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Simple Summary: Prostate cancer remains one of the most prevalent cancers affecting

men globally, making early detection critical for improved treatment outcomes. Traditional

imaging techniques often face challenges in clearly distinguishing between normal and

cancerous tissues. In this study, we employed artificial intelligence and machine learning to

analyze prostate tissue images acquired from ultrasound and a specialized method known

as shear-wave elastography (SWE). By exploring patterns and textures in these images, we

trained machine learning models to accurately differentiate between healthy and malignant

tissues. Our results demonstrated that machine learning models, particularly Support

Vector Machines, Random Forest, and Naïve Bayes, excelled in detecting prostate cancer.

This research indicates that advanced image analysis combined with artificial intelligence

holds the potential to enhance the diagnosis of prostate cancer, ultimately leading to quicker

and more precise assessments for both patients and healthcare providers.

Abstract: Introduction: Artificial intelligence (AI) is increasingly utilized for texture anal-

ysis and the development of machine learning (ML) techniques to enhance diagnostic

accuracy. ML algorithms are trained to differentiate between normal and malignant

conditions based on provided data. Texture feature analysis, including first-order and

second-order features, is a critical step in ML development. This study aimed to evalu-

ate quantitative texture features of normal and prostate cancer tissues identified through

ultrasound B-mode and shear-wave elastography (SWE) imaging and to develop and as-

sess ML models for predicting and classifying normal versus malignant prostate tissues.

Methodology: First-order and second-order texture features were extracted from B-mode and

SWE imaging, including four reconstructed regions of interest (ROIs) from SWE images for

normal and malignant tissues. A total of 94 texture features were derived, including features

for intensity, Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level Dependence Length

Matrix (GLDLM), Gray-Level Run Length Matrix (GLRLM), and Gray-Level Size Zone Matrix

(GLSZM). Five ML models were developed and evaluated using 5-fold cross-validation to

predict normal and malignant tissues. Results: Data from 62 patients were analyzed. All

ROIs, except those derived from B-mode imaging, exhibited statistically significant differences

in features between normal and malignant tissues. Among the developed models, Support

Vector Machines (SVM), Random Forest (RF), and Naive Bayes (NB) demonstrated the highest

performance across all ROIs. These models consistently achieved strong predictive accuracy

for classifying normal versus malignant tissues. Gray Pure SWE and Gray Reconstructed
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images Provided the highest sensitivity and specificity in PCa prediction by 82%, 90%, and

98%, 96%, respectively. Conclusions: Texture analysis with machine learning on SWE-US and

reconstructed images effectively differentiates malignant from benign prostate lesions, with

features like contrast, entropy, and correlation playing a key role. Random Forest, SVM, and

Naïve Bayes showed the highest classification performance, while grayscale reconstructions

(GPSWE and GRRI) enhanced detection accuracy.

Keywords: machine learning; texture analysis; prostate cancer; ultrasound;

shear-wave elastography

1. Introduction

Prostate cancer (PCa) is the most frequently diagnosed cancer in men worldwide.

In England, it ranks as the most common cancer among men and is the second leading

cause of cancer-related deaths [1]. In 2024 [2] prostate cancer is projected to remain the

most common type of cancer diagnosed in men and is also anticipated to be the second

most frequent cause of cancer mortality. PCa diagnosis typically involves a combination of

screening, histopathology, and medical imaging techniques.

The advancement of medical imaging techniques over the years has significantly en-

hanced the quality of PCa diagnoses. Ultrasound (US) and magnetic resonance imaging

(MRI) are the primary imaging modalities used in PCa detection. Although MRI offers greater

sensitivity than the US, it comes at a considerably higher cost and is not suitable for all patients,

particularly those with pacemakers, ferromagnetic metals, or those who suffer from claustro-

phobia. B-mode ultrasound is the fundamental parameter for assessing lesions’ location, size,

and shape. However, the identification of lesions in b-mode images depends on echogenicity,

meaning that some PCa lesions may appear isoechoic, displaying a brightness similar to that

of the prostate gland [3]. Another ultrasound technique frequently employed in PCa diagnosis

is shear-wave elastography (SWE). This quantitative method evaluates shear-wave velocity

through the application of an acoustic radiation force impulse (ARFI) to the tissue, which

estimates Young’s modulus of the tissue [4]. The results are presented as a superimposed

color map overlaid on each pixel of the grayscale ultrasound image [5]. SWE demonstrates

higher sensitivity and specificity in detecting PCa compared to other ultrasound modalities [6].

However, it does face limitations in detection depth, which restricts its ability to measure

deeper regions of the prostate [7]. Additionally, the accuracy of SWE results can be adversely

affected by the presence of prostate stones or calcifications [8,9].

