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Introduction: Early diagnosis of oral squamous cell carcinoma can greatly

improve treatment success rate and patient survival. Although Optical

Coherence Tomography (OCT) based Angiography (OCTA) is a promising in

vivo technique in oral imaging, there is a need for objective assessment of oral

microvasculature.

Methods: This study aimed to demonstrate a comprehensive methodology of

quantitative assessing OCTA intraoral scanning results to provide measurable,

reproducible data and to avoid subjective visual interpretations. Data were

collected from 37 healthy subjects in total across four intraoral sites—buccal

mucosa (n = 32), labial mucosa (n = 24), floor of the mouth (n = 13), and hard

palate (n = 8)—using a non-invasive swept-source OCT system. Four quantitative

metrics—vessel area density, vessel skeleton density, vessel diameter index, and a

newly proposedweighted Tortuosity Index—were used to assess OCTA images in

oral applications.

Results: The quadruple quantitative assessment’s repeatability was evaluated to

be reliable. Analysis of a benign ulcer case revealed differences in these metrics

compared to healthy cases.

Discussion/Conclusion: In conclusion, we demonstrated a comprehensive

method to quantify microvasculature in the oral cavity, showing considerable

promise for early diagnosis and clinical management of oral diseases.

KEYWORDS

optical coherence tomography, angiography, quantitative analysis, oral squamous cell

carcinoma, OCTA, intraoral imaging, oral microcirculation

1 Introduction

Oral squamous cell carcinoma (OSCC) represents a significant health concern due to its

aggressive nature and adverse outcomes (Chamoli et al., 2021). Early diagnosis is crucial in

managing OSCC, as it greatly reduces morbidity and improves the chances of successful

treatment and patient survival (Sciubba, 2001; Feller and Lemmer, 2012; Mortazavi et al.,

2014). The unique vascular patterns associated with tumor growth provide critical insights

into the malignancy’s progression and status (Macluskey et al., 2000; Sasahira and Kirita,
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2018; Tirelli et al., 2018). Specifically, vessel density, diameter, and

tortuosity were found related to oral diseases (Ravi et al., 1998;

Djaberi et al., 2013; Sasahira and Kirita, 2018). In this context, the

study of microvasculature within OSCC lesions has emerged as a

promising diagnostic avenue. Imaging modalities for assessing the

oral microvasculature have seen significant developments in past

decade, and has included high-frequency ultrasound (Huang et al.,

2017; Fogante et al., 2022), real-time optical vascular imaging

(RTOVI) (Bastos et al., 2022) and video-capillaroscopy (Scardina

et al., 2007). However, high-frequency ultrasound is limited by its

resolution compared to optical imaging techniques, while RTOVI is

challenged by a restricted field of view. Video-capillaroscopy has

only a shallow penetration depth due to using visible light for

imaging. These limitations may impact on the ability of these

techniques to capture the nuanced vascular changes at the

earliest stages of OSCC. Therefore, there is a pressing need for

more advanced, non-invasive imaging technologies that can

accurately visualize and quantify microvascular alterations in

OSCC, facilitating early and more effective diagnosis.

Optical coherence tomography (OCT) based angiography

(OCTA) is a relatively recent innovation in imaging technology

which has been developed for applications in oral diagnostics (Choi

and Wang, 2014; Chen and Wang, 2017; Tsai et al., 2017; Le et al.,

2018; 2022; Wei et al., 2018; Zhang et al., 2023). As a non-invasive

imaging technique, OCTA offers high-resolution, three-dimensional

views of microvascular structures without the need for contrast

agents (Kashani et al., 2017). This technology operates on the

principle of capturing the motion contrast of red blood cells,

thereby providing detailed images of blood flow within tissues

(Chen and Wang, 2017). These emerging applications highlight

OCTA’s growing significance in oral healthcare, providing a new

frontier in the imaging-based assessment of oral diseases.

While OCTA, this non-invasive functional imaging technique

has shown promises in oral imaging, there remains a need for

objective assessment techniques of captured oral angiograms.

Quantitative assessments of OCT angiograms have been

implemented in other applications, e.g., in cardiology (Xie et al.,

2024), dermatology (Untracht et al., 2021; Manfredini et al., 2023)

and ophthalmology (Reif et al., 2012; Agemy et al., 2015; Jia et al.,

2015; Chu et al., 2016; Engberg et al., 2020; Untracht et al., 2021;

Wang et al., 2022), which can avoid subjective visual interpretations

and provide measurable, reproducible data. For the analysis of

microvascular structures, the aforementioned studies introduced

several parameters, such as vessel area density (VAD) (Reif et al.,

2012; Jia et al., 2015), vessel skeleton density (VSD) (Reif et al., 2012;

