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ChIP happens: from biochemical origins to
the modern omics toolbox for understanding
steroid hormone receptors
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Blood Research, University of York, York, North Yorkshire, Y010 5DD, United Kingdom; *Jack Birch Cancer Research Unit, University of York, York, North Yorkshire, Y019 5DD, United Kingdom; *York Structural Biology
Laboratory, Department of Chemistry, University of York, York, North Yorkshire, YO10 5DD, United Kingdom
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Nuclear steroid hormone receptors (SHRs) are ligand-activated transcription factors that mediate cellular

OPEN ACCESS  responses to steroid hormones (SHs) through regulating gene expression. Understanding the SHR function
is crucial for elucidating SH-driven physiology and pathology, including their roles in normal develop-
ment, metabolism and reproduction, alongside their aberrant function in cancer, endocrine disorders and
inflammatory diseases. Investigating the mechanisms that underscore SHR signalling and regulation is
therefore essential for advancing our knowledge of both normal physiology and disease and is vital to the
development of novel therapeutic strategies. In this review, we examine a range of methods for studying SHR
interactions with chromatin and coregulator proteins, from classical biochemical assays to more advanced
approaches such as PL-MS, RIME and ChIP. We also highlight potential future innovations in the field,
including in situ Calling Cards and UV-induced photocross-linking RIME (UVXL-RIME), that may overcome
current methodological limitations, in turn enabling the study of SHRs in increasingly physiologically relevant
contexts.

Structure and function of steroid hormones and receptors

Steroid hormones

Steroid hormones (SHs) are a group of lipophilic molecules, naturally produced by all eukaryotes. In
vertebrates, SHs are divided into five groups based on their function, structure and biosynthetic route from
cholesterol: mineralocorticoids, glucocorticoids (GCs), estrogens, androgens and progestins (also known as
progestogens) [1]. Of these, mineralocorticoids and GCs are collectively known as corticosteroids, while
androgens, estrogens and progestins are termed the sex hormones.
All corticosteroids possess a polycyclic system composed of 21 carbon atoms (Figure 1), although
their biological activities vary markedly [1-8]. GCs, such as cortisone, play key roles in modulating the
immune system towards an anti-inflammatory state [2], regulating protein, sugar and fat metabolism [1,3-
5], and controlling cell growth, differentiation and apoptosis [6,7]. In contrast, mineralocorticoids (MCs)
like aldosterone are involved in fluid/electrolyte balance and blood pressure regulation [1,8]. Interestingly,
certain corticosteroids can act as both GCs and MCs; for instance, cortisol predominantly functions as a
GC but displays MC activity in low aldosterone environments [1,9].
Androgens, estrogens and progestins differ both in the number of carbon atoms within their polycyclic
systems (Figure 1) and in their biological activities [1,10-18]. The primary function of sex hormones is
to promote normal female (estrogens and progestins) or male (androgens) development and reproductive
function [1]. These effects depend on the ratio of female to male sex hormones, which are present at
varying levels in both sexes. Beyond reproduction, sex hormones are also implicated in bone and muscle
Received: 16\lay 2025 development [10,11]; cardiovascular development [12-14]; metabolism [15,16]; and thyroid function
Revised: 6 January 2026 [17,18].
Accepted: 12January 2026 In humans, corticosteroids are predominantly synthesised in the adrenal glands, while sex hormones
are mainly produced in the gonads [1,19]. After synthesis, SHs are secreted into the bloodstream, where
they bind to carrier proteins [20,21] that facilitate transport to distant tissues. SHs subsequently dissociate
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Corticosteroids Sex Hormones

Cortisol

Glucocorticoid (GC)
21 carbons

Aldosterone 17B-estradiol Testosterone 17a-hydroxyprogesterone
Mineralocorticoid (MC) Estrogen SH Androgen SH Progestin SH
21 carbons 18 carbons 19 carbons 21 carbons

Figure 1: Representative 2D chemical structures of the five steroid hormone (SH) classes.

Corticosteroids, including glucocorticoids (e.g. cortisol) and mineralocorticoids (e.g. aldosterone) possess a tetracyclic ring system comprising 21 carbon atoms. In contrast,
estrogens (e.g. 17p-estradiol), androgens (e.g. testosterone) and progestins (e.g. 17a-hydroxyprogesterone) contain tetracyclic structures composed of 18, 19 and 21 carbon
atoms, respectively.

from these carriers [22], and either bind directly to membrane-associated steroid hormone receptors
(SHRs) [23-25], or diffuse across cell-surface membranes to activate intracellular SHRs [26]. Consequently,
SHs primarily act through long-range endocrine signalling mechanisms, although extra-adrenal and
extra-gonadal SH biosynthesis does occur [27,28] enabling short-range signalling.

An overview of SHRs

Historical milestones in SHR research

SHRs were first characterised between 1960 and 1990 through a series of consecutive experiments, as
reviewed by Beato et al. [26]. The first of these studies, published by Jensen and Jacobsen [29,30], used
radiolabeled 17-estradiol to identify estrogen-responsive cells in rats, including those in the mammary
glands and uterus. Simultaneous work by Clever and Karlson [31] showed that ecdysone, an insect SH,
induced giant chromosomal puff formation (unwound DNA sections indicative of active transcription).
Collectively, this seminal work implied the presence of intracellular SHRs in specific cells that regulate gene
transcription following SH stimulation.

Subsequently, Toft and Gorski [32] isolated the rat estrogen receptor (rER) from the soluble fraction
of the uterus, showing rER binds specifically to estrogen SHs, but not to androgens, progestins, or
corticosteroids. ERs were later isolated from the uteri of other species, including mice (mER) [33] and
chickens (cER) [34], with these studies reporting a molecular weight of ~65 kDa, and a low nanomolar
affinity (K ~1 x 10™'° M) for estrogenic SHs.

Concurrent work by Noteboom, Gorski [35] and Jensen [36] led to the proposition of a two-step model
for SHR activation. According to this framework, SHs diftuse across the cell-surface membrane and bind,
with a high affinity, to their cognate SHR in the cytoplasm. This binding activates the SHR, triggering
nuclear translocation, and in turn, the expression of specific hormone-responsive genes.

Major advances in the field of SHRs next emerged in the 1980s, when the human glucocorticoid
receptor (hGR) [37,38], human androgen receptor (hAR) [39,40], hER [41-43], and various SH-responsive
genes [44,45] had been successfully cloned from ¢cDNA libraries. These pivotal studies led to the
identification of the first hormonal response elements (HREs) — palindromic DNA sequences upstream
of many SH-responsive genes that serve as SHR binding sites [46-48] and are now accepted to function
within extended promoter-enhancer regulatory networks [49-51].

