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Abstract European winter precipitation profoundly influences regional hydroclimate, yet the relative roles

of internal variability and external forcing in its decadal changes remain elusive. Using large‐ensemble climate

simulations, we identify the Interdecadal Pacific Oscillation (IPO) as a potential driver of interdecadal changes

in winter northern European precipitation. During the 1980–2014 IPO phase transition, internal variability

induced a drying trend of −0.07 mm day−1 (35 years)−1, offsetting a concurrent externally forced wetting trend

of +0.19 mm day−1 (35 years)−1. This influence arises from IPO‐related modulation of atmospheric circulation

and moisture transport. The persistence of IPO–WNEP linkages into 2015–2050 suggests that internal

variability may continue to shape near‐future hydroclimate. Accounting for IPO‐related influences reduces

projection uncertainty by 30% historically and 20% in the near future. These results highlight the critical role of

internal variability in long‐term European precipitation trends and emphasize its relevance for regional water

resource planning.

Plain Language Summary Winter precipitation in Europe is highly variable from decade to

decade, with important consequences for water resources, agriculture, and ecosystems. Understanding the

drivers of these changes is crucial for improving climate projections and managing regional risks. In this

study, we use climate model large ensembles to separate the effects of external human‐induced climate

change from internal natural variability. We find that a large share of the decadal fluctuations in northern

European winter precipitation is linked to the Interdecadal Pacific Oscillation (IPO), a long‐term mode of

climate variability in the Pacific Ocean. During its transition from a positive to a negative phase (1980–2014),

the IPO triggered a drying trend in Europe by altering large‐scale atmospheric circulation and reducing

moisture transport into the region. This drying trend nearly canceled out the wetting effect expected from

human‐induced greenhouse gas forcing over the same period. Looking ahead, the IPO is projected to continue

influencing precipitation in the coming decades (2015–2050). Importantly, accounting for IPO‐related

variability reduces uncertainty in precipitation projections by up to 30%. These results emphasize that natural

variability should be considered alongside human‐induced change to better anticipate Europe's future

hydroclimate.

1. Introduction

In recent decades, large parts of Europe have experienced increasingly prolonged and widespread droughts (van

der Woude et al., 2023), imposing annual losses of approximately 9 billion euros across the European Union and

the United Kingdom and disrupting agriculture, energy, water supply, and transportation (Cammalleri

et al., 2020; Garrido‐Perez et al., 2024; Toreti et al., 2022). Notably, record‐breaking droughts in Europe,

including those of 2015, 2016/17 and 2018, are closely linked to deficient winter/spring precipitation followed by

extreme summer heatwaves (García‐Herrera et al., 2019; Laaha et al., 2017; Rakovec et al., 2022). Rising

temperatures and increased potential evapotranspiration have further amplified drought risk, especially in central

and southern Europe (Ionita & Nagavciuc, 2021; Vicente‐Serrano et al., 2014). Long‐term observations reveal a

significant drying trend in the Mediterranean and parts of Russia, while northern Europe has experienced a

pronounced wetting trend (Bordi et al., 2009; Caloiero et al., 2018; Hoerling et al., 2012). This meridional “see‐

saw” pattern of drying in the south and wetting in the north has persisted for centuries and is projected to persist

(An et al., 2023; Spinoni et al., 2018; Trnka et al., 2016). Accurate simulation and projection of precipitation in
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these climate‐sensitive regions are thus crucial for managing agriculture, water resources, energy systems, and

overall societal resilience.

On the interannual timescale, the meridional precipitation contrast is linked to sea surface temperature (SST)

variability and large‐scale atmospheric circulation, particularly El Niño–Southern Oscillation (ENSO) and North

Atlantic Oscillation (NAO), which together account for about one‐fifth of European precipitation variability

(Fereday et al., 2018; Herweijer & Seager, 2008; McKenna & Maycock, 2022). Meanwhile, ENSO–NAO

linkages coupled with volcanic eruption could also exert pronounced influences on high‐latitude climate

(Dogar et al., 2023, 2025). In addition, interactions among basins can potentially amplify European winter climate

anomalies, particularly when SST signals are in phase (Gouirand & Moron, 2003; Mathieu et al., 2004; Scaife

et al., 2014). While some analyses claim that ENSO events may have limited influence on European precipitation,

such discrepancies likely stem from nonlinear dynamics (Brönnimann, 2007; Mathieu et al., 2004), low signal‐to‐

noise ratios in projecting individual ENSO events (Molteni & Brookshaw, 2023), and interference from Atlantic

variability (Mathieu et al., 2004).

