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Abstract: Optical coherence tomography (OCT) can be an important tool for non-invasive

dermatological evaluation, providing useful data on epidermal integrity for diagnosing skin

diseases. Despite its beneĄts, OCTŠs utility is limited by the challenges of accurate, fast

epidermal segmentation due to the skin morphological diversity. To address this, we introduce

a lightweight segmentation network (LS-Net), a novel deep learning model that combines

the robust local feature extraction abilities of Convolution Neural Network and the long-term

information processing capabilities of Vision Transformer. LS-Net has a depth-wise convolutional

transformer for enhanced spatial contextualization and a squeeze-and-excitation block for feature

recalibration, ensuring precise segmentation while maintaining computational efficiency. Our

network outperforms existing methods, demonstrating high segmentation accuracy (mean Dice:

0.9624 and mean IoU: 0.9468) with signiĄcantly reduced computational demands (Ćoating

point operations: 1.131 G). We further validate LS-Net on our acquired dataset, showing its

effectiveness in various skin sites (e.g., face, palm) under realistic clinical conditions. This

model promises to enhance the diagnostic capabilities of OCT, making it a valuable tool for

dermatological practice.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Skin, the largest organ of the body, comprises three distinct layers: the epidermis, dermis, and

subcutaneous tissue. It serves as the primary barrier against pathogens, ultraviolet radiation, and

mechanical damage [1]. The integrity and functionality of the epidermis, mainly reĆected in

its thickness (ET), are crucial features for preventing skin Ąssures and ulcers. While the skin

pathological conditions can inĆuence the ET, the variations of ET are mainly decided by the

different skin sites [2].

The golden standard for examining ET, e.g., biopsy, is invasive, non-repeatable, and often

results in bleeding, scarring, and pain. In contrast, optical coherence tomography (OCT), a

non-invasive, label-free imaging modality, provides a non-invasive, real-time, in-vivo assessment

with axial resolutions around 10 µm and depth information up to 2 mm [3]. The efficacy of OCT

in diagnosing skin conditions related to ET changes, such as skin cancer [4Ű6], skin acne [7], and

inĆammation [8,9], emphasizes its clinical value. However, manual annotations of OCT images

require signiĄcant expertise and time [10], due to complex morphological changes in skin sites.

Conventional methods for the OCT epidermis-dermis junction (EDJ), such as shapelet-based

[11] and intensity-based [12] methods, heavily rely on image quality, struggling with image

artifacts, and noise [13]. Moreover, compared to the easily distinguished sites like Ąngertips and

palm, the forearm, neck, face, and wrist sites that have indistinct EDJ intensity/gray signals and

morphological features are always difficult segmentation by the conventional methods. Clinical

OCT imaging with handheld devices faces challenges like inconsistent angles, pressures, and
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distances, affecting image quality [14]. Thus, it is essential to develop an efficient, automated,

and accurate segmentation method for the rapid, real-time analysis of epidermal thickness.

Recent advancements in deep learning, particularly convolutional neural networks (CNNs) like

U-Net [15], have improved the segmentation of the epidermal layer in OCT images [13,16Ű19].

Kepp et al. [20] further proposed a densely connected (DC)U-Net, which utilized densely

connected blocks for enhanced feature reuse, demonstrating superior performance in mouse

skin layer segmentation. However, this study focused on mouse skin, and for dermatological

applications, it is crucial that models relearn the unique characteristics of human skin structure

rather than solely focusing on image segmentation.

Despite these advances, CNN models struggle with capturing long-term dependencies due to

their limited receptive Ąelds and localized feature extraction mechanisms. In contrast, vision

transformer (ViT) [21] provides a promising alternative with its ability to address long-term

dependencies by self-attention mechanism, proving useful in OCT image processing tasks like

image segmentation [22,23], reconstruction [24Ű27], and classiĄcation [28,29]. However, the

self-attention mechanism also introduces signiĄcant computational complexity and necessitates

large model sizes to achieve enhanced performance, making them less practical for medical

imaging applications [30]. Moreover, distinct from CNNs, ViTs do not inherently account for the

spatial relationships between pixels, thereby requiring larger datasets for effective training. This

makes ViT less practical for medical imaging due to common resource constraints. Thus, there is

a crucial need for developing smaller, more efficient models that do not compromise performance

despite reduced computational resources and dataset availability.

To address these limitations, we propose a novel model, the lightweight segmentation (LS)-Net,

which integrates the strengths of CNNs and ViTs. It includes a depth-wise convolutional

transformer [31] to capture spatial relationships and a fusion layer incorporating a squeeze-

and-excitation (SE) block [32] for enhanced feature integration. LS-Net is designed to be

resource-efficient, containing only ∼0.5 M parameters and requiring ∼1.1 G Ćoating-point

operations, making it suitable for situations with limited computational resources.

