Thorpe, “Time-lapse cryptography,” Harvard
Computer Science Group Technical Report TR-22-06, 2006.

[42] “Multi Frequency Support and Timelock Encryp-
tion Capabilities are coming in drand!” Feb.
2022. [Online]. Available: https://drand.love/blog/2022/02/21/
multi-frequency-support-and-timelock-encryption-capabilities/

[43] J. Cathalo, B. Libert, and J.-J. Quisquater, “Efficient and non-interactive
timed-release encryption,” in Information and Communications Security:
7th International Conference, ICICS 2005, Beijing, China, December
10-13, 2005. Proceedings 7. Springer, 2005, pp. 291–303.

[44] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[45] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret
sharing and achieving simultaneity in the presence of faults,” in 26th
Annual Symposium on Foundations of Computer Science (SFCS 1985),
1985, pp. 383–395.

[46] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annual Symposium on Foundations of Computer

Science (sfcs 1987). Los Angeles, CA, USA: IEEE, Oct. 1987, pp. 427–
438. [Online]. Available: http://ieeexplore.ieee.org/document/4568297/

[47] D. Boneh, “The decision diffie-hellman problem,” in International
algorithmic number theory symposium. Springer, 1998, pp. 48–63.

[48] P. S. Barreto, B. Lynn, and M. Scott, “Constructing elliptic curves
with prescribed embedding degrees,” in Security in Communication
Networks: Third International Conference, SCN 2002 Amalfi, Italy,
September 11–13, 2002 Revised Papers 3. Springer, 2003, pp. 257–267.

[49] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[50] “ntpd(8): Network Time Protocol daemon - Linux man page.” [Online].
Available: https://linux.die.net/man/8/ntpd

[51] A. Tzinas, S. Sridhar, and D. Zindros, “On-chain timestamps are
accurate,” Cryptology ePrint Archive, 2023.

[52] J. Ladleif and M. Weske, “Time in blockchain-based process execu-
tion,” in 2020 IEEE 24th International Enterprise Distributed Object
Computing Conference (EDOC). IEEE, 2020, pp. 217–226.

[53] J. A. Garay, A. Kiayias, and N. Leonardos, “How does Nakamoto
set his clock? Full analysis of Nakamoto consensus in bounded-delay
networks,” Cryptology ePrint Archive, 2020.

[54] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, vol. 151, no.
2014, pp. 1–32, 2014. [Online]. Available: https://ethereum.github.io/
yellowpaper/paper.pdf

[55] “Go-ethereum Documentation: Connecting To The Network.” [Online].
Available: https://geth.ethereum.org/docs/fundamentals/peer-to-peer

[56] “ethereum/go-ethereum,” Oct. 2023, original-date: 2013-12-
26T13:05:46Z. [Online]. Available: https://github.com/ethereum/
go-ethereum

[57] C. Sguanci, R. Spatafora, and A. M. Vergani, “Layer 2 blockchain
scaling: A survey,” arXiv preprint arXiv:2107.10881, 2021.

[58] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN prover
for the symbolic analysis of security protocols,” in Computer Aided
Verification: 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings 25. Springer, 2013, pp. 696–701.

[59] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “Proverif 2.00:
automatic cryptographic protocol verifier, user manual and tutorial,”
Version from, pp. 05–16, 2018.

[60] B. Blanchet, “A computationally sound mechanized prover for security
protocols.” IEEE Transactions on Dependable and Secure Computing,
vol. 5, pp. 193–207, 01 2008.

[61] “Arbitrum chains overview | Arbitrum Docs,” Apr. 2024.
[Online]. Available: https://docs.arbitrum.io/build-decentralized-apps/
public-chains

[62] “Alchemy - the web3 development platform.” [Online]. Available:
https://www.alchemy.com/

[63] Boavizta, “Get the impacts of a cloud instance (AWS) - Boavizta
API documentation.” [Online]. Available: https://doc.api.boavizta.org/
getting started/single cloud instance/

[64] “Cambridge Bitcoin Electricity Consumption Index (CBECI).” [Online].
Available: https://ccaf.io/cbnsi/cbeci

[65] T. Asikis and E. Pournaras, “Optimization of privacy-utility trade-offs
under informational self-determination,” Future Generation Computer
Systems, vol. 109, pp. 488–499, 2020.

[66] M. ElSheikh and A. M. Youssef, “Dispute-free scalable open vote
network using zk-snarks,” arXiv preprint arXiv:2203.03363, 2022.

[67] P. McCorry, S. F. Shahandashti, and F. Hao, “A Smart Contract
for Boardroom Voting with Maximum Voter Privacy,” in Financial
Cryptography and Data Security, A. Kiayias, Ed. Cham: Springer
International Publishing, 2017, vol. 10322, pp. 357–375, series
Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-70972-7 20

[68] “Blockchain-based online voting.” [Online]. Available: http://polys.vote
[69] J. P. Cruz and Y. Kaji, “E-voting system based on the bitcoin protocol

and blind signatures,” IPSJ Transactions on Mathematical Modeling and
Its Applications, vol. 10, no. 1, pp. 14–22, 2017.