On decadal timescales, Pacific Decadal Oscillation (PDO) plays a major role in modulating European precipi-

tation patterns. Negative PDO phase typically brings drier conditions to southern Europe and wetter conditions to

Scandinavian Peninsula. These impacts arise partly through modulation of ENSO characteristics (Verdon &

Franks, 2006) and stratospheric responses mediated by Pacific–North America‐like teleconnections (Rao

et al., 2019; Yu & Zwiers, 2007). Additionally, moisture variability in mid‐latitude Europe is also influenced by

multidecadal variability over the Atlantic basin, namely Atlantic Multidecadal Variability (AMV) (Ionita

et al., 2021). On the other hand, externally forced changes, especially those induced by greenhouse gas emissions,

have been shown to favor the meridional “see‐saw” pattern in winter European precipitation (Christidis &

Stott, 2022). However, the net effect of greenhouse gas forcing may be partially offset by opposing influence of

anthropogenic aerosols (Christidis & Stott, 2022). As European aerosol emissions continue to decline, their in-

fluences combined with those of increasing greenhouse gases are expected to intensify in the coming decades

(Samset et al., 2018).Winter meteorological droughts and floods are projected to exert increasingly severe im-

pacts across Europe under continued climate change. However, the relative contributions of external forcing and

internal variability to interdecadal changes in European precipitation remain elusive, particularly over northern

Europe, where a pronounced wetting trend emerges within the European precipitation see‐saw (Hoerling

et al., 2012). Recent advances suggest that leveraging dominant climate modes may offer a promising approach

for constraining inter‐member variability and thereby reducing uncertainties in near‐future projections. In this

study, we analyze interdecadal changes in winter northern European precipitation (WNEP) over 45–60°N latitude

band using large ensemble climate simulations to quantify the respective roles of internal variability and external

forcing, excluding southern Europe where anthropogenically forced responses are controversial and undetectable

(Peña‐Angulo et al., 2020; Vicente‐Serrano et al., 2025). Our findings aim to inform strategies for narrowing

near‐term projection uncertainties and improving the robustness of regional climate predictions in northern

Europe.

2. Materials and Methods

2.1. Data

Observational monthly precipitation and SST used in this study are obtained from the Climatic Research Unit

(CRU) high‐resolution gridded data set (version 4.07) (Harris et al., 2020) and Extended Reconstructed SST

(ERSST) version 5 (Huang et al., 2017), respectively. We incorporate another two data sets separately for

verification: Global Precipitation Climatology Center (GPCC) monthly product (version 2022) (Schneider

et al., 2022) and University of Delaware (UDel) Air Temperature & Precipitation data set (version v4.01)

(Matsuura & Willmott, 2015) for precipitation, and Hadley Center Sea Ice and SST data set (HadISST) (Rayner

et al., 2003) and Kaplan Extended SST V2 (Kaplan et al., 1998) data sets for SST. Detailed information of these

data sets is provided in Table S1 in Supporting Information S1.

We employ two sets of large‐ensemble climate model outputs, each comprising 50 members for historical

simulations (1850–2014) and future projections (2015–2100) based on the Shared Socioeconomic Pathway 5–8.5

scenario. These ensembles could serve as powerful tools to disentangle the roles of internal climate variability and

external forcing (Deser et al., 2020; Huang, Zhou, Turner, et al., 2020). The first model, Canadian Earth System

Model version 5 (CanESM5) (Swart et al., 2019), is used to distinguish the relative contributions of external
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forcing and internal climate variability. The second model, Model for Interdisciplinary Research on Climate

version 6 (MIROC6) (Tatebe et al., 2019), serves to verify the conclusions. Additionally, the pre‐industrial

control (piControl) simulation, which spans 2,000 years under fixed greenhouse gas concentrations and forc-

ing levels as in 1850, is used as well.

All the observations and model simulations are bilinearly interpolated to a uniform 1 × 1 horizontal grid before

analysis. An 11‐year running average is applied to the raw data to remove interannual signals and extract

interdecadal variability. Boreal winter months are defined as December (of the previous year), January, and

February. The periods 1980–2014 and 2015–2050 are considered as the historical and near‐term future periods,

respectively, with anomalies calculated relative to the 1951–2000 average. The results of this study are robust

against different choices of climate norms. Additionally, statistical procedures are detailed in Text S1 in Sup-

porting Information S1.

