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LS-Net: lightweight segmentation network for
dermatological epidermal segmentation in
optical coherence tomography imaging

JINPENG LiAO, ® TIANYU ZHANG, ® CHUNHUI LI,” AND ZHIHONG
HUANG

University of Dundee, School of Science and Engineering, Dundee, United Kingdom

“c.li@dundee.ac.uk

Abstract: Optical coherence tomography (OCT) can be an important tool for non-invasive
dermatological evaluation, providing useful data on epidermal integrity for diagnosing skin
diseases. Despite its benefits, OCT’s utility is limited by the challenges of accurate, fast
epidermal segmentation due to the skin morphological diversity. To address this, we introduce
a lightweight segmentation network (LS-Net), a novel deep learning model that combines
the robust local feature extraction abilities of Convolution Neural Network and the long-term
information processing capabilities of Vision Transformer. LS-Net has a depth-wise convolutional
transformer for enhanced spatial contextualization and a squeeze-and-excitation block for feature
recalibration, ensuring precise segmentation while maintaining computational efficiency. Our
network outperforms existing methods, demonstrating high segmentation accuracy (mean Dice:
0.9624 and mean IoU: 0.9468) with significantly reduced computational demands (floating
point operations: 1.131 G). We further validate LS-Net on our acquired dataset, showing its
effectiveness in various skin sites (e.g., face, palm) under realistic clinical conditions. This
model promises to enhance the diagnostic capabilities of OCT, making it a valuable tool for
dermatological practice.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Skin, the largest organ of the body, comprises three distinct layers: the epidermis, dermis, and
subcutaneous tissue. It serves as the primary barrier against pathogens, ultraviolet radiation, and
mechanical damage [1]. The integrity and functionality of the epidermis, mainly reflected in
its thickness (ET), are crucial features for preventing skin fissures and ulcers. While the skin
pathological conditions can influence the ET, the variations of ET are mainly decided by the
different skin sites [2].

The golden standard for examining ET, e.g., biopsy, is invasive, non-repeatable, and often
results in bleeding, scarring, and pain. In contrast, optical coherence tomography (OCT), a
non-invasive, label-free imaging modality, provides a non-invasive, real-time, in-vivo assessment
with axial resolutions around 10 um and depth information up to 2 mm [3]. The efficacy of OCT
in diagnosing skin conditions related to ET changes, such as skin cancer [4-6], skin acne [7], and
inflammation [8,9], emphasizes its clinical value. However, manual annotations of OCT images
require significant expertise and time [10], due to complex morphological changes in skin sites.
Conventional methods for the OCT epidermis-dermis junction (EDJ), such as shapelet-based
[11] and intensity-based [12] methods, heavily rely on image quality, struggling with image
artifacts, and noise [13]. Moreover, compared to the easily distinguished sites like fingertips and
palm, the forearm, neck, face, and wrist sites that have indistinct EDJ intensity/gray signals and
morphological features are always difficult segmentation by the conventional methods. Clinical
OCT imaging with handheld devices faces challenges like inconsistent angles, pressures, and
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distances, affecting image quality [14]. Thus, it is essential to develop an efficient, automated,
and accurate segmentation method for the rapid, real-time analysis of epidermal thickness.

Recent advancements in deep learning, particularly convolutional neural networks (CNNs) like
U-Net [15], have improved the segmentation of the epidermal layer in OCT images [13,16—19].
Kepp et al. [20] further proposed a densely connected (DC)U-Net, which utilized densely
connected blocks for enhanced feature reuse, demonstrating superior performance in mouse
skin layer segmentation. However, this study focused on mouse skin, and for dermatological
applications, it is crucial that models relearn the unique characteristics of human skin structure
rather than solely focusing on image segmentation.

Despite these advances, CNN models struggle with capturing long-term dependencies due to
their limited receptive fields and localized feature extraction mechanisms. In contrast, vision
transformer (ViT) [21] provides a promising alternative with its ability to address long-term
dependencies by self-attention mechanism, proving useful in OCT image processing tasks like
image segmentation [22,23], reconstruction [24—27], and classification [28,29]. However, the
self-attention mechanism also introduces significant computational complexity and necessitates
large model sizes to achieve enhanced performance, making them less practical for medical
imaging applications [30]. Moreover, distinct from CNNs, ViTs do not inherently account for the
spatial relationships between pixels, thereby requiring larger datasets for effective training. This
makes ViT less practical for medical imaging due to common resource constraints. Thus, there is
a crucial need for developing smaller, more efficient models that do not compromise performance
despite reduced computational resources and dataset availability.

To address these limitations, we propose a novel model, the lightweight segmentation (LS)-Net,
which integrates the strengths of CNNs and ViTs. It includes a depth-wise convolutional
transformer [31] to capture spatial relationships and a fusion layer incorporating a squeeze-
and-excitation (SE) block [32] for enhanced feature integration. LS-Net is designed to be
resource-efficient, containing only ~0.5 M parameters and requiring ~1.1 G floating-point
operations, making it suitable for situations with limited computational resources.

