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Simple Summary: Prostate cancer remains one of the most prevalent cancers affecting
men globally, making early detection critical for improved treatment outcomes. Traditional
imaging techniques often face challenges in clearly distinguishing between normal and
cancerous tissues. In this study, we employed artificial intelligence and machine learning to
analyze prostate tissue images acquired from ultrasound and a specialized method known
as shear-wave elastography (SWE). By exploring patterns and textures in these images, we
trained machine learning models to accurately differentiate between healthy and malignant
tissues. Our results demonstrated that machine learning models, particularly Support
Vector Machines, Random Forest, and Naive Bayes, excelled in detecting prostate cancer.
This research indicates that advanced image analysis combined with artificial intelligence
holds the potential to enhance the diagnosis of prostate cancer, ultimately leading to quicker
and more precise assessments for both patients and healthcare providers.

Abstract: Introduction: Artificial intelligence (Al) is increasingly utilized for texture anal-
ysis and the development of machine learning (ML) techniques to enhance diagnostic
accuracy. ML algorithms are trained to differentiate between normal and malignant
conditions based on provided data. Texture feature analysis, including first-order and
second-order features, is a critical step in ML development. This study aimed to evalu-
ate quantitative texture features of normal and prostate cancer tissues identified through
ultrasound B-mode and shear-wave elastography (SWE) imaging and to develop and as-
sess ML models for predicting and classifying normal versus malignant prostate tissues.
Methodology: First-order and second-order texture features were extracted from B-mode and
SWE imaging, including four reconstructed regions of interest (ROls) from SWE images for
normal and malignant tissues. A total of 94 texture features were derived, including features
for intensity, Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level Dependence Length
Matrix (GLDLM), Gray-Level Run Length Matrix (GLRLM), and Gray-Level Size Zone Matrix
(GLSZM). Five ML models were developed and evaluated using 5-fold cross-validation to
predict normal and malignant tissues. Results: Data from 62 patients were analyzed. All
ROIs, except those derived from B-mode imaging, exhibited statistically significant differences
in features between normal and malignant tissues. Among the developed models, Support
Vector Machines (SVM), Random Forest (RF), and Naive Bayes (NB) demonstrated the highest
performance across all ROIs. These models consistently achieved strong predictive accuracy
for classifying normal versus malignant tissues. Gray Pure SWE and Gray Reconstructed
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images Provided the highest sensitivity and specificity in PCa prediction by 82%, 90%, and
98%, 96%, respectively. Conclusions: Texture analysis with machine learning on SWE-US and
reconstructed images effectively differentiates malignant from benign prostate lesions, with
features like contrast, entropy, and correlation playing a key role. Random Forest, SVM, and
Naive Bayes showed the highest classification performance, while grayscale reconstructions
(GPSWE and GRRI) enhanced detection accuracy.

Keywords: machine learning; texture analysis; prostate cancer; ultrasound;
shear-wave elastography

1. Introduction

Prostate cancer (PCa) is the most frequently diagnosed cancer in men worldwide.
In England, it ranks as the most common cancer among men and is the second leading
cause of cancer-related deaths [1]. In 2024 [2] prostate cancer is projected to remain the
most common type of cancer diagnosed in men and is also anticipated to be the second
most frequent cause of cancer mortality. PCa diagnosis typically involves a combination of
screening, histopathology, and medical imaging techniques.

The advancement of medical imaging techniques over the years has significantly en-
hanced the quality of PCa diagnoses. Ultrasound (US) and magnetic resonance imaging
(MRI) are the primary imaging modalities used in PCa detection. Although MRI offers greater
sensitivity than the US, it comes at a considerably higher cost and is not suitable for all patients,
particularly those with pacemakers, ferromagnetic metals, or those who suffer from claustro-
phobia. B-mode ultrasound is the fundamental parameter for assessing lesions” location, size,
and shape. However, the identification of lesions in b-mode images depends on echogenicity,
meaning that some PCa lesions may appear isoechoic, displaying a brightness similar to that
of the prostate gland [3]. Another ultrasound technique frequently employed in PCa diagnosis
is shear-wave elastography (SWE). This quantitative method evaluates shear-wave velocity
through the application of an acoustic radiation force impulse (ARFI) to the tissue, which
estimates Young’s modulus of the tissue [4]. The results are presented as a superimposed
color map overlaid on each pixel of the grayscale ultrasound image [5]. SWE demonstrates
higher sensitivity and specificity in detecting PCa compared to other ultrasound modalities [6].
However, it does face limitations in detection depth, which restricts its ability to measure
deeper regions of the prostate [7]. Additionally, the accuracy of SWE results can be adversely
affected by the presence of prostate stones or calcifications [8,9].

Recently, artificial intelligence (AI) has been increasingly utilized for texture anal-
ysis and the development of machine learning (ML) techniques to enhance diagnostic
accuracy. Machine learning is a subset of Al that enables computer systems to learn pat-
terns from data and make predictions or decisions without explicit programming. ML
algorithms are trained to differentiate between normal and malignant conditions based
on provided data [10]. In the realm of ultrasound imaging, the primary applications of
machine learning include classification and computer-aided diagnosis, regression analysis,
and tissue segmentation. Furthermore, ML is also employed in image registration and
content retrieval [11]. By leveraging mathematical models, ML enhances the ability to
analyze complex imaging features, improving diagnostic precision and reducing human
observer variability. Texture analysis serves as a classification and segmentation tool within
machine learning, providing a quantitative assessment of pixel metrics that surpass human
visual capabilities [12]. The process of texture analysis involves several key steps: image
acquisition, image segmentation, and feature extraction [13].
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Image acquisition is a critical stage in texture analysis, as it involves selecting the
appropriate imaging modality and choosing images based on specific criteria that affect the
quality and relevance of the extracted texture features. Image segmentation is the process
of identifying the region of interest (ROI) in medical imaging. Selecting the ROI is a vital
step that influences the quantitative collection of texture data and the results of machine
learning predictions. Therefore, adhering to specific criteria when selecting the ROI for
segmentation ensures targeted and meaningful analysis, thereby enhancing the robustness
and reliability of the texture features extracted for machine learning applications.