2.2. Adjusting WNEP Uncertainty by Climate Mode

To identify the contributions of climate modes to interdecadal WNEP changes, the following linear regression is

performed to separate the influence of climate mode in each ensemble member:

P(i, t) = s(i) · Index(i, t) + Pnon–Index(i), i = 1,2,… ,50 (1)

where P(i, t) denotes WNEP in the i‐th ensemble member at time t. The regression coefficient s(i) indicates the

magnitude of WNEP changes with normalized Index(i, t) changes, such as Interdecadal Pacific Oscillation (IPO),

and Pnon− Index(i) represents the WNEP response to external forcing and other internal variability without the

effects of climate indices.

In large‐ensemble simulations, all members are driven by identical external forcing, while inter‐member or in-

ternal variability in simulated WNEP trends primarily arises from differing realizations and phase evolutions of

climate modes (Hawkins & Sutton, 2011). If a strong inter‐member relationship exists between trends of a given

climate mode and WNEP, constraining the mode‐related trends of s(i) · ∂Index(i, t)
∂t

can effectively reduce inter‐

member uncertainty of WNEP trends, which are estimated as:

∂Padj(i, t)

∂t
= s(i) ·

∂Index(i, t)

∂t
+
∂Pnon–Index(i, t)

∂t
, i = 1,2,… ,50 (2)

where
∂Padj(i)

∂t
represents the adjusted WNEP trends and varies across ensemble members. s, Index, and Pnon− Index

are the same as in Equation 1. s(i) · ∂Index(i, t)
∂t

denotes the climate mode‐contributed WNEP trends during the

historical period (1980–2014), matching the complete peak‐to‐tough phase transition of IPO, or subsequent 35‐

year period in the near future (2015–2050). For the period 1980–2014, ∂Index(i, t)
∂t

is set as the observed trends, while

for 2015–2050, it is set as a constant value of ±2, lying within one STD of the normalized climate mode trends

across the 50 members and thereby representing a physically plausible realization of inter‐member variability.

This definition also represents the full phase transition of specific climate modes, minimizing truncation biases

associated with incomplete cycles, consistent with the previous study (Huang, Zhou, Dai, et al., 2020). The result

of
∂Padj(i)

∂t
could estimate the potential for the specified climate variability to narrow uncertainties of WNEP trend

with a certain phase transition pattern and fixed magnitude, as summarized schematically in Figure S1 in Sup-

porting Information S1.

Additionally, the probabilities of the positive trend (PT), extreme drying trend (EDT), and extreme wetting trend

(EWT) indices before and after the WNEP adjustment are also estimated as documented in Text S2 in Supporting

Information S1.

3. Results

3.1. Observed and Simulated WNEP Changes

Over northern Europe, a pronounced wetting trend is observed during 1951–2014, with observations showing an

increase of 0.05 mm day−1 (35‐year)−1, ranging within 0.02–0.09 mm day−1 (35‐year)−1 across observational
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data sets (Figures 1a and 1b). This trend is largely attributed to external forcing, which accounts for approximately

92% [50%–129%] of the total change, based on the CanESM5 ensemble mean of 0.04 mm day−1 (35‐year)−1with

inter‐member trends ranging from −0.04–0.23 mm day−1 (35‐year)−1, indicating substantially larger model

uncertainty than suggested by observations. After removing the rescaled externally forced component from

observations (Text S4 in Supporting Information S1), internal variability contributes a modest yet non‐negligible

drying signal of −0.004 mm day−1 (35‐year)−1. These patterns are consistent across large ensemble models of

CanESM5 and MIROC6 over extensive areas of northern Europe (Figures 1c and 1d). From 1980 to 2014, the

long‐term internally driven drying intensifies to −0.11 mm day−1 (35‐year)−1. This period coincides with a

sequence of extreme hydroclimatic events, including mega heatwaves and record‐breaking droughts (García‐

Herrera et al., 2019; Ionita & Nagavciuc, 2021; Toreti et al., 2022). The internal drying and its associated

variability highlight the importance of understanding the underlying mechanisms, as well as the implications for

uncertainty in precipitation projections.

