
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3734947.3735667
.

.

SHORT-PAPER

Overview of the “Information Retrieval in Soware Engineering” (IRSE)
track at Forum for Information Retrieval 2024

SOUMEN PAUL, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
.

SRIJONI MAJUMDAR, University of Leeds, Leeds, West Yorkshire, U.K.
.

RAJ SHAH, Indian Institute of Technology Goa, Ponda, GA, India
.

SUSMITA DAS, University of Glasgow, Glasgow, Scotland, U.K.
.

MADHUSUDAN GHOSH, Indian Association for the Cultivation of Science, Kolkata, WB,
India
.

DEBASIS GANGULY, University of Glasgow, Glasgow, Scotland, U.K.
.

View all
.

.

Open Access Support provided by:
.

University of Glasgow
.

University of Leeds
.

Techno India University, West Bengal
.

Indian Institute of Technology Kharagpur
.

Indian Association for the Cultivation of Science
.

Indian Institute of Technology Goa
.

View all

PDF Download
3734947.3735667.pdf
05 February 2026
Total Citations: 1
Total Downloads: 336
.

.

Published: 12 December 2024
.

.

Citation in BibTeX format
.

.

FIRE 2024: Proceedings of the 16th
Annual Meeting of the Forum for
Information Retrieval Evaluation
December 12 - 15, 2024
Gandhinagar, India
.

.

FIRE '24: Proceedings of the 16th Annual Meeting of the Forum for Information Retrieval Evaluation (December 2024)
hps://doi.org/10.1145/3734947.3735667

ISBN: 9798400713187

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3734947.3735667
https://dl.acm.org/doi/10.1145/3734947.3735667
https://dl.acm.org/doi/10.1145/contrib-99658750073
https://dl.acm.org/doi/10.1145/institution-60004750
https://dl.acm.org/doi/10.1145/contrib-99660090486
https://dl.acm.org/doi/10.1145/institution-60012070
https://dl.acm.org/doi/10.1145/contrib-99661658085
https://dl.acm.org/doi/10.1145/institution-60114558
https://dl.acm.org/doi/10.1145/contrib-99661653641
https://dl.acm.org/doi/10.1145/institution-60001490
https://dl.acm.org/doi/10.1145/contrib-99661091368
https://dl.acm.org/doi/10.1145/institution-60014761
https://dl.acm.org/doi/10.1145/institution-60014761
https://dl.acm.org/doi/10.1145/contrib-81442605184
https://dl.acm.org/doi/10.1145/institution-60001490
https://dl.acm.org/doi/10.1145/3734947.3735667
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60001490
https://dl.acm.org/doi/10.1145/institution-60012070
https://dl.acm.org/doi/10.1145/institution-60283591
https://dl.acm.org/doi/10.1145/institution-60004750
https://dl.acm.org/doi/10.1145/institution-60014761
https://dl.acm.org/doi/10.1145/institution-60114558
https://dl.acm.org/doi/10.1145/3734947.3735667
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3734947.3735667&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/fire
https://dl.acm.org/conference/fire
https://dl.acm.org/conference/fire
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3734947.3735667&domain=pdf&date_stamp=2025-07-24

Overview of the “Information Retrieval in Software Engineering”
(IRSE) track at Forum for Information Retrieval 2024
Soumen Paul
IIT Kharagpur

Kharagpur, West Bengal, India
soumenpaul165@gmail.com

Srijoni Majumdar
University of Leeds

Leeds, United Kingdom
s.majumdar@leeds.ac.uk

Raj Shah
Indian Institute of Technology Goa

Ponda, India
raj.shah.21031@iitgoa.ac.in

Susmita Das
University of Glasgow

Glasgow, United Kingdom
2956827d@student.gla.ac.uk

Madhusudan Ghosh
Indian Association of Cultivation of

Science
Kolkata, India

madhusuda.iacs@gmail.com

Debasis Ganguly
University of Glasgow

Glasgow, United Kingdom
debasis.ganguly@glasgow.ac.uk

Gul Calikli
University of Glasgow

Glasgow, United Kingdom
handangul.calikli@glasgow.ac.uk

Debarshi Sanyal
Indian Association of Cultivation of

Science
Kolkata, India

debarshisanyal@gmail.com

Partha Pratim Das
Ashoka University
Haryana, India

ppd@ashoka.edu.in

Paul D. Clough
University of Sheffield

Sheffield, United Kingdom
p.d.clough@sheffield.ac.uk

Ayan Bandyopadhyay
Techno India University

Kolkata, India
bandyopadhyay.ayan@gmail.com

Samiran Chattopadhyay
Techno India University

Kolkata, India
samiran.chattopadhyay@jadavpuruniversity.in

Abstract
The “Software Engineering Information Retrieval” (IRSE) track aims
to devise solutions for the automated evaluation of code comments
within amachine learning framework, with labels generated by both
humans and large language models. Within this track, we offered a
total of two tasks this year - i) a comment usefulness prediction task,
and ii) a code quality estimation task.