Texture features can be categorized as either semantic or agnostic. Semantic features
are linked to morphological aspects such as shape and size, while agnostic features pertain
to intensity values, including minimum, maximum, and mean. Agnostic features are further
divided into first-order such as mean, variance, skewness, kurtosis, and entropy and second-
order, which include the gray-level co-occurrence matrix (GLCM), gray-level Run length
matrix (GLRLM), gray-level size zone matrix (GLSZM), and gray-level distance zone matrix
(GLDZM) [12-14]. In the field of ultrasound and SWE, the application of texture analysis
and machine learning has demonstrated promising results across various examinations.
Morphological and first-order texture analysis features have been extracted from B-mode
breast images to differentiate between different types of breast lesions effectively [15].

Quantitative ultrasound spectral analysis of B-mode breast ultrasound images utilized
GLCM texture features to distinguish between malignant and normal lesions, yielding sta-
tistically significant differences across several spectral parameters [16]. Xiao et al. (2014) [17]
developed a reconstruction process for SWE ultrasound images of the breast, which was
assessed for the quantity of texture features. Their findings indicated a high performance
in differentiating between malignant and normal conditions.

Additionally, first-order and second-order texture features were extracted from breast
B-mode and SWE ultrasound images, and no statistically significant differences among all
features [18]. For thyroid gland assessments, GLCM texture features derived from B-mode
ultrasound images were compared with real-time elastography results [19]. In this context,
purified SWE ultrasound ROIs were generated by subtracting shear-wave pixels from the
B-mode thyroid gland images, facilitating enhanced extraction of GLCM texture features.
The results showed a pronounced efficacy of the purified SWE images in distinguishing
malignant from normal lesions [20]. Machine learning models, including logistic regression,
naive Bayes, quadratic discriminant analysis, and support vector machines (SVM), have also
been employed to differentiate between renal cell carcinoma and angiomyolipoma based
on ultrasound shear-wave velocity [21]. GLCM texture features from ultrasound images of
salivary glands were evaluated using machine learning models such as K-nearest neighbors
(KNN), naive Bayes, artificial neural networks (ANN), and SVM to categorize malignant
and normal conditions [22]. Prostate cancer prediction through machine learning models
in ultrasound and SWE has been executed by utilizing elasticity measured in Kilopascal
(kPa) as extracted features [23]. Wildeboer et al. (2020) [24] harnessed machine learning
models utilizing radiomics features from ultrasound B-mode, SWE, and dynamic contrast-
enhanced ultrasound to assess machine learning’s potential in this domain. In the study
of Wang et al. (2022) [25], machine learning models were evaluated based on radiomics
features extracted from transrectal ultrasound video clips of prostate cancer.

B-mode ultrasound and SWE are commonly used imaging modalities for PCa detec-
tion, but they have notable limitations. SWE, for instance, is influenced by factors such
as prostate gland enlargement, lesion depth, and machine dependency, which can affect
its diagnostic performance. Additionally, conventional imaging may not fully capture the
textural characteristics differentiating malignant from normal prostate tissue. To address
these challenges, this study intends to evaluate quantitative texture features of normal and
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prostate cancer tissues as identified through ultrasound B-mode and SWE imaging with
reconstructed images. By extracting these texture features, we will develop and assess
machine learning models to predict and classify normal versus malignant prostate tissue to
enhance non-invasive diagnostic accuracy.

2. Materials and Methods
2.1. Patients

The East of Scotland Ethical Service approved this study, a protocol-driven study
with prior ethical approval (REC ref GTCAL11197). A prospective study was approved by
ethical and institutional review boards to evaluate the diagnostic accuracy of transrectal
SWE ultrasound in detecting prostate cancer. Between November 2013 and August 2017,
a total of 125 consecutive participants with clinically localized PCa, who opted for and
were scheduled to undergo laparoscopic radical prostatectomy (LRP), were enrolled.

Transrectal ultrasound shear-wave (TRUS) SWE examinations were performed by
a urologist with over 10 years of experience on the day of the LRP, using an endocavity
Aixplorer® ultrasound transducer inserted through the rectal wall, ensuring focus on the
prostate while minimizing pressure on the transducer. Prostate sections were examined by
a uropathologist with over 20 years of experience who was blinded to the SWE imaging re-
sults. Pathological findings, including the disease stage and margin status, were compared
with the SWE imaging outcomes.

A total of 64 patients were excluded from the texture analysis based on specific criteria
outlined in Table 1. This exclusion was due to several factors: some patients lacked results
for radical prostatectomy (RP), others had no images that captured both true positive and
true negative correlations with the RP result, and a number had lesions smaller than 5 mm.
Patients were excluded if they did not have both true negative and true positive SWE
results to ensure a balanced dataset and to avoid bias. Quantitative texture features are
extracted exclusively from images with a radical prostatectomy reference size of at least
5 mm, owing to the limitations of SWE in detecting small lesions [8].