Consequently, our study contributions are: (1) We propose LS-Net for efficient and accurate

OCT-based segmentation of the skin epidermis, demonstrating superior performance compared

to state-of-the-art networks. (2) We develop an intensity-based segmentation algorithm that

generates substantial pseudo-data for pre-training, helping overcome training convergence and

stability issues typical in ViT models. (3) Through ablation studies, we assess the effectiveness of

the proposed LS-Net, focusing on network size, decoder heads, the feature fusion layer, and the

strategy of using pseudo-data for pre-training. (4) We evaluate the ability of LS-Net to measure

epidermal thickness, improving the practical utility of OCT in dermatology.

2. Related works

In the realm of medical image segmentation (MIS), the deep learning models can be divided

into two main distinct architectures: CNNs and ViTs. During the early progress, FCN [33] stand

as a cornerstone by introducing pixel-wise prediction capabilities in image segmentation. With

a symmetrical architecture and long skip connection, U-Net has emerged as a widely adopted

model due to its effective multi-scale feature fusion, setting a baseline in MIS.

By introducing ViT into U-Net, TransUNet [22] incorporates the self-attention mechanism of

ViT, which has a global receptive Ąeld, enhancing the ability of long-term information processing

compared to traditional CNNs. To further address efficiency concerns, Swin-UNet [23] uses

shifted window mechanisms, which improve feature extraction scalability and computational

efficiency across various scales, outperforming TransUNet in both aspects. Additionally,

SegFormer [34] used an efficient self-attention that utilize convolution layer for query and key

sequences reduction processing [35], decreasing self-attention complexity while preserving high

performance in MIS. Despite these advancements, the compression techniques used to streamline



Research Article Vol. 15, No. 10 / 1 Oct 2024 / Biomedical Optics Express 5725

self-attention in models could potentially compromise the retention of critical details, which is

essential for precise segmentation of the epidermis-dermis junction.

3. Method

The architecture of our proposed Lightweight Segmentation Network (LS-Net) is depicted in

Fig. 1. LS-Net simpliĄes the U-Net architecture into a compact encoder-decoder structure for

multi-scale feature extraction. It has fewer parameters and less computational demand than

U-Net, signiĄcantly reducing the network depth and the resources for inference and training.

The encoder consists of depth-wise convolutional transformer (refer as DWCT in the following

sections) blocks and overlapped patch extraction (OPE) layers. Although DWCT blocks offer

efficient feature extraction, LS-Net lacks depth; we mitigate this through a novel fusion layer

in the decoder, incorporating a SE-block for effective shallow-to-deep feature integration. The

whole network is described in detail in the following sections.
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Fig. 1. The proposed LS-Net architecture. c1-c4 means the number of channel dimensions of

the feature at each stage. N1-N4 means the number of depth-wise convolutional transformer

blocks at each stage. n_cls is the number of classes. The prediction layer is set with a 1× 1

convolution layer.

3.1. Overlapped patch extraction layer

Distinct from the Ąxed patch size and non-overlapping approach typical in ViT-like networks [21],

we use overlapped patch extraction (OPE) layer to gradually obtain the patches at multi-scales

in four stages. The OPE layer can offer the advantage of capturing local spatial relationships

and inherent translation invariance, leading to richer feature representations that enhance model

robustness and performance.

In LS-Net, the patch extraction layer and OPE layer are implemented with convolution layer

with different setting of strides (S), kernel size (K), and output channel size (C). Assume the

input of gray image has a shape of H×W× 1 (H: height; W: width), the Ąrst patch extraction

layer (K= 7, S= 4, C= 16) split the image into patches of size 4× 4, outputting image patches of

dimensions H/4×W/4× 16. The setups of the following OPE layers were K= 3, S= 2, and C=ci,

where i ∈ {2, 3, 4} and the implementation of ci is in section 4.3. With OPE layers, the extracted

feature was gradually downsampled with resolution H/2i+1 × W/2i+1 × ci, where i ∈ {2, 3, 4}.
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3.2. Depth-wise convolutional transformer (DWCT) block

As demonstrated in Fig. 2, the DWCT block integrates the DWCT (Fig. 2(A)) and depth-wise

FFN (Fig. 2(C)), and Fig. 2(B) is the self-attention mechanism utilized in DWCT.

(A) Depth -wise Conv Transformer
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Fig. 2. The schematic of the component in the LS-Net. (A) The depth-wise convolutional

transformer layer. (B) The self-attention mechanism. (C) Depth-wise feed forward network.

(D) Squeeze-and-Excitation (SE)-block. Conv: convolution, GAP: global average pooling.