The comment classification task involves discerning comments
as either useful or not useful. The dataset includes 9,048 pairs of code
comments and surrounding code snippets drawn from open-source
C-based projects on GitHub and an additional dataset generated
by teams employing large language models. In total, 12 teams rep-
resenting various universities have contributed their experiments.
These experiments were assessed through quantitative metrics,
primarily the F1-Score, and qualitative evaluations based on the
features developed, the supervised learning models employed, and
their respective hyper-parameters. It is worth noting that labels gen-
erated by large language models introduce bias into the prediction
model but lead to less over-fitted results.

The sub-track pertaining to code quality estimation was intro-
duced this year. Given a problem description, and a list of large

This work is licensed under a Creative Commons Attribution International
4.0 License.

FIRE ’24, Gandhinagar, India
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1318-7/24/12
https://doi.org/10.1145/3734947.3735667

language model (LLM) generated software code, the objective of
the task is to automatically estimate the functional correctness of
each generated code. For the purpose of evaluation, each problem-
solution pair is then ranked by these estimated probabilities of
functional correctness, the quality of which is then reported with
standard ranking performance measures.

CCS Concepts
• Code Comment Quality; • Transformers; • Large Language
Models; • Code Coherence;

Keywords
Large Language Models, Comment Usefulness Prediction, Code
Quality Estimation

ACM Reference Format:
Soumen Paul, Srijoni Majumdar, Raj Shah, Susmita Das, Madhusudan Ghosh,
Debasis Ganguly, Gul Calikli, Debarshi Sanyal, Partha Pratim Das, Paul D.
Clough, Ayan Bandyopadhyay, and Samiran Chattopadhyay. 2024. Overview
of the “Information Retrieval in Software Engineering” (IRSE) track at Fo-
rum for Information Retrieval 2024. In Proceedings of the 16th Annual Meet-
ing of the Forum for Information Retrieval Evaluation (FIRE ’24), Decem-
ber 12–15, 2024, Gandhinagar, India. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3734947.3735667

1 Introduction
Assessing the quality of comments plays a crucial role in stream-
lining codebases, which, in turn, enhances code maintainability.
Well-structured comments can significantly aid in the readability

18

https://orcid.org/0000-0003-3548-2663
https://orcid.org/0000-0003-3935-4087
https://orcid.org/0009-0008-8120-7068
https://orcid.org/0009-0002-6518-6099
https://orcid.org/0000-0002-8330-2703
https://orcid.org/0000-0003-0050-7138
https://orcid.org/0000-0003-4578-1747
https://orcid.org/0000-0001-8723-5002
https://orcid.org/0000-0003-1435-6051
https://orcid.org/0000-0003-1739-175X
https://orcid.org/0000-0001-7841-843X
https://orcid.org/0000-0002-8929-9605
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3734947.3735667
https://doi.org/10.1145/3734947.3735667

FIRE ’24, December 12–15, 2024, Gandhinagar, India Paul et al.

and comprehension of code, provided they are consistent and infor-
mative. Perceptions of comment quality, particularly regarding the
“usefulness” of the information they convey, are context-dependent
and can vary from one situation to another. Bosu et al. [1] endeav-
ored to evaluate code review comments (from a separate tool) in
terms of their utility in assisting developers in writing better code.
This assessment was based on an extensive survey conducted at
Microsoft. However, there needs to be a similar quality assessment
model specifically tailored to analyze source code comments that
are valuable for routine maintenance tasks.

Majumdar et al. [5] introduced a framework for evaluating com-
ment quality, categorizing comments as “useful”, “partially useful”
or “not useful”. This categorization is determined by whether the
comments enhance the understandability of the surrounding code
snippets. The authors employ a machine learning framework to
assess comments, considering concepts that aid in code compre-
hension and identifying redundancies or inconsistencies in relation
to the code constructs. These concepts were derived through ex-
ploratory studies involving developers from seven companies and
a broader community, using crowd-sourcing as a valuable resource.