During 1951–2014, both observed WNEP and its internal‐driven component exhibit significant correlations with

IPO, with coefficients of 0.65 and 0.45 based on effective degrees of freedom of 16 and 21 (P < 0.05),

respectively. Spatially, internal variability shows a distinct IPO‐related pattern: a significant positive correlation

over western and eastern Europe, and a negative correlation over central Europe (Figures 1e and 1f). On the

interdecadal timescale, the 11‐year running averaged WNEP regressed onto IPO index reveals the driest centers

over Eastern European Plain. This is generally consistent with the ensemble mean of model simulations, which

depicts more homogenous drying across the whole northern Europe (Figures S2a–S2b in Supporting Informa-

tion S1). Regressed SST similarly reveals the negative IPO‐like pattern in both observation and ensemble mean

(Figures S2c–S2d in Supporting Information S1). These analyses suggest that WNEP variability may be

modulated by IPO. Before quantifying the potential contribution of IPO to WNEP variability, we evaluate the

performance of ensemble mean of model simulations, which well reproduces observed WNEP patterns for 1951–

2014 (Figures S2e–S2f in Supporting Information S1).

Figure 1. (a, b) Time series of precipitation anomalies (units: mm day−1) in three observational data sets of Climatic Research

Unit (blue dotted line), Global Precipitation Climatology Center (purple dotted line), and Udel (green dotted line), along with

the normalized IPO index in the observation (teal line). The black dashed line indicates the ensemble mean of observational

data sets. The yellow dashed and blue solid lines indicate the original and rescaled externally forced precipitation anomalies,

respectively, derived from the CanESM5 and MIROC6 models. The red solid line indicates the internally generated

precipitation anomalies. (c, d) Internally driven winter northern European precipitation (WNEP) trends (units: mm day−1

(65‐year)−1) after removing the rescaled MME in CanESM5 and MIROC6 models during 1951–2014, respectively. (e, f)

Regression of 11‐year running averaged internally driven WNEP (units: mm day−1) onto opposite values of normalized IPO

index in CanESM5 and MIROC6 models during 1951–2014, respectively. Dots denote regions with significant regression

coefficients at the 90% confidence level.
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3.2. IPO Modulation of WNEP Changes

Using random 600‐year piControl simulations without external forcing, interdecadal WNEP and SST regression

against IPO index confirms a robust relationship that decrease in WNEP aligns with the negative phase of IPO‐

like SST anomaly (Figure S3 in Supporting Information S1). Meanwhile, a significant positive correlation at the

decadal timescale with effective degree of freedom of 71 emerges between the 35‐year running averaged WNEP

and IPO index.

Given the persistent phase transition of the IPO, the period 1980–2014—marking a complete shift from positive

to negative phase—is further selected to investigate its modulation on WNEP. Observed SST trends during this

period exhibited a robust La Niña‐like pattern, characterized by tropical central and eastern Pacific cooling and

Indo–western Pacific warming (Figure S4 in Supporting Information S1). Normalization is conducted to elim-

inate the IPO's amplitude effects, allowing us to examine distinct IPO phase evolutions among the CanESM5

members during the historical period (1980–2014). Observed IPO trends fall within simulated ranges (−4.59 to

4.52 per 35‐year), with the observed IPO trend at −4.09 per 35‐year (Figures S5–S7 in Supporting Informa-

tion S1). To isolate IPO's contribution toWNEP variability, we separate IPO‐related and IPO‐independentWNEP

components using linear regressions. Aligning each member's IPO evolution with observed phase shift allows

adjusting historical WNEP trends accordingly. The adjustment integrates both hypothetical impact of observed

IPO shifts and residual variability from other climate variability and external forcing. Results show that IPO‐

independent responses contribute 0.13 mm day−1 (35‐year)−1 to the ensemble mean WNEP trend of

0.19 mm day−1 (35‐year)−1 (Figure S5b in Supporting Information S1, tomato and light gray bars). After IPO

adjustment, the WNEP trend declines to 0.12 mm day−1 (35‐year)−1, indicating a drying response to IPO of

−0.01 mm day−1 (35‐year)−1 compared to original 0.06 mm day−1 (35‐year)−1, aligning more closely with

observed 0.05 mm day−1 (35‐year)−1, ranging 0.04–0.06 mm day−1 (35‐year)−1 across CRU, GPCC, and UDel

products (Figure 1a). This also suggests that internal component related with observational IPO shifts by