Table 1. Exclusion criteria.

Criteria Number of Excluded Patients
Small lesion < 5 mm 19
No laparoscopic radical prostatectomy results 13
No true positive SWE result 12
No true Negative SWE result 12
No SWE detection 7

2.2. Image Reconstructions

From 62 patients, 50 patients provide true positive and true negative images. Of these
50, 5 images also with false positive and false negative, and 12 cases have only false positive
and false negative images. Two ROIs were selected, first from SWE images, and based on
the result of the RP image they were already approved in the image by a urologist, and the
second ROI was automatically duplicated in ultrasound b-mode image by using MATLAB
code (MATLAB R2023b) to extract the image of normal tissue and PCa tissue Figure 1. This
selection is based on the location of the lesion in the radical prostatectomy image Figure 2. In
all images, the ROI diameter was fixed at 60 pixels. Binary masks are first created for each
ROI to isolate and analyze specific ROIs within the composite SWE and b-mode image. The
binary masks allow for selective extraction of each ROI by retaining only the pixel values
within the region of interest while setting all other pixels to zero. To transfer these ROIs
specifically to a B-mode format, the Binary singleton expansion function (bsxfun) is used to
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apply each binary mask across all channels of the ultrasound image [26]. This process ensures
efficient extraction of ROI from both SWE and b-mode, where only the pixels inside each
ROI retain their original values, while pixels outside the ROIs are zeroed. The b-mode ROl is
then converted to grayscale for further analysis on a uniform grayscale image. This approach
enables targeted analysis of the selected ROls by isolating them from the surrounding image
regions, ensuring focused evaluation of specific areas within the composite image.

Figure 1. SWE images with b-mode ultrasound image of prostate cancer lesion. At the top (Red
circle), the ROI is selected from the SWE image, and it is duplicated automatically in the B-mode
ultrasound image (Blue circle). The red color map in the SWE image correspond to areas of higher
stiffness, whereas the blue color map indicate areas of lower stiffness.

Prostate < gum
v cancer
lesion

Figure 2. Visualization of prostate cancer lesion in the SWE and B-mode ultrasound (Right side),
confirmed by radical prostatectomy image (Left side).

The SWE ROl is purified to create a pure SWE ROI by subtracting shear-wave pixels
from the B-mode to obtain pure-SWE (PSWE) ROL. This is achieved by combining the
SWE image and the transferred ROIs to create a composite SWE image. This composite
image is generated by adding the ROI of masked version of the SWE image, SWE ROI
after using (bsxfun), and the ROI of the b-mode, allowing for a comprehensive view of
the selected ROIs alongside the SWE image. Subsequently, the B-mode ROl is subtracted
from the composite image to isolate the SWE content, resulting in PSWE ROI [20] Figure 3.
Then this is converted from 3-channel (Red, Green, Blue) RGB color to a single grayscale
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intensity value to obtain gray-pure-SWE ROI (GPSWE). A custom colormap is created to
show specific areas in an image using a range of colors from red to blue. This starts by
choosing 5500 colors for each transition to allow for smooth changes between colors, which
keeps details clear in interest. Each pixel in the selected area is matched to the closest color
from this colormap by using a Euclidean distance [17]. This method finds the color that
best matches the pixel’s RGB values, reducing the color range in that area to a gradient of
red, yellow, green, and blue to reconstruct the PSWE ROl into a new RO], and it is called RI
ROL. The RI ROl is then converted into a gray image to obtain a gray reconstructed (GRRI)
ROL. Consequently, six ROIs are extracted from normal and malignant prostate areas, and
their data are saved for texture analysis processing, as is shown in Figure 4.

ROI from SWE
image
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Figure 3. Illustration of creating a pure SWE ROI. After selecting ROIs on both SWE and b-mode
ultrasound images, binary masks are created for segmentation. ROIs are extracted from both images,
combined, and subtracted from the b-mode ROI to obtain the pure SWE ROL

SWE ROI PSWE ROI RI ROI

Gray ROI GPSWE ROI GRRI ROI

Figure 4. Six ROIs extracted from image of malignant lesion of prostate. The top row shows the color
RO], and the bottom rows show the Grayscale ROlIs.
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2.3. Texture Analysis

Ninety-four texture analysis features from the first order and second order were
selected based on the study [14] using MATLAB (R2023b) codes from all ROIs, and they
are mentioned in Table 2. The features are calculated at specific angles (0°,45°,90°,135°)
which represent the orientations used to evaluate certain properties or characteristics [27].
The MATLAB code is written to compute texture features; for instance, the Contrast feature
is computed Contrast based on the GLCM matrix function corresponds to the following
mathematical equation Equation (1) [28]

contrast = 2 (i, ) 293, j) (1)

where ((i, j) is the pixel at location (i, j).

Table 2. First and second-order features used for assessing the quantitative texture analysis of the
prostate ultrasound and SWE images.