Agemy et al., 2015), vessel diameter index (VDI) (Chu et al., 2016),

and tortuosity index (TI) (Lee et al., 2018; Martelli and Giacomozzi,

2021). These metrics could bring advancements in characterizing

the various vascular diseases. VAD offers insights into the density of

the vascular network by measuring the area occupied by vessels (Reif

et al., 2012; Jia et al., 2015; Chu et al., 2016), while VSD focuses on

the length of these vessels, providing a different perspective on

vascular distribution (Reif et al., 2012; Agemy et al., 2015; Chu et al.,

2016). The VDI can contribute further by analyzing the average

diameter of vessels (Chu et al., 2016). These parameters are vital in

identifying and quantifying subtle vascular changes that may

indicate disease presence or progression. However, it is important

to note that each of these parameters, while valuable, might only

provide a partial view of the vascular landscape. For instance, VAD

and VSD might not fully capture the dynamic aspects of blood flow

or the functional status of the vessels (Chu et al., 2016). Similarly,

VDI, dependent on image resolution and quality, might have

limitations in accurately portraying the intricate details of

microvascular architecture. Despite these limitations, these

metrics collectively offer a comprehensive framework for

assessing and understanding vascular alterations in various

pathological states using OCTA (Chu et al., 2016). In addition,

the tortuosity of the blood vessels is a significant factor for

physiological features in diseases, which has been studied since

Leonardo Da Vinci’s works (Ciurică et al., 2019; Wells and Crowe,

2004; Kemp, 2019). A number of medical conditions or biological

processes, such as aging, atherosclerosis, hypertension, genetic

defects, and diabetes mellitus, can contribute to the development

of increased or severe vessel tortuosity according to clinical studies

(Del Corso et al., 1998; Pancera et al., 2000; Hiroki et al., 2002; Owen

et al., 2008; Kahe et al., 2020). Although several metrics, TI, average

TI and Vessel Complex Index (VCI), have been introduced for

assessing vasculature tortuosity, none of these metrics include the

factor of the vessel diameter, which is crucial for understanding the

varying physiological significance of blood vessels of different

diameters (Han, 2012; Yoon et al., 2023). Therefore, a novel

approach to assess the vascular tortuosity factoring in the vessel

diameter is necessary for quantitative assessment of

microvasculature.

In our research, we have employed a set of quantitative metrics,

VAD, VSD, and VDI, to assess OCTA images in oral applications. In

addition, we have applied a weighted Tortuosity Index (WTI)

calculation to assess the tortuosity of the blood vessels. These

metrics have been chosen to provide a multi-dimensional

understanding of the microvascular structures within the oral

cavity to enhance the diagnostic capabilities and to offer

clinicians a more nuanced view of vascular changes associated

with various oral diseases. This approach enhances a detailed

assessment of microvascular structures, which has the potential

to contribute to improved monitoring and treatment of oral

disease. In addition, to ensure that OCTA using these metrics

can be effective as a diagnostic tool for diseases, it is crucial to

understand the imaging within the context of healthy tissues.

2 Methods and materials

2.1 OCT system

The OCT system used in this study was introduced previously

(Zhang et al., 2023), which was a lab-built, portable and non-invasive

swept-source OCT (SS-OCT) system with a handheld scanning probe.

The diagram of the SS-OCT system is shown in Figure 1. The laser

source of this SS-OCT system is a vertical-cavity surface-emitting laser

(VCSEL) source (SL132120, Thorlabs Inc., Newton, MA, United States),

with a central wavelength of 1,300 nm, and a bandwidth of 100 nm. The

imaging lens system was a two-lens system (AC127-075-C and AC254-

125-C, Thorlabs Inc., Newton,MA, United States) designed for intraoral

imaging, providing a lateral resolution of 39 μm. The theoretical axial

resolution was 7.5 μm in air. The field of view was 5.25 mm × 5.25 mm

for the intraoral scanning probe.
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2.2 Data collection

In this study, a total of 37 healthy participants were involved in

the intraoral acquisition, which included four different intraoral

sites, buccal mucosa, labial mucosa, floor of the mouth and hard

palate. Due to different acceptances of the intraoral acquisition

among participants, each scanning location had different numbers

of datasets. Specifically, the buccal mucosa acquisitions involved

32 participants. The labial mucosa acquisitions involved

24 participants. The acquisition of the floor of the mouth

involved 13 participants. Lastly, the hard palate acquisitions

involved eight participants. This study was reviewed and

approved by the Research Ethics Committee of the University of

Dundee (UOD-SSREC-RPG-BioEng-2022-001).

FIGURE 1

The optical diagram of the SS-OCT system used in this study. (CCD: Charge-coupled device).

FIGURE 2

The processing flow chart in this study to process the OCTA data and calculate the quantitative metrics.
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2.3 Data processing

The datasets acquired by this SS-OCT system contained four

dimensions (4D), including three spatial dimensions and one

temporal dimension. The size of the datasets was 950 × 400 ×

400 × 4 (Z × X × Y× N in pixels, where Z was the axial dimension, X

and Y were the lateral dimensions, and N was the temporal

dimension). Several processing steps of data preparation were

required to generate the intermediate maps, which would be

needed for the quantification evaluation. The preparation

flowchart is shown in Figure 2.