Recently, artificial intelligence (AI) has been increasingly utilized for texture anal-

ysis and the development of machine learning (ML) techniques to enhance diagnostic

accuracy. Machine learning is a subset of AI that enables computer systems to learn pat-

terns from data and make predictions or decisions without explicit programming. ML

algorithms are trained to differentiate between normal and malignant conditions based

on provided data [10]. In the realm of ultrasound imaging, the primary applications of

machine learning include classification and computer-aided diagnosis, regression analysis,

and tissue segmentation. Furthermore, ML is also employed in image registration and

content retrieval [11]. By leveraging mathematical models, ML enhances the ability to

analyze complex imaging features, improving diagnostic precision and reducing human

observer variability. Texture analysis serves as a classification and segmentation tool within

machine learning, providing a quantitative assessment of pixel metrics that surpass human

visual capabilities [12]. The process of texture analysis involves several key steps: image

acquisition, image segmentation, and feature extraction [13].
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Image acquisition is a critical stage in texture analysis, as it involves selecting the

appropriate imaging modality and choosing images based on specific criteria that affect the

quality and relevance of the extracted texture features. Image segmentation is the process

of identifying the region of interest (ROI) in medical imaging. Selecting the ROI is a vital

step that influences the quantitative collection of texture data and the results of machine

learning predictions. Therefore, adhering to specific criteria when selecting the ROI for

segmentation ensures targeted and meaningful analysis, thereby enhancing the robustness

and reliability of the texture features extracted for machine learning applications.

Texture features can be categorized as either semantic or agnostic. Semantic features

are linked to morphological aspects such as shape and size, while agnostic features pertain

to intensity values, including minimum, maximum, and mean. Agnostic features are further

divided into first-order such as mean, variance, skewness, kurtosis, and entropy and second-

order, which include the gray-level co-occurrence matrix (GLCM), gray-level Run length

matrix (GLRLM), gray-level size zone matrix (GLSZM), and gray-level distance zone matrix

(GLDZM) [12±14]. In the field of ultrasound and SWE, the application of texture analysis

and machine learning has demonstrated promising results across various examinations.

Morphological and first-order texture analysis features have been extracted from B-mode

breast images to differentiate between different types of breast lesions effectively [15].

Quantitative ultrasound spectral analysis of B-mode breast ultrasound images utilized

GLCM texture features to distinguish between malignant and normal lesions, yielding sta-

tistically significant differences across several spectral parameters [16]. Xiao et al. (2014) [17]

developed a reconstruction process for SWE ultrasound images of the breast, which was

assessed for the quantity of texture features. Their findings indicated a high performance

in differentiating between malignant and normal conditions.

Additionally, first-order and second-order texture features were extracted from breast

B-mode and SWE ultrasound images, and no statistically significant differences among all

features [18]. For thyroid gland assessments, GLCM texture features derived from B-mode

ultrasound images were compared with real-time elastography results [19]. In this context,

purified SWE ultrasound ROIs were generated by subtracting shear-wave pixels from the

B-mode thyroid gland images, facilitating enhanced extraction of GLCM texture features.

The results showed a pronounced efficacy of the purified SWE images in distinguishing

malignant from normal lesions [20]. Machine learning models, including logistic regression,

naive Bayes, quadratic discriminant analysis, and support vector machines (SVM), have also

been employed to differentiate between renal cell carcinoma and angiomyolipoma based

on ultrasound shear-wave velocity [21]. GLCM texture features from ultrasound images of

salivary glands were evaluated using machine learning models such as K-nearest neighbors

(KNN), naive Bayes, artificial neural networks (ANN), and SVM to categorize malignant

and normal conditions [22]. Prostate cancer prediction through machine learning models

in ultrasound and SWE has been executed by utilizing elasticity measured in Kilopascal

(kPa) as extracted features [23]. Wildeboer et al. (2020) [24] harnessed machine learning

models utilizing radiomics features from ultrasound B-mode, SWE, and dynamic contrast-

enhanced ultrasound to assess machine learning’s potential in this domain. In the study

of Wang et al. (2022) [25], machine learning models were evaluated based on radiomics

features extracted from transrectal ultrasound video clips of prostate cancer.

B-mode ultrasound and SWE are commonly used imaging modalities for PCa detec-

tion, but they have notable limitations. SWE, for instance, is influenced by factors such

as prostate gland enlargement, lesion depth, and machine dependency, which can affect

its diagnostic performance. Additionally, conventional imaging may not fully capture the

textural characteristics differentiating malignant from normal prostate tissue. To address

these challenges, this study intends to evaluate quantitative texture features of normal and
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prostate cancer tissues as identified through ultrasound B-mode and SWE imaging with

reconstructed images. By extracting these texture features, we will develop and assess

machine learning models to predict and classify normal versus malignant prostate tissue to

enhance non-invasive diagnostic accuracy.

2. Materials and Methods

2.1. Patients

The East of Scotland Ethical Service approved this study, a protocol-driven study

with prior ethical approval (REC ref GTCAL11197). A prospective study was approved by

ethical and institutional review boards to evaluate the diagnostic accuracy of transrectal

SWE ultrasound in detecting prostate cancer. Between November 2013 and August 2017,

a total of 125 consecutive participants with clinically localized PCa, who opted for and

were scheduled to undergo laparoscopic radical prostatectomy (LRP), were enrolled.

Transrectal ultrasound shear-wave (TRUS) SWE examinations were performed by

a urologist with over 10 years of experience on the day of the LRP, using an endocavity

Aixplorer® ultrasound transducer inserted through the rectal wall, ensuring focus on the

prostate while minimizing pressure on the transducer. Prostate sections were examined by

a uropathologist with over 20 years of experience who was blinded to the SWE imaging re-

sults. Pathological findings, including the disease stage and margin status, were compared

with the SWE imaging outcomes.