−0.07 mm day−1 (35‐year)−1 could substantially offset the wetting trend of 0.19 mm day−1 (35‐year)−1 caused by

external forcing. Meanwhile, the uncertainty is constrained by 30%, decreasing from 0.20 to 0.14 mm day−1 (35‐

year)−1 after excluding the inter‐member spread of IPO phase shifts in each realization, as verified by alignment

with observational reference (Figure S5c in Supporting Information S1). Additionally, sensitivity analyses using

alternative IPO definitions and running‐window lengths consistently confirm the robustness of the IPO influence

on adjusted WNEP trends and on the historical uncertainty constraint by the range of 25%–35% (Table S3 in

Supporting Information S1). Therefore, IPO phase transitions play a key role in narrowing uncertainty in recent

WNEP trends.

3.3. Near‐Term Projection of WNEP Constrained by IPO

Beyond reconciling observation–model discrepancies of climate change impacts, constraint framework could be

explored in near‐term future (2015–2050) due to the strong positive correlation of 0.50 between trends in WNEP

and IPO index (Figure S5d in Supporting Information S1). This technique is likely most effective in the near

future when inter‐member variability dominates uncertainty of European winter precipitation, followed by model

uncertainty, whereas scenario uncertainty remains negligible (Deser et al., 2017; Hawkins & Sutton, 2011). The

externally forced WNEP changes, as shown in the ensemble mean of the CanESM5 simulations, reveal a slightly

homogenous wetting trend (Figure 2a). However, the magnitude of internal variability across model realizations

remains comparable to the forced signal, leading to a low signal‐to‐noise ratio (SNR), calculated as the absolute

value of externally forced signal divided by STD of internal variability, ranging from 0.4 to 1.2 across much of

northern Europe (Figures 2b and 2c). This implies that inter‐member spread may act as the primary barrier to

detecting the external forcing signal. Notably, lower SNRs coincide with regions influenced by the subtropical

westerly jet, which could be modulated by warmer Pacific SST anomalies, strengthening the westerlies and

increasing moisture transport from the North Atlantic into northern Europe (Shaman & Tziperman, 2011). For the

near future, projected WNEP trends span from 0.08 to 0.62 mm day−1 (35‐year)−1 (5th–95th percentile), with

100% of realizations exhibiting positive trends (Figure 2e inset Figure). Given the pronounced uncertainty of

WNEP changes, two sub‐ensemble sets are selected: five driest (Dry5) and five wettest (Wet5) members over

northern Europe. The difference reveals widespread drying in the Dry5 relative to Wet5 across most of northern

Europe, except around the Alpes—possibly due to its high topography (Figure 2d). Despite an ensemble‐mean

increase of 0.34 mm day−1 (35‐year)−1 in externally forced WNEP, the Dry5 and Wet5 sub‐ensemble means

exhibit markedly divergent trends of 0.08 and 0.62 mm day−1 (35‐year)−1, respectively (Figure 2e). This stark
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contrast highlights that inter‐member variability, rather than external forcing, dominates the spread in near‐future

projections of WNEP, underscoring the need to constrain internal variability across members for more reliable

projections.

To assess robustness, similar analyses are conducted using MIROC6 simulations (Figure S8 in Supporting In-

formation S1). The ensemble means and STD of WNEP trends in MIROC6 resemble those in CanESM5, albeit

with weaker external signals and larger inter‐member spread (Figures S8a and S8b in Supporting Information S1).

As a result, the SNR is significantly smaller in MIROC6, falling below 0.8 in northern Europe (Figure S8c in

Supporting Information S1). As expected, differences between the Dry5 and Wet5 members in MIROC6 show a

homogeneous significant drying pattern (Figure S8d in Supporting Information S1). The inter‐member projection

trends are more dispersed in MIROC6, reflected by a wider 5th to 95th percentile range of −0.33 to

0.32 mm day−1 (35‐year)−1, with only 50% of members showing positive trends (Figure S8e in Supporting In-

formation S1). The sub‐ensemble averaged trends for Dry5 and Wet5 are −0.30 and 0.28 mm day−1 (35‐year)−1,

respectively, indicating a more pronounced contrast and elevated uncertainty in MIROC6 projections.