Firstly, the angiography reconstruction method, windowed

Eigen-Decomposition (wED) (Zhang et al., 2022), was applied to

the acquired 4D datasets, generating 3D volumes of angiography

signals. Then, the 3D volumes would be compressed using

Maximum Intensity Projection (Sato et al., 1998; Wang et al.,

2018) to produce the en face projections. With the projection

results of angiogram, the areas of angiography signals can be

selected using global thresholding (Otsu, 1979), adaptive

thresholding (Bradley and Roth, 2007), and Hessian Filter

(Frangi et al., 1998; Reif et al., 2012). The Otsu’s method was

used to determine the global threshold (Otsu, 1979). And then,

after the combination of the adaptive thresholding (Bradley and

Roth, 2007; Reif et al., 2012) and Hessian Filter (Frangi et al.,

1998), the binary angiography masks (BAM) were generated and

prepared for the OCTA quantification. With the BAM, the binary

vessel skeletons (BVS) were generated (Lee et al., 1994;

Kerschnitzki et al., 2013) while the BVS was processed to

separate vessel segments and calculate the TI which generated

the Tortuosity Index skeleton map. The intermediate maps are

demonstrated in Figure 3. As shown in Figure 3B, BAM had the

blood vessel areas as 1s, and the rest areas as 0s. BVS in Figure 3C

where each blood vessel appeared as a distinct, one-pixel-wide

line, contained the skeletons of the blood vessels in 1s, while the

Tortuosity Index map in Figure 3D had the distribution of the TI

for all vessel segments.

As shown in Figure 3, some overlapping of blood vessels can be

observed, which can cause inaccurate quantitative assessments,

especially for BVS. Therefore, an automatic Depth of Interest

(DOI) selection algorithm was developed to divide one OCTA

FIGURE 3

An illustrative OCTA dataset (healthy labial tissue) processed to generate the projection image and the three intermediatemaps used for quantitative

assessment: (A) TheOCTA en face projection imagewith a red scale bar of 500 μm; (B) The binary angiographymask (BAM); (C) The binary vessel skeleton

(BVS); (D) The Tortuosity Index (TI) map. The red arrows highlight the overlapping of blood vessels.
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dataset into two individual layers. As each volunteer will have

different oral tissue thickness and signal attenuation, employing

fixed-depth layer separation was considered an inappropriate

method for solving this problem. In order to adapt to the

different situations for all participants, the DOI was selected

automatically depending on the average OCTA signal intensity at

various depths. Specifically, for each 3D OCTA dataset of Z × X × Y

in pixels, the averaging processing was applied on the X and Y axis,

which can output an array of Z × 1, the intensity distribution at all

imaging depths as shown in Figure 4.

This automatic algorithm firstly would detect the end depth,

where all OCTA signals attenuated and only noise remained, by

finding the deepest location with the same intensity of the mean

intensity of all depths. The layer separation depth was considered

to be the location of the maximum intensity peak. Therefore, DOI

1 was selected from the top to the layer separation depth, while

DOI 2 was selected from the layer separation depth to the end

depth. With two layers separated as DOI 1 and 2, both can be

used to generate the intermediate maps for quantitative

assessments which is shown in Figure 5. The OCTA

quantitative metrics would be calculated from the intermediate

maps for both DOIs.

As shown in Figure 2, the binary images were generated from the

image processing, and then were used to calculate the OCTA

quantitative metrics. For VAD, the area of the blood vessels

divided by the whole area of the field of view was utilized as the

density of the vascular area, which can be shown as Equation 1,

VAD �
∑X

x�1∑Y
y�1BAM x,y( )

X × Y
× 100% (1)

where X and Y are the number of pixels on two axes of the en face

projection images, x and y are the coordinates of the binary mask

FIGURE 4

The normalized signal intensity distribution on all imaging depths.

FIGURE 5

The projection image and the three intermediate maps used for quantitative assessment for both DOI 1 and DOI 2: (A) The OCTA en face projection

image of DOI 1 with a red scale bar of 500 μm; (B) The BAM of DOI 1; (C) The BVS of DOI 1; (D) The TI skeleton map of DOI 1; (E) The OCTA en face

projection image of DOI 2 with a red scale bar of 500 μm; (F) The BAM of DOI 2; (G) The BVS of DOI 2; (H) The TI skeleton map of DOI 2.
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(Reif et al., 2012; Jia et al., 2015). VSD was the density of the vessel

skeleton areas, which can be calculated as Equation 2.

VSD �
∑X

x�1∑Y
y�1BVS x,y( )

X × Y
× 100% (2)

As metrics of density, VAD and VSD were both presented in

percentages (Reif et al., 2012; Agemy et al., 2015; Chu et al., 2016).