Classification

Categories Features

First-order

Minimum Intensity

Maximum Intensity

Mean Intensity

Median Intensity

Range Intensity

Intensity
Standard deviation Intensity

Percentile 10

Percentile 90

Skewness Value

Kurtosis Value

Second-order

Contrast (0°,45°,90°,135°)
Energy (0°,45°,90°,135°)
Homogeneity (0°,45°,90°,135°)

Dissimilarity

Entropy

Sum of Squares

Variance
GLCM

Inverse Difference Normalized

Maximum Probability

Sum Average

Sum Entropy

Sum Variance

Difference Entropy

Difference Variance
Short Run Emphasis (0°,45°,90°,135°)
Long Run Emphasis (0°,45°,90°,135°)

Gray Level Non-uniformity (0°,45°,90°,135°)
Short Run Low Gray Level Emphasis (0°,45°,90°,135°)
High Gray Level Run Emphasis (0°,45°,90°,135°)
Low Gray Level Run Emphasis (0°,45°,90°,135°)
Run Percentage (0°,45°,90°,135°)

GLRLM

Run Length Non-Uniformity
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Table 2. Cont.

Classification

Categories Features

Second-order

Zone Percentage (0°,45°,90°,135°)
Gray Level Non-uniformity (0°,45°,90°,135°)
Zone Size Non-uniformity (0°,45°,90°,135°)

Zone Size Variance

GLDZM Zone Entropy
Low Gray Level Zone Emphasis (0°,45°,90°,135°)
High Gray Level Zone Emphasis (0°,45°,90°,135°)
Gray Level Non-Uniformity Normalized (0°,45°,90°,135°)

Zone Size Non-Uniformity Normalized

Size Zone Non-uniformity

Zone Percentage

GLSZM Gray Level Non-uniformity

Run Length Non-uniformity

Run Percentage

GLCM: Gray-Level Co-Occurrence Matrix, GLDLM: Gray-Level Dependence Length Matrix, GLRLM: Gray-Level
Run Length Matrix, GLSZM: Gray-Level Size Zone Matrix.

All data are saved and labeled for begin and malignant as 0 and 1, respectively. The
feature data were normalized using Z-score normalization, which involved calculating the
mean and standard deviation of the features. This process cantered data by subtracting the
meaning from each feature value and scaled it to have a standard deviation of one, ensuring
that all features contributed equally to subsequent analyses [29]. Following normalization,
statistical significance was obtained by using a t-test to provide the p-values and evaluate
the differences between normal and malignant cases. The resulting p-values from these
tests are compared against a threshold of 0.05 to determine significant features.

2.4. Machine Learning Models

Feature selection is one of the important steps in ML modeling. Due to the large
number of features, feature selection is useful for adopting pertinent features and removing
unnecessary or unrelated features. By using MATLAB codes (MATLAB R2023b) Least
absolute shrinkage and selection operator (LASSO) [30] was used on the features with
statistically significant differences between normal and malignant, and it helps mitigate
overfitting by penalizing the absolute size of the coefficients [31]. The range of lambda
values was defined, and cross-validation was utilized to identify the optimal lambda
that minimizes prediction error while controlling the number of features included in the
model. Consequently, the most significant features that contributed to the classification
task enhancing the robustness and interpretability of our model were selected.

A systematic methodology was implemented to evaluate the performance of five different
machine learning models: random forest (RF), KNN, logistic regression (LR), SVM, and naive
bayes (NB), These models were selected based on their proven effectiveness in medical imaging
and classification tasks [32-34], Two complementary validation techniques were employed
to evaluate the effectiveness of the machine learning models. Initially, a hold-out validation
method was applied, which involved designating 30% of the dataset as a separate test set, while
the remaining 70% was used for training purposes. In addition, on a classification task on the
selected features. Five k-fold cross-validation was employed, which allowed us to divide the
dataset into training and testing subsets for each fold. In this approach, the entire dataset is
partitioned into five distinct subsets. In each iteration, one of the subsets is utilized as the test
set, while the remaining four subsets serve as the training set. This procedure is repeated for
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all five subsets, ensuring that each one is tested in turn [35]. The hyperparameters for each
classifier were selected based on relevant research in the field of medical imaging and machine
learning [36,37]. The chosen values were derived from the literature that has successfully
optimized these parameters for similar classification tasks, ensuring their suitability for our
dataset and problem area. For each model, the performance on the testing subset, calculating
the means of the five folds with the standard deviation of metrics such as accuracy, sensitivity,
specificity, and area under the receiver operating characteristic curve (AUC), was achieved. In
addition, confusion matrices were provided to derive these metrics, ensuring a comprehensive
evaluation of each model’s classification performance.

2.5. Prediction Normal and Malignant Prostate Tissue

In each ROI, except for the b-mode ultrasound, a distinct machine learning model was
utilized. Specifically, the models employed for original SWE, PSWE, and GPSWE were RF
and for RI ROI was SVM, and for GRRI was NB. Notably, within the PSWE and GPSWE
RO, the KNN, SVM, and NB models exhibited the highest levels of accuracy, sensitivity,
and specificity. However, the RF model was ultimately selected to mitigate the risk of
overfitting during the prediction process.

For the prediction, MATLAB (R2023b) was used to select and reconstruct the ROI from
the ultrasound images. Relevant features were then extracted from the newly selected ROI
and saved for further analysis. In the next step, to ensure compatibility with the pre-trained
model, the saved feature data were loaded, referencing the feature names used during
model training. Common features between the new dataset and the training data were
identified and aligned, ensuring that only features present in both datasets were utilized
for prediction. If no common features were identified, an error was generated.