3.2.1. Depth-wise convolutional transformer

In the vanilla Transformer [21,22], the image patches are considered as 1D sequences, serving as

the input of the self-attention (SA) mechanism input, and can be described as (1):

SA(Q, K, V) = Softmax

(︃

QKT

d

)︃

V (1)

where d is a numerical value of
√︁

dimension of Q, T is the transposing operation. Q (query),

K (key), and V (value) are 1D sequences generated based on image patches with the linear

projection layers. With SA, Transformer has an advantage over CNNs since it considers the

information among all feature points, providing long-term information and a global receptive

Ąeld. However, the vanilla Transformer does not consider the spatial relationship between the

patches. To alleviate this problem, as shown in Fig. 2(A), the DWCT integrates depth-wise

convolutions with self-attention, which maintains the global receptive Ąeld advantage from

transformer while imparting spatial contextual information. This conĄguration also preserves

computational efficiency without compromising the spatial information. Taking X with a shape

of H×W×C as the input, the forward processing of the DWCT can be written as:

SequenceQ, K,V = Reshape(Dw(Pw(X))) (2)

X̂ = LP(SA(Q, K, V)) (3)

where Dw is a depth-wise convolution layer with a kernel size of 3× 3, Pw is a 2D convolution

layer with an implementation of kernel size of 1× 1, stride of 1, and Ąlter size of C. LP is a

linear projection layer with a hidden size of C. After the reshape operation in (2), the shape of

Q, K, and V sequences are N×C, where N is H×W. A head split operation is then applied to

each sequence to reshape the sequence from N×C to M×N/M×C, where M is the number of

heads for multi-head self-attention (MHSA). After the MHSA processing, the output from the

SA(Q, K, V) in (3) is a sequence with a shape of M×N/M×C. The sequence is then reshaped to

N×C. Finally, after processing by LP layer, the output of (3), X̂, has a shape of N×C.
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3.2.2. Depth-wise feed-forward network

Following the results of Xie et al. [34], that the convolution layer can be embedded in the

feed-forward network (FFN) to provide better segmentation in the Transformer while maintaining

the model efficiency, we introduce a depth-wise (DW)-FFN. DW-FFN (Fig. 2(C)) utilizes

point-wise convolution and depth-wise convolution layers to replace the linear projection layers

in the FFN, enhancing the ability to capture and process patterns, especially in understanding

spatial relationships among local features. Taking the input is X̂ from (3), the Dw-FFN is:

Y = Pw2(GELU(Dw(Pw1(X̂))))) (4)

The shape of the input X̂ is N×C. Pw1 and Pw2 are convolution layers implemented with a

kernel size of 1× 1, stride of 1, while Pw1 has a Ąlter size of 4C, and Pw2 has a Ąlter size of C.

Dw is a depth-wise convolution layer with a kernel size of 3× 3.

3.3. Fusion layer

In the decoder, we proposed a fusion layer that consists of SE-block, deconvolution layer, and

a 1× 1 convolution layer. This assembly not only upsample feature maps but also better reuse

the features from encoder section. As a plug-and-play module, the SE block enhances feature

extraction by mapping channel relationships in convolutional features, thereby improving the

representation of complex patterns. Furthermore, SE blocks improve network performance

by adaptively recalibrating functions, adding little computational cost and requiring no major

architectural changes. Taking X as the input, and Xresidual as the residual input from the encoder,

the fusion layer can be written as:

out = Conv1×1(Concat(FSE(Xresidual), DeConv(X))) (5)

where DeConv is a deconvolution layer with a kernel size of 3× 3, stride of 2, and the Ąlter size is

the same as the input X, and FSE is the SE-block mentioned in Fig. 2(D), Xresidual is the residual

input from the previous encoder section. Concat is a feature concatenate layer, and Conv1×1 is a

convolution layer with a kernel size of 1× 1, stride of 1, Ąlter size is implemented as section 4.3

mentioned (ci, where i ∈ {1, 2, 3, 4}).

4. Experiments

4.1. Swept-source OCT system and data acquisition

A lab-built swept-source OCT (SSOCT) system was utilized to non-invasively acquire the data of

skin structure with a hand-held probe (Fig. 3). More details of the system were described in [36].

The study was approved by the School of Science and Engineering Research Ethics Committee

of the University of Dundee, which also conformed to the tenets of the Declaration of Helsinki.

Before data collection, informed consent was obtained from all 36 participants, aged between 20

and 40, with no reported skin conditions. In the skin OCT data collection, a Ćexible hand-held

scan probe was utilized to acquire the data from various skin sites including the palm, hand

back, Ąngertip, wrist, face, neck, and forearm. To increase the amount of data, each location was

collected thrice with minor positional adjustments. After the exclusion of scans with signiĄcant

motion artifacts or bad quality, our dataset consists of 353 OCT data. (palm: 58; neck: 40;

forearm: 83; Ąngertip: 48; face: 35; back of hand: 55; wrist: 34).