Both the BAM and BVS were used to calculate the VDI. The ratio of

the blood vessels‘ areas to the vessel skeletons was defined as VDI

which is shown in Equation 3,

VDI �
∑X

x�1∑Y
y�1 BVS x,y( ) × disEu x,y( )

× 2( )
∑X

x�1∑Y
y�1 BVS x,y( )( ) (3)

where disEu(x,y) is the shortest Euclidean distance from the pixel (x, y)

to the vessel edge for all pixels on the vessel skeletons (Maurer et al.,

2003). The unit of VDI is pixels, while it can further be converted

into micrometers using the pixel transverse size, which was done for

all results in this study (Chu et al., 2016). TI represents the tortuosity

of the blood vessels, which can be calculated by the average ratio of

the vessel length divided by the Euclidean distance for all vessel

segments (Lee et al., 2018; Martelli and Giacomozzi, 2021), which is

shown in Equation 4,

TI �
SegmentLength

EuclideanDistance
− 1( ) × 100 (4)

where SegmentLength and EuclideanDistance are respectively

the length and the Euclidean distance of each vessel segment.

After calculating the TI values for all vessel segments, a TI

skeleton map can be generated. However, in the analysis of

vascular tortuosity, it is essential to account for the varying

physiological significance of blood vessels of different

diameters (Han, 2012; Yoon et al., 2023). This approach aligns

with established practices in vascular research where the relative

contribution of each vessel is proportionate to its diameter,

reflecting its functional importance (Han, 2012; Yoon et al.,

2023). Therefore, we utilized a weighted TI (WTI) method,

that uses the diameter of each vessel segment as a weight

parameter during the averaging which is shown in Equation 5,

WTI �
∑N

n�1VDIn ×
SegmentLengthn

EuclideanDistancen
− 1( )

∑N
n�1VDIn

× 100 (5)

where VDIn is the VDI of the n th separated vessel segment, N is

the total number of the vessel segments, SegmentLengthn and

EuclideanDistancen are respectively the length of the n th vessel

segment and the Euclidean distance of the two endpoints of the n

th vessel segment. WTI does not have a unit. To the best of our

knowledge, this is the first instance where WTI has been

employed to quantify the morphological characteristics of the

oral microvasculature using OCT, although other metrics, such

as vessel complex index, fractal dimension, and VI have been

previously used in ophthalmological applications (Reif et al.,

2012; Chu et al., 2016; Lee et al., 2018; Martelli and

Giacomozzi, 2021). The proposed metric, WTI, to assess the

tortuosity of blood vessels was evaluated, which was introduced

in the Appendix.

3 Results

3.1 Quantitative maps in a healthy case

A clinically healthy labial mucosa dataset was shown in Figure 6

as a demonstration of the quantitative assessments of oral tissue

OCTA imaging. Figure 6A shows the gray-scale OCTA en face

projection of DOI 1, which was segmented by the automatic DOI

selection algorithm. Figure 6B illustrates the quantitative heatmap of

vessel density of Figure 6A, which was generated by using a moving

kernel calculating the average vessel density within the kernel. All

quantitative heatmaps were generated using the same method.

Figure 6C displays the quantitative heatmap of vessel diameter in

micrometers of Figure 6A, while Figure 6D shows the quantitative

heatmap of TI of Figure 6A. Similarly, Figures 6E–H presents the

same quantitative results of DOI 2.

Using the quantitative assessment methods above, VAD, VSD,

VDI, and WTI were calculated from the OCTA projection images.

For DOI 1, this healthy labial mucosa dataset output VAD of

53.26%, VSD of 7.00%, VDI of 91.04 μm, and WTI of 20.30.

Within DOI 2, the VAD and VSD decreased to 46% and 5.40%,

which corresponded to the visual observation of the grayscale OCTA

projection. An increase in the vessel diameter in DOI 2 also saw the

VDI’s rise, while the WTI decreased to 18.36 in DOI 2.

3.2 Evaluation of repeatability

As a demonstration for the repeatability of the quantitative

assessment of OCTA imaging on oral tissues, a side-by-side

comparison of two successive OCTA acquisitions was shown in

Figure 7. The greyscale OCTA en face projection of DOI 1 is shown

in Figures 7A, B, corresponding to Scan 1 and Scan 2 respectively.

The corresponding quantitative heatmaps of vessel density are

illustrated in Figures 7C, D. The BAMs of these scans are

depicted in Figures 7E, F. Additionally, the quantitative heatmaps

of vessel diameter for Scan 1 and Scan 2 are presented in Figures 7G,

H, respectively. The TI skeleton maps of Scan 1 and Scan 2 are

shown in Figures 7I, J, with the quantitative heatmaps of TI for these

scans illustrated in Figures 7K, L. Similarly, the greyscale OCTA en

face projections and quantitative results of DOI 2 are displayed in

Figures 7M–X.