A total of 64 patients were excluded from the texture analysis based on specific criteria

outlined in Table 1. This exclusion was due to several factors: some patients lacked results

for radical prostatectomy (RP), others had no images that captured both true positive and

true negative correlations with the RP result, and a number had lesions smaller than 5 mm.

Patients were excluded if they did not have both true negative and true positive SWE

results to ensure a balanced dataset and to avoid bias. Quantitative texture features are

extracted exclusively from images with a radical prostatectomy reference size of at least

5 mm, owing to the limitations of SWE in detecting small lesions [8].

Table 1. Exclusion criteria.

Criteria Number of Excluded Patients

Small lesion < 5 mm 19

No laparoscopic radical prostatectomy results 13

No true positive SWE result 12

No true Negative SWE result 12

No SWE detection 7

2.2. Image Reconstructions

From 62 patients, 50 patients provide true positive and true negative images. Of these

50, 5 images also with false positive and false negative, and 12 cases have only false positive

and false negative images. Two ROIs were selected, first from SWE images, and based on

the result of the RP image they were already approved in the image by a urologist, and the

second ROI was automatically duplicated in ultrasound b-mode image by using MATLAB

code (MATLAB R2023b) to extract the image of normal tissue and PCa tissue Figure 1. This

selection is based on the location of the lesion in the radical prostatectomy image Figure 2. In

all images, the ROI diameter was fixed at 60 pixels. Binary masks are first created for each

ROI to isolate and analyze specific ROIs within the composite SWE and b-mode image. The

binary masks allow for selective extraction of each ROI by retaining only the pixel values

within the region of interest while setting all other pixels to zero. To transfer these ROIs

specifically to a B-mode format, the Binary singleton expansion function (bsxfun) is used to
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apply each binary mask across all channels of the ultrasound image [26]. This process ensures

efficient extraction of ROI from both SWE and b-mode, where only the pixels inside each

ROI retain their original values, while pixels outside the ROIs are zeroed. The b-mode ROI is

then converted to grayscale for further analysis on a uniform grayscale image. This approach

enables targeted analysis of the selected ROIs by isolating them from the surrounding image

regions, ensuring focused evaluation of specific areas within the composite image.
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Figure 2. Visualization of prostate cancer lesion in the SWE and B-mode ultrasound (Right side),

confirmed by radical prostatectomy image (Left side).

The SWE ROI is purified to create a pure SWE ROI by subtracting shear-wave pixels

from the B-mode to obtain pure-SWE (PSWE) ROI. This is achieved by combining the

SWE image and the transferred ROIs to create a composite SWE image. This composite

image is generated by adding the ROI of masked version of the SWE image, SWE ROI

after using (bsxfun), and the ROI of the b-mode, allowing for a comprehensive view of

the selected ROIs alongside the SWE image. Subsequently, the B-mode ROI is subtracted

from the composite image to isolate the SWE content, resulting in PSWE ROI [20] Figure 3.

Then this is converted from 3-channel (Red, Green, Blue) RGB color to a single grayscale
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intensity value to obtain gray-pure-SWE ROI (GPSWE). A custom colormap is created to

show specific areas in an image using a range of colors from red to blue. This starts by

choosing 5500 colors for each transition to allow for smooth changes between colors, which

keeps details clear in interest. Each pixel in the selected area is matched to the closest color

from this colormap by using a Euclidean distance [17]. This method finds the color that

best matches the pixel’s RGB values, reducing the color range in that area to a gradient of

red, yellow, green, and blue to reconstruct the PSWE ROI into a new ROI, and it is called RI

ROI. The RI ROI is then converted into a gray image to obtain a gray reconstructed (GRRI)

ROI. Consequently, six ROIs are extracted from normal and malignant prostate areas, and

their data are saved for texture analysis processing, as is shown in Figure 4.
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2.3. Texture Analysis

Ninety-four texture analysis features from the first order and second order were

selected based on the study [14] using MATLAB (R2023b) codes from all ROIs, and they

are mentioned in Table 2. The features are calculated at specific angles (0◦,45◦,90◦,135◦)

which represent the orientations used to evaluate certain properties or characteristics [27].

The MATLAB code is written to compute texture features; for instance, the Contrast feature

is computed Contrast based on the GLCM matrix function corresponds to the following

mathematical equation Equation (1) [28]

contrast = ∑ (i, j) 2q(i, j) (1)

where q(i, j) is the pixel at location (i, j).

Table 2. First and second-order features used for assessing the quantitative texture analysis of the

prostate ultrasound and SWE images.