Phylogeny and structure of SHRs

Phylogenetically, SHRs belong to the nuclear receptor (NR) superfamily of proteins. This review article
will focus on the NR3 subfamily of nuclear receptors, which traditionally were characterised as class
I homodimers [52]. However, recent work has shown that NR3 SHRs can adopt a diverse range of

© 2026 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

920z Auenigad 0 uo 3senb Aq Jpd 91 ze-G20z-a/L L Z186/912€5202M08/2/E8Y/iPd-aloe/fayoolg/wod ssaldpuejody/:dpy woy papeojumoq


https://creativecommons.org/licenses/by/4.0/

Biochemical Journal (2026) 483 1-42 PS

https:/doi.org/10.1042/BCJ20253216 5
P 9 e ®
()

quaternary structures, including heterodimers and higher-order assemblies [53]. In vertebrates, the
NR3 subfamily comprises six SHRs encoded by distinct genes [26] - the glucocorticoid receptor
(GR), progesterone receptor (PR), estrogen receptors (ERa and ERP), androgen receptor (AR) and
mineralocorticoid receptor (MR) - with additional lineage-specific paralogues present in certain teleost
(bony fish) species [54].

Although each SHR has unique tissue expression patterns and biological functions [55,56], they
generally share a common modular structure comprising five domains (Figure 2A): (i) an N-terminal
transactivation domain encompassing the ligand-independent transcriptional activation function (AF-1)
[57,58]; (ii) a DNA binding domain (DBD); (iii) a hinge domain containing the nuclear localisation signal;
(iv) a ligand binding domain (LBD) that harbours the ligand-dependent transcriptional activation function
(AF-2) [57,58]; and (v) a C-terminal domain that helps distinguish agonistic from antagonistic SHs and
mediates protein-protein interactions. Classically, these domains have been labelled A/B, C, D, E and F
respectively (Figure 2A) [26,59,60]. Notably, the C and E domains are well conserved between SHRs, while
the A/B, D and F domains show greater variability in their length and amino acid sequence (Figure 2B)
[59,60].

(A) 'T‘,E::::é‘f;%’n"f:,g‘) DBD(C) Hinge (D) LBD (E) F
N — AF-1 AF-2 —C
(B) : . : .
A/B Domain C Domain D Domain E/F Domain
| Po7812 Q4imz8 P06211 P06211
gl P06401 | P08235 P19785 P19785
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Figure 2: Steroid hormone receptor (SHR) domains.

(R) Schematic of generic SHR protein domain structure. Each SHR possesses an N-terminal transactivation domain (A/B domain) that contains the ligand-independent
activation function (AF-1), a DNA-binding domain (DBD; C domain), a hinge domain (D domain), a ligand-binding domain (LBD; E domain) that encompasses activation
function 2 (AF-2), and a C-terminal F domain. (B) Heatmaps showing SHR per-domain sequence conservation. SHR amino acid sequences (UniProt IDs shown) were retrieved,
domain boundaries annotated using InterPro, and sequences aligned using ClustalOMEGA. Identity matrices were subsequently plotted as heatmaps in R. The E and F domains
were combined as not all SHRs contain distinct F domains.
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The DBD of all SHRs contains two zinc-finger motifs (ZFMs), termed the proximal (P) and distal (D)
boxes. Each ZFM contains four cysteine residues that co-ordinate a Zn*" ion in a tetrahedral configuration
[61] (Figure 3A). The P-box consists of three amino acid residues that adopt an alpha-helical arrangement,
thereby positioning their side chains within the DNA major groove to contact specific bases in hormonal
response elements (HREs) [26,61,63]. In contrast, the D-box aids SHR dimerisation [26,61], aligning two
P-boxes with their respective HRE half-sites (Figure 3B). Notably, GR, MR, AR and PR all recognise a
common HRE known as the glucocorticoid response element (GRE) [46-48,64-66], while ER binds to
the distinct estrogen response element (ERE) (Figure 3B) [67,68]. The use of a common motif suggests
the genomic and cellular context surrounding GREs helps to determine which SHR is recruited, with the
accessibility of the chromatin, the presence of other transcription factors or regulatory elements, cell-type
specific expression of SHRs, and SH ligand availability all playing a role [69].

The LBD is highly conserved among SHRs, possessing a well-defined 3D structure of 12 amphipathic
a-helices arranged into a large hydrophobic cavity for ligand binding [26,70-72]. While the composition

(A) (B)
C Cc D-box C C
> (S

— N 7 W
P-box

GRE: GRACANNNTGTYC
ERE: GGYCANNNTGRCC

(C)
SnE
Agonistic

AF-2 hydrophobic
Ligand
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AF-2 hydrophobic
Antagonistic groove partially

.. occluded
Ligand

)

Figure 3: Structural and functional overview of steroid hormone receptor DNA-binding (DBD) and ligand-binding (LBD) domains.

(A) lllustration of the two SHR DBD Zinc-finger motifs (ZFMs). Each ZFM comprises four cysteines that co-ordinate a single Zn** ion in a tetrahedral arrangement. The amino
acids that form the P-box, responsible for DNA binding, are coloured in green, while those forming the D-hox, which facilitate SHR dimerisation, are shown in red. (B) Crystal
structure of homodimeric hERa DBDs in complex with an estrogen response element (ERE), PDB ID: THCQ [62]. The P-box amino acid residues are coloured in green, with the
D-box residues depicted in red. The consensus sequences for the canonical glucocorticoid response element (GRE) and canonical ERE are shown, with the separate half-sites
highlighted in bold. () Ligand-induced conformational dynamics of SHR LBDs. Upon agonistic ligand binding (e.g. 17B-estradiol for hERa), LBD alpha-helix H12 encloses the
ligand binding cavity, forming the activation function 2 (AF-2) surface. Transcriptional coactivators are subsequently recruited to a hydrophobic groove within AF-2 via nuclear
receptor (NR) box motifs with the consensus sequence L-X-X-L-L. In contrast, the binding of antagonistic ligands (e.g. tamoxifen for hERa) triggers H12 to partially occlude the
AF-2 hydrophobic groove, blocking coactivator binding. Instead, transcriptional corepressors are recruited to the AF-2 groove via Co-Repressor nuclear receptor (CORNR) box
motifs possessing the consensus sequence I/L-X-X-1/V-1. R, purine base (A/G); Y, pyrimidine base (C/T); N, any nucleotide (A/G/C/T).

4 © 2026 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
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of this cavity varies between SHRs to enable interactions with their cognate SHs, the overall structure

and dynamics of the LBD are well preserved [70-72]. Following agonistic ligand binding, a-helix 12

(H12) is repositioned over the entrance of the ligand binding cavity, forming the activation function 2
(AF-2) surface (Figure 3C) [70-72]. Minor contributions to this interaction surface are likely also made by
adjacent a-helices [70-73]. Transcriptional coactivators are subsequently recruited to a hydrophobic groove
within AF-2 through nuclear receptor (NR) box motifs containing the consensus sequence L-X-X-L-L
(Figure 3C) [70-72,74]. Conversely, antagonistic ligands force AF-2 into a repressive structure, where

H12 partially occludes the hydrophobic groove [70-72]. This conformational change blocks coactivator
recruitment, although transcriptional corepressors can still bind to the AF-2 groove via Co-Repressor
Nuclear Receptor (CoRNR) box motifs with the consensus sequence I/L-X-X-1/V-I (Figure 3C) [75].
Regardless of the ligand type, SHRs retain a large hydrophobic dimerisation interface within their LBD,
primarily formed by a-helices H8-H12 [70-72,76].