In the first iteration of the IRSE track at FIRE 2022, the work
in [5] is extended, and an empirical investigation into comment
quality is conducted with an expanded set of machine learning
techniques and features. In 2023, the IRSE track takes a step fur-
ther by introducing a challenge focused on evaluating the viability
of incorporating silver standard quality labels generated by Large
Language Models (LLMs)[6, 8]. The objective is to assess how this
addition enhances the predictive capabilities of the classification
model[7]. Establishing a gold industry standard for assessing the
usefulness of comments that aid in understanding code, especially
in legacy systems, can be a demanding and time-consuming activity.
Nevertheless, generating a larger dataset becomes crucial to expand
the model’s applicability to various programming languages. This
expansion is being pursued through the utilization of large lan-
guage models. The performance of these models, particularly in
comprehending the relationships between code and comments, can
offer insights into the quality of the generated data and its poten-
tial for scaling the existing classification model. Furthermore, this
approach can be generalized to apply to any classification model
rooted in software metadata.

In addition to the core track of comment usefulness detection,
this year - as a pilot track, we introduced a new sub-track pertaining
to quality estimation of large languagemodel (LLM)-generated code.
More precisely speaking, given a problem description comprised of
a natural language description of a programming task along with
a partially written code, e.g., the function prototype, a common
practice is to employ generative AI models (instruction tuned LLMs
specifically fine-tuned on software code, e.g., CodeLlama, Codestral
etc.) to automatically generate code to solve the given task. Given
a pair comprised of a problem description along with an LLM-
generated solution the objective is to estimate the likelihood that
the code is functionally correct, i.e., it provides a correct solution
to the problem. As analogy, this task is somewhat similar to the
task of query performance prediction (QPP) [2, 4] in IR, where the
objective is to estimate the quality of a retrieved list of documents in
terms of relevance (which is substituted by the notion of ‘functional
correctness’ in the context of our problem).

Table 1: Test data predictions of the submitted systems.

Seed Seed + LLM-augmented
Affiliation P R F1 P R F1

IIT KGP 1 0.8426 0.8576 0.8428 0.8462 0.8582 0.8573
IIT KGP 2 0.8100 0.8600 0.7923 0.8221 0.8241 0.8164
IIT KGP 3 0.7738 0.7233 0.7863 0.7900 0.7802 0.8046
IIT KGP 4 0.8100 0.8103 0.8212 0.8321 0.8121 0.8195
IIT KGP 5 0.7916 0.8446 0.8172 0.7886 0.8470 0.8167
IIT Goa 1 0.7901 0.8043 0.7942 0.7976 0.8017 0.7987
IIT Goa 2 0.8621 0.8750 0.8530 0.8900 0.8940 0.8920
IIT Goa 3 0.8350 0.8520 0.8340 0.8730 0.8710 0.8800
IIT Goa 4 0.7983 0.8040 0.7841 0.7922 0.8086 0.7985
IIT Goa 5 0.8283 0.8040 0.8141 0.8178 0.7906 0.8013
SRM Chennai 1 0.8120 0.7930 0.8000 0.8231 0.8500 0.8320
SRM Chennai 2 0.8143 0.8231 0.8000 0.8213 0.8423 0.8287

2 Tasks and Data Sets
We now describe the task and the dataset details of the two sub-
tracks (ST) for IRSE.

2.1 ST-1: Comment Usefulness Prediction
Comment Classification. : A binary classification task to clas-

sify source code comments as Useful or Not Useful for a given
comment and associated code pair as input. The output is based on
whether the information contained in the comment is relevant, and
would help comprehend the surrounding code, i.e., it is useful.
• Useful Comments have sufficient software development concept
→ Comment is Relevant, and these concepts are not primarily
present in the surrounding code→ Comment is not Redundant.

• Not Useful Comments have sufficient software development con-
cept → Comment is Relevant, and these concepts are mostly
present in the surrounding code→ Comment is Redundant.
Dataset: For the IRSE track, we use a set of 9048 comments (from

Github) with comment text, surrounding code snippets, and a label
that specifies whether the comment is useful or not.

2.2 ST-2: Code Quality Estimation
Task and Evaluation Measures. We scope the code quality es-

timation task to estimate the functional correctness of code snippets
generated via LLMs in response to a prompt specifying a program-
ming task. In particular, we make use of the HumanEval1 dataset
for this task, which constitutes of 161 programming problem de-
scriptions. Given a programming task description 𝑃 , and a list of
𝑚 solutions S𝑃 = {𝑆𝑃1 , . . . , 𝑆

𝑃
𝑚} generated by an LLM, a predic-

tor model 𝜃 should estimate a likelihood score of the functional
correctness of each solution, i.e., 𝜃 : 𝑃,S ↦→ R𝑚 .