Once the features from the new data set were aligned with the training data, they
were appropriately formatted for input into the trained model. These aligned features were
then processed through the model to generate predictions. The trained model classified
the new data into predefined categories, such as “normal” or “malignant”. Ultimately, the
classification results were displayed, providing predicted labels for the new samples based
on the trained model, Figure 5.
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. tomatchthe selected —

Extracting features
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features
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Figure 5. Steps of prediction processing.
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3. Results

A study was conducted involving 62 patients diagnosed with prostate cancer, where six
ROIs were extracted from both normal and malignant prostate tissue. This led to the collection
of 50 images representing normal tissue and another 50 for malignant tissue. The general
characteristics of the patient cohort are detailed in Table 3. In the analysis of texture features,
statistical evaluation via the t-test revealed no significant differences between normal and
malignant tissues in the Gray ROL. However, significant discrepancies were observed in the
SWE ROls, with a total of 17, 27, 41,26, and 37 features demonstrating statistically significant
differences between normal and malignant cases when considering the original SWE RO,
PSWE ROI, GPSWE RO], RI ROI, and GRRI RO, respectively.

Table 3. Selected patient characteristics.

No. Pts 62
Mean =+ SD age/median 68 +5.5/67
Mean =+ SD PSA /median 12 +£8/9
No. Gleason Score
3+3 0
3+4 30
4+3 12
3+5 7
4+4 1
4+5 12

This investigation explores the correlation between Prostate-Specific Antigen (PSA)
levels and texture features by employing one-way ANOVA. PSA levels were classified into
three distinct clinical categories: normal (<4 ng/mL), gray zone (4-8 ng/mL), and high
risk (>8 ng/mL) [38]. The objective of the statistical analysis was to assess whether the
distribution of texture feature values displayed significant differences across these PSA
classifications when utilizing various imaging modalities.

The results demonstrated that in Gray images, only one feature—minimum
intensity—was found to be statistically significant, with a p-value of 0.0408. In con-
trast, Original SWE images did not present any significant texture features out of
the 94 analyzed. Within the PSWE images, two features were statistically significant:
Entropy (p-value = 0.0320) and Low Gray Level Run Emphasis 90 (p-value = 0.0448).
For GPSWE images, one feature, standard deviation of intensity, exhibited statistical
significance (p-value = 0.0204). A further analysis of RI images revealed five significant
features related to PSA levels, including Energy 0 and High Gray Level Zone Emphasis
across four angles (0°, 45°, 90°, and 135°), with p-values ranging from 0.0149 to 0.0430.
Lastly, GRRI images yielded the most significant findings, particularly about stan-
dard deviation intensity and features 50-53 (High Gray Level Run Emphasis) and
features 81-84 (High Gray Level Zone Emphasis), all revealing p-values below 0.03.
These results indicate that specific texture features—especially those associated with
gray-level emphasis and run length patterns—exhibit significant variability with PSA
levels, suggesting that their relevance is significantly influenced by the specific image
reconstruction technique used.

Simultaneously, the relationship between the Gleason Score (GS) and radiomic features
was assessed using a one-way ANOVA, aiming to identify which features demonstrate
significant fluctuations across various GS categories, which are stratified into grades 6 to 10.
The findings revealed variability in the number and types of significant features contingent
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on the image reconstruction method employed. For Gray images, no statistically significant
features were identified. Conversely, Original SWE images showcased nine significant
features, primarily linked to contrast, entropy, and zone-based metrics. PSWE images
exhibited the highest number of significant features, totaling 23, while GPSWE images
revealed 21. Both RI and GRRI images identified 19 significant features each Table S1.
Overall, these findings highlight a strong association between GS and a diverse range of
radiomic features, particularly those associated with texture complexity and gray-level
distribution, emphasizing notable disparities across different imaging modalities.

Tables 52-54 summarize the features that exhibited significant differences between nor-
mal and malignant tissues across the original SWE ROI, pure SWE ROI, and GPSWE ROlIs,,
respectively. Each table includes features that are classified under various classifications.
Tables S5 and S6 focus on the features that showed a notably high level of significance be-
tween normal and malignant tissues in the RI ROI and GRRI RO], specifically highlighting
features that were excluded from the GLSZM classification.

In the context of machine learning model development, the evaluation of model
performance is crucial for ensuring reliability and accuracy. The cross-validation error
and the results from LASSO regression are illustrated in Figure 6. This figure depicts the
LASSO regression coefficient paths corresponding to the selected features, with feature
names associated with non-zero coefficients displayed alongside each coefficient path.
The features included in the model were meticulously chosen based on cross-validation
techniques aimed at minimizing the mean squared error, thereby identifying the most
significant predictors for the model. The specific features selected from each ROI are
detailed in Table 4. Additionally, the evaluation results of the machine learning model are
summarized in Figure 7.

Table 5 includes key metrics such as Sensitivity, Specificity, and Accuracy. In compar-
ing the various models, confusion matrices serve to illustrate the accuracy of each model in
predicting both positive and negative cases of prostate tissue. Furthermore, the receiver op-
erating characteristic (ROC) curves provide a visual representation of model performance,
where higher AUC values are indicative of superior discriminatory capabilities, as shown
in Figure 7.