In terms of scanning protocol for data acquisition, one OCT scan can acquire data with a size

of 6× 600× 600× 384 (number of repetitions×X-transverse axis×Y-transverse axis×Z-axial

axis). The spatial interval in the transverse axis is ∼8.6 µm/pixel and theoretically ∼7.4 µm/pixel

(in air) in the axial axis. The Ąeld of view is 5.16 mm2. We then applied the fast Fourier

Transform (FFT) in OCT raw data pre-processing to convert spectral data into spatial information,
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Fig. 3. The system schematic of the SSOCT system in this study. A demonstration of

the hand-held scan probe for Ćexible data acquisition is shown on the right side of Ągure.

The swept-source laser (SL132120 from Thorlabs Inc.) in our system has a wavelength of

1310 nm and a bandwidth of 100 nm. The A-scan swept rate is 200kHz.

thereby obtaining OCT volumes that contain high-resolution depth information. Since each

OCT data set has six repetitions of OCT scans, we applied a frame-averaging algorithm [37] to

reduce the speckle noise in the OCT volumes. Finally, we obtained 353 OCT volumes, each with

dimensions of 600× 600× 384 for further analysis.

4.2. Segmentation mask generation

For training, validation, and testing, we partitioned the 353 OCT volumes into two sets: 288

volumes from 25 participants were designated for the training and validation stages, and 65

volumes from 11 participants were reserved for testing. Our strategy consists of sampling every

third frame from each volume to exploit wider structural diversity and avoid overĄtting due to

similar consecutive frames. We totally obtained 57,600 B-frames for the training and validation

stage, with an additional 65 independent volumes for model performance testing.

Figure 4 illustrates the two-fold process for data preparation and model training. Due to the

resource-intensive nature of the precise skin OCT image annotation, we adopted an intensity-based

algorithm to automatically generate pseudo labels for pre-training stage (pseudocode can be

found in Appendix in Algorithm 1). Although the accuracy of the pseudo label is not as high as

the manual label, the pseudo label of OCT structure image is better for the model pre-train to

learn the features of skin OCT structural images, rather than using the natural image. For data

labelling, two experts annotated the OCT images from all OCT volumes and selected B-frames

images every 30 frames in each OCT volume (1920 B-frames from 288 OCT volumes, and 430

B-frames from 65 OCT volumes in this study).

As shown in Fig. 4, a crop box with a shape of 192× 192 is utilized to extract the image-label

pairs for the model pre-train stage. In total, 172800 pairs of images and pseudo labels data are

used to pre-train the model. Regarding the data used in Ąne-tuning stage, a series of crop boxes

with a shape of 642, 802, 1122, 1442, and 1922 are used to extract the image patches from the

B-frames. Finally, 119040 pairs of images and manual labels data are used to Ąne-tuning the

model.

4.3. Implementation details

The model used in this study were built and trained based on TensorFlow 2.9.0 [38]. We used the

Adam optimizer [39] with an initial learning rate of 0.001 and a momentum of 0.9 for model

optimization. The cross-entropy loss function was used to calculate the training loss between the

provided mask and the model prediction. The number of training epochs was set as 400, and the

batch size was set to 128. An NVIDIA RTX A6000 with 48 GB memory was used to facilitate

the training of the model. To improve the model robustness, we applied random right and left
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Fig. 4. (Stage-I) The pipeline of data pre-processing and mask generation. (Stage-II) The

demonstration of the model pre-train stage (II-a) and Ąne-tuning stage (II-b).

image Ćipping as a data augmentation technique during the training. An early stopping strategy

was used to prevent overĄtting when the validation loss is not decreased over 40 consecutive

epochs, and the model weights with the lowest loss were then saved.

Figure 4 stage-II illustrates the training strategies utilized in this study, including pre-train

stage and Ąne-tuning stage. Apart from the data usage, these two training stages utilize the same

training epochs and early stopping strategies as mentioned above.

Regarding the initialization of the proposed LS-Net, as shown in Fig. 1, the Ąlter sizes (ci,

where i ∈ {1, 2, 3, 4}) of the DWCT block, OPE layer, and fusion layer at each stage are {16, 32,

64, 64}. In the setting of DWCT block, the number of head (Hi, where i ∈ {1, 2, 3, 4}) at each

stage are {1, 2, 4, 4}, and the number of DWCT block (Ni, where i ∈ {1, 2, 3, 4}) at each stage

are {1, 1, 2, 2}. The 4x upsample layer is a deconvolution layer with a kernel size of 7× 7, a

stride of 4, and a Ąlter size of c1. In terms of the prediction layer, the kernel size is 1× 1, the

stride is 1, and the Ąlter size is 3, which is equal to the number of classes.