Classification Categories Features

First-order Intensity

Minimum Intensity

Maximum Intensity

Mean Intensity

Median Intensity

Range Intensity

Standard deviation Intensity

Percentile 10

Percentile 90

Skewness Value

Kurtosis Value

Second-order

GLCM

Contrast (0◦,45◦,90◦,135◦)

Energy (0◦,45◦,90◦,135◦)

Homogeneity (0◦,45◦,90◦,135◦)

Dissimilarity

Entropy

Sum of Squares

Variance

Inverse Difference Normalized

Maximum Probability

Sum Average

Sum Entropy

Sum Variance

Difference Entropy

Difference Variance

GLRLM

Short Run Emphasis (0◦,45◦,90◦,135◦)

Long Run Emphasis (0◦,45◦,90◦,135◦)

Gray Level Non-uniformity (0◦,45◦,90◦,135◦)

Short Run Low Gray Level Emphasis (0◦,45◦,90◦,135◦)

High Gray Level Run Emphasis (0◦,45◦,90◦,135◦)

Low Gray Level Run Emphasis (0◦,45◦,90◦,135◦)

Run Percentage (0◦,45◦,90◦,135◦)

Run Length Non-Uniformity
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Table 2. Cont.

Classification Categories Features

Second-order

GLDZM

Zone Percentage (0◦,45◦,90◦,135◦)

Gray Level Non-uniformity (0◦,45◦,90◦,135◦)

Zone Size Non-uniformity (0◦,45◦,90◦,135◦)

Zone Size Variance

Zone Entropy

Low Gray Level Zone Emphasis (0◦,45◦,90◦,135◦)

High Gray Level Zone Emphasis (0◦,45◦,90◦,135◦)

Gray Level Non-Uniformity Normalized (0◦,45◦,90◦,135◦)

Zone Size Non-Uniformity Normalized

GLSZM

Size Zone Non-uniformity

Zone Percentage

Gray Level Non-uniformity

Run Length Non-uniformity

Run Percentage

GLCM: Gray-Level Co-Occurrence Matrix, GLDLM: Gray-Level Dependence Length Matrix, GLRLM: Gray-Level
Run Length Matrix, GLSZM: Gray-Level Size Zone Matrix.

All data are saved and labeled for begin and malignant as 0 and 1, respectively. The

feature data were normalized using Z-score normalization, which involved calculating the

mean and standard deviation of the features. This process cantered data by subtracting the

meaning from each feature value and scaled it to have a standard deviation of one, ensuring

that all features contributed equally to subsequent analyses [29]. Following normalization,

statistical significance was obtained by using a t-test to provide the p-values and evaluate

the differences between normal and malignant cases. The resulting p-values from these

tests are compared against a threshold of 0.05 to determine significant features.

2.4. Machine Learning Models

Feature selection is one of the important steps in ML modeling. Due to the large

number of features, feature selection is useful for adopting pertinent features and removing

unnecessary or unrelated features. By using MATLAB codes (MATLAB R2023b) Least

absolute shrinkage and selection operator (LASSO) [30] was used on the features with

statistically significant differences between normal and malignant, and it helps mitigate

overfitting by penalizing the absolute size of the coefficients [31]. The range of lambda

values was defined, and cross-validation was utilized to identify the optimal lambda

that minimizes prediction error while controlling the number of features included in the

model. Consequently, the most significant features that contributed to the classification

task enhancing the robustness and interpretability of our model were selected.

A systematic methodology was implemented to evaluate the performance of five different

machine learning models: random forest (RF), KNN, logistic regression (LR), SVM, and naive

bayes (NB), These models were selected based on their proven effectiveness in medical imaging

and classification tasks [32±34], Two complementary validation techniques were employed

to evaluate the effectiveness of the machine learning models. Initially, a hold-out validation

method was applied, which involved designating 30% of the dataset as a separate test set, while

the remaining 70% was used for training purposes. In addition, on a classification task on the

selected features. Five k-fold cross-validation was employed, which allowed us to divide the

dataset into training and testing subsets for each fold. In this approach, the entire dataset is

partitioned into five distinct subsets. In each iteration, one of the subsets is utilized as the test

set, while the remaining four subsets serve as the training set. This procedure is repeated for
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all five subsets, ensuring that each one is tested in turn [35]. The hyperparameters for each

classifier were selected based on relevant research in the field of medical imaging and machine

learning [36,37]. The chosen values were derived from the literature that has successfully

optimized these parameters for similar classification tasks, ensuring their suitability for our

dataset and problem area. For each model, the performance on the testing subset, calculating

the means of the five folds with the standard deviation of metrics such as accuracy, sensitivity,

specificity, and area under the receiver operating characteristic curve (AUC), was achieved. In

addition, confusion matrices were provided to derive these metrics, ensuring a comprehensive

evaluation of each model’s classification performance.

2.5. Prediction Normal and Malignant Prostate Tissue

In each ROI, except for the b-mode ultrasound, a distinct machine learning model was

utilized. Specifically, the models employed for original SWE, PSWE, and GPSWE were RF

and for RI ROI was SVM, and for GRRI was NB. Notably, within the PSWE and GPSWE

ROI, the KNN, SVM, and NB models exhibited the highest levels of accuracy, sensitivity,

and specificity. However, the RF model was ultimately selected to mitigate the risk of

overfitting during the prediction process.

For the prediction, MATLAB (R2023b) was used to select and reconstruct the ROI from

the ultrasound images. Relevant features were then extracted from the newly selected ROI

and saved for further analysis. In the next step, to ensure compatibility with the pre-trained

model, the saved feature data were loaded, referencing the feature names used during

model training. Common features between the new dataset and the training data were

identified and aligned, ensuring that only features present in both datasets were utilized

for prediction. If no common features were identified, an error was generated.