LASSO Paths for Selected Features Cross-Validation Error

0.35
03

0.25

"
. o
_g 0_____..// Lﬁ
> i/ g 02
G 0.1 g
€ T
] @015
82 g

V]

[}

2

0.1

== percentile 10 1

——Conrast,0 I
Dissimilarity 0.05 ".,‘(

= LongRunEmphasis) )

= LongRunEmphasis45

~ | XY/

- A 0 1 0 " 7
Log10{(Lambda) 100 102 104
Lambda

(A) (B)

5

Figure 6. (A) Plot the LASSO coefficient for the selected features of the RI ROI features and the names
of the features selected. (B) Plot of cross-validation error.
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Table 4. Feature selected by LASSO for each ROL

ROIs Features Selected

Homogeneity 90°
Original SWE Long Run Emphasis 45°

Long Run Emphasis 135°

Long Run Emphasis 0°
PSWE Long Run Emphasis 45°

Long Run Emphasis 90°

Homogeneity 0°

GPSWE .
Variance

Percentile 10

RI Contrast 90°
Dissimilarity
Long Run Emphasis 0°
Median Intensity
GRRI Contrast 0°

Inverse Difference Normalized

Random Forest Confusion Matrix (Accuracy = 85.07%)

KNN Confusion Matrix (Accuracy = 79.85%) Logistic ion Ci ion Matrix (.

0%

True Label
True Label
True Label

0%

o i o
Predicted Label Predicted Label

1
Predicted Label

SVM Confusion Matrix (Accuracy = 86.57%) Naive Bayes Confusion Matrix (Accuracy = 85.07%)

ROC Curves for All Models

True Label
True Label

0 1 0 1
Predicted Label Predicted Label

Figure 7. Performance Evaluation of Machine Learning Models for Classification. This figure includes
confusion matrices for each model, showcasing their classification accuracy on prostate tissue within the
RI ROL The confusion matrices appear in the first row and the first two images of the second row (from
the right). A comparison of model performance is visualized in the ROC curve (last image in the second
row), illustrating the discriminatory ability of each model across different classification thresholds.

Original SWE: the original image of the SWE, PSWE: is the purified image of the
original SWE, GPSWE: is the gray image of the PSWE. RI: is the reconstructed image of the
original SWE. GRRI: is the gray image of the RI.

The predictions were applied to the same data used to extract quantitative features
for true positives and true negatives. The performance metrics of the machine learning
model in predicting normal and malignant prostate cancer cases for all images are pre-
sented in Table 6, along with the ROC curve shown in Figure 8. Tables 7 and 8 show the
performance metrics of the machine learning model in predicting normal and malignant
prostate cancer cases for images with true positive and negative and false positive and
negative, respectively.
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Table 5. Evaluation Metrics for the Machine Learning Model for the ROIs.

ROI Model Sensitivity % + SD Specificity % £ SD Accuracy % + SD
Random Forest 98.75 £+ 2.80 97.65 + 5.26 97.78 £ 3.31
KNN 100.00 £ 0.00 97.65 + 5.26 98.52 + 3.31
Original SWE Logistic Regression 0.00 £ 0.00 100.00 £ 0.00 50.00 + 8.49
SVM 100.00 £ 0.00 97.65 + 5.26 98.52 £+ 3.31
Naive Bayes 100.00 +£ 0.00 97.65 £ 5.26 98.52 £ 3.31
Random Forest 98.75 + 2.80 97.65 + 5.26 97.78 £ 3.31
KNN 100.00 £ 0.00 97.65 + 5.26 98.52 £+ 3.31
PSWE Logistic Regression 0.00 % 0.00 100.00 +£ 0.00 50.00 £ 8.49
SVM 100.00 £ 0.00 97.65 + 5.26 98.52 + 3.31
Naive Bayes 100.00 £ 0.00 97.65 + 5.26 98.52 £+ 3.31
Random Forest 85.53 £ 13.23 71.59 + 11.07 77.58 £ 6.03
KNN 85.53 +13.23 68.03 £+ 6.84 76.10 £ 6.82
GPSWE Logistic Regression 0.00 £ 0.00 100.00 % 0.00 50.06 & 9.68
SVM 82.33 + 14.74 73.02 £ 10.33 76.84 + 6.75
Naive Bayes 83.99 + 11.46 71.68 £+ 10.70 76.84 + 6.75
Random Forest 73.80 £ 13.95 91.16 £+ 6.01 82.14 £ 8.76
KNN 76.82 £ 12.50 68.69 + 15.74 72.42 4+ 8.40
RI Logistic Regression 52.31 +50.27 55.38 + 51.43 50.88 + 10.42
SVM 83.08 £ 16.69 92.49 +5.48 87.41 £+ 10.99
Naive Bayes 76.56 £ 10.13 95.59 £ 6.78 85.87 £ 6.55
Random Forest 75.30 + 8.83 69.89 + 13.97 73.16 = 10.19
KNN 69.92 +£7.77 71.95 £9.90 70.88 £ 6.68
GRRI Logistic Regression 0.00 £ 0.00 100.00 £+ 0.00 50.06 + 10.36
SVM 80.88 + 7.29 67.30 + 10.91 74.64 £7.05
Naive Bayes 82.20 £+ 8.03 67.01 £+ 13.40 75.38 £9.25

Table 6. Performance metrics of the prostate cancer detection model for all selected images.

Image TP N FP FN Sensitivity Specificity = Accuracy
SWE Image 18 24 43 49 26.9% 35.8% 31.3%
Pure SWE image 17 26 41 50 25.4% 38.8% 32.1%
Gray Pure SWE 48 49 18 19 71.6% 73.1% 72.4%
Reconstructed image 16 25 42 51 23.9% 37.3% 30.6%
Gray Reconstructed image 52 49 18 15 77.6% 73.1% 75.4%

Table 7. Performance metrics of the prostate cancer prediction model for only images with true

positive and true negative.