The N-terminal ligand-independent transactivation domain (A/B domain) is poorly conserved
among SHRs and is characterised by its intrinsic disorder and structural flexibility [77-79]. The
domain houses activation function 1 (AF-1), which recruits transcriptional coregulators to modulate
target gene expression independently of SH-binding. AF-1 can adopt several active conformations that
permit coregulator recruitment, influenced by adjacent transcription factors [77-79], and certain post-
translational modifications, such as phosphorylation [80-87]. Although AF-1 and AF-2 can operate
independently, full transcriptional control requires both regions to work synergistically [88,89]. Beyond
contributing to transcriptional regulation, the intrinsically disordered regions (IDRs) of the A/B domain
have recently been implicated in chromatin binding and searching [90,91].

The hinge (D) domain and F-domain, both poorly conserved between SHRs (Figure 2B), play key
roles in receptor function. The hinge domain contains the nuclear localisation signal (NLS) peptide, which
enables the nuclear import of SHRs [92]. The D-domain also acts as a flexible linker between AF-1 and
AF-2, supporting their synergy and allowing complete SHR transcriptional control [89,92]. In contrast, the
function of the F-domain is less well understood, although it seems to help distinguish between agonistic
and antagonistic ligands [93-95], and may support transcriptional coregulator recruitment by AF-1 and
AF-2 [93-95].

Isoforms of SHRs

Alongside variation in the A/B, D and F domains of SHRs, their diversity is further expanded by distinct
protein isoforms. This was first demonstrated by Kastner et al. [96] who identified two variants of human
progesterone receptor (hPR), PR-A and PR-B. These isoforms are generated by alternative promoter usage
during PGR transcription [96], yielding a full-length variant (hPR-B), and a truncated form (hPR-A)
lacking 164 residues at the N-terminal. Both isoforms retain high progestin-binding affinities, can regulate
PR target gene expression [96] and are present at approximately equal levels in normal human luminal
mammary epithelial cells [97]. However, PR-A and PR-B differ in their abilities to recruit coregulators
[98-101], with PR-B possessing a third activation function (AF-3) that can function either autonomously
or synergistically with AF-1 and AF-2 [100]. In addition, in malignant breast lesions, PR-A is often
overexpressed, skewing the PR-A:PR-B ratio and, in turn, implicating PR-A in luminal breast cancer
metastasis and invasion [97,102].

Like hPR, hAR, hER and hGR also exist as two predominant variants [26]. For hAR, the B isoform is
full-length, whereas hAR-A lacks 188 residues at the N-terminus due to an internal translation initiation
site in the AR mRNA transcript [103,104]. Although hAR-A is expressed at significantly lower levels than
hAR-B in most cells [103,104], including normal and malignant prostate tissue [105], both isoforms bind
androgens [26,103,104] and regulate AR target gene expression [106]. However, the truncated A/B domain
of hAR-A markedly impairs its ability to recruit coregulators, thereby diminishing transcriptional control
by the A isoform. This effect has been shown in osteoblasts and fibroblasts, where AR-A was less effective
than AR-B at inducing AR target gene expression and promoting cellular proliferation [107].

Unlike other SHRs, hERa and hERP are not splice variants of a single gene, but rather homologous
receptors encoded by two separate genes (ESRI and ESR2 respectively) [108-110]. Both receptors give rise
to multiple truncated isoforms via alternative splicing, differential promoter usage and internal translation
initiation [111-115], although truncated ER variants generally exhibit reduced transactivation capacity
when compared with full-length ERs [111-115]. Nonetheless, certain truncated ERa isoforms (e.g. cdsl1,
cds16) can still regulate target gene expression, with cds11 showing enhanced nuclear localisation relative
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to full-length ERa [111]. Moreover, the hERa cds1 variant, which lacks the complete LBD, has shown
resistance to fulvestrant treatment, although it does not display transcriptional activity [111]. Turning to
the full-length receptors, hERa and hER diverge in several biologically meaningful ways despite sharing
structural homology and regulating target gene expression through similar mechanisms. For instance,
hERa/hERP exhibit unique cellular expression patterns [56]; hERa is only present in luminal mammary
epithelial cells, while hERp is expressed in epithelial and myoepithelial cells. The full-length ERs also have
different affinities for non-consensus EREs [68,116], with both overlapping and unique genomic binding
sites being reported [117]. Additionally, ERa drives more potent transactivation than ERP [89,118,119],
likely due to the impaired function of the hERP AF-1 region and hinge domain [89]. Collectively, these
observations reinforce the proposal that hERp functions as a ligand-activated tumour suppressor [56,120],
while hERa is generally accepted to be a ligand-dependent oncogene [121]. However, efforts to define the
biological role of hER have been hindered due to issues with the availability of reliable, well-validated
experimental reagents [122].

The two main hGR isoforms, GRa and GRp, are produced from a single gene via alternative splicing
[26,37,123], although truncated variants that regulate unique subsets of genes also arise through various
translational mechanisms [124]. Notably, hGRa and hGRp are identical up to residue 727, after which
their sequences diverge, with hGRa being the longer variant (777 vs 742 amino acids) [26,37]. GRa
is highly conserved as the functional GR isoform across most species [125], while GRP is generally
considered transcriptionally inactive due to a truncated LBD and instead exerts a dominant negative effect
on GRa-mediated gene repression [26,126]. Interestingly, the mechanism of GR dimerisation also differs
from other SHRs, with early studies reporting this to be reliant on an intermolecular -sheet motif and a
small hydrophobic interface within the LBD [72]. However, more recent work has shown that GR can adopt
up to 20 different homodimeric structures depending on the bound ligand and associated transcriptional
coregulators [127]. This results in a markedly weaker dimerisation affinity: Kd ~2 uM for GR [72,127],
compared with Kd ~3 nM for ER [128,129].

hMR exists as a single protein isoform encoded by two mRNA variants, hMRa and hMRp, that
arise from alternative splicing and differential promoter usage [130-135]. These variants share identical
protein-coding sequences but differ in their 5’ untranslated regions (5-UTRs) [130-134]. As such, hAMRa
and hMRp are thought to have unique stabilities and translational efficiencies in vivo, likely influencing the
overall h MR protein level within cells [133,136-138]. Less common hMR protein isoforms that originate
from alternative splicing have also been reported [130,139-141], although these account for less than 10%
of total hMR protein levels [130-135].