Once the features from the new data set were aligned with the training data, they

were appropriately formatted for input into the trained model. These aligned features were

then processed through the model to generate predictions. The trained model classified

the new data into predefined categories, such as ªnormalº or ªmalignantº. Ultimately, the

classification results were displayed, providing predicted labels for the new samples based

on the trained model, Figure 5.
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3. Results

A study was conducted involving 62 patients diagnosed with prostate cancer, where six

ROIs were extracted from both normal and malignant prostate tissue. This led to the collection

of 50 images representing normal tissue and another 50 for malignant tissue. The general

characteristics of the patient cohort are detailed in Table 3. In the analysis of texture features,

statistical evaluation via the t-test revealed no significant differences between normal and

malignant tissues in the Gray ROI. However, significant discrepancies were observed in the

SWE ROIs, with a total of 17, 27, 41,26, and 37 features demonstrating statistically significant

differences between normal and malignant cases when considering the original SWE ROI,

PSWE ROI, GPSWE ROI, RI ROI, and GRRI ROI, respectively.

Table 3. Selected patient characteristics.

No. Pts 62

Mean ± SD age/median 68 ± 5.5/67

Mean ± SD PSA/median 12 ± 8/9

No. Gleason Score

3 + 3 0

3 + 4 30

4 + 3 12

3 + 5 7

4 + 4 1

4 + 5 12

This investigation explores the correlation between Prostate-Specific Antigen (PSA)

levels and texture features by employing one-way ANOVA. PSA levels were classified into

three distinct clinical categories: normal (≤4 ng/mL), gray zone (4±8 ng/mL), and high

risk (≥8 ng/mL) [38]. The objective of the statistical analysis was to assess whether the

distribution of texture feature values displayed significant differences across these PSA

classifications when utilizing various imaging modalities.

The results demonstrated that in Gray images, only one featureÐminimum

intensityÐwas found to be statistically significant, with a p-value of 0.0408. In con-

trast, Original SWE images did not present any significant texture features out of

the 94 analyzed. Within the PSWE images, two features were statistically significant:

Entropy (p-value = 0.0320) and Low Gray Level Run Emphasis 90 (p-value = 0.0448).

For GPSWE images, one feature, standard deviation of intensity, exhibited statistical

significance (p-value = 0.0204). A further analysis of RI images revealed five significant

features related to PSA levels, including Energy 0 and High Gray Level Zone Emphasis

across four angles (0◦ , 45◦ , 90◦ , and 135◦), with p-values ranging from 0.0149 to 0.0430.

Lastly, GRRI images yielded the most significant findings, particularly about stan-

dard deviation intensity and features 50±53 (High Gray Level Run Emphasis) and

features 81±84 (High Gray Level Zone Emphasis), all revealing p-values below 0.03.

These results indicate that specific texture featuresÐespecially those associated with

gray-level emphasis and run length patternsÐexhibit significant variability with PSA

levels, suggesting that their relevance is significantly influenced by the specific image

reconstruction technique used.

Simultaneously, the relationship between the Gleason Score (GS) and radiomic features

was assessed using a one-way ANOVA, aiming to identify which features demonstrate

significant fluctuations across various GS categories, which are stratified into grades 6 to 10.

The findings revealed variability in the number and types of significant features contingent
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on the image reconstruction method employed. For Gray images, no statistically significant

features were identified. Conversely, Original SWE images showcased nine significant

features, primarily linked to contrast, entropy, and zone-based metrics. PSWE images

exhibited the highest number of significant features, totaling 23, while GPSWE images

revealed 21. Both RI and GRRI images identified 19 significant features each Table S1.

Overall, these findings highlight a strong association between GS and a diverse range of

radiomic features, particularly those associated with texture complexity and gray-level

distribution, emphasizing notable disparities across different imaging modalities.

Tables S2±S4 summarize the features that exhibited significant differences between nor-

mal and malignant tissues across the original SWE ROI, pure SWE ROI, and GPSWE ROIs.,

respectively. Each table includes features that are classified under various classifications.

Tables S5 and S6 focus on the features that showed a notably high level of significance be-

tween normal and malignant tissues in the RI ROI and GRRI ROI, specifically highlighting

features that were excluded from the GLSZM classification.

In the context of machine learning model development, the evaluation of model

performance is crucial for ensuring reliability and accuracy. The cross-validation error

and the results from LASSO regression are illustrated in Figure 6. This figure depicts the

LASSO regression coefficient paths corresponding to the selected features, with feature

names associated with non-zero coefficients displayed alongside each coefficient path.

The features included in the model were meticulously chosen based on cross-validation

techniques aimed at minimizing the mean squared error, thereby identifying the most

significant predictors for the model. The specific features selected from each ROI are

detailed in Table 4. Additionally, the evaluation results of the machine learning model are

summarized in Figure 7.

Table 5 includes key metrics such as Sensitivity, Specificity, and Accuracy. In compar-

ing the various models, confusion matrices serve to illustrate the accuracy of each model in

predicting both positive and negative cases of prostate tissue. Furthermore, the receiver op-

erating characteristic (ROC) curves provide a visual representation of model performance,

where higher AUC values are indicative of superior discriminatory capabilities, as shown

in Figure 7.
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Table 4. Feature selected by LASSO for each ROI.