Image TP TN FP FN Sensitivity =~ Specificity =~ Accuracy
SWE Image 1 9 41 49 2% 18% 10%
Pure SWE image 0 9 41 50 0% 18% 9%
Gray Pure SWE 41 45 5 9 82% 90% 86%
Reconstructed image 0 8 42 50 0% 16% 8%
Gray Reconstructed image 49 48 2 1 98% 96% 97%
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Table 8. Performance metrics of the prostate cancer prediction model for only images with false
positives and false negatives.

Image TP TN FP FN Sensitivity Specificity  Accuracy
SWE Image 17 15 2 0 100% 88% 94%
Pure SWE image 17 17 0 0 100% 100% 100%
Gray Pure SWE 7 4 13 10 41% 24% 32%
Reconstructed image 16 17 0 1 94% 100% 97%
Gray Reconstructed image 3 1 16 14 18% 6% 12%

ROC Curves for Each Image

True Positive Rate

. — — — —Random Guessing
SWE image (AUC = 0.31)
27 Pure SWE image (AUC = 0.32)
Gray pure SWE image (AUC = 0.72)
- Reconstraced image (AUC = 0.31)
Gray image (AUC = 0.75)
T T

L L
o 0.2 0.4 0.6 0.8 1
False Positive Rate

Figure 8. ROC curve of the machine learning models to predict the normal and malignant in true
positive and true negative images.

4. Discussion

Our primary objective was to create machine learning models utilizing several recon-
structed images of SWE from both prostate cancer and normal tissues. These models were
designed to accurately predict the classification of normal and malignant tissues within
SWE prostate imaging.

In this study, we assessed 94 features extracted from both normal and malignant
prostate lesions using B-mode ultrasound and SWE. We successfully reconstructed ROIs
from SWE images. The reconstruction of PSWE and RI ROIs was accomplished effectively,
as evidenced by the distinct quantitative features obtained from each ROL The differences in
feature values among the original SWE, PSWE, and RI images further confirm the integrity
and effectiveness of the reconstruction process. Moreover, the grayscale representations of
the GPSWE and GRRI images exhibited clear variations compared to the original B-mode
image, validating the successful transformation and extraction of unique quantitative and
textural information. These findings underscore the potential of reconstructed ROIs to
deliver complementary diagnostic insights that extend beyond traditional B-mode and
SWE imaging techniques.

Despite the advanced capabilities of modern B-mode imaging, none of the features
extracted from this method showed statistical significance in differentiating normal from
malignant prostate lesions in our analysis. This outcome is consistent with [39], which
underscores the inherent limitations of B-mode ultrasound in distinguishing between
normal and malignant prostate tissues. B-mode imaging primarily offers anatomical and
structural insights, failing to capture the subtle tissue characteristic differences associated
with malignancy. Prostate cancer is widely recognized for its heterogeneity, and the
overlapping echotexture and grayscale intensity between normal and malignant lesions
render differentiation particularly challenging [40]. Additionally, factors such as glandular
distortion, calcifications, and normal prostatic hyperplasia (BPH) further complicate the
interpretation of b-mode ultrasound.
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The differentiation between normal and malignant lesions is informed by several
significant features identified in ultrasound shear-wave imaging. This imaging technique
captures variations in tissue stiffness and spatial patterns, proving valuable for the differen-
tial diagnosis of lesions. Notably, GLCM features such as “Contrast” and “Homogeneity”
are instrumental in illustrating the heterogeneity and uniformity of tissue stiffness. Higher
contrast values often indicate malignant regions, thereby enhancing the diagnostic potential
of this imaging modality [18]. Features, including “High Gray Level Zone Emphasis” and
“Long Run Emphasis”, play a crucial role in identifying extensive zones of high stiffness,
which are reflective of pathological changes associated with malignancy. Intensity-based
metrics, such as “Mean Intensity” and “Minimum Intensity”, further contribute to the
assessment by quantifying overall stiffness; malignancies generally present with elevated
mean stiffness levels compared to normal tissues. Together, these features leverage the
color-coded shear-wave elasticity data to characterize the mechanical properties of prostate
tissue, providing robust differentiation between normal and malignant lesions.

In contrast, features extracted from grayscale images provide a significantly larger
dataset for analysis, presenting both advantages and challenges in distinguishing between
normal and malignant lesions. Grayscale images typically capture more detailed variations
in texture, highlighting finer nuances in tissue heterogeneity and intensity distribution. This
results in a wider array of features, such as those obtained from GLCM, GLRLM, GLSZM,
and pixel intensity metrics, which enhance the ability to differentiate subtle variations
between tissue types [41]. These additional features can bolster the model’s discriminatory
power by offering a more comprehensive characterization of tissue stiffness and structure.
However, the increased feature set introduces challenges, particularly in the development
of machine learning models. With a larger number of features, there is a heightened risk of
overfitting, especially when the training data are limited [42].

It has been observed that the GLSZM features, which are sensitive to heterogeneity,
show a lack of significance with the RI and GRRI. This indicates that the texture information
essential for distinguishing between normal and malignant tissues may have been lost
or diminished during the reconstruction process. Specifically, GLSZM features, which
depend on identifying variations in the size and distribution of homogeneous regions,
may not effectively capture subtle heterogeneities when the image has been excessively
smoothed or homogenized. This absence of significant differentiation suggests that the
reconstructed ROI may have become overly uniform or noisy, thereby obscuring the
intricate textural patterns often characteristic of malignant tissues [43]. These patterns,
including irregular zone sizes and varying intensities, are vital for differentiating malignant
lesions from normal ones. Consequently, the smoothing effects during reconstruction
may have impaired the GLSZM'’s ability to identify key pathological features, potentially
explaining the non-significant findings in the analysis.