Genomic signalling mechanisms of SHRs

SHR activation and chromatin association

SHRs can regulate target gene transcription in a direct genomic fashion. In the absence of their cognate
ligands, SHRs are sequestered in a high-affinity, transcriptionally inactive state by chaperone (e.g. Hsp90,
Hsp70) and co-chaperone (e.g. FKBP51, FKBP52) proteins [142-152]. Depending on the SHR, this inactive
chaperone heterocomplex might be found in the nucleus (ER, PR-A) due to constitutively active NLS
peptides [151-155], the cytoplasm (GR, AR, MR) [152], or between the two compartments (PR-B)

[155]. Regardless of their subcellular localisation, all SHRs undergo near constant nucleocytoplasmic
shuttling [151,154-156], probably accounting for the low level of cytoplasmic ERa observed by
quantitative immunofluorescence in patient-derived breast tissue [153], and by immunocytochemistry

in ERa-expressing uterine (SHM) and mammary (MCF-7) immortalised cell lines [156].

Following SH ligand binding (e.g. 17B-estradiol for ERa) [32], SHR monomers experience a major
conformational change where H12 of the LBD is repositioned over the entrance of the ligand binding
cavity to form the AF-2 interaction surface [70,71,142,143]. This structural shift drives reorganisation of
the inactive SHR-chaperone heterocomplex [144,151,152], while simultaneously exposing the dimerisation
interface, NLS peptide (cytoplasmic SHRs only) and DBD of the SHR [142,143]. Activated SHRs can then
homo- (e.g. ERa-ERa) or hetero-dimerise (e.g. ERa-ERP) [142,143,157-159], with cytoplasmic SHRs also
undergoing nuclear translocation [142,143,151,159,160]. Intriguingly, the exact moment of dimerisation
differs between SHRs, MR has been reported to dimerise after nuclear translocation [160] whereas GR
appears to dimerise during translocation [159]. Regardless, once in the nucleus, SHR dimers dissociate
from their chaperone heterocomplexes [151,152] and bind to HREs upstream of target genes, with
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each SHR monomer recognising one HRE half-site (Figure 3B) [46-48,62,64-68]. DNA-bound SHRs
subsequently recruit transcriptional coregulators via the AF-1 and AF-2 regions in a tissue and cell-specific
manner (Figure 4) [57,58,70-75,142,143].

SHRs can also undergo ligand-independent activation through phosphorylation, leading to receptor
dimerisation, DNA binding and transcriptional coregulator recruitment (Figure 4). This is best
characterised for ERa, where growth factor-related kinase cascades phosphorylate serine residues in the
A/B domain (e.g. Ser'®, Ser'®, Ser'®, Ser'’%, Ser'?”) [80-87,161-163]. Similar pathways have also been
reported for AR [164-168] and PR [169-171], although these are less well defined. In contrast, ligand-
independent transcriptional modulation has not been observed for GR or MR [87,172-178].

Beyond their direct genomic signalling roles, SHRs can function in a sequence-independent manner by
associating with other DNA-bound transcription factors. This process, known as tethering, allows SHRs to
regulate the expression of genes that lack HREs upstream of their promoter regions (Figure 4) [142,143].
Several examples of SHR tethering have been reported previously, including interactions between AP-1
(Fos/Jun) and GR [175], AP-1 and ERa [176-180], NF-kB and GR [181,182], and GR and MR [183].
However, more recent genomic data has begun to challenge aspects of these earlier studies, particularly
regarding whether ER-GR cross-talk in luminal breast cancer is driven by direct GR tethering to ER-bound
chromatin or alternative mechanisms. Specifically, Prekovi¢ et al. [184] demonstrated GR was still capable
of occupying previously identified ER co-bound regions even after degradation of the ER protein.

Several SHR-specific signalling mechanisms have also been reported. For instance, Hudson et al. [185]
used X-ray crystallography to show that GR binds monomerically to negative GREs (nGREs) with the
consensus sequence CTCC(N)y.,GGAGA. These nGREs inhibit GR dimer formation by positioning the
D-box of each GR monomer on opposing DNA faces in antiparallel orientations [185], thereby enabling
direct GR-mediated transrepression and inhibiting target gene expression (Figure 4). Despite this, work
employing a constitutive GR monomer mutant (GRyy,op,) reported severely impaired DNA binding [186],
suggesting that GR function heavily depends on oligomerisation state [187]. Moreover, GR dimers have
been reported to form tetramers upon DNA binding (Figure 4), supporting transcriptional activation and
repression [187-189], and potentially facilitating GR access to distal regulatory elements via DNA looping
[188,190].

SHR coregulator recruitment and transcriptional control

Regardless of the genomic signalling mechanism, agonistic ligands promote the recruitment of
transcriptional coactivators to the AF-2 hydrophobic groove of SHRs via NR box motifs [26,142,143],
although interactions with the AF-1 region have also been documented [191]. Various SHR coactivators
have been reported previously, including members of the steroid receptor coactivator (SRC) family,

e.g. SRC1-3 [192-196], CBP/p300 [197] and MED1 [187,198,199]. Of these, SRC1-3, CBP and p300
induce target gene transcription in similar ways; either by converting facultative heterochromatin into
transcriptionally active euchromatin via intrinsic histone acetyltransferase (HAT) activity [200-202], or
by associating with general transcription factors (e.g. TFIIB) which in turn recruit RNA polymerase

IT to initiate target gene transcription [197,203-206]. Analogously, the MED1 subunit of the Mediator
complex directly recruits RNA polymerase II [187,198,199]. SHRs have also been shown to interact

with ATP-dependent chromatin remodelling complexes, such as SWI/SNF [207-211], which reposition
or eject nucleosomes to form transcriptionally active euchromatin [212]. Moreover, various studies have
reported interactions between SHRs and pioneer factors (e.g. FOXA1 [49,213-215], GATA3 [215,216],
PBXI1 [217], AP-1 [175-180]), which can bind to consensus DNA sequences within regions of facultative
heterochromatin, and recruit chromatin remodelling complexes or HATSs to drive chromatin opening and
target gene expression [218].

In contrast, antagonistic SHs trigger transcriptional corepressors to be recruited to the SHR AF-2
hydrophobic groove via CORNR box motifs [75]. Notably, some unliganded DNA-bound SHRs can also
interact with corepressors, although these represent only a small subset of the total cellular SHR pool
[219]. Several transcriptional corepressors have been described previously, including N-CoR [220] and
SMRT [221]. These proteins typically suppress target gene expression by activating histone deacetylases
(HDAC:), which in turn drive chromatin compaction into transcriptionally silent heterochromatin [222].
Intriguingly, in contrast to prior work by Hudson et al. [185], other genomic studies have reported that
transrepression of GR target genes occurs primarily without proximal GRE binding [223]. Instead, in
these contexts, transcriptional repression by GR appears to involve indirect mechanisms, including the
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Figure 4: Schematic of genomic steroid hormone receptor (SHR) signalling mechanisms.