4.4. Evaluation metrics

To quantify the segmentation accuracy of various methods, we utilized six metrics in this study,

including accuracy (Acc), speciĄcity (Spe), sensitivity (Sen), precision (Pre), the mean dice

similarity coefficient (mDice), and the mean intersection over union (mIoU). Those metrics can

be formulated as:

mIoU =
1

N

N
∑︂

i=1

TPi

TPi + FPi + FNi

(6)

mDice =
1

N

N
∑︂

i=1

2 × TPi

2 × TPi + FPi + FNi

(7)

Acc =
TP + TN

TP + TN + FP + FN
(8)

Spe =
TN

TN + FP
(9)

Sen =
TP

TP + FN
(10)

Pre =
TP

TP + FP
(11)
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where TP (/TN) is the true position (/negative) and represents the number of pixels correctly

predicted and labeled as positive (/negative). Conversely, the number of pixels that are incorrectly

given a positive (/negative) label is called FP(/FT). N is the number of classes.

4.5. Comparison to state-of-the-art methods

Given the novelty of our dataset, direct comparisons with the existing methods are not feasible.

Therefore, we evaluate the performance of our LS-Net for skin layer segmentation with various

models that are proposed for related studies (e.g., medical image segmentation). Those models

include high-efficiency and high-performance medical image segmentation models (T-Net [40],

TransUNet [22], SwinUNet [23], Wave-Net [41], SegFormer (mit-b0 setup) [34], SHFormer [42],

and CENet [43]), and methods for OCT-based skin layer segmentation (DCU-Net [20], UNet

[15,17,44]). The training details and training strategies of the compare-used models are the same

as the proposed implementation details mentioned in section 4.3, to reduce the inĆuence from

the training details and hardware. The results are shown in Table 1.

Table 1. Quantitative Comparison (mean±standard deviation) with State-of-the-art Methods.

Method mDice↑ mIoU↑ Sen↑ Spe↑ Acc↑ Pre↑ FLOPs Params

UNet 0.9573± 0.015 0.9394± 0.027 0.9866± 0.006 0.9933± 0.003 0.9866± 0.006 0.9866± 0.006 60.00 G 34.56 M

DCU-Net 0.9553± 0.013 0.9393± 0.023 0.9863± 0.006 0.9932± 0.003 0.9863± 0.006 0.9863± 0.006 13.14 G 6.106 M

TransUNet 0.9499± 0.018 0.9294± 0.030 0.9828± 0.008 0.9914± 0.004 0.9828± 0.008 0.9828± 0.008 23.01 G 52.35 M

SwinUNet 0.9465± 0.021 0.9233± 0.036 0.9822± 0.011 0.9911± 0.005 0.9822± 0.011 0.9822± 0.011 16.30 G 50.28 M

T-Net 0.9506± 0.033 0.9295± 0.048 0.9830± 0.015 0.9915± 0.008 0.9829± 0.015 0.9830± 0.015 0.478 G 0.045 M

CENet 0.9617± 0.015 0.9418± 0.026 0.9869± 0.006 0.9934± 0.003 0.9869± 0.006 0.9869± 0.006 10.89 G 15.62 M

Wave-Net 0.9493± 0.020 0.9273± 0.033 0.9809± 0.010 0.9904± 0.005 0.9809± 0.010 0.9809± 0.010 150.7 G 7.882 M

SegFormer 0.9593± 0.015 0.9404± 0.025 0.9865± 0.006 0.9932± 0.003 0.9865± 0.006 0.9865± 0.006 1.932 G 3.702 M

SHFormer 0.9594± 0.015 0.9432± 0.023 0.9872± 0.005 0.9936± 0.003 0.9872± 0.005 0.9872± 0.005 0.597 G 2.817 M

LS-Net 0.9624± 0.014 0.9468± 0.023 0.9882± 0.005 0.9941± 0.003 0.9882± 0.005 0.9882± 0.005 1.131 G 0.507 M

The results reveal that our proposed LS-Net has demonstrated exceptional performance across

multiple metrics, including mDice (0.9624) and mIoU (0.9468), outperforming other methods.

Notably, it also exhibited a high sensitivity (0.9882) and speciĄcity (0.9941), which indicates

robustness in identifying true positives and negatives. The accuracy further solidiĄed its reliability

with a score of 0.9882. Moreover, LS-Net maintained computational efficiency, with a reduced

number of Ćoating points operation (FLOPs) at 1.131 G, which is signiĄcantly lower than several

other models, and a modest number of parameters totaling 0.507 M.

The visual comparisons from Fig. 5 to Fig. 7 present the segmentation performance of various

deep learning models on cross-sectional images of skin structures from the face, palm, and

forearm, respectively. All Ągures are scalable vector graphic format, and please feel free to

zoom in for detailed comparison. These anatomical regions exhibit diverse textural and contrast

characteristics, serving as a challenging test for accurate segmentation. Among the models

evaluated, LS-Net consistently exhibits superior performance in matching the expert-annotated

ground truth across all three anatomical locations.