ROIs Features Selected

Original SWE

Homogeneity 90◦

Long Run Emphasis 45◦

Long Run Emphasis 135◦

PSWE

Long Run Emphasis 0◦

Long Run Emphasis 45◦

Long Run Emphasis 90◦

GPSWE
Homogeneity 0◦

Variance

RI

Percentile 10

Contrast 90◦

Dissimilarity

Long Run Emphasis 0◦

GRRI

Median Intensity

Contrast 0◦

Inverse Difference Normalized
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Figure 7. Performance Evaluation of Machine Learning Models for Classification. This figure includes

confusion matrices for each model, showcasing their classification accuracy on prostate tissue within the

RI ROI. The confusion matrices appear in the first row and the first two images of the second row (from

the right). A comparison of model performance is visualized in the ROC curve (last image in the second

row), illustrating the discriminatory ability of each model across different classification thresholds.

Original SWE: the original image of the SWE, PSWE: is the purified image of the

original SWE, GPSWE: is the gray image of the PSWE. RI: is the reconstructed image of the

original SWE. GRRI: is the gray image of the RI.

The predictions were applied to the same data used to extract quantitative features

for true positives and true negatives. The performance metrics of the machine learning

model in predicting normal and malignant prostate cancer cases for all images are pre-

sented in Table 6, along with the ROC curve shown in Figure 8. Tables 7 and 8 show the

performance metrics of the machine learning model in predicting normal and malignant

prostate cancer cases for images with true positive and negative and false positive and

negative, respectively.
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Table 5. Evaluation Metrics for the Machine Learning Model for the ROIs.

ROI Model Sensitivity % ± SD Specificity % ± SD Accuracy % ± SD

Original SWE

Random Forest 98.75 ± 2.80 97.65 ± 5.26 97.78 ± 3.31

KNN 100.00 ± 0.00 97.65 ± 5.26 98.52 ± 3.31

Logistic Regression 0.00 ± 0.00 100.00 ± 0.00 50.00 ± 8.49

SVM 100.00 ± 0.00 97.65 ± 5.26 98.52 ± 3.31

Naive Bayes 100.00 ± 0.00 97.65 ± 5.26 98.52 ± 3.31

PSWE

Random Forest 98.75 ± 2.80 97.65 ± 5.26 97.78 ± 3.31

KNN 100.00 ± 0.00 97.65 ± 5.26 98.52 ± 3.31

Logistic Regression 0.00 ± 0.00 100.00 ± 0.00 50.00 ± 8.49

SVM 100.00 ± 0.00 97.65 ± 5.26 98.52 ± 3.31

Naive Bayes 100.00 ± 0.00 97.65 ± 5.26 98.52 ± 3.31

GPSWE

Random Forest 85.53 ± 13.23 71.59 ± 11.07 77.58 ± 6.03

KNN 85.53 ± 13.23 68.03 ± 6.84 76.10 ± 6.82

Logistic Regression 0.00 ± 0.00 100.00 ± 0.00 50.06 ± 9.68

SVM 82.33 ± 14.74 73.02 ± 10.33 76.84 ± 6.75

Naive Bayes 83.99 ± 11.46 71.68 ± 10.70 76.84 ± 6.75

RI

Random Forest 73.80 ± 13.95 91.16 ± 6.01 82.14 ± 8.76

KNN 76.82 ± 12.50 68.69 ± 15.74 72.42 ± 8.40

Logistic Regression 52.31 ± 50.27 55.38 ± 51.43 50.88 ± 10.42

SVM 83.08 ± 16.69 92.49 ± 5.48 87.41 ± 10.99

Naive Bayes 76.56 ± 10.13 95.59 ± 6.78 85.87 ± 6.55

GRRI

Random Forest 75.30 ± 8.83 69.89 ± 13.97 73.16 ± 10.19

KNN 69.92 ± 7.77 71.95 ± 9.90 70.88 ± 6.68

Logistic Regression 0.00 ± 0.00 100.00 ± 0.00 50.06 ± 10.36

SVM 80.88 ± 7.29 67.30 ± 10.91 74.64 ± 7.05

Naive Bayes 82.20 ± 8.03 67.01 ± 13.40 75.38 ± 9.25

Table 6. Performance metrics of the prostate cancer detection model for all selected images.

Image TP TN FP FN Sensitivity Specificity Accuracy

SWE Image 18 24 43 49 26.9% 35.8% 31.3%

Pure SWE image 17 26 41 50 25.4% 38.8% 32.1%

Gray Pure SWE 48 49 18 19 71.6% 73.1% 72.4%

Reconstructed image 16 25 42 51 23.9% 37.3% 30.6%

Gray Reconstructed image 52 49 18 15 77.6% 73.1% 75.4%

Table 7. Performance metrics of the prostate cancer prediction model for only images with true

positive and true negative.

Image TP TN FP FN Sensitivity Specificity Accuracy

SWE Image 1 9 41 49 2% 18% 10%

Pure SWE image 0 9 41 50 0% 18% 9%

Gray Pure SWE 41 45 5 9 82% 90% 86%

Reconstructed image 0 8 42 50 0% 16% 8%

Gray Reconstructed image 49 48 2 1 98% 96% 97%
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Table 8. Performance metrics of the prostate cancer prediction model for only images with false

positives and false negatives.