Inactive SHRs are typically sequestered in the cytoplasm by heat shock proteins (HSPs). SHR activation occurs either via steroid hormone (SH) ligand binding, or through
ligand-independent mechanisms such as growth factor (GF)-mediated phosphorylation. Following activation, SHRs dimerise and are translocated into the nucleus, where they
recruit transcriptional coregulators to activate (+) or repress (-) target gene expression. Notably, some SHRs (e.g. ER, PR-A) localise to the nucleus in their inactive state due

to constitutively active NLS peptides, so do not undergo nuclear translocation (not shown). RTK, receptor tyrosine kinase; Co-Reg, transcriptional coregulator; HRE, hormone
response element; TFRE, transcription factor response element; GR, glucocorticoid receptor; GRE, glucocorticoid response element.

induction of epigenetic modifiers and long-range chromatin interactions, which likely contribute to the
slower kinetics of GR transrepression relative to transactivation [224].

Crucially, SHR genomic signalling is highly context dependent, with chromatin accessibility,
coregulator availability and transcription factor presence all shaping ligand responses. For instance, the
selective estrogen receptor modulator tamoxifen silences ERa target gene expression in ERo+ breast cancer
(BC) cells [225-230] but activates transcription in endometrium tissue via AF-1 [227-232]. Similarly,
GR exhibits opposing roles in BC: acting as a tumour suppressor in luminal ERa+ BC [233-239],
while promoting tumour formation in ERa- BC via epithelial-mesenchymal transition (EMT) induction,
adhesion gene repression and apoptosis inhibition [233,240-243]. GR also blocks prostate cancer (PC)
progression in anti-androgen sensitive cells [244,245], yet drives oncogenesis in castration-resistant PC
cells [246-248]. This paradox highlights a critical gap in our understanding of the mechanisms by which
cellular context shapes SHR signalling outcomes.

Biomolecular condensates of SHRs

Following SH ligand stimulation, SHRs can concentrate into distinct foci within the nuclear compartment
[249]. These SHR foci, later termed biomolecular condensates, were initially characterised in the 1980s by
both transmission electron (TEM) and confocal microscopy [250-252]. More recently, the organisation of
activated SHR nuclear complexes has been attributed to liquid-liquid phase separation, reviewed in detail
in [249,252-255]. Discrete phase-separated SHR foci are predominantly thought to arise from multivalent
interactions between the AF-1 and AF-2 regions, and SHR coregulators (e.g. weak interactions between
AF-2 and the L-X-X-L-L NR box motif) [256-258]. One notable example of a coregulator that participates
in SHR phase separation is MED1, which has been identified in ERa [259,260], GR [256] and AR [257,258]
biomolecular condensates.
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Currently, the role of SHR biomolecular condensates on transcriptional regulation is still the subject
of ongoing research. For instance, Chen et al. [258] reported that expression of an AR-AIDR mutant
(i.e. deletion of AR A/B domain) in LNCaP cells impaired AR condensate formation, inhibited AR
chromatin binding and reduced the expression of KLK2 and NKX3-1 AR target genes. More recently,
in a murine mammary adenocarcinoma cell line, 19% of GR condensates were found to colocalise with
RNA polymerase 2 (Pol IT) Ser5P, and 10% with Pol II Ser2P foci, implying a role in transcriptional
initiation and elongation, respectively [261]. Thus, although recent advances have shed light on the role of
SHR biomolecular condensates in transcriptional control, significant knowledge gaps remain, particularly
regarding the exact mechanisms that drive this process. Clarifying these pathways may therefore provide
novel strategies to target hormone-dependent pathologies [255].

Non-genomic signalling mechanisms of SHRs

Non-genomic SHR signalling was first reported by Szego and Davis in 1967 [262], who observed a rise in
uterine cAMP levels just 15 s after administering 17f-estradiol to ovariectomised mice. Since genomic SHR
responses can take up to 60 min to manifest [263-266], this finding suggested a faster alternative signalling
pathway existed. Subsequent work by Pietras and Szego [267] identified a membrane-localised ER (Figure
5), with similar receptors later documented for GR [24,268-270], MR [271,272], PR [273,274] and AR
[275].

Alongside membrane-bound SHR variants, non-classical SH-activated receptors have been identified
for AR [276], ER [277,278] and PR [279]. These are typically 7-transmembrane GPCRs that activate
intracellular G-proteins and downstream signalling cascades upon SH binding (Figure 5). Moreover,
cytosolic SHRs can also initiate intracellular signalling cascades independently to their genomic actions
(Figure 5) [25].

Various intracellular signaling pathways are associated with rapid SH responses (Figure 5). For instance,
membrane-bound PR (mbPR) [280,281], cytosolic PR [280], mbERa [282-284], GPCER [285-287]
and mbGR [24,288-291] all activate Src, MAPK and PI3K cascades. Furthermore, SHRs can stimulate
adenylate cyclase, leading to cAMP production and PKA activation, as shown for mbER [292], mbPR
[293] and GPCGR [294]. All of these cascades phosphorylate key target proteins (e.g. transcription factors,
enzymes, ion channels), altering their activity to yield rapid cellular responses [25].

/ MAPK cascade
— |RAS-RAF-MEK—»ERK| 3\
= /
S
.@ N Phosphorylation
> I PI3K — PKB — mTOR | Transcription Factors
2 Enzymes
PI3K cascade > lon Channels

~ -.
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Figure 5: Schematic of non-genomic steroid hormone receptor (SHR) signalling mechanisms.

Steroid hormones (SHs) can induce rapid cellular responses via cytoplasmic SHRs, membrane-bound SHRs (mSHR) and G-protein coupled receptors (GPCRs). These receptors
activate adenylate cyclase (AC) and Src kinase, which subsequently induce the MAPK, PI3K and PKA kinase cascades. Downstream phosphorylation of target proteins
(including transcription factors, enzymes and ion channels) modulates their activity and facilitates rapid cellular responses to SH stimulation. HSP, heat shock protein; MAPK,
mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase; PKA, protein kinase A.
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SHRs may also act as RNA-binding proteins, rapidly modulating mRNA stability in response to SH
stimulation. This effect has been reported for ERa [295] and GR [296], although it lies beyond the scope of
this review.

Importance of studying SHR interactions with proteins and
DNA on chromatin

Given the fundamental role that DNA and protein interactions hold in regulating genomic SHR signalling,
advances in the methods used to study these interactions have closely paralleled, and enabled, our
understanding of SHR biology.

Much of our early understanding of SHR-protein and SHR-DNA interactions came from low-
throughput biochemical assays, although classical high-throughput methods including Yeast Two Hybrid
(Y2H) systems also played an important role. More recently, the emergence of high-throughput genomic
and proteomic platforms has transformed the field, enabling more systems-based investigations into SHR
chromatin-bound complexes.