Consequently, our study contributions are: (1) We propose LS-Net for efficient and accurate
OCT-based segmentation of the skin epidermis, demonstrating superior performance compared
to state-of-the-art networks. (2) We develop an intensity-based segmentation algorithm that
generates substantial pseudo-data for pre-training, helping overcome training convergence and
stability issues typical in ViT models. (3) Through ablation studies, we assess the effectiveness of
the proposed LS-Net, focusing on network size, decoder heads, the feature fusion layer, and the
strategy of using pseudo-data for pre-training. (4) We evaluate the ability of LS-Net to measure
epidermal thickness, improving the practical utility of OCT in dermatology.

2. Related works

In the realm of medical image segmentation (MIS), the deep learning models can be divided
into two main distinct architectures: CNNs and ViTs. During the early progress, FCN [33] stand
as a cornerstone by introducing pixel-wise prediction capabilities in image segmentation. With
a symmetrical architecture and long skip connection, U-Net has emerged as a widely adopted
model due to its effective multi-scale feature fusion, setting a baseline in MIS.

By introducing ViT into U-Net, TransUNet [22] incorporates the self-attention mechanism of
ViT, which has a global receptive field, enhancing the ability of long-term information processing
compared to traditional CNNs. To further address efficiency concerns, Swin-UNet [23] uses
shifted window mechanisms, which improve feature extraction scalability and computational
efficiency across various scales, outperforming TransUNet in both aspects. Additionally,
SegFormer [34] used an efficient self-attention that utilize convolution layer for query and key
sequences reduction processing [35], decreasing self-attention complexity while preserving high
performance in MIS. Despite these advancements, the compression techniques used to streamline
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self-attention in models could potentially compromise the retention of critical details, which is
essential for precise segmentation of the epidermis-dermis junction.

3. Method

The architecture of our proposed Lightweight Segmentation Network (LS-Net) is depicted in
Fig. 1. LS-Net simplifies the U-Net architecture into a compact encoder-decoder structure for
multi-scale feature extraction. It has fewer parameters and less computational demand than
U-Net, significantly reducing the network depth and the resources for inference and training.
The encoder consists of depth-wise convolutional transformer (refer as DWCT in the following
sections) blocks and overlapped patch extraction (OPE) layers. Although DWCT blocks offer
efficient feature extraction, LS-Net lacks depth; we mitigate this through a novel fusion layer
in the decoder, incorporating a SE-block for effective shallow-to-deep feature integration. The
whole network is described in detail in the following sections.

Encode o
!4 ncoder ;H: D“"”L,I
q ]
R v v
192 x 192 x 1 o 5 ~ls & Alle @ | Ale SIS I~ & o~ 192 x 192 x 1
) & N ERIRIERI R ERSIRS B =] o —
= < Olls H |L|l= Offs | ~ = |
o ) TIE A I TNE H4 [ZIE H4 | 5 = =] =\ =
S (s == o | 5[ o | 5l 9 @ o = Zll s
s > o 3| @ 3 | @ SIS > 2
] Az =L Al = iz =l < < z [=§ i<
Jis} = S[E M| <SMNE M) <SNE Ml =2 | = o =
S 4 |[S | KS) N K] =4 = o
5 < a9 8l [m|< g [=|< 8§ ) < 2|2
= |EE 5B 55| & |5]E & |2|E & |2 | E
DX DX o DX & QX e = = DX a Predicted Mask
— Forward propagation é = § H"' SE-Block
. . o) 5
----» Residual connection E = z 2 g
LN Layer normalization zll> 2 Z = e gl z
15 & [ 2 HEE
+  Element-wise addition % E A 8 % ]
. 5 = | —
OPE Overlapped patch extraction 5 < 2, 8 ‘é <
FFN Feed-forward network = ol
SE  Squeeze-and-Excitation -
DW-Conv Trans-former Block Fusion Layer

Fig. 1. The proposed LS-Net architecture. c1-c4 means the number of channel dimensions of
the feature at each stage. N1-N4 means the number of depth-wise convolutional transformer
blocks at each stage. n_cls is the number of classes. The prediction layer is set witha 1 x 1
convolution layer.

3.1. Overlapped patch extraction layer

Distinct from the fixed patch size and non-overlapping approach typical in ViT-like networks [21],
we use overlapped patch extraction (OPE) layer to gradually obtain the patches at multi-scales
in four stages. The OPE layer can offer the advantage of capturing local spatial relationships
and inherent translation invariance, leading to richer feature representations that enhance model
robustness and performance.

In LS-Net, the patch extraction layer and OPE layer are implemented with convolution layer
with different setting of strides (S), kernel size (K), and output channel size (C). Assume the
input of gray image has a shape of Hx W x 1 (H: height; W: width), the first patch extraction
layer (K =7, S=4, C=16) split the image into patches of size 4 X 4, outputting image patches of
dimensions H/4 X W/4 x 16. The setups of the following OPE layers were K =3, S=2, and C=c;,
where i € {2,3,4} and the implementation of ¢; is in section 4.3. With OPE layers, the extracted
feature was gradually downsampled with resolution H/2i*! x W/2i*! x ¢;, where i € {2,3,4}.
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3.2. Depth-wise convolutional transformer (DWCT) block

As demonstrated in Fig. 2, the DWCT block integrates the DWCT (Fig. 2(A)) and depth-wise
FFN (Fig. 2(C)), and Fig. 2(B) is the self-attention mechanism utilized in DWCT.