[70] “Preflib | UK Labor Party Leadership Vote.” [Online]. Available:
https://www.preflib.org/dataset/00030

[71] “Preflib | Oakland Election Data.” [Online]. Available: https:
//www.preflib.org/dataset/00019

[72] “Preflib | Irish Election Data.” [Online]. Available: https://www.preflib.
org/dataset/00001

[73] “Preflib | Minneapolis Election Data.” [Online]. Available: https:
//www.preflib.org/dataset/00018

https://doi.org/10.1007/978-3-030-88428-4_4
https://console.cloud.google.com/marketplace/product/bitcoin/crypto-bitcoin?project=bitcoin-data-392415
https://console.cloud.google.com/marketplace/product/bitcoin/crypto-bitcoin?project=bitcoin-data-392415
https://drand.love/blog/2022/02/21/multi-frequency-support-and-timelock-encryption-capabilities/
https://drand.love/blog/2022/02/21/multi-frequency-support-and-timelock-encryption-capabilities/
http://ieeexplore.ieee.org/document/4568297/
https://linux.die.net/man/8/ntpd
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://geth.ethereum.org/docs/fundamentals/peer-to-peer
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://docs.arbitrum.io/build-decentralized-apps/public-chains
https://docs.arbitrum.io/build-decentralized-apps/public-chains
https://www.alchemy.com/
https://doc.api.boavizta.org/getting_started/single_cloud_instance/
https://doc.api.boavizta.org/getting_started/single_cloud_instance/
https://ccaf.io/cbnsi/cbeci
http://link.springer.com/10.1007/978-3-319-70972-7_20
http://polys.vote
https://www.preflib.org/dataset/00030
https://www.preflib.org/dataset/00019
https://www.preflib.org/dataset/00019
https://www.preflib.org/dataset/00001
https://www.preflib.org/dataset/00001
https://www.preflib.org/dataset/00018
https://www.preflib.org/dataset/00018

15

[74] N. Mattei and T. Walsh, “Preflib: A library for preferences http://www.
preflib. org,” in Algorithmic Decision Theory: Third International
Conference, ADT 2013, Bruxelles, Belgium, November 12-14, 2013,
Proceedings 3. Springer, 2013, pp. 259–270.

[75] “Validators chart - open source ethereum blockchain explorer.” [Online].
Available: https://beaconcha.in/charts/validators

APPENDIX

A. Numerical Example for the Cryptographic Protocol

An example of the cryptographic protocol with small num-
bers is provided below for a better understanding of the
process. The verification process using bilinear pairing and G2

is excluded as it is not applicable in finite fields over small
prime numbers.

Suppose G1 is a multiplicative group of integers modulo 23
and g1 = 11. Consider there are 4 secret holders with private
keys: sk1 = 3, sk2 = 4, sk3 = 5, sk4 = 6. Their public keys
pkn = gskn

1 are therefore pk1 = 20, pk2 = 13, pk3 = 5,
pk4 = 9.

A client has a secret k = 22 to send as a timed-release
message. The client generates r = 7 and computes s1 =
pkr1 = 21, similarly s2 = 9, s3 = 17, s4 = 4. The client uses
Lagrange interpolation to derive a polynomial P using three
points (0, 22), (1, 21), (2, 9), the resulting polynomial P is
y = 6x2+16x+22. The client evaluates P (3) = 9, P (4) = 21,
and encrypts these two points using s3, s4 as keys, XOR as the
encryption function to get ciphertexts α3, α4. P (3) in binary
is 1001, s3 in binary is 10001, resulting in α3 = 11000(2) =
24(10). Similarly, α4 = 10001(2) = 17(10). The client can then
share gr1 = 7, α3 = 24, α4 = 17.

Secret holders calculate their secret shares with gr·sk1 , and
publish their secrets after the specified decryption time. The
secret k = 22 can now be reconstructed with any three secret
shares. For example, given s1, s2, s3, we first calculate P (3) =
s3 ⊕ α3 = 17 ⊕ 24 = 9, then reconstruct the polynomial
P by interpolating (1, 21), (2, 9), (3, 9), resulting in the same
polynomial P = 6x2+16x+22, and evaluate at x = 0 to get
the number 22.

https://beaconcha.in/charts/validators

	Introduction
	Related Work
	Timed-Release Cryptography Systems
	The Time Lock Puzzles Approach
	The Secret Holders Approach

	Secret Sharing Schemes for Secret Holders Approach
	Required Background

	Secret Sharing with Reveal-Verifiability on Public Communication Channel
	Problem Modeling and Assumptions
	Design
	Applying to Timed Release Cryptography

	A Smart-Contract-based Timed-Release Cryptography System
	The Smart-Contract-based Architecture
	Improved Clock Reliability with On-Chain Timestamps
	Verifiability of Revealed Information
	Example Workflow

	Towards Secure Conditional Information Reveal Systems
	Security Challenges
	Decentralizing Conditional Information Reveal Systems

	Security Analysis
	Attack Model
	Confidentiality
	Reveal-Verifiability

	Performance Evaluation
	Decryption Time Stability
	Scalability
	Energy Efficiency

	Resilience to Malicious Voting
	Conclusion and Future Work
	Future Work

	Acknowledgement
	References
	Appendix
	Numerical Example for the Cryptographic Protocol