The application of these high-throughput techniques to study changes in SHR-DNA binding and
SHR-protein interactions has enabled insights into a range of topics, including how SHR interactions are
reprogrammed during tumorigenesis [297] and how this links to patient outcomes [298]. Beyond cancer,
these approaches have been instrumental in elucidating SHR signalling pathways [223], and their roles
in neuronal development [299], metabolic disorders and cardiovascular diseases [300]. This review will
discuss how SHR-protein and SHR-DNA interactions can be studied both in vitro and in vivo.

Bait V RNA Pol Il driven
I I transcription
DBD
SDS-PAGE followed by — Tagged bait p— Anti-tag antibody-
membranetransfer protein HRP conjugate
— = — — —l
. and . —— = .
protein renaturation S — = — substrate = —
Blotted Membrane Tagged bait protein binds selectively Tagged bait protein is detected

to interacting partners using an anti-tag antibody-HRP
conjugate

Figure 6: schematic overview of classical techniques for detecting protein-protein interactions.

(R) Yeast two-hybrid (Y2H) assays. The bait protein is fused to the DNA-binding domain (DBD) of a transcription factor (e.g. GAL4-DBD), while the prey protein is fused

to a transcriptional activation domain (AD), such as GAL4-AD or HSV-VP16. When co-expressed in yeast cells, any interaction between the bait and prey proteins brings
the DBD and AD into close proximity, driving the recruitment of RNA polymerase Il to the upstream activator sequence (UAS) of a reporter gene (e.g. LacZ). Subsequent
expression of a reporter protein (e.g. b-galactosidase) can be detected using chromogenic substrates like X-Gal. (B) Far western blotting (FWB). Proteins are separated by
SDS-PAGE, transferred to a membrane, and renatured. The membrane is then incubated with a tagged bait protein, which functionally replaces the primary antibody used
in conventional WB. Binding partners (i.e. prey) of the bait protein are subsequently detected using an anti-tag antibody-HRP conjugate, enabling visualisation of specific
bait-prey interactions.
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Methods for studying interactions between proteins and
SHRs

Historical techniques for studying SHR-protein interactions
Yeast Two Hybrid (Y2H) systems

Yeast Two Hybrid (Y2H) assays detect in vivo protein-protein interactions by reconstituting a functional
transcription factor in yeast cells [301]. Most Y2H systems employ a LacZ reporter gene under the control
of an upstream activator sequence (UAS). Two fusion constructs are required for this: the bait, comprising
gene X fused to the DNA-binding domain (DBD) of the GAL4 transcription factor; and the prey, in
which gene Y is fused to a transactivation domain (AD), such as GAL4-AD or HSV-VP16. Interaction
between the bait and prey brings the DBD and AD into proximity, facilitating RNA polymerase II (Pol II)
recruitment to the LacZ UAS, and driving B-galactosidase expression (Figure 6A) which can be quantified
using chromogenic substrates (e.g. X-Gal).

Y2H assays are popular for their simplicity, low cost and ability to capture interactions within
living cells, providing greater physiological relevance than many in vitro methods. Moreover, large-scale
screening experiments are possible using cDNA-derived prey libraries [301-303]. However, non-specific
binding events can yield false positive results, while protein misfolding or absent post-translational
modifications (e.g. N-glycosylation) can lead to false negatives [301,304]. Furthermore, fusion proteins
such as bait and prey can adopt aberrant structures or subcellular localisations, potentially altering the
interactome observed by Y2H [305,306].

Various studies have utilised Y2H systems to explore SHR-protein interactions. For instance, Hong et al.
[193] employed a GAL4-based Y2H LacZ assay to show that GRIP1 interacts with the LBDs of mGR, hER
and hAR, while related studies identified LBD associations with SRC1-3 [307] and SMRT [308]. Using the
same approach, Wang et al. [309] demonstrated estrogen-induced hER dimerisation, whereas Ballaré et al.
[310] reported a direct interaction between hERa and hPR-B.

Far western blotting

Far western blotting (FWB) has played a largely historical role in investigating SHR-protein interactions
[311]. In this method, proteins are separated by denaturing SDS polyacrylamide gel electrophoresis
(PAGE), transferred to a membrane and renatured via stepwise removal of denaturing agents. The
membrane is then blocked and probed with a tagged protein of interest (POI), with interactions detected
using an antibody against the POI’s tag (Figure 6B).

FWB is especially useful for identifying novel protein-protein interactions, as it bypasses the need
for POI-specific primary antibodies and can be combined with proteomic approaches such as liquid
chromatography tandem mass spectrometry (LC-MS/MS) [312,313]. However, because renaturation is
often incomplete [311], protein interactions that depend on native 3D structures might be missed.
Additionally, non-specific binding events can cause false positive results, while the need to overexpress the
tagged POI adds time and complexity. Regardless, FWB has contributed to the historical characterisation of
SHR interactomes [314-316].

Current biochemical methods for investigating SHR-protein
interactions

Proximity ligation assays

Proximity ligation assays (PLA) enable the in situ detection of protein-protein interactions [317]. After
fixation and permeabilisation, cells are incubated with primary antibodies raised against the target

POIs (hereafter ProteinX and ProteinY), followed by secondary antibodies tagged with complementary
oligonucleotides (termed PLA probes). If ProteinX and ProteinY are in close proximity (<40 nm), the PLA
probes can hybridise, enabling their ligation into a circular DNA strand which is amplified via rolling circle
replication. Fluorescently labelled probes subsequently bind to the amplified DNA molecule, producing a
distinct fluorescent dot that represents a single binding event (Figure 7).
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Figure 7: Schematic representation of the proximity ligation assay (PLA) workflow.

Several notable studies have employed PLA to characterise SHRs. For instance, work from our lab [318]
used PLA to show that hERa and the ZMIZ1 transcriptional coactivator occupy the same transcriptional
complex in ERa+ breast cancer cells. PLA has also been used to examine the subcellular localisation of
ER homo-/hetero-dimers in response to agonistic and antagonistic ligand stimulation [319], alongside
characterising the ERa/PI3K/Src complex [320] and validating QPLEX-RIME findings [321].

While PLA can be applied to proteins in situ, there are limitations. High levels of background signal
present the need for several robust positive and negative controls. Moreover, PLA requires multiple
antibodies to be validated and optimised.

Pulldown assays

Pulldown assays, also known as affinity purifications (AP), are a well-established technique for identifying
protein-protein interactions. While several types of pulldown assay have been described (Table 1), they all
generally follow a common principle. In brief, a tagged protein of interest — termed the bait - is produced
and immobilised on a solid support, typically beads or a column, through its tag. A sample containing
potential interacting partners — termed the prey - is then introduced to the solid phase, either in a purified
form or as part of a crude cell lysate. Following a series of washes to remove non-specifically bound
proteins, bait-prey complexes are eluted from the solid phase for analysis, for example via SDS-PAGE,
western blotting, or proteomics-based approaches.