Image TP TN FP FN Sensitivity Specificity Accuracy

SWE Image 17 15 2 0 100% 88% 94%

Pure SWE image 17 17 0 0 100% 100% 100%

Gray Pure SWE 7 4 13 10 41% 24% 32%

Reconstructed image 16 17 0 1 94% 100% 97%

Gray Reconstructed image 3 1 16 14 18% 6% 12%
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4. Discussion

Our primary objective was to create machine learning models utilizing several recon-

structed images of SWE from both prostate cancer and normal tissues. These models were

designed to accurately predict the classification of normal and malignant tissues within

SWE prostate imaging.

In this study, we assessed 94 features extracted from both normal and malignant

prostate lesions using B-mode ultrasound and SWE. We successfully reconstructed ROIs

from SWE images. The reconstruction of PSWE and RI ROIs was accomplished effectively,

as evidenced by the distinct quantitative features obtained from each ROI. The differences in

feature values among the original SWE, PSWE, and RI images further confirm the integrity

and effectiveness of the reconstruction process. Moreover, the grayscale representations of

the GPSWE and GRRI images exhibited clear variations compared to the original B-mode

image, validating the successful transformation and extraction of unique quantitative and

textural information. These findings underscore the potential of reconstructed ROIs to

deliver complementary diagnostic insights that extend beyond traditional B-mode and

SWE imaging techniques.

Despite the advanced capabilities of modern B-mode imaging, none of the features

extracted from this method showed statistical significance in differentiating normal from

malignant prostate lesions in our analysis. This outcome is consistent with [39], which

underscores the inherent limitations of B-mode ultrasound in distinguishing between

normal and malignant prostate tissues. B-mode imaging primarily offers anatomical and

structural insights, failing to capture the subtle tissue characteristic differences associated

with malignancy. Prostate cancer is widely recognized for its heterogeneity, and the

overlapping echotexture and grayscale intensity between normal and malignant lesions

render differentiation particularly challenging [40]. Additionally, factors such as glandular

distortion, calcifications, and normal prostatic hyperplasia (BPH) further complicate the

interpretation of b-mode ultrasound.
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The differentiation between normal and malignant lesions is informed by several

significant features identified in ultrasound shear-wave imaging. This imaging technique

captures variations in tissue stiffness and spatial patterns, proving valuable for the differen-

tial diagnosis of lesions. Notably, GLCM features such as ªContrastº and ªHomogeneityº

are instrumental in illustrating the heterogeneity and uniformity of tissue stiffness. Higher

contrast values often indicate malignant regions, thereby enhancing the diagnostic potential

of this imaging modality [18]. Features, including ªHigh Gray Level Zone Emphasisº and

ªLong Run Emphasisº, play a crucial role in identifying extensive zones of high stiffness,

which are reflective of pathological changes associated with malignancy. Intensity-based

metrics, such as ªMean Intensityº and ªMinimum Intensityº, further contribute to the

assessment by quantifying overall stiffness; malignancies generally present with elevated

mean stiffness levels compared to normal tissues. Together, these features leverage the

color-coded shear-wave elasticity data to characterize the mechanical properties of prostate

tissue, providing robust differentiation between normal and malignant lesions.

In contrast, features extracted from grayscale images provide a significantly larger

dataset for analysis, presenting both advantages and challenges in distinguishing between

normal and malignant lesions. Grayscale images typically capture more detailed variations

in texture, highlighting finer nuances in tissue heterogeneity and intensity distribution. This

results in a wider array of features, such as those obtained from GLCM, GLRLM, GLSZM,

and pixel intensity metrics, which enhance the ability to differentiate subtle variations

between tissue types [41]. These additional features can bolster the model’s discriminatory

power by offering a more comprehensive characterization of tissue stiffness and structure.

However, the increased feature set introduces challenges, particularly in the development

of machine learning models. With a larger number of features, there is a heightened risk of

overfitting, especially when the training data are limited [42].

It has been observed that the GLSZM features, which are sensitive to heterogeneity,

show a lack of significance with the RI and GRRI. This indicates that the texture information

essential for distinguishing between normal and malignant tissues may have been lost

or diminished during the reconstruction process. Specifically, GLSZM features, which

depend on identifying variations in the size and distribution of homogeneous regions,

may not effectively capture subtle heterogeneities when the image has been excessively

smoothed or homogenized. This absence of significant differentiation suggests that the

reconstructed ROI may have become overly uniform or noisy, thereby obscuring the

intricate textural patterns often characteristic of malignant tissues [43]. These patterns,

including irregular zone sizes and varying intensities, are vital for differentiating malignant

lesions from normal ones. Consequently, the smoothing effects during reconstruction

may have impaired the GLSZM’s ability to identify key pathological features, potentially

explaining the non-significant findings in the analysis.