The quantitative maps shared the visual similarity between two

successive scans. The quantitative metrics were calculated for both

Scan 1 and Scan 2 as well, which were listed in Table 1. In addition,

the coefficient of variation for each metric was calculated between

two scans, which was considered to have reliable repeatability

according to published standard (Chu et al., 2016).

3.3 Building database for healthy subjects

Aggregating a database of normal oral tissue OCTA ran

concurrently within this study. A large database can be used for

quantitative assessment to establish a guideline of the quantitative

metrics for healthy oral tissue, which can be used to compare

diseased cases in future studies. Currently, 32 healthy participants

have been enrolled for buccal mucosa acquisitions. The quantitative
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metrics of buccal mucosa datasets were listed in Table 2. In addition,

24 healthy individuals have participated in the collection of labial

mucosa datasets, and the corresponding quantitative metrics are

provided in Table 3. Furthermore, 13 healthy subjects have been

included in the acquisition of datasets from the floor of the mouth,

with the metrics outlined in Table 4. Lastly, eight healthy

participants have been involved in the acquisition of hard palate

datasets, with the quantitative metrics presented in Table 5.

3.4 Quantitative analysis of microvascular in
benign labial ulcer

Although a large database of oral mucosal tissue in diseased

states would be needed in future, an abnormal dataset was presented

below in comparison with the quantitative results of normal

database. Figure 8 shows the quantitative heatmaps of a labial

mucosa dataset from a participant who developed a benign oral

ulcer at the time of acquiring the dataset in Figure 8. The ulcer area

was highlighted with the dashed lines. The 3D OCTA dataset was

separated into two DOIs, and generated heatmaps of vessel density,

vessel diameter, and vessel TI, in the same way of Figure 6.

Compared to the healthy labial mucosa dataset results, the ulcer

metrics reveal distinct differences across various parameters. For

DOI 1, the ulcer’s VAD of 35.07% is lower than the healthy mean

VAD of 49.97%, indicating a reduced density of blood vessels in the

ulcerated tissue which can also be visually observed in the grayscale

OCTA projection. For DOI 2, the ulcer’s VAD of 46.24% is closer to

the healthy mean of 44.11%, but still slightly elevated, suggesting a

potential increase in vascular proliferation in the ulcerated region at

greater depths. The VSD for DOI 1 in the ulcer case is 5.10%, which

is lower than the healthy mean of 6.64%, reflecting fewer vessel

segments in the ulcerated tissue which corresponds to the OCTA

projection. For DOI 2, the ulcer’s VSD of 5.60% is higher than the

healthy mean of 4.89%, suggesting an increased segmentation in the

vessel network at this depth. The ulcer’s VDI for DOI 1 is 77.37 μm,

lower than the healthy mean of 87.76 μm, indicating narrower vessel

diameters in the ulcerated area. Similarly, for DOI 2, the ulcer’s VDI

of 101.71 μm is lower than the healthy mean of 108.41 μm. TheWTI

for DOI 1 in the ulcer dataset is 22.13, higher than the healthy mean

of 18.86, suggesting increased vessel tortuosity in the ulcerated

tissue. For DOI 2, the ulcer’s WTI of 25.02 is higher than the

healthy mean of 16.82, indicating even greater tortuosity in the

deeper vessels of the ulcerated region.

These detailed comparisons reveal that the ulcerated labial

mucosa exhibits alterations in microvascular metrics compared to

healthy tissue, with notable differences in vessel density, diameter,

and tortuosity, reflecting the pathological changes associated with

ulceration. However, to reach a statistical conclusion, more datasets

of ulceration would be required to perform a statistical analysis. This

ulceration case only demonstrates the diagnostic potential of

quantitative assessment methods for oral microvasculature in

this study.

4 Discussion

In this study, we demonstrated the use of OCTA to image and

quantify microvasculature in in vivo human healthy and abnormal

oral cavity. Four metrics, including vessel area density (VAD), vessel

FIGURE 6

The quantitativemaps of a normal labial mucosa dataset. (A) The gray-scale OCTA en face projection of the DOI 1 segmented by the automatic DOI

selection algorithmwith a scale bar of 500 μm; (B) The quantitative heatmap of vessel density of (A), which was calculated using a moving kernel; (C) The

quantitative heatmap of vessel diameter in micrometers of (A) using a moving kernel; (D) The quantitative heatmap of TI of (A) using a moving kernel; (E)

The gray-scale OCTA en face projection of the DOI 2 segmented by the automatic DOI selection algorithm with a scale bar of 500 μm; (F) The

quantitative heatmap of vessel density of (E), whichwas calculated using amoving kernel; (G) The quantitative heatmap of vessel diameter inmicrometers

of (E) using a moving kernel; (H) The quantitative heatmap of TI of (E) using a moving kernel.
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FIGURE 7