1T, (] (A) Depth-wise Conv Transformer
zl 1€ &2
R
18
NIEEIE Q K
on L[ ® - = v v 1x1 conv
._é T 2 2 M = g .% Multiply Ix3 Linear
£ 2| 2 5
-ﬂ'é |l § >_§‘ 3 § f I § %_> Rescale by d depth-wise conv ReLU
—_ o142 v ZE T
2 BRI % . 3 E [ SoftMax ] [ GELU Activation ] Linear
=" L] ) $ [5)
Kl — —_ | .g 1x1 . n
= |2 2] e = Multiply ( :"“V ) Sigmoid
HePI© oH <
<[z gl| & - U
; « L (B) Self-Attention (C) Depth-wise FEN (D) SE-Block

Fig. 2. The schematic of the component in the LS-Net. (A) The depth-wise convolutional
transformer layer. (B) The self-attention mechanism. (C) Depth-wise feed forward network.
(D) Squeeze-and-Excitation (SE)-block. Conv: convolution, GAP: global average pooling.

3.2.1. Depth-wise convolutional transformer

In the vanilla Transformer [21,22], the image patches are considered as 1D sequences, serving as
the input of the self-attention (SA) mechanism input, and can be described as (1):

T
SA(Q, K, V) = Softmax (Q? ) A% (1)

where d is a numerical value of +/dimension of Q, T is the transposing operation. Q (query),
K (key), and V (value) are 1D sequences generated based on image patches with the linear
projection layers. With SA, Transformer has an advantage over CNNs since it considers the
information among all feature points, providing long-term information and a global receptive
field. However, the vanilla Transformer does not consider the spatial relationship between the
patches. To alleviate this problem, as shown in Fig. 2(A), the DWCT integrates depth-wise
convolutions with self-attention, which maintains the global receptive field advantage from
transformer while imparting spatial contextual information. This configuration also preserves
computational efficiency without compromising the spatial information. Taking X with a shape
of Hx W x C as the input, the forward processing of the DWCT can be written as:

Sequenceq, k,v = Reshape(Dw(Pw(X))) 2)

X = LP(SA(Q, K, V)) (3)

where Dw is a depth-wise convolution layer with a kernel size of 3 X 3, Pw is a 2D convolution
layer with an implementation of kernel size of 1 X 1, stride of 1, and filter size of C. LP is a
linear projection layer with a hidden size of C. After the reshape operation in (2), the shape of
Q, K, and V sequences are N x C, where N is H X W. A head split operation is then applied to
each sequence to reshape the sequence from N X C to M x N/M x C, where M is the number of
heads for multi-head self-attention (MHSA). After the MHSA processing, the output from the
SA(Q, K, V) in (3) is a sequence with a shape of M X N/M x C. The sequence is then reshaped to
N x C. Finally, after processing by LP layer, the output of (3), X, has a shape of N x C.
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3.2.2. Depth-wise feed-forward network

Following the results of Xie et al. [34], that the convolution layer can be embedded in the
feed-forward network (FFN) to provide better segmentation in the Transformer while maintaining
the model efficiency, we introduce a depth-wise (DW)-FFN. DW-FFN (Fig. 2(C)) utilizes
point-wise convolution and depth-wise convolution layers to replace the linear projection layers
in the FFN, enhancing the ability to capture and process patterns, especially in understanding
spatial relationships among local features. Taking the input is X from (3), the Dw-FFN is:

Y = Pw»(GELU(Dw(Pw;(X))))) )

The shape of the input X is N x C. Pw; and Pw, are convolution layers implemented with a
kernel size of 1 X 1, stride of 1, while Pw; has a filter size of 4C, and Pw, has a filter size of C.
Dw is a depth-wise convolution layer with a kernel size of 3 x 3.

3.3. Fusion layer

In the decoder, we proposed a fusion layer that consists of SE-block, deconvolution layer, and
a 1 x 1 convolution layer. This assembly not only upsample feature maps but also better reuse
the features from encoder section. As a plug-and-play module, the SE block enhances feature
extraction by mapping channel relationships in convolutional features, thereby improving the
representation of complex patterns. Furthermore, SE blocks improve network performance
by adaptively recalibrating functions, adding little computational cost and requiring no major
architectural changes. Taking X as the input, and Xiegigual as the residual input from the encoder,
the fusion layer can be written as:

out = Convyyx;(Concat(Fsg(Xresiqual ), DeConv(X))) &)

where DeConv is a deconvolution layer with a kernel size of 3 x 3, stride of 2, and the filter size is
the same as the input X, and Fsg is the SE-block mentioned in Fig. 2(D), Xiesidual is the residual
input from the previous encoder section. Concat is a feature concatenate layer, and Convyy is a
convolution layer with a kernel size of 1 x 1, stride of 1, filter size is implemented as section 4.3
mentioned (c;, where i € {1,2,3,4}).

4. Experiments

4.1. Swept-source OCT system and data acquisition

A lab-built swept-source OCT (SSOCT) system was utilized to non-invasively acquire the data of
skin structure with a hand-held probe (Fig. 3). More details of the system were described in [36].
The study was approved by the School of Science and Engineering Research Ethics Committee
of the University of Dundee, which also conformed to the tenets of the Declaration of Helsinki.
Before data collection, informed consent was obtained from all 36 participants, aged between 20
and 40, with no reported skin conditions. In the skin OCT data collection, a flexible hand-held
scan probe was utilized to acquire the data from various skin sites including the palm, hand
back, fingertip, wrist, face, neck, and forearm. To increase the amount of data, each location was
collected thrice with minor positional adjustments. After the exclusion of scans with significant
motion artifacts or bad quality, our dataset consists of 353 OCT data. (palm: 58; neck: 40;
forearm: 83; fingertip: 48; face: 35; back of hand: 55; wrist: 34).