The machine learning models generally demonstrate strong performance across the

five ROIs, with SVM, KNN, and NB achieving perfect results in the original SWE and PSWE

ROI. This indicates that the features within this region are linearly separable, enabling the

models to data file. However, this success may also raise concerns regarding overfitting,

which should be assessed using an independent test set. This observation can be compared

with studies [23,25], which typically indicate a more cautious approach when analyzing

larger and more diverse patient populations. It is crucial to acknowledge that the number

of patient data points is vital for achieving reliable and generalizable model effectiveness.

Insufficient sample sizes can result in overly optimistic outcomes that may not be applicable

in real-world clinical settings. For example, in our study, the logistic regression sensitivity

and specificity for the original SWE were 0% and 100%, respectively, where it was 61.1% and

91.1%, respectively [23]. Conversely, LR struggles in the original SWE, PSWE, and GPSWE
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ROI, likely due to its linear characteristics that fail to capture the non-linear relationships

present in this area.

The results of the machine learning models reveal interesting performance trends

across different image preprocessing techniques and categories of cases (true positive,

true negative, false positive, and false negative). Gray Pure SWE and Gray Reconstructed

images consistently outperformed other methods, achieving sensitivities, specificities, and

accuracies of 71.6±98%, 73.1±96%, and 72.4±97%, respectively. These findings suggest that

converting images to grayscale enhances texture analysis by capturing more discriminative

features, leading to improved classification of normal and malignant tissues. Conversely,

SWE images and reconstructed images in their raw forms demonstrated poor performance,

with sensitivities, specificities, and accuracies below 40% in most cases. This discrepancy

highlights the importance of preprocessing techniques in enhancing model performance.

When comparing ML and deep learning (DL), the key difference lies in how each

approach handles feature extraction and learning from data. ML algorithms, such as SVM,

KNN, and RF, depend on manually selected features. This reliance on feature engineering

makes ML methods more interpretable and effective for smaller datasets.

In contrast, deep learning, particularly through convolutional neural networks (CNNs),

automatically extracts hierarchical features from raw data. This capability often results in

superior performance on complex image analysis tasks. However, deep learning requires

large datasets and significant computational resources, making it more susceptible to

overfitting when working with limited data [44].

While machine learning remains a viable option in scenarios with constrained datasets,

future research may explore hybrid approaches that combine ML feature extraction with

DL architectures to enhance both performance and reliability.

In a recent application, deep learning was used to distinguish between prostate cancer

and benign prostatic hyperplasia, utilizing a vast number of transrectal ultrasound (TRUS)

images. The performance of CNNs in differentiating between benign and malignant

prostate cancer was notably high [45].

When analyzing subsets of data, such as only true positive/true negative cases or false

positive/false negative cases, we observed further disparities. SWE and Pure SWE excelled

in identifying false positive and false negative cases, achieving sensitivity and specificities

as high as 100%. However, these models failed in the general classification tasks, with an

accuracy of below 10% for true positive and true negative cases. Gray images, in contrast,

performed exceptionally well for true positive/true negative cases but struggled with false

positive/false negative cases, where sensitivities and specificities dropped to as low as 18%.

The observed trends might stem from the small dataset size, particularly the limited

number of false positive and false negative cases. A small sample size can lead to biased

learning and limited generalization capacity for the models, particularly in imbalanced

or borderline scenarios. Future studies with larger datasets are needed to validate these

findings and improve robustness. The machine learning classifiers developed in this study

show promising results; however, several limitations may affect their overall performance.

Firstly, the limited number of cases could impede the models’ ability to generalize effec-

tively. Smaller datasets often result in overfitting, biased outcomes, and reduced stability,

highlighting the need for larger and more diverse datasets to strengthen the robustness and

reliability of the classifiers. Additionally, the data were obtained from the Axiplorer ma-

chine (Supersonic Imagine in Aix-en-Provence, France), which has limitations concerning

heterogeneous lesions [46]. Furthermore, the dataset is outdated, and newer machines offer

superior image quality. Another limitation of this study is that the texture analysis and

machine learning models were built from a high number of true positive and true negative

images compared with false positive and false negative images. This selective method
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introduces bias, as the models are trained exclusively on instances with clear classifications.

Consequently, they may encounter difficulties in accurately classifying cases that involve

false positives or false negatives. This challenge is further intensified by the inherent

limitations of SWE ultrasound, where image quality and feature representation may not

always be adequate to address ambiguous or borderline cases. As a result, this may hinder

the models’ ability to generalize to more complex real-world scenarios. Additionally, the

performance of the developed classifiers was not compared with existing state-of-the-art

methods, which limits the contextual evaluation of their effectiveness. Furthermore, the

models were only tested on a single dataset and were not externally validated on indepen-

dent datasets. This limits the generalizability of the findings and highlights the need for

future studies to evaluate the models on diverse data sources.

5. Conclusions

Texture analysis utilizing machine learning on SWE and reconstructed images serves

as an objective and valuable method for distinguishing between normal and malignant

prostate lesions. Among the extracted texture features, contrast, entropy, correlation, and

homogeneity were particularly effective in differentiating malignant from benign lesions.

RF, SVM, and NB demonstrated the highest classification performance, with [mention

accuracy, AUC, or other performance metrics if available]. Notably, reconstructing SWE

into grayscale images, such as GPSWE and GRRI, significantly enhanced prostate cancer

detection accuracy using machine learning.
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