In Fig. 5 (face), LS-Net achieves the highest Intersection over Union (IoU) of 0.914 and Dice

coefficient of 0.938, indicating a remarkable overlap with the manual labels. Similarly, for the

palm structure in Fig. 6, LS-Net closely approximates the expert annotations, attaining the best

IoU of 0.947 and Dice of 0.966. Even in the challenging case of the forearm (Fig. 7), where

contrast variations and image noise can negatively inĆuence segmentation, LS-Net secures an

impressive IoU of 0.918 and Dice of 0.945, outperforming its counterparts.
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Fig. 5. Segmentation results from various methods (Position: Face). (A) Cross sectional

structure image. (B) Expert annotations. (C) Pseudo label generated by intensity seg-

mentation method. (D)-(M) are segmentation masks generated by various deep-learning

models.

Fig. 6. Segmentation results from various methods (Position: Palm). (A) Cross sectional

structure image. (B) Expert annotations. (C) Pseudo label generated by intensity seg-

mentation method. (D)-(M) are segmentation masks generated by various deep-learning

models.

4.6. Ablation Studies

4.6.1. Influence of network size

In this section, we evaluated the inĆuence of the network size by implementing various Ąlter

sizes (ci, where i ∈ {1, 2, 3, 4}) and attention head number (Hi, where i ∈ {1, 2, 3, 4}). Following

the implementation details in section 4.3, we deĄne the original setup is LS-Net-B. In terms of

the LS-Net-S and LS-Net-L, the implementation for DWCT Blocks is shown in Table 2.

The results in Table 2 indicate that as the network scale increases, the performance metrics

show a clear upward trend (mDice from 0.9553 to 0.9629, and mIoU from 0.9371 to 0.9444).

However, this improved performance comes with increased model complexity, as evidenced

by higher FLOPs (from 0.549 G to 2.686 G) and network parameters. Compared to the larger

LS-Net-L model, the LS-Net-B conĄguration uses intermediate Ąlter sizes and attention heads,
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Fig. 7. Segmentation results from various methods (Position: Forearm). (A) Cross

sectional structure image. (B) Expert annotations. (C) Pseudo label generated by intensity

segmentation method. (D)-(M) are segmentation masks generated by various deep-learning

models.

Table 2. Ablation study on the architecture

Model Filter Size (c) Heads (H) mDice↑ mIoU↑ FLOPs Params

LS-Net-S 8, 16, 32, 32 1, 2, 4, 4 0.9553± 0.020 0.9371± 0.032 0.549 G 0.1359 M

LS-Net-B 16, 32, 64, 64 1, 2, 4, 4 0.9624± 0.014 0.9468± 0.023 1.131 G 0.5069 M

LS-Net-L 32, 64, 128, 128 2, 4, 8, 8 0.9629± 0.014 0.9474± 0.024 2.686 G 1.9540 M

resulting in a slight performance decrease (mDice: 0.9624< 0.9629; mIoU: 0.9468< 0.9474),

but a signiĄcant reduction in model complexity (FLOPs: 1.131 G< 2.686 G). Compared to

LS-Net-B, the smaller LS-Net-S model has lower computational requirements in terms of FLOPs

(0.549 G< 1.131 G) and parameters (0.1359 M< 0.5069 M), but also has lower performance

(mDice: 0.9553< 0.9624; mIoU: 0.9371< 0.9468). Despite the performance drop, LS-Net-S is

potentially suitable for applications with limited resources.

4.6.2. Influence of SE-block

In section 3.3, we proposed a fusion layer with SE-Block to enhance the feature fusion between

the shallow and deeper features for better segmentation performance. To quantify the effect of

the SE-Block, in this experiment, we compare the performance of the fusion layer between the

with (w) SE-Block and without (w/o) SE-Block.

The results in Table 3 shows that adding the SE-Block to the fusion layer can improve the

segmentation performance (mDice: 0.9624> 0.9595; mIoU: 0.9468> 0.9413). Moreover, the

inclusion of SE-Block also slightly improves the speciĄcity and accuracy of model, reaching

0.9941 and 0.9882, respectively. These performance gains are accomplished with a negligible

increase in computational complexity, as the FLOPs only marginally increase from 1.13136 G to

1.13149 G, and the number of parameters remains relatively stable (0.5054 M vs. 0.5069 M).

Table 3. Ablation study on the architecture of the design of the feature fusion layer

SE-Block mDice↑ mIoU↑ Spe↑ Acc↑ FLOPs (G) Params

w/o 0.9595± 0.015 0.9413± 0.026 0.9934± 0.003 0.9868± 0.006 1.13136 0.5054 M

w 0.9624± 0.014 0.9468± 0.023 0.9941± 0.003 0.9882± 0.005 1.13149 0.5069 M
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4.6.3. Influence of training strategies

In section 4.2 and 4.3, we proposed an intensity-based segmentation method to create a large

amount of relatively low-accuracy pseudo segmentation data for model pre-training. To assess

the impact of this training strategy, we compared the performance of LS-Net models trained with

the proposed strategy versus those trained only on high-accuracy manual labels.