Pulldown assays are an elegant and cost-effective approach for detecting protein-protein interactions.
The in vitro nature of these assays allows for buffer optimisation (e.g. pH, salt or ligand concentration),
which can maximise bait-prey complex recovery for downstream analysis. However, the overexpression
and purification of tagged bait proteins is not trivial [339]. Moreover, false positives may result from
non-specific protein-protein binding events, while false negatives can arise due to improper bait protein
folding, the absence of specific interacting partners (i.e. multi-protein complexes), or missing post-
translational modifications.

Despite these limitations, pulldown assays are widely used in SHR research. For example, Liao et
al. [308] utilised a GST pulldown domain-mapping assay to show that hAR interacts with the ID-2
domain, but not the ID-1 domain, of the corepressor SMRT. Ballaré et al. [310] employed a similar GST
pulldown experiment to show an interaction between hERa and the hPR-B ERID-1/ERID-2 domains,
which in turn activates Src kinase. In contrast, Ishmael et al. [296] utilised a biotin-streptavidin pulldown
assay to illustrate the RNA-binding properties of hGR. In this study, CCL2 and CCL7 mRNA transcripts
were biotinylated, incubated with whole cell lysates and treated with the glucocorticoid budesonide.
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Table 1: Examples of biochemical pulldown assays.

Pulldown assay

Technical overview

Advantages

Disadvantages

Glutathione S transferase (GST)
Pulldown

[322-324]

Biotin/Streptavidin Pulldown
[325-333]

Hisg, FLAG and HA Pulldowns
[334-338]

The bait construct is generated by fusing the protein.» Elution of bait-prey complexes from solid-

of interest (X) to glutathione S-transferase (GST).
Following overexpression and purification from

phase support s straightforward.

« GST fusion proteins are typically soluble, stable «

Escherichia coli, the bait protein is immobilised on and resistant to aggregation. This means small

a glutathione-coated solid-phase support and
incubated with the prey. When required, bait-
prey complexes are eluted from the solid-phase
support using a buffer containing glutathione
(GSH).

The protein of interest (X) is chemically or
enzymatically tagged with biotin to generate the
bait protein. Notably, biotinylation can be
performed in vivo, or following purification,
depending on the study. Bait proteins are then
immobilised on streptavidin-coated solid-phase
supports, before incubating with the prey. Bait-
prey complexes are then eluted from the solid
support through linker cleavage, protease
digestion, or streptavidin denaturation.

A small genetically encoded peptide tag (e.q. Hisg,

FLAG, HA) is fused to the protein of interest (X) to

yield the bait protein. After overexpression and
purification, the bait is immobilised to a solid-
phase support coated in Ni**-NTA (Hisg), anti-
FLAG antibodies (FLAG), or anti-HA antibodies
(HA). Following prey incubation, bait-prey
complexes can be eluted from the solid-phase
support using buffers containing imidazole
(Hisg), FLAG peptides, or HA peptides. Low pH
buffers can also be used (FLAG and HA).

fragments of protein X can be expressed with
ease, enabling domain-mapping experiments.

« Biotin tags are small (~244 Da), so do not

affect the structure/function of protein X.

« Since biotinylation can occur in vivo or after

isolation, protein X can be expressed in various
systems, including mammalian cells.

The biotin-streptavidin binding affinity is
incredibly high (Kd ~ 10" M), meaning very
little bait protein is displaced during the wash
steps. As such, this technique is commonly used
to study transient or low-affinity bait-prey
interactions.

« Peptide tags are small (< 1.1kDay), so are not

likely to alter the structure or function of protein
X

« Peptide tags are compatible with various
expression systems, including mammalian cells.

« The GST tag is large (~26 kDa), which may
alter the structure or function of protein X.

GST fusion proteins are usually isolated from
Escherichia coli cells, which do not fully replicate
eukaryotic protein folding or post-translational
modifications. As such, some bait-prey
interactions might be missed.

+ The elution of biotinylated bait-prey
complexes from streptavidin is difficult without
enzymatically cleavable linkers.

+ Protease digestion can yield unwanted
streptavidin peptides.

+ Denaturing conditions destroy higher order
protein structures, including those in the bait-
prey complex.

- The affinity of Hisg for Ni*-NTA coated solid-
phase supports is relatively low (Kd ~ 10° M),
which might cause bait-prey leaching during
washing.

The affinity of anti-FLAG and anti-HA
antibodies for their respective tags can vary
between products and batches.

Biotin-streptavidin AP and agarose gel electrophoresis revealed a significant reduction in transcript
abundance after budesonide treatment, consistent with hGR-mediated mRNA decay.

Immunoprecipitation (IP) and co-immunoprecipitation (ColP)

Immunoprecipitation (IP) and co-immunoprecipitation (CoIP) are the gold standard for SHR-protein
interaction studies. While these techniques are methodologically similar, they have distinct purposes: IP
isolates a single target protein for analysis, whereas CoIP aims to purify the interacting partners (i.e. the
prey) of a specific target protein (i.e. the bait). In both IP and ColIP, cell lysates are initially prepared
under non-denaturing conditions to preserve native protein structures and protein-protein interactions.
An optional pre-clearing step can then be performed to remove proteins that bind non-specifically to
the solid-phase support. Antibodies raised against the bait protein are subsequently added to the cell

lysate, enabling the formation of immune complexes (e.g. IgG-bait or IgG-bait-prey). These complexes are
immobilised on solid-phase supports coated with bacterial protein A [340] or protein G [341], isolated
from whole cell lysates through centrifugation or magnetic separation, and eluted for downstream analysis
(Figure 8). For lower-affinity protein-protein or protein-DNA interactions, chemical cross-linking reagents
(e.g. formaldehyde, DSP) can be applied before lysis to stabilise weak or transient biomolecular complexes.
The main advantage of IP and ColIP over other classical techniques is their ability to isolate endogenous
protein complexes without the use of tags or fusion proteins. However, both IP and ColP rely on high-
affinity anti-bait antibodies which are not always available. Moreover, without additional experiments,
IP-based studies cannot easily distinguish direct from indirect protein-protein interactions.
IP and ColP are nearly ubiquitous across SHR-protein interaction studies. For instance, Veldscholte
et al. [342] used ColIP coupled with western blotting to demonstrate rapid HSP dissociation from hAR
in prostate cancer cells following androgen treatment. Similar studies have provided evidence for the
interaction of hERa and hGR in breast cancer cells dependent on glucocorticoid and estrogen stimulation
[343], alongside associations between hGR and hPR [344], and hERa and hMR [345]. As such, IP/
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Figure 8: Schematic representation of the workflow forinmunoprecipitation (IP) and co-immunoprecipitation (ColP) assays.

ColP-based assays are often used to validate key findings from high-throughput proteomics approaches

[215,321].