The machine learning models generally demonstrate strong performance across the
five ROIs, with SVM, KNN, and NB achieving perfect results in the original SWE and PSWE
ROL. This indicates that the features within this region are linearly separable, enabling the
models to data file. However, this success may also raise concerns regarding overfitting,
which should be assessed using an independent test set. This observation can be compared
with studies [23,25], which typically indicate a more cautious approach when analyzing
larger and more diverse patient populations. It is crucial to acknowledge that the number
of patient data points is vital for achieving reliable and generalizable model effectiveness.
Insufficient sample sizes can result in overly optimistic outcomes that may not be applicable
in real-world clinical settings. For example, in our study, the logistic regression sensitivity
and specificity for the original SWE were 0% and 100%, respectively, where it was 61.1% and
91.1%, respectively [23]. Conversely, LR struggles in the original SWE, PSWE, and GPSWE
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RO, likely due to its linear characteristics that fail to capture the non-linear relationships
present in this area.

The results of the machine learning models reveal interesting performance trends
across different image preprocessing techniques and categories of cases (true positive,
true negative, false positive, and false negative). Gray Pure SWE and Gray Reconstructed
images consistently outperformed other methods, achieving sensitivities, specificities, and
accuracies of 71.6-98%, 73.1-96%, and 72.4-97%, respectively. These findings suggest that
converting images to grayscale enhances texture analysis by capturing more discriminative
features, leading to improved classification of normal and malignant tissues. Conversely,
SWE images and reconstructed images in their raw forms demonstrated poor performance,
with sensitivities, specificities, and accuracies below 40% in most cases. This discrepancy
highlights the importance of preprocessing techniques in enhancing model performance.

When comparing ML and deep learning (DL), the key difference lies in how each
approach handles feature extraction and learning from data. ML algorithms, such as SVM,
KNN, and RF, depend on manually selected features. This reliance on feature engineering
makes ML methods more interpretable and effective for smaller datasets.

In contrast, deep learning, particularly through convolutional neural networks (CNNs),
automatically extracts hierarchical features from raw data. This capability often results in
superior performance on complex image analysis tasks. However, deep learning requires
large datasets and significant computational resources, making it more susceptible to
overfitting when working with limited data [44].

While machine learning remains a viable option in scenarios with constrained datasets,
future research may explore hybrid approaches that combine ML feature extraction with
DL architectures to enhance both performance and reliability.

In a recent application, deep learning was used to distinguish between prostate cancer
and benign prostatic hyperplasia, utilizing a vast number of transrectal ultrasound (TRUS)
images. The performance of CNNs in differentiating between benign and malignant
prostate cancer was notably high [45].

When analyzing subsets of data, such as only true positive/true negative cases or false
positive/false negative cases, we observed further disparities. SWE and Pure SWE excelled
in identifying false positive and false negative cases, achieving sensitivity and specificities
as high as 100%. However, these models failed in the general classification tasks, with an
accuracy of below 10% for true positive and true negative cases. Gray images, in contrast,
performed exceptionally well for true positive/true negative cases but struggled with false
positive/false negative cases, where sensitivities and specificities dropped to as low as 18%.

The observed trends might stem from the small dataset size, particularly the limited
number of false positive and false negative cases. A small sample size can lead to biased
learning and limited generalization capacity for the models, particularly in imbalanced
or borderline scenarios. Future studies with larger datasets are needed to validate these
findings and improve robustness. The machine learning classifiers developed in this study
show promising results; however, several limitations may affect their overall performance.
Firstly, the limited number of cases could impede the models’ ability to generalize effec-
tively. Smaller datasets often result in overfitting, biased outcomes, and reduced stability,
highlighting the need for larger and more diverse datasets to strengthen the robustness and
reliability of the classifiers. Additionally, the data were obtained from the Axiplorer ma-
chine (Supersonic Imagine in Aix-en-Provence, France), which has limitations concerning
heterogeneous lesions [46]. Furthermore, the dataset is outdated, and newer machines offer
superior image quality. Another limitation of this study is that the texture analysis and
machine learning models were built from a high number of true positive and true negative
images compared with false positive and false negative images. This selective method
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introduces bias, as the models are trained exclusively on instances with clear classifications.
Consequently, they may encounter difficulties in accurately classifying cases that involve
false positives or false negatives. This challenge is further intensified by the inherent
limitations of SWE ultrasound, where image quality and feature representation may not
always be adequate to address ambiguous or borderline cases. As a result, this may hinder
the models’ ability to generalize to more complex real-world scenarios. Additionally, the
performance of the developed classifiers was not compared with existing state-of-the-art
methods, which limits the contextual evaluation of their effectiveness. Furthermore, the
models were only tested on a single dataset and were not externally validated on indepen-
dent datasets. This limits the generalizability of the findings and highlights the need for
future studies to evaluate the models on diverse data sources.

5. Conclusions

Texture analysis utilizing machine learning on SWE and reconstructed images serves
as an objective and valuable method for distinguishing between normal and malignant
prostate lesions. Among the extracted texture features, contrast, entropy, correlation, and
homogeneity were particularly effective in differentiating malignant from benign lesions.
RF, SVM, and NB demonstrated the highest classification performance, with [mention
accuracy, AUC, or other performance metrics if available]. Notably, reconstructing SWE
into grayscale images, such as GPSWE and GRR], significantly enhanced prostate cancer
detection accuracy using machine learning.
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