As shown in Table 4, the LS-Net models pre-trained with pseudo data exhibited superior

performance across several evaluation metrics. The mean Dice score increased slightly from

0.9591 to 0.9624 and the mean IoU increased from 0.9425 to 0.9468, suggesting a more precise

overlap between model predictions and ground truth. These results indicate that the LS-Net

models pre-trained with pseudo segmentation data not only retained high levels of speciĄcity and

sensitivity, but also demonstrated improvements in overall accuracy, precision, and segmentation

metrics compared to training with manual labels alone.

Table 4. Ablation study on the various training strategies

Pseudo Data mDice↑ mIoU↑ Sen↑ Spe↑ Acc↑ Pre↑
√

0.9624± 0.014 0.9468± 0.023 0.9882± 0.005 0.9941± 0.003 0.9882± 0.005 0.9882± 0.005

× 0.9591± 0.015 0.9425± 0.026 0.9871± 0.007 0.9935± 0.003 0.9871± 0.007 0.9871± 0.007

4.6.4. Influence of different decoders

Recently, the MLP decoder has been widely used in medical image segmentation models

to reduce network complexity and parameters [34,42]. However, the performance of these

lightweight decoders has not been extensively evaluated on OCT-based skin layer segmentation

tasks. To address this gap, we conducted an ablation study to evaluate the inĆuence of various

decoders when coupled with our LS-Net architecture. Hence, we selected three representative

lightweight-design decoders (U-Net [15], SegFormer [34], and SHFormer [42]) and compared

their performance against our proposed LS-Net decoder. As shown in Table 5, the LS-Net

decoder outperformed the other decoders in both mDice (0.9624) and mIoU (0.9468) metrics.

Table 5. Ablation study on the various decoders

Decoder mDice↑ mIoU↑ Spe↑ Acc↑ FLOPs Params

LS-Net (ours) 0.9624± 0.014 0.9468± 0.023 0.9941± 0.003 0.9882± 0.005 1.1314 G 0.5069 M

SegFormer 0.9580± 0.014 0.9416± 0.022 0.9934± 0.003 0.9869± 0.006 0.5729 G 0.3541 M

U-Net 0.9574± 0.015 0.9394± 0.025 0.9932± 0.003 0.9863± 0.006 0.7225 G 0.5155 M

SHFormer 0.9594± 0.015 0.9420± 0.025 0.9936± 0.003 0.9872± 0.005 0.5284 G 0.3044 M

While the LS-Net decoder exhibited the highest FLOPs (1.1314 G) and parameter count

(0.5069 M) among the decoders evaluated, this increased complexity is necessary to achieve

superior segmentation performance. For instance, the LS-Net decoder outperformed U-Net

by 0.005 in mDice and 0.0074 in mIoU, despite having higher computational requirements.

Similarly, the LS-Net decoder surpassed SegFormer and SHFormer by 0.0044 and 0.003 in

mDice, and 0.0052 and 0.0048 in mIoU, respectively. These performance gains demonstrate that

the increased complexity of the LS-Net decoder is necessary to capture the intricate details of the

skin layers and achieve more accurate segmentation.

4.7. Model inference complexity comparison

Figure 8 presents the comparison of the model inference complexity of various deep-learning

models and their components under different batch size settings on GPU.
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(A) (B) (C)

Fig. 8. Comparison of Model Inference Efficiency under Different Batch Size Settings on

GPU. (A) The comparison in different models (B) The comparisons in the various decoder

heads utilized in LS-Net. (C) Comparisons of the various sizes of the LS-Net.

Figure 8(A) is a comparison based on latency (in milliseconds) across various models. The

graph demonstrates that as the batch size increases, the inference latency generally increases

for all models, but the rate of increase varies among them. Among them, UNet, Wave-Net,

and Swin-UNet show a steep increase in latency as the batch size grows, indicating a high

computational complexity or less efficient batching. The increasing rate of latency in LS-Net,

SegFormer, SHFormer, and T-Net is relatively slower, indicating better handling of larger batch

sizes compared to U-Net.

Figure 8(B) is the comparison of the various decoder heads utilized in LS-Net. Similar to the

FLOPs and parameters results shown in Table 5, the original LS-Net decoder has the highest

latency and performance worst in computational complexity. Among them, the LS-Net with

SHFormer decoder has the lowest latency, and the U-Net decoder has a similar performance.

Figure 8(C) is the comparison in terms of the size of LS-Net. The results show a direct

relationship between the size of the LS-Net and latency, with larger models resulting in higher

latency. Among them, LS-Net-S is the most efficient across all batch sizes. LS-Net-B has a

similar latency with the LS-Net-S, while has better segmentation performance (in Table 2).

4.8. Epidermis thickness evaluation

The precision of epidermal thickness measurements is critical for dermatological diagnostics.