A repeatability test for two repeated scans with buccal mucosa. (A) The greyscale OCTA en face projection of DOI 1 in Scan 1; (B) The greyscale

OCTA en face projection of DOI 1 in Scan 2; (C) The quantitative heatmap of vessel density of (A); (D) The quantitative heatmap of vessel density of (B); (E)

The BAM of (A); (F) the BAM of (B); (G) The quantitative heatmap of vessel diameter of (A); (H) The quantitative heatmap of vessel diameter of (B); (I) The TI

skeletonmap of (A); (J) The TI skeletonmap of (B); (K) The quantitative heatmap of TI of (A); (L) The quantitative heatmap of TI (B); (M) The greyscale

OCTA en face projection of DOI 2 in Scan 1; (N) The greyscale OCTA en face projection of DOI 2 in Scan 2; (O) The quantitative heatmap of vessel density

of (M); (P) The quantitative heatmap of vessel density of (N); (Q) The BAMof (M); (R) The BAMof (N); (S) The quantitative heatmap of vessel diameter of (M);

(T) The quantitative heatmap of vessel diameter of (N); (U) The TI skeletonmap of (m); (V) The TI skeletonmap of (N); (W) The quantitative heatmap of TI of

(M); (X) The quantitative heatmap of TI of (N). All scale bars represent 500 μm.
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TABLE 1 Quantitative analysis of two repeated scans with buccal mucosa.

Depth of interest DOI 1 DOI 2

Quantitative Metrics VAD VSD VDI [μm] WTI VAD VSD VDI [μm] WTI

Scan 1 49.58% 7.12% 85.65 12.86 47.58% 6.27% 91.89 21.34

Scan 2 50.05% 7.38% 84.95 12.40 47.59% 6.26% 91.48 20.77

Coefficient of variation 0.0047 0.0179 0.0041 0.0257 0.0001 0.0008 0.0022 0.0194

TABLE 2 The quantitative metrics of buccal mucosa datasets. (n = 32).

Depth of interest DOI 1 DOI 2

Quantitative Metrics VAD VSD VDI [μm] WTI VAD VSD VDI [μm] WTI

Mean 43.32% 6.55% 74.50 20.45 41.17% 5.64% 83.09 22.17

Standard Deviation 8.12% 1.33% 10.79 3.16 6.73% 1.04% 9.64 2.23

Lower 95% 40.39% 6.08% 70.61 19.31 38.75% 5.27% 79.61 21.37

Upper 95% 46.25% 7.03% 78.38 21.59 43.60% 6.02% 86.57 22.97

TABLE 3 The quantitative metrics of labial mucosa datasets. (n = 24).

Depth of interest DOI 1 DOI 2

Quantitative Metrics VAD VSD VDI [μm] WTI VAD VSD VDI [μm] WTI

Mean 49.97% 6.64% 87.76 18.86 44.11% 4.89% 108.41 16.82

Standard Deviation 5.18% 0.86% 9.20 3.16 5.46% 0.79% 13.48 2.62

Lower 95% 47.78% 6.28% 83.88 17.53 41.81% 4.55% 102.71 15.71

Upper 95% 52.16% 7.00% 91.65 20.20 46.42% 5.23% 114.10 17.92

TABLE 4 The quantitative metrics of the floor of the mouth datasets. (n = 13).

Depth of interest DOI 1 DOI 2

Quantitative Metrics VAD VSD VDI [μm] WTI VAD VSD VDI [μm] WTI

Mean 52.00% 5.68% 120.21 17.18 53.98% 4.64% 161.67 15.41

Standard Deviation 5.28% 1.09% 23.07 2.05 5.93% 0.61% 31.62 2.07

Lower 95% 48.81% 5.02% 106.27 15.94 50.40% 4.27% 142.57 14.09

Upper 95% 55.19% 6.33% 134.15 18.41 57.57% 5.01% 180.78 16.73

TABLE 5 The quantitative metrics of the hard palate datasets. (n = 8).

Depth of interest DOI 1 DOI 2

Quantitative Metrics VAD VSD VDI [μm] WTI VAD VSD VDI [μm] WTI

Mean 33.19% 4.33% 85.25 23.39 35.83% 3.94% 114.90 19.69

Standard Deviation 6.07% 1.25% 8.88 4.89 4.92% 0.96% 26.53 3.87

Lower 95% 28.12% 3.29% 77.82 19.30 31.71% 3.13% 92.72 16.45

Upper 95% 38.27% 5.37% 92.67 27.48 39.95% 4.74% 137.07 22.93
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skeleton density (VSD), vessel diameter index (VDI), and the newly

proposed weighted tortuosity index (WTI) were employed for the

quantitative assessment of oral OCT angiograms. The

microvasculature in the superficial layer (DOI 1) and deeper

layer (DOI 2) of four intraoral sites, involving buccal mucosa,

labial mucosa, floor of the mouth and hard palate, were

quantified and contributed to the construction of a database

from healthy participants. Additionally, a microvasculature

analysis of a benign labial ulcer indicated that the metrics

differed from those in the healthy dataset.