We further examine the 11‐year running averaged SST trends and SST regression onto WNEP based on dif-

ferences between near‐future sub‐ensemble outputs. Both exhibit a prominent negative IPO‐like pattern, closely

resembling observational regressions (Figures 3g and 3h and Figure S2c in Supporting Information S1), con-

firming that IPO phase shift remains the dominant driver of WNEP trend uncertainty from recent decades into the

near future. Dynamical processes, rather than thermodynamic effects, account for 80% of the projected water

vapor transport (Figures 3a and 3d). Horizontal moisture divergence plays a major role in drying northern Europe,

while the vertical also crucial with anomalous subsidence and increased moisture with height, especially in

western Europe (Figures 3a–3d). The dynamically vertical and thermodynamical moisture transport are further

decomposed, among which the anomalous horizontal divergence (−< q∇ Vʹ
̅→

>) and vertical advection of

background moisture (−<ωʹ
∂q
∂p

>) play dominant roles. Anomalous horizontal divergence hampers moisture

convergence and inhibits the precipitation conditions, while subsidence over western Europe dries the air from the

upper troposphere to lower levels, suppressing near‐surface saturation and precipitation (Figures 3e and 3f). The

overweighted divergence‐ and subsidence‐induced drying is linked to high pressure anomalies over much of

Europe. This pattern could be induced by pure interdecadal Pacific SST signals after removing interannual Niño

3.4 signal, and forms part of an eastward‐propagating Rossby wave train that originates from the North Pacific

Figure 2. Winter northern European precipitation (WNEP) trends (units: mm day−1 (35‐year)−1) under SSP5–8.5 scenario

during 2015–2050 for (a) ensemble mean, (b) inter‐member STD, (c) signal‐to‐noise ratio, and (d) difference in WNEP

trends between the 5 driest and 5 wettest members in CanESM5. Dots denote regions with significant differences between the

5 driest and 5 wettest members at the 90% confidence level. (e) Time series of 11‐year running averaged WNEP anomalies

(units: mm day−1, relative to the 1951–2000 average). Gray and red lines show historical and SSP5–8.5 simulations,

respectively, with shading indicating the 5th–95th percentile range, thick solid lines for the ensemble mean, and dashed lines

for the maximum and minimum across all 50 members. Blue and green shadings indicate the 5 driest and 5 wettest members

under the SSP5–8.5 scenario, respectively. The inset in panel (e) shows the histogram of WNEP trends during 2015–2050.

The red, blue, and green dots mark the ensemble mean of 50 members, 5 driest, and 5 wettest members, respectively.
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Figure 3. Differences of (a) dynamic water vapor transport, (b) its vertical and (c) horizontal component, and

(d) contributions of individual moisture budget terms (units: mm day−1 (35‐year)−1) between the 5 driest and 5 wettest

members under the SSP5–8.5 scenario in CanESM5 during 2015–2050. Yellow dashed lines divide the components into

three sectors. Stars identify winter northern European precipitation (WNEP) changes and major contributing terms in each

sector. In the first sector, bars from left to right indicate precipitation, evaporation, thermodynamic, and dynamic terms. The

second and third sectors show the horizontal and vertical decomposition of thermodynamic and dynamic terms, respectively

panels (e, f) Same as panel (a), but for−< q∇ Vʹ
̅→

> and−<ωʹ
∂q
∂p

> (units: mm day−1 (35‐year)−1). The blue contours in panel

(f) indicate the vertically integrated vertical velocity (units: 103 Pa s−1 (35‐year)−1). (g) sea surface temperature (SST) trend

differences (shading; units: K (35‐year)−1) between the 5 driest and 5 wettest members under the SSP5–8.5 scenario in

CanESM5 during 2015–2050. panel (h) Same as panel (g), but for regression of SST (units: K differences onto the 11‐year

running averaged normalized WNEP. Panels (i) Same as panel (g), but for regression of 200‐hPa geopotential height (units: m)

differences and the corresponding wave activity flux (vectors; 103 units: m2 s−2) onto the 11‐year running averaged normalized

pure IPO index after Niño 3.4 signal removed. Dots denote regions with significant differences between the 5 driest and 5

wettest members in panels (a–c, e, and f) and significant regression coefficients in panel (f) at the 90% confidence level.
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and extending across the Atlantic (Figure 3i). Notably, a highly similar circulation pattern is reproduced in the

atmospheric general circulation model ECHAM6 sensitivity experiment forced with IPO‐like SST anomalies

(Figure S9 in Supporting Information S1; detailed in Text S6 in Supporting Information S1). High‐pressure

anomalies and enhanced low‐level moisture divergence over northern Europe are also associated with the

negative phase of the leading November IPO, serving as a precursor signal of the ensuing drier WNEP conditions

(Figure S10 in Supporting Information S1). This dominant influence of horizontal and vertical dynamical

components over northern Europe helps explain the observed WNEP drying pattern (Figure 2d), and these dy-

namics can be observed in MIROC6 as well (Figure S11 in Supporting Information S1).