In terms of scanning protocol for data acquisition, one OCT scan can acquire data with a size
of 6 X 600 x 600 x 384 (number of repetitions X X-transverse axis X Y-transverse axis x Z-axial
axis). The spatial interval in the transverse axis is ~8.6 um/pixel and theoretically ~7.4 pm/pixel
(in air) in the axial axis. The field of view is 5.16 mm?. We then applied the fast Fourier
Transform (FFT) in OCT raw data pre-processing to convert spectral data into spatial information,
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Fig. 3. The system schematic of the SSOCT system in this study. A demonstration of
the hand-held scan probe for flexible data acquisition is shown on the right side of figure.
The swept-source laser (SL132120 from Thorlabs Inc.) in our system has a wavelength of
1310 nm and a bandwidth of 100 nm. The A-scan swept rate is 200kHz.

thereby obtaining OCT volumes that contain high-resolution depth information. Since each
OCT data set has six repetitions of OCT scans, we applied a frame-averaging algorithm [37] to
reduce the speckle noise in the OCT volumes. Finally, we obtained 353 OCT volumes, each with
dimensions of 600 x 600 x 384 for further analysis.

4.2. Segmentation mask generation

For training, validation, and testing, we partitioned the 353 OCT volumes into two sets: 288
volumes from 25 participants were designated for the training and validation stages, and 65
volumes from 11 participants were reserved for testing. Our strategy consists of sampling every
third frame from each volume to exploit wider structural diversity and avoid overfitting due to
similar consecutive frames. We totally obtained 57,600 B-frames for the training and validation
stage, with an additional 65 independent volumes for model performance testing.

Figure 4 illustrates the two-fold process for data preparation and model training. Due to the
resource-intensive nature of the precise skin OCT image annotation, we adopted an intensity-based
algorithm to automatically generate pseudo labels for pre-training stage (pseudocode can be
found in Appendix in Algorithm 1). Although the accuracy of the pseudo label is not as high as
the manual label, the pseudo label of OCT structure image is better for the model pre-train to
learn the features of skin OCT structural images, rather than using the natural image. For data
labelling, two experts annotated the OCT images from all OCT volumes and selected B-frames
images every 30 frames in each OCT volume (1920 B-frames from 288 OCT volumes, and 430
B-frames from 65 OCT volumes in this study).

As shown in Fig. 4, a crop box with a shape of 192 x 192 is utilized to extract the image-label
pairs for the model pre-train stage. In total, 172800 pairs of images and pseudo labels data are
used to pre-train the model. Regarding the data used in fine-tuning stage, a series of crop boxes
with a shape of 642, 802, 1122, 1442, and 1922 are used to extract the image patches from the
B-frames. Finally, 119040 pairs of images and manual labels data are used to fine-tuning the
model.

4.3. Implementation details

The model used in this study were built and trained based on TensorFlow 2.9.0 [38]. We used the
Adam optimizer [39] with an initial learning rate of 0.001 and a momentum of 0.9 for model
optimization. The cross-entropy loss function was used to calculate the training loss between the
provided mask and the model prediction. The number of training epochs was set as 400, and the
batch size was set to 128. An NVIDIA RTX A6000 with 48 GB memory was used to facilitate
the training of the model. To improve the model robustness, we applied random right and left
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Fig. 4. (Stage-I) The pipeline of data pre-processing and mask generation. (Stage-1T) The
demonstration of the model pre-train stage (II-a) and fine-tuning stage (II-b).

image flipping as a data augmentation technique during the training. An early stopping strategy
was used to prevent overfitting when the validation loss is not decreased over 40 consecutive
epochs, and the model weights with the lowest loss were then saved.

Figure 4 stage-II illustrates the training strategies utilized in this study, including pre-train
stage and fine-tuning stage. Apart from the data usage, these two training stages utilize the same
training epochs and early stopping strategies as mentioned above.

Regarding the initialization of the proposed LS-Net, as shown in Fig. 1, the filter sizes (c;,
where i € {1,2,3,4}) of the DWCT block, OPE layer, and fusion layer at each stage are {16, 32,
64, 64}. In the setting of DWCT block, the number of head (H;, where i € {1,2,3,4}) at each
stage are {1, 2, 4, 4}, and the number of DWCT block (Nj, where i € {1,2,3,4}) at each stage
are {1, 1, 2, 2}. The 4x upsample layer is a deconvolution layer with a kernel size of 7x 7, a
stride of 4, and a filter size of ¢;. In terms of the prediction layer, the kernel size is 1 X 1, the
stride is 1, and the filter size is 3, which is equal to the number of classes.