This study has several achievements. Firstly, we developed a

robust method to automatically segment the superficial and deep

layers of the oral cavity OCTA volume. Secondly, we introduced the

WTI metric for accurate tortuosity quantification. Thirdly, we

showcased the repeatability of our quantitative metrics results

using a normal buccal mucosa case scanned successively at the

same location. Lastly, and importantly, to the best of our knowledge,

this is the first study to provide quantitative metrics for in vivo

healthy and abnormal oral OCT angiograms. This work has the

potential to offer clinicians a rapid and comprehensive strategy for

interpreting angiograms.

Microvasculature has been shown to differ significantly between

tissue layers, with clear boundaries typically segmented layers in

dermatology studies (Men et al., 2017; Meiburger et al., 2019) and

retinal studies (Garrity et al., 2017; Zhou et al., 2020). However, in

the oral cavity, particularly within mucosal tissues, the epithelium

and lamina propria are not well differentiated under OCT imaging

(Feldchtein et al., 1998), posing challenges for segmentation and

subsequent blood vessel overlapping, which causes inaccurate

quantification. In addition, the epithelial thickness in oral soft

and hard tissues can vary largely, even within the same site (Di

Stasio et al., 2019). Manual segmentation of these tissues is often

impractical for large datasets due to its labor-intensive nature (Hill

et al., 2024). In our study, we proposed a depth segmentation

method based on the maximum OCTA intensity value derived

from the overall mean intensity across all depths. With the

proposed method, the overlapping issue in Figure 3 was reduced,

which was shown in Figure 5. Although the proposed method was

based on the OCTA intensity, not biological features, we are

developing a deep-learning tool capable of automatically

segmenting the epithelial layer for future work, which will

enhance efficiency and accuracy.

Quantitative metrics play an important role in understanding

OCT angiograms. Many studies employed only a single index to

analyze the angiogram, such as VAD (Men et al., 2017), vessel

diameter index (VDI) (Yao et al., 2021), or tortuosity index (TI)

(Martelli and Giacomozzi, 2021). In contrast, our study utilized

multiple metrics, providing a more comprehensive understanding of

vasculature from various perspectives. Additionally, we proposed

and evaluated a newmetric, the vessel tortuosity index (WTI), which

considered the factor of vessel diameter. To understand the

quantitative metrics for a healthy oral database, we found that

the VAD in the buccal mucosa (DOI1: 43.32%; DOI 2:41.17%),

labial mucosa (DOI 1: 49.97%; DOI 2: 44.11%), and floor of the

mouth (DOI 1: 52.00%; DOI 2: 53.98%) were similar, while the VSD

of the buccal mucosa (DOI 1: 6.55%; DOI: 5.64%), labial mucosa

(DOI 1: 6.64%; DOI 2: 4.89%), and floor of the mouth (DOI 1:

5.68%; DOI 2: 4.64%) were found in close values, suggesting these

areas had comparable blood vessel density and distribution. This

similarity was likely due to their roles as oral mucosa with similar

FIGURE 8

The quantitative maps of a labial mucosa dataset with a benign ulcer. (A) The gray-scale OCTA en face projection of the DOI 1 segmented by the

automatic DOI selection algorithmwith a scale bar of 500 μm; (B) The quantitative heatmap of vessel density of (A), which was calculated using a moving

kernel; (C) The quantitative heatmap of vessel diameter in micrometers of (A) using a moving kernel; (D) The quantitative heatmap of TI of (A) using a

moving kernel; (E) The gray-scale OCTA en face projection of the DOI 2 segmented by the automatic DOI selection algorithm with a scale bar of

500 μm; (F) The quantitative heatmap of vessel density of (E), which was calculated using a moving kernel; (G) The quantitative heatmap of vessel

diameter in micrometers of (E) using a moving kernel; (H) The quantitative heatmap of TI of (E) using a moving kernel.
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functions in protecting the underlying tissue and facilitating oral

movements (Berkovitz, 2009; Nanci, 2012). The hard palate

exhibited the smallest VAD (DOI 1: 33.19%; DOI 2: 35.83%) and

VSD (DOI 1: 4.33%; DOI 2: 3.94%) in four oral sites, along with a

higher vessel diameter (DOI 1: 85.25 μm; DOI 2: 114.90 μm) and

lower tortuosity (DOI 1: 23.39; DOI 2: 19.69) in its deep layer

compared to the superficial layer. These characteristics are possibly

related to its specific anatomical features and the presence of

numerous minor salivary glands between the mucosal surface

and the underlying bone (Berkovitz, 2009; Nanci, 2012). The

floor of the mouth had the largest VDI (DOI 1: 120.21 μm; DOI

2: 161.67 μm) but the smallest WTI (DOI 1: 17.18; DOI 2: 15.41),

which may be attributed to its larger vasculature and unique

structural characteristics. In comparison, the ulcer dataset showed

a decrease in superficial capillary VAD (DOI 1: 35.07%) and VDI

(DOI 1: 77.37 μm), indicating structural damage (Xie et al., 2024).