In this study, the pixel size of the utilized SSOCT system is 8.74 µm/pixel in air. Considering

the refractive index transition from air to skin tissue ranges between 1.36 and 1.44 [45], where

Fig. 9. A1 to F1 are en face images of skin epidermis layers with maximum intensity

projection algorithm. A2 to F2 are epidermal thickness heatmaps with color bars. (The

white scale bar applies to all images. The unit of the heatmap color bar is micro-meter.)
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we adopt a median value of 1.40, the pixel size of 6.24 µm/pixel in the skin tissue was used

when calculating the epidermal thickness. Figure 9 shows the en face images (A1-F1) of the skin

epidermis layer and the corresponding heatmaps of epidermal thickness (A2-F2) across different

skin locations. The color in these heatmaps represents the variation of epidermal thicknesses.

In Fig. 9 A2-F2, the proposed LS-Net can capture subtle physiological differences, such as

Ąngerprints.

5. Discussion

In this study, we proposed a LS-Net, an innovative approach to OCT-based epidermal layer

segmentation that effectively integrates the advantages of CNN and ViT. The LS-Net has the

highest segmentation performance (mean Dice: 0.9468; mean IoU: 0.9624) with moderate

computational demands (FLOPs:1.131 G) compared to existing state-of-the-art methods. One

of the main contributions of LS-Net is the depth-wise convolutional transformer block, which

enhances the ability to capture spatial relationship information while maintaining the global

receptive Ąeld provided by self-attention mechanisms. This is essential in medical imaging

because the precision of segmentation can directly inĆuence diagnosis. Moreover, the SE-

block in the fusion layers enables the recalibration of feature channels, thereby improving the

representational capacity of the network without signiĄcantly increasing the parameters and

model complexity. Besides, we proposed an intensity-based segmentation algorithm that can

generate a large amount of pseudo data for model pre-trained, and the ablation results show that

the pre-trained with pseudo data can improve the segmentation performance of the model.

As evident from the qualitative and quantitative results shown in Fig. 5 to Fig. 7, LS-Net

demonstrates strong capability in handling the diverse textural and structural complexities inherent

in skin OCT images. This has signiĄcant potential in clinical applications such as early detection

and monitoring of skin conditions, including cancerous lesions and inĆammatory diseases. The

segmentation mask from LS-Net not only maintains structural integrity but also minimizes false

positives and negatives. Notably, LS-Net performs well in segmenting forearm images (Fig. 7),

since it can expertly handle the artifacts and high reĆection challenges while preserving Ąne

details of segmentation. The model reliably segments Ąne skin details, aiding early detection of

conditions and treatment monitoring when integrated into diagnostic workĆows.

However, the study has limitations. Firstly, the OCT imaging data collected in this study is

from one OCT device in our lab, hence, the reliance on OCT imaging data may restrict the use of

LS-Net in environments where such resources are scarce. Thus, the operational environments for

this technology might be limited by the availability of OCT devices. Secondly, LS-Net is designed

for computational efficiency, but it does face trade-offs between performance and computational

demand when compared to models such as T-Net and SHFormer. Our ablation studies suggest

that increasing model complexity to improve performance also increases computational demand

and inference latency. This becomes particularly challenging in batch processing scenarios where

swift processing is crucial, potentially limiting LS-NetŠs practicality in resource-limited settings

that demand rapid and efficient processing. Thirdly, the study validated LS-Net on a dataset

limited to individuals aged 20-40 with no reported skin conditions, which does not adequately

reĆect the diversity of clinical realities. It may not provide a comprehensive modelŠs performance

across different skin types, age groups, and pathologies. Therefore, additional validation studies

incorporating a more diverse patient population are essential to thoroughly assess the modelŠs

effectiveness in varied clinical settings and to ensure its broader applicability.

Future research can focus on several areas to enhance the applicability and efficiency of LS-Net.

First, the diversity of the training dataset should be broadened to include a more extensive

range of skin types, ages, and pathological conditions. This expansion is crucial for enhancing

the modelŠs robustness and ensuring its generalizability across varied clinical environments.

Second, exploring the integration of additional lightweight transformer models may further
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reduce computational requirements while maintaining high accuracy. Finally, real-world clinical

trials will be critical to validate the practical beneĄts of LS-Net in healthcare settings, possibly

incorporating feedback from dermatologists to further reĄne the model.

6. Conclusion

In conclusion, LS-Net represents a signiĄcant advancement in medical image segmentation,

providing an efficient and accurate tool for non-invasive skin analysis that could facilitate

fast and reliable clinical outcomes through enhanced diagnostic capabilities. By efficiently

integrating CNNs and ViTs, LS-Net achieves high segmentation accuracy with low computational

demands. The model has the best performance over the state-of-the-art methods, particularly in

maintaining the accuracy of epidermal thickness measurements, which are crucial for diagnosing

and monitoring various skin conditions.

Appendix: pseudocode of the intensity-based segmentation algorithm

Algorithm 1. Function: Intensity-based Segmentation Algorithm
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