4.4. Evaluation metrics

To quantify the segmentation accuracy of various methods, we utilized six metrics in this study,
including accuracy (Acc), specificity (Spe), sensitivity (Sen), precision (Pre), the mean dice
similarity coefficient (mDice), and the mean intersection over union (mloU). Those metrics can
be formulated as:
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where TP (/TN) is the true position (/negative) and represents the number of pixels correctly
predicted and labeled as positive (/negative). Conversely, the number of pixels that are incorrectly
given a positive (/negative) label is called FP(/FT). N is the number of classes.

4.5. Comparison to state-of-the-art methods

Given the novelty of our dataset, direct comparisons with the existing methods are not feasible.
Therefore, we evaluate the performance of our LS-Net for skin layer segmentation with various
models that are proposed for related studies (e.g., medical image segmentation). Those models
include high-efficiency and high-performance medical image segmentation models (T-Net [40],
TransUNet [22], SwinUNet [23], Wave-Net [41], SegFormer (mit-b0 setup) [34], SHFormer [42],
and CENet [43]), and methods for OCT-based skin layer segmentation (DCU-Net [20], UNet
[15,17,44]). The training details and training strategies of the compare-used models are the same
as the proposed implementation details mentioned in section 4.3, to reduce the influence from
the training details and hardware. The results are shown in Table 1.

Table 1. Quantitative Comparison (mean + standard deviation) with State-of-the-art Methods.

Method mDiceT mloUT SenT SpeT AccT PreT FLOPs | Params
UNet 0.9573 £0.015 | 0.9394 +0.027 | 0.9866 + 0.006 | 0.9933 +0.003 | 0.9866 + 0.006 | 0.9866 + 0.006 | 60.00 G | 34.56 M
DCU-Net |0.9553+0.013 | 0.9393 +0.023 | 0.9863 +0.006 | 0.9932 +0.003 | 0.9863 +0.006 | 0.9863 +0.006 | 13.14 G | 6.106 M
TransUNet | 0.9499 +0.018 | 0.9294 +0.030 | 0.9828 +0.008 | 0.9914 + 0.004 | 0.9828 +0.008 | 0.9828 +0.008 | 23.01 G | 52.35M
SwinUNet | 0.9465 +0.021 | 0.9233 +£0.036 | 0.9822+0.011 [ 0.9911 +0.005 | 0.9822 +0.011 | 0.9822+0.011 | 16.30 G | 50.28 M
T-Net 0.9506 +0.033 | 0.9295 +0.048 | 0.9830 +0.015 | 0.9915 +0.008 | 0.9829 +0.015 | 0.9830 +£0.015 | 0.478 G | 0.045 M
CENet 0.9617 £0.015 | 0.9418 £ 0.026 | 0.9869 + 0.006 | 0.9934 +0.003 | 0.9869 + 0.006 | 0.9869 +0.006 | 10.89 G | 15.62 M
Wave-Net | 0.9493 +0.020 | 0.9273 +£0.033 | 0.9809 +0.010 | 0.9904 + 0.005 | 0.9809 +0.010 | 0.9809 +0.010 | 150.7 G | 7.882 M
SegFormer | 0.9593 +0.015 | 0.9404 +0.025 | 0.9865 + 0.006 | 0.9932 +0.003 | 0.9865 + 0.006 | 0.9865 +0.006 | 1.932 G | 3.702 M
SHFormer | 0.9594 +0.015 | 0.9432 +0.023 | 0.9872 +0.005 | 0.9936 +0.003 | 0.9872 +0.005 | 0.9872 +0.005 | 0.597 G | 2.817 M
LS-Net 0.9624 +0.014 | 0.9468 + 0.023 | 0.9882 + 0.005 | 0.9941 + 0.003 | 0.9882 + 0.005 | 0.9882 +0.005 | 1.131 G | 0.507 M

The results reveal that our proposed LS-Net has demonstrated exceptional performance across
multiple metrics, including mDice (0.9624) and mIoU (0.9468), outperforming other methods.
Notably, it also exhibited a high sensitivity (0.9882) and specificity (0.9941), which indicates
robustness in identifying true positives and negatives. The accuracy further solidified its reliability
with a score of 0.9882. Moreover, LS-Net maintained computational efficiency, with a reduced
number of floating points operation (FLOPs) at 1.131 G, which is significantly lower than several
other models, and a modest number of parameters totaling 0.507 M.

The visual comparisons from Fig. 5 to Fig. 7 present the segmentation performance of various
deep learning models on cross-sectional images of skin structures from the face, palm, and
forearm, respectively. All figures are scalable vector graphic format, and please feel free to
zoom in for detailed comparison. These anatomical regions exhibit diverse textural and contrast
characteristics, serving as a challenging test for accurate segmentation. Among the models
evaluated, LS-Net consistently exhibits superior performance in matching the expert-annotated
ground truth across all three anatomical locations.

In Fig. 5 (face), LS-Net achieves the highest Intersection over Union (IoU) of 0.914 and Dice
coefficient of 0.938, indicating a remarkable overlap with the manual labels. Similarly, for the
palm structure in Fig. 6, LS-Net closely approximates the expert annotations, attaining the best
IoU of 0.947 and Dice of 0.966. Even in the challenging case of the forearm (Fig. 7), where
contrast variations and image noise can negatively influence segmentation, LS-Net secures an
impressive IoU of 0.918 and Dice of 0.945, outperforming its counterparts.
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Fig. 5. Segmentation results from various methods (Position: Face). (A) Cross sectional
structure image. (B) Expert annotations. (C) Pseudo label generated by intensity seg-
mentation method. (D)-(M) are segmentation masks generated by various deep-learning
models.

e ..