The WTI in the ulcer (DOI 1: 22.13; DOI 2: 25.02) was higher than

in healthy labial mucosa (DOI 1: 18.86; DOI 2: 16.82), suggesting

increased vessel tortuosity in the ulcerated tissue. This increased

tortuosity may indicate a response to inflammation and tissue repair

mechanisms (Chong et al., 2017). A common early clinical state of

OSCC is an ulcerated lesion (Pires et al., 2013). Therefore, our

quantification framework could offer valuable insights into

microvascular differences among multiple oral sites and changes

during the progression of oral disease.

In addition to comprehensively identifying quantitative

differences from the OCTA images among the healthy database

and pathological condition of the oral cavity, the repeatability test of

metrics exhibited high consistency of our methods. The low

coefficient of variation (CV) values indicate that our

quantification method was relatively repeatable between scans

(CV < 5%), and the common indexes were smaller than

previously published quantification works (Chu et al., 2016; Xie

et al., 2024). Therefore, our methods should provide a high level of

accuracy when using OCTA for monitoring oral disease progression

and treatment response.

A few limitations of this study need to be addressed. First, since

this study was using in vivo OCTA imaging, there is a lack of

histological validation. Histological analysis, such as using Griffonia

simplicifolia lectin (GSL) to visualize vascular lumens (Xie et al.,

2024), could be conducted on biopsies from diseased patients.

Additionally, to achieve more accurate descriptive statistics for

healthy subjects, a larger sample size will be necessary. This

limitation aligns with our intended future work, which aims to

better understand normal tissue compared with biopsy proven

clinically abnormal tissues. Larger sample sizes of both healthy

and diseased tissue will enable us to conduct more robust

statistical analyses and more accurately determine the utility of

OCTA in oral diagnostics using our methods. Aminimum of sample

sizes of patients and healthy volunteers of 90 and 180 respectively

would be ideal to yield 80% power with a significance level of 0.05.

While our proposed depth segmentation method was reliable for

OCTA quantification, the segmentation of actual layers in the oral

cavity can reveal structural differences of multiple oral sites and

structural changes caused by oral diseases. Considering the

challenges of using conventional image processing to differentiate

layers, deep-learning methods have the potential to accurately

segment the oral cavity (Hill et al., 2024).

5 Conclusion

In this study, we demonstrated a comprehensive method to

quantify the microvasculature in the oral cavity, including buccal

mucosa, labial mucosa, floor of the mouth and hard palate. From the

intraoral scanning results, we assessed four metrics: VAD, VSD,

VDI, and the newly proposedWTI. These metrics were calculated in

both superficial and deeper layers across four intraoral sites, using an

automatic layer separation method. We also analyzed a benign

ulcerated labial tissue. The four metrics collectively revealed

differences from healthy tissue. Therefore, proposed quantitative

assessment of OCTA imaging holds considerable promise for future

research and clinical management of oral diseases.
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Appendix

To evaluate the robustness of the WTI and better demonstrate

WTI, four hand-drawn binary images which essentially can simulate

the simplified binarized en face OCTA projections, BAM, were used

to calculate the WTI and generate TI skeleton maps (Figure A1).

Figures A1A, C, E, H are the hand-drawn binary images with

vessel-like shapes to evaluate the tortuosity quantification. The

WTI values were calculated and displayed at the bottom-right

corner on each sub-figure. The first two images, Figures A1A, C

were designed to assess separated segments, where one was a straight

line and another consisted of curved lines. Figures A1B, D were the

TI skeleton maps of Figures A1A, C respectively. Besides the

separated segments, connected vessel-like binary images in

Figures A1E, G were applied to the same process. Figure A1E

was a connected vessel branch with relatively straight lines, while

Figure A1G was the same structured vessel branch with visually

more tortuous vessels. Figures A1F, H were the TI skeleton maps of

the binary images in Figures A1E, G. In comparisons of either

separated segments or connected vessel branches, a positive

relationship between the visual tortuosity and the WTI values

was found in this demonstration. Therefore, the WTI can be

considered as a useful tool to quantitatively assess the tortuosity

of the microvasculature networks.

FIGURE A1

Demonstration of the quantitative assessment of vasculature tortuosity. Figure (A, C, E, G) are hand-drawn binary images with vessel-like shapes,

with WTI values calculated and displayed at the bottom-right corner. Figure (B, D, F, H) are the TI skeleton maps of the binary images respectively.
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