An effective model should estimate a high likelihood value for a
functionally correct solution (the ground-truth being computed via
a set of test-cases), which means that a standard evaluation metric
for a ranking task may also be applied here - the only difference
being the notion of ‘relevance’ replaced with that of ‘functional
correctness’ (𝑃 being analogous to a query and S𝑃 to that of a set of
top-𝑚 retrieved documents). Motivated by this analogy, we report

1https://huggingface.co/datasets/openai/openai_humaneval

19

https://huggingface.co/datasets/openai/openai_humaneval

Overview of the IRSE track at FIRE 2024 FIRE ’24, December 12–15, 2024, Gandhinagar, India

Figure 1: Prompt used by the participating team for the code
quality estimation task via GPT-3.5 0-shot inference.

nDCG@𝑚 (in our setting,𝑚 = 10, i.e., 10 solutions are generated
for each problem) as an evaluation measure.

Additionally, we also report a global ranking effectiveness mea-
sure to compare across the performance over all problem tasks.
Specifically, we use the predicted likelihoods to rank all the 𝑃, 𝑆𝑃

𝑖
pairs for each 𝑃 ∈ P (the set of all problem tasks in a benchmark),
and compute the nDCG value of this set, i.e., nDCG@(𝑚 |P |).

To differentiate the two measures, we call the former local nDCG
(l-nDCG) and the latter global nDCG (g-nDCG). More precisely
speaking, to calculate l-nDCG, we rank 𝑃, 𝑆𝑃

𝑖
pairs for each problem

𝑃 , calculate nDCG and then calculate the average of nDCG values
for all 𝑃 ∈ P (i.e.,

∑ | P |
𝑗=1 (𝑛𝐷𝐶𝐺

𝑗/|P|)), whereas to calculate g-
nDCG, we rank all 𝑚 |P | pairs of 𝑃, 𝑆𝑃

𝑖
for all 𝑃 ∈ P and then

calculate the nDCG value.

3 Participation and Evaluation
3.1 ST-1: Comment Usefulness Prediction
IRSE 2024 received a total of 12 experiments from 12 teams for
the two tasks. As this track is related to software maintenance, we
received participation from several research labs of educational
institutes.

The various teams with the details of their submissions are char-
acterized in Table 1. The dataset provided was balanced and had
4015 useful comments and 4033 not useful comments. The par-
ticipants used various pre-trained embeddings such as one hot
encoding, TF-IDF vectorizer, word2vec, or context-aware like ELM
or BERT to generate vectors for the word sequence. Teams have
used several machine learning models like support vector machine,
logistic regression, and deep-learning based models such as BERT,
Recurrent neural network, and so on.

Some participants were observed to achieve a slight increase
in test accuracy when the model was trained with the addition of
an LLM-generated dataset. However, in many cases, the accuracy
reduces (2%-4%). This behavior is due to the incorporation of silver
standard data that reduces the over-fitting of the models.

3.2 ST-2: Code Quality Estimation
A team from IIT-KGP participated in this task. Similar to themethod-
ology proposed in [9], they employed GPT-3.5 Turbo zero-shot
inference on a problem description and a solution pair to estimate
how likely is the solution to be functionally correct. They submitted
three runs with three different temperature (𝜏) settings for the GPT
decoder (specifically, 𝜏 = 0.7, 𝜏 = 0.8 and 𝜏 = 0.9). The prompt used
by the participating team is shown in Figure 1.

Evaluation Metrics
Participant Method l-nDCG g-nDCG

IIT KGP GPT-3.5 (𝜏 = 0.7) 0.6595 0.9108
IIT KGP GPT-3.5 (𝜏 = 0.8) 0.6616 0.9109
IIT KGP GPT-3.5 (𝜏 = 0.9) 0.6602 0.9107
CodeBERT-CLS CodeBERT CLS 0.6401 0.9036

Table 2: Evaluation of the submitted runs for three different
temperature settings and the in-house baseline of CodeBERT-
based embedding similarities.

To set a reference point for comparison purposes, we employed
a relatively simple heuristic baseline which given a problem de-
scription and a list of solutions measures the variance across the
semantic similarities between each solution pair. For measuring
the semantic similarity between a pairs of code solutions, we use
the CLS embeddings obtained from CodeBERT [3], a BERT model
fine-tuned on large volumes of source code data.