(A) Structure Image” R =\ (C) Intensity-based
(position: Palm) 3 (B) Manual Label (IoU: 0.795; Dice: 0.881) (D) UNet (IoU: 0.916; Dice: 0.956)

Air
Epidermis
Dermis

(E) DCUNet (IoU: 0.932; Dice: 0.963) (F) TransUNet (IoU: 0.905; Dice: 0.939)  (G) SwinUNet (IoU: 0.905; Dice: 0.938)

————
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(K) SHFormer (IoU: 0.926; Dice: 0.956) (L) CENet (IoU: 0.941; Dice: 0.965) (M) LS-Net (IoU: 0.947; Dice: 0.966)

Fig. 6. Segmentation results from various methods (Position: Palm). (A) Cross sectional
structure image. (B) Expert annotations. (C) Pseudo label generated by intensity seg-
mentation method. (D)-(M) are segmentation masks generated by various deep-learning
models.

4.6. Ablation Studies
4.6.1. Influence of network size

In this section, we evaluated the influence of the network size by implementing various filter
sizes (¢;, where i € {1,2,3,4}) and attention head number (H;, where i € {1, 2,3, 4}). Following
the implementation details in section 4.3, we define the original setup is LS-Net-B. In terms of
the LS-Net-S and LS-Net-L, the implementation for DWCT Blocks is shown in Table 2.

The results in Table 2 indicate that as the network scale increases, the performance metrics
show a clear upward trend (mDice from 0.9553 to 0.9629, and mIoU from 0.9371 to 0.9444).
However, this improved performance comes with increased model complexity, as evidenced
by higher FLOPs (from 0.549 G to 2.686 G) and network parameters. Compared to the larger
LS-Net-L model, the LS-Net-B configuration uses intermediate filter sizes and attention heads,
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Fig. 7. Segmentation results from various methods (Position: Forearm). (A) Cross
sectional structure image. (B) Expert annotations. (C) Pseudo label generated by intensity
segmentation method. (D)-(M) are segmentation masks generated by various deep-learning

models.
Table 2. Ablation study on the architecture
Model Filter Size (c) Heads (H) mDiceT mloUT FLOPs Params
LS-Net-S 8,16, 32,32 1,2,4,4 | 0.9553+0.020 | 0.9371+0.032 | 0.549G | 0.1359M
LS-Net-B 16, 32, 64, 64 1,2,4,4 | 0.9624+0.014 | 0.9468 +0.023 | 1.131G | 0.5069 M
LS-Net-L | 32,64, 128, 128 2,4,8,8 | 0.9629+0.014 | 0.9474+0.024 | 2.686 G | 1.9540 M

resulting in a slight performance decrease (mDice: 0.9624 < 0.9629; mIoU: 0.9468 < 0.9474),
but a significant reduction in model complexity (FLOPs: 1.131 G <2.686 G). Compared to
LS-Net-B, the smaller LS-Net-S model has lower computational requirements in terms of FLOPs
(0.549 G < 1.131 G) and parameters (0.1359 M < 0.5069 M), but also has lower performance
(mDice: 0.9553 <0.9624; mIoU: 0.9371 < 0.9468). Despite the performance drop, LS-Net-S is
potentially suitable for applications with limited resources.

4.6.2. Influence of SE-block

In section 3.3, we proposed a fusion layer with SE-Block to enhance the feature fusion between
the shallow and deeper features for better segmentation performance. To quantify the effect of
the SE-Block, in this experiment, we compare the performance of the fusion layer between the
with (w) SE-Block and without (w/0) SE-Block.

The results in Table 3 shows that adding the SE-Block to the fusion layer can improve the
segmentation performance (mDice: 0.9624 > 0.9595; mloU: 0.9468 > 0.9413). Moreover, the
inclusion of SE-Block also slightly improves the specificity and accuracy of model, reaching
0.9941 and 0.9882, respectively. These performance gains are accomplished with a negligible
increase in computational complexity, as the FLOPs only marginally increase from 1.13136 G to
1.13149 G, and the number of parameters remains relatively stable (0.5054 M vs. 0.5069 M).

Table 3. Ablation study on the architecture of the design of the feature fusion layer

SE-Block mDiceT mloUT SpeT AccT FLOPs (G) Params
w/o 0.9595+0.015 | 0.9413+0.026 | 0.9934+0.003 | 0.9868 +0.006 1.13136 0.5054 M
w 0.9624 +£0.014 | 0.9468 +0.023 | 0.9941+0.003 | 0.9882 +0.005 1.13149 0.5069 M
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4.6.3. Influence of training strategies

In section 4.2 and 4.3, we proposed an intensity-based segmentation method to create a large
amount of relatively low-accuracy pseudo segmentation data for model pre-training. To assess
the impact of this training strategy, we compared the performance of LS-Net models trained with
the proposed strategy versus those trained only on high-accuracy manual labels.

As shown in Table 4, the LS-Net models pre-trained with pseudo data exhibited superior
performance across several evaluation metrics. The mean Dice score increased slightly from
0.9591 to 0.9624 and the mean IoU increased from 0.9425 to 0.9468, suggesting a more precise
overlap between model predictions and ground truth. These results indicate that the LS-Net
models pre-trained with pseudo segmentation data not only retained high levels of specificity and
sensitivity, but also demonstrated improvements in overall accuracy, precision, and segmentation
metrics compared to training with manual labels alone.