To better understand how phase shifts of IPO influence WNEP changes and to qualify the extent to which IPO

phase transitions could narrow precipitation projections, we remove the IPO‐dependent changes in each ensemble

member and compare the probability densities of original and extracted non‐IPO trends (Figure 4a). The results

show that IPO phase shifts could account for 20% of precipitation variability during 2015–2050, reducing inter‐

member variability from 0.15 to 0.12 mm day−1 (35‐year)−1. A complementary sensitivity analysis using quantile

regression (q = 0.5), which assesses the dependence of the conditional WNEP median on the IPO index, further

reduces the spread to 0.11 mm day−1 (35‐year)−1 in CanESM5, reinforcing the robustness of the linear scaling.

Meanwhile, the range between 5th and 95th percentile decreases by 20% from 0.10 to 0.60 mm day−1 (35‐year)−1

to 0.01–0.41 mm day−1 (35‐year)−1. We further set up a scenario assuming an IPO transition (∂IPO(i, t)
∂t

) with a

magnitude of 2 STD in the near future. The subsequent adjustment steps follow those used for the historical

period. Here, a +2 STD transition can be understood as a shift from −1 to +1 STD, representing a negative‐to‐

positive phase change, or vice versa for a positive‐to‐negative shift. Such a 35‐year transition is reasonable, as it

Figure 4. (a) Histograms (bars) and fitted distribution (lines) of winter northern European precipitation (WNEP) trends (units:

mm day−1 (35‐year)−1) for ensemble members under the SSP5–8.5 scenario in CanESM5 during 2015–2050. Dots and

horizontal lines represent the ensemble mean and 5–95th percentile range, respectively. The red and gray denote the original

WNEP trends with and without IPO, respectively. panel (b) Same as panel (a), but the green and blue denote the WNEP

trends adjusted with the positive (+2 (35‐year)−1) and negative (−2 (35‐year)−1) phase transition of IPO, respectively.
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has been observed historically (Dong & Dai, 2015) and is well captured in IPO simulations, with simulated

transitions ranging from −4.59 to 4.52 over 35‐year with an STD of ±2.83 (Figure S5a in Supporting

Information S1).

The reconstructed WNEP trends (
∂Padj(i)

∂t
) for the near future are estimated by adding back the above assumed IPO‐

driven WNEP trends, with each ensemble member preserving the same phase transition. Under a negative‐to‐

positive IPO shift and SSP5–8.5 emission scenario, the ensemble‐mean WNEP changes are 0.21 mm day−1

(35‐year)−1, drier than the original 0.34 mm day−1 (35‐year)−1. While the original probabilities of EDT and EWT

are both 10%, an assumed positive‐to‐negative IPO shift increases the EDT probability to 42% while eliminates

EWT. In contrast, an assumed negative‐to‐positive IPO transition raises the ensemble mean trend to

0.43 mm day−1 (35‐year)−1, reduces EDT to 8%, and increases EWT to 26% (Figure 4b). These results underscore

the important modulation of IPO phase transition on WNEP changes, especially in shaping the frequency of

hydroclimatic extremes. Specifically, a shift toward a negative IPO phase tends to favor droughts, whereas a

positive IPO phase is associated with increased flooding. Additionally, the uncertainty in these projections be-

comes more challenging to constrain due to the wider inter‐member spread in MIROC6. Although the spread

narrows by 29% from 0.17 to 0.12 mm day−1 (35‐year)−1 in both linear and quantile regressions, the 5th to 95th

percentile range only slightly shifts from −0.23–0.28 mm day−1 (35‐year)−1 to −0.24–0.20 mm day−1 (35‐

year)−1, indicating modest improvement compared to CanESM5 (Figure S12 in Supporting Information S1).

Meanwhile, similar patterns with slight amplitude differences are found in MIROC6, reinforcing the findings that

IPO phase transitions significantly modulate WNEP trends and associated extremes.