The assumption of using the variance across generated code
solutions as an estimate is that topical diversity of the solutions
may indicate lack of consistency in the solutions being generated,
which could be be associated with a risk of the solutions being
incorrect. Making this assumption is appropriate since HumanEval
dataset contains the method signature for each problem. Although
there can be different ways to provide solution 𝑆 (i.e., implement
code) for a problem 𝑃 (e.g., by using different data structures or
implementing a recursive algorithm instead of an iterative one, the
method signature limits the way one can provide a solution 𝑆 for a
given problem 𝑃 .

Table 2 shows that the GPT-based 0-shot inference produced
better results than the in-house heuristic-based baseline of estimat-
ing code quality as a measure of the topical diversity between the
LLM-generated solutions.

4 Conclusions
The first sub-task of the IRSE track investigated various approaches
for automated comment quality evaluation. The quality of com-
ments were evaluated based on whether they contain information
that can aid in understanding the surrounding code. A total of 12
teams participated that used various types of machine learningmod-
els, embedding spaces, features, and different LLMs to generate data.
The best F1-Score of 0.853 was reported by a team that achieved an
improved F1-score of 0.892 while adding the LLM-generated data.
The LLM-generated labels reduce the overfitting of the classifica-
tion models and also improve the F1-score when the combined data
from all the participants were used to augment the existing data
with gold standard labels from the industry practitioners.

The second sub-task of the IRSE track evaluated the effectiveness
of predictive models in estimating the functional correctness of
LLM-generated code. We observed that an LLM-based solution
towards code quality estimation works better than an embedding-
based baseline.

References
[1] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics

of useful code reviews: An empirical study at microsoft (Working Conference on

20

FIRE ’24, December 12–15, 2024, Gandhinagar, India Paul et al.

Mining Software Repositories). IEEE, 146–156.
[2] Suchana Datta, Debasis Ganguly, Derek Greene, and Mandar Mitra. 2022. Deep-

QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Query
Performance Prediction. In WSDM. ACM, 201–209.

[3] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A
Pre-Trained Model for Programming and Natural Languages. CoRR abs/2002.08155
(2020). arXiv:2002.08155 https://arxiv.org/abs/2002.08155

[4] Debasis Ganguly, Suchana Datta, Mandar Mitra, and Derek Greene. 2022. An
Analysis of Variations in the Effectiveness of Query Performance Prediction. In
ECIR (1) (Lecture Notes in Computer Science, Vol. 13185). Springer, 215–229.

[5] Srijoni Majumdar, Ayush Bansal, Partha Pratim Das, Paul D Clough, Kausik Datta,
and Soumya Kanti Ghosh. 2022. Automated evaluation of comments to aid software
maintenance. Journal of Software: Evolution and Process 34, 7 (2022), e2463.

[6] Srijoni Majumdar, Soumen Paul, Debjyoti Paul, Ayan Bandyopadhyay, Samiran
Chattopadhyay, Partha Pratim Das, Paul D Clough, and Prasenjit Majumder. 2023.
Generative ai for software metadata: Overview of the information retrieval in
software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023).

[7] Soumen Paul. 2022. Source Code Comment Classification using Logistic Regression
and Support Vector Machine.. In FIRE (Working Notes). 53–59.

[8] Soumen Paul, Srijoni Majumdar, Ayan Bandyopadhyay, Bhargav Dave, Samiran
Chattopadhyay, Partha Das, Paul D Clough, and Prasenjit Majumder. 2024. Ef-
ficiency of Large Language Models to scale up Ground Truth: Overview of the
IRSE Track at Forum for Information Retrieval 2023. In Proceedings of the 15th
Annual Meeting of the Forum for Information Retrieval Evaluation (Panjim, India)
(FIRE ’23). Association for Computing Machinery, New York, NY, USA, 16–18.
doi:10.1145/3632754.3633480

[9] Terry Yue Zhuo. 2024. ICE-Score: Instructing Large Language Models to Evaluate
Code. arXiv:2304.14317 [cs.AI]

21

https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://doi.org/10.1145/3632754.3633480
https://arxiv.org/abs/2304.14317

	Abstract
	1 Introduction
	2 Tasks and Data Sets
	2.1 ST-1: Comment Usefulness Prediction
	2.2 ST-2: Code Quality Estimation

	3 Participation and Evaluation
	3.1 ST-1: Comment Usefulness Prediction
	3.2 ST-2: Code Quality Estimation

	4 Conclusions
	References