Table 4. Ablation study on the various training strategies

Pseudo Data mDiceT mloUT SenT SpeT Acc? Prel

v 0.9624 +0.014 | 0.9468 +0.023 | 0.9882 + 0.005 | 0.9941 +0.003 | 0.9882 + 0.005 | 0.9882 + 0.005

X 0.9591 +0.015 | 0.9425 + 0.026 | 0.9871 £ 0.007 | 0.9935 +0.003 | 0.9871 +0.007 | 0.9871 + 0.007
4.6.4. Influence of different decoders

Recently, the MLP decoder has been widely used in medical image segmentation models
to reduce network complexity and parameters [34,42]. However, the performance of these
lightweight decoders has not been extensively evaluated on OCT-based skin layer segmentation
tasks. To address this gap, we conducted an ablation study to evaluate the influence of various
decoders when coupled with our LS-Net architecture. Hence, we selected three representative
lightweight-design decoders (U-Net [15], SegFormer [34], and SHFormer [42]) and compared
their performance against our proposed LS-Net decoder. As shown in Table 5, the LS-Net
decoder outperformed the other decoders in both mDice (0.9624) and mIoU (0.9468) metrics.

Table 5. Ablation study on the various decoders

Decoder mDiceT mloUT SpeT AccT FLOPs Params

LS-Net (ours) | 0.9624 +0.014 | 0.9468 +0.023 | 0.9941 +0.003 | 0.9882 +0.005 | 1.1314 G | 0.5069 M
SegFormer 0.9580+0.014 | 0.9416 +£0.022 | 0.9934 +0.003 | 0.9869 +0.006 | 0.5729 G | 0.3541 M
U-Net 0.9574 +0.015 | 0.9394 +£0.025 | 0.9932+0.003 | 0.9863 +0.006 | 0.7225 G | 0.5155M
SHFormer 0.9594 +£0.015 | 0.9420+0.025 | 0.9936 +0.003 | 0.9872+0.005 | 0.5284 G | 0.3044 M

While the LS-Net decoder exhibited the highest FLOPs (1.1314 G) and parameter count
(0.5069 M) among the decoders evaluated, this increased complexity is necessary to achieve
superior segmentation performance. For instance, the LS-Net decoder outperformed U-Net
by 0.005 in mDice and 0.0074 in mloU, despite having higher computational requirements.
Similarly, the LS-Net decoder surpassed SegFormer and SHFormer by 0.0044 and 0.003 in
mDice, and 0.0052 and 0.0048 in mlIoU, respectively. These performance gains demonstrate that
the increased complexity of the LS-Net decoder is necessary to capture the intricate details of the
skin layers and achieve more accurate segmentation.

4.7. Model inference complexity comparison

Figure 8 presents the comparison of the model inference complexity of various deep-learning
models and their components under different batch size settings on GPU.
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Fig. 8. Comparison of Model Inference Efficiency under Different Batch Size Settings on
GPU. (A) The comparison in different models (B) The comparisons in the various decoder
heads utilized in LS-Net. (C) Comparisons of the various sizes of the LS-Net.

Figure 8(A) is a comparison based on latency (in milliseconds) across various models. The
graph demonstrates that as the batch size increases, the inference latency generally increases
for all models, but the rate of increase varies among them. Among them, UNet, Wave-Net,
and Swin-UNet show a steep increase in latency as the batch size grows, indicating a high
computational complexity or less efficient batching. The increasing rate of latency in LS-Net,
SegFormer, SHFormer, and T-Net is relatively slower, indicating better handling of larger batch
sizes compared to U-Net.

Figure 8(B) is the comparison of the various decoder heads utilized in LS-Net. Similar to the
FLOPs and parameters results shown in Table 5, the original LS-Net decoder has the highest
latency and performance worst in computational complexity. Among them, the LS-Net with
SHFormer decoder has the lowest latency, and the U-Net decoder has a similar performance.

Figure 8(C) is the comparison in terms of the size of LS-Net. The results show a direct
relationship between the size of the LS-Net and latency, with larger models resulting in higher
latency. Among them, LS-Net-S is the most efficient across all batch sizes. LS-Net-B has a
similar latency with the LS-Net-S, while has better segmentation performance (in Table 2).

4.8. Epidermis thickness evaluation

The precision of epidermal thickness measurements is critical for dermatological diagnostics.
In this study, the pixel size of the utilized SSOCT system is 8.74 um/pixel in air. Considering
the refractive index transition from air to skin tissue ranges between 1.36 and 1.44 [45], where

Fig. 9. Al to F1 are en face images of skin epidermis layers with maximum intensity
projection algorithm. A2 to F2 are epidermal thickness heatmaps with color bars. (The
white scale bar applies to all images. The unit of the heatmap color bar is micro-meter.)
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we adopt a median value of 1.40, the pixel size of 6.24 um/pixel in the skin tissue was used
when calculating the epidermal thickness. Figure 9 shows the en face images (A1-F1) of the skin
epidermis layer and the corresponding heatmaps of epidermal thickness (A2-F2) across different
skin locations. The color in these heatmaps represents the variation of epidermal thicknesses.
In Fig. 9 A2-F2, the proposed LS-Net can capture subtle physiological differences, such as
fingerprints.