4. Conclusion and Discussions

Persistent WNEP deficits are accompanied by La Niña‐like SST anomalies at interannual timescales and negative

IPO‐like anomalies at interdecadal timescales. Based on large ensemble simulations from CanESM5 and

MIROC6, internal variability, particularly the IPO, accounts for a large fraction of WNEP variability. The

observed positive‐to‐negative shift of IPO phase contributes to drier conditions in northern Europe. After con-

straining inter‐member spread, model simulations better align with observations, indicating a generally drier

contribution of −0.07 mm day−1 (35‐year)−1 associated with observed negative IPO trend scenario—offsetting

much of the anthropogenic wetting trend of 0.19 mm day−1 (35‐year)−1. Notably, the uncertainty in simulated

WNEP trends decreases from 0.15 to 0.13 mm day−1 (35‐year)−1. Given the persistent strong correlation between

IPO and WNEP, the IPO is also projected to explain 20% inter‐member spread of WNEP changes in the near

future. Mechanistically, this influence is primarily exerted through modulation of dynamical moisture transport

with anomalous horizontal divergence and subsidence. The transition from a positive to negative IPO phase

induces a significant geopotential height anomaly over northern Europe, characterized by an anticyclonic cir-

culation that suppresses precipitation. It is worth noting that uncertainty constraint on near‐futureWNEP trends in

the present study relies on a sensitivity framework of fixed IPO trends as ±2 STD, rather than deterministic

projections, due to limitations of capturing IPO phase‐evolution in Coupled Model Intercomparison Project

models (Du & Chen, 2024; Qin et al., 2024).

In addition to IPO, a weak IOD‐like SST anomaly over the Indian Ocean (Figure 3g), significantly correlated with

IPO index, may amplify the IPO's effects. Regression analyses show that the IOD‐like SST anomalies can

reinforce IPO‐induced circulation patterns, particularly in early winter (December–January), intensifying the

drying trend in WNEP (Figure S13 in Supporting Information S1). This constructive interference weakens by

February, consistent with previous findings in the historical period (Abid et al., 2021). Moreover, the contri-

butions of interannual climate modes such as Niño 3.4 (Rayner et al., 2003) and NAO (Schneider et al., 2013) are

also examined. For 1951–2014, the partial regression using observed IPO and AMV indicates that these two

modes contribute comparably to the internal component of WNEP, with a fitting goodness (R2) of 0.50. In

contrast, adding Niño 3.4 and NAO indices does not substantially improve the explainability, yielding an R2 of

0.56, suggesting that their limited ability to constrain WNEP. Importantly, although AMV exhibits a crucial

influence on internal WNEP variability in observations, AMV does not exhibit a significant relationship with

WNEP trends among the ensemble members (Figure S14 in Supporting Information S1), likely due to the

complex non‐linear dynamical processes at play (Mathieu et al., 2004; Tang & Li, 2024).

The present uncertainty‐reduction framework, consistent with previous studies (Huang, Zhou, Dai, et al., 2020;

Wu et al., 2021), constrains the areal mean WNEP trend rather than its spatial pattern. To assess whether the
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approach can be extended spatially, we conduct an empirical orthogonal function analysis. In CanESM5, EOF1

accounts for 97.5% of the total WNEPMME variance and exhibits a homogenous wetting pattern (Figure S15a in

Supporting Information S1), suggesting the focus on constraining PC1. Although the PC1s projected into MME's

EOF1 show a significant correlation with IPO among members (r = 0.56), IPO explains only 6.7% of WNEP

variance (Figures S15b and S15c in Supporting Information S1), which is insufficient to yield a robust IPO‐

constrained reconstruction of the WNEP spatial pattern. This limitation likely stems from the substantial inter‐

member spread that the variance of individual‐member WNEP fields captured by the MME EOF1 drops to an

average of 23.7% across members (range: 3.4%–45.7%). Such degradation in explained variance prevents a stable

and spatially coherent constraint from being established. Moreover, CanESM5 and MIROC6 are applied in this

study as representatives of higher and lower Equilibrium Climate Sensitivity models, respectively, both providing

50‐member ensembles (Scafetta, 2021; Zelinka et al., 2020). Precipitation, owing to its intrinsically weak forced

response and pronounced inter‐member spread, requires large ensemble sizes to achieve a sufficient SNR for

robust estimation of the forced component. However, most existing large ensembles provide fewer available

members, restricting multi‐model assessment. Future work incorporating broader large‐ensemble availability

would be essential for establishing a spatially resolved constraint framework.
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