5. Discussion

In this study, we proposed a LS-Net, an innovative approach to OCT-based epidermal layer
segmentation that effectively integrates the advantages of CNN and ViT. The LS-Net has the
highest segmentation performance (mean Dice: 0.9468; mean IoU: 0.9624) with moderate
computational demands (FLOPs:1.131 G) compared to existing state-of-the-art methods. One
of the main contributions of LS-Net is the depth-wise convolutional transformer block, which
enhances the ability to capture spatial relationship information while maintaining the global
receptive field provided by self-attention mechanisms. This is essential in medical imaging
because the precision of segmentation can directly influence diagnosis. Moreover, the SE-
block in the fusion layers enables the recalibration of feature channels, thereby improving the
representational capacity of the network without significantly increasing the parameters and
model complexity. Besides, we proposed an intensity-based segmentation algorithm that can
generate a large amount of pseudo data for model pre-trained, and the ablation results show that
the pre-trained with pseudo data can improve the segmentation performance of the model.

As evident from the qualitative and quantitative results shown in Fig. 5 to Fig. 7, LS-Net
demonstrates strong capability in handling the diverse textural and structural complexities inherent
in skin OCT images. This has significant potential in clinical applications such as early detection
and monitoring of skin conditions, including cancerous lesions and inflammatory diseases. The
segmentation mask from LS-Net not only maintains structural integrity but also minimizes false
positives and negatives. Notably, LS-Net performs well in segmenting forearm images (Fig. 7),
since it can expertly handle the artifacts and high reflection challenges while preserving fine
details of segmentation. The model reliably segments fine skin details, aiding early detection of
conditions and treatment monitoring when integrated into diagnostic workflows.

However, the study has limitations. Firstly, the OCT imaging data collected in this study is
from one OCT device in our lab, hence, the reliance on OCT imaging data may restrict the use of
LS-Net in environments where such resources are scarce. Thus, the operational environments for
this technology might be limited by the availability of OCT devices. Secondly, LS-Net is designed
for computational efficiency, but it does face trade-offs between performance and computational
demand when compared to models such as T-Net and SHFormer. Our ablation studies suggest
that increasing model complexity to improve performance also increases computational demand
and inference latency. This becomes particularly challenging in batch processing scenarios where
swift processing is crucial, potentially limiting LS-Net’s practicality in resource-limited settings
that demand rapid and efficient processing. Thirdly, the study validated LS-Net on a dataset
limited to individuals aged 20-40 with no reported skin conditions, which does not adequately
reflect the diversity of clinical realities. It may not provide a comprehensive model’s performance
across different skin types, age groups, and pathologies. Therefore, additional validation studies
incorporating a more diverse patient population are essential to thoroughly assess the model’s
effectiveness in varied clinical settings and to ensure its broader applicability.

Future research can focus on several areas to enhance the applicability and efficiency of LS-Net.
First, the diversity of the training dataset should be broadened to include a more extensive
range of skin types, ages, and pathological conditions. This expansion is crucial for enhancing
the model’s robustness and ensuring its generalizability across varied clinical environments.
Second, exploring the integration of additional lightweight transformer models may further
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reduce computational requirements while maintaining high accuracy. Finally, real-world clinical
trials will be critical to validate the practical benefits of LS-Net in healthcare settings, possibly
incorporating feedback from dermatologists to further refine the model.

6. Conclusion

In conclusion, LS-Net represents a significant advancement in medical image segmentation,
providing an efficient and accurate tool for non-invasive skin analysis that could facilitate
fast and reliable clinical outcomes through enhanced diagnostic capabilities. By efficiently
integrating CNNs and ViTs, LS-Net achieves high segmentation accuracy with low computational
demands. The model has the best performance over the state-of-the-art methods, particularly in
maintaining the accuracy of epidermal thickness measurements, which are crucial for diagnosing
and monitoring various skin conditions.

Appendix: pseudocode of the intensity-based segmentation algorithm

Algorithm 1. Function: Intensity-based Segmentation Algorithm

Input: OCT cross-section image (bframe), Gaussian kernel size (ks_gaussian, (default: 7)), gamma values (y1 for AEJ
(default: 1.2), y2 for EDJ (default:7))

1. Image Denoising:

- Threshold 'bframe' by setting pixels with a value less than the mean of 'bframe’ to 0, to denoise the image.

2. AEJ Segmentation: # AEJ is air-epidermis-junction.

- Apply a Gaussian filter to 'bframe' with a kernel size of 'ks_gaussian'.

- Adjust the gamma of the filtered image using 'y1'.

- Detect the AEJ line by finding the peak gradient position in each column after smoothing, indicating the transition
in each column of the image.

3. EDJ Segmentation: # EDIJ is epidermis-dermis-junction.

- Starting below the AEJ, enhance the contrast of the remaining image using 'y2' to prepare for EDJ detection.

- Apply a Gaussian filter to the contrast-enhanced image with a kernel size of 'ks_gaussian'.

- Detect the EDJ line by locating the peak gradients in the adjusted region, similar to the AEJ detection but focused
on the deeper part of the skin.

Output: AEJ line, EDJ line
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