Current biophysical approaches for investigating SHR-protein

interactions

Biophysical techniques provide a powerful method for quantifying protein-protein interaction parameters,
offering detailed insights into the binding affinity (Kj), interaction distance and stoichiometry of binding
events. These approaches enable real-time monitoring of molecular interactions, both in vitro and

in vivo. Among the wide range of biophysical tools available for studying SHR-protein interactions,

the most commonly used are Forster resonance energy transfer (FRET), surface plasmon resonance

(SPR), isothermal titration calorimetry (ITC) and various fluorescence spectroscopy methodologies, as

summarised in Table 2.

Various groups have used in vitro biophysical tools to explore SHR-protein interactions. For example,
Neo et al. [356] utilised SPR to demonstrate an interaction between hERa and the transcription factor Sp1.
In this study, biotinylated DNA fragments containing either intact or scrambled EREs and Sp1-binding
sites were immobilised on gold-plated sensor chips. Subsequent SPR analysis revealed that hERa could
localise to DNA harbouring a scrambled ERE through an interaction with Sp1. In a separate study, Copik et
al. [357] used ITC to characterise the interaction between hGR and the TBP coactivator, showing that hGR
binds TBP with a high nanomolar affinity, and in a 2:1 stoichiometric ratio (consistent with dimeric hGR
engaging monomeric TBP). Parent, Gunther and Katzenellenbogen utilised FRET to monitor interactions
between the LBDs of hERa [358] or hAR [359] and members of the SRC transcriptional coactivator family,
facilitating the design of small molecule inhibitors.

Fluorescence spectroscopy approaches have also generated insights into SHR behaviours within
living cells. For instance, Mikuni et al. [360] and Stasevich et al. [361] utilised fluorescence correlation
spectroscopy (FCS) to monitor intranuclear GR dynamics, revealing fast-diffusing receptor populations,
and slower-diffusing species indicative of chromatin binding. Building on this, Stortz et al. [362] used
FCS to demonstrate GR exhibits both fast (chromatin lag time < 60 ms) and slow (chromatin lag time
> 200 ms) nuclear diffusion, with agonistic SHs driving longer chromatin residence times. These results
imply GR (and SHRs more broadly) may undergo rapid DNA binding, sliding, or searching prior to stable
chromatin engagement. Complementing these FCS findings, single-particle tracking (analogous to SMT) of
GR condensates by the same group [256] showed that while most GR foci were chromatin-confined, two
additional subsets were detected: one heavily constrained in close proximity to the nucleoli, and another
located more distally that explored far larger nuclear regions. Additionally, Savatier et al. [363] used FCCS

© 2026 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

920z Auenigad 0 uo 3senb Aq Jpd 91 ze-G20z-a/L L Z186/912€5202M08/2/E8Y/iPd-aloe/fayoolg/wod ssaldpuejody/:dpy woy papeojumoq


https://creativecommons.org/licenses/by/4.0/

Biochemical Journal (2026) 483 1-42
https://doi.org/10.1042/BCJ20253216

Table 2: Examples of biophysical methods for studying biomolecular interactions.

Biophysical tool

Technical overview Advantages Disadvantages

Forster resonance energy transfer
(FRET)
[346,347]

Surface Plasmon resonance (SPR)
[346,348]

Isothermal titration calorimetry (ITC)
[349-351]

Fluorescence correlation spectroscopy (FCS)
[352,353]

Fluorescence Cross-Correlation spectroscopy
(FCCS)

[352,353]

The first protein of interest (i.e. the bait) is tagged- Especially useful for studying changes in Requires the bait and prey proteins to be labelled
with a donor fluorophore, while the second  protein dynamics in vitro and in vivo.  with fluorophores, which can be technically
protein of interest (i.e. the prey) is tagged with « The distance between donor and challenging and may alter their structure and/or
an acceptor fluorophore. If these fluorophores  acceptor fluorophores (i.e. the interaction function.
are in close proximity (typically < 10 nm), and distance) can be quantified using FRET  « Fluorophores must be carefully selected to
their excitation and emission spectra overlap,  efficiency, which follows an inversely  ensure spectral overlap and prevent fluorescence

the donor can transfer some excitation energy - proportional relationship. bleed-through.

to the acceptor via non-radiative dipole-dipole « Only works with short-range interactions ( < 10
coupling. This results in the excitation of the nm).

acceptor fluorophore and the emission of « Photobleaching can lead to a reduction in FRET
detectable fluorescence. efficiency over time.

The bait protein is immobilised on a gold-plated « Highly sensitive technique capable of ~ « Equipment and consumables required are
sensor chip, with a laser being directed at the  detecting binding events using minimal ~ expensive.
rear surface under conditions of total internal - amounts of prey protein. « Immobilisation of the native, interaction-
reflection. Surface plasmons (electrons) in the « Enables real-time, label-free monitoring competent bait protein on the sensor-chip can be
chip absorb energy from the incident laser o the kinetics of molecular interactions.  challenging.
light, producing a characteristic dip in reflected + Regenerating the sensor-chip for future use is
light intensity (the absorbance band). When not trivial.
potential interacting partners (prey) are
flowed over the chip, any hinding events alter
the refractive index, in turn deflecting the
angle of the absorbance band. These angle
changes can then be measured to quantify
molecular interactions.

ITC provides direct thermodynamicinsightsinto - Capable of highly accurate + Protein-protein interactions must bring about
protein-protein interactions by quantifying the thermodynamic measurements, measurable temperature changes, rendering ITC
heat exchanged during binding events. The  including binding affinity. unsuitable for very strong or very weak binding
instrument consists of two chambers: a « Enables real-time, label-free monitoring events.
reference cell filled with buffer, and a sample  of binding event kinetics. « [TC requires large quantities of highly purified
cell containing the bait protein in the same  The bait and prey proteins are in bait and prey proteins.
buffer. The prey protein is subsequently solution rather than being immobilised,
injected into the sample cell in small 5o they are more likely to be in their

increments, while the temperature changes  native state.
associated with bait-prey interactions are

monitored. From these measurements, key

thermodynamic parameters can be derived,

such as the enthalpy change (AH), dissociation

constant (K3) and binding stoichiometry.

FCSis a powerful microscopy tool used to study « Provides a quantitative way to measure « Requires labelling with bright, photostable
protein dynamics. In brief, a tightly focused  molecular diffusion rates, concentration  fluorophores to prevent photobleaching and
laser beam, usually generated by confocal or  and binding kinetics. minimise background noise.
two-photon microscopy, is directed towards a « High temporal resolution, allowing ~ + Can miss key heterogeneous molecular dynamics
small diffraction-limited spot within cells  rapid molecular dynamics to be captured  outside of the diffraction-limited foci.
(~200-300 nm in diameter). As fluorescently (pisec — msec timescale).
labelled molecules (e.g. tagged SHRs) move  « Effective at low fluorophore
into and out of this foci, the fluorescence concentrations, minimising perturbation
intensity fluctuates up and down. Temporal o the system under study.
fluctuations in fluorescence can then be
analysed to unveil key molecular behaviours;
for instance, the diffusion speed, or if the
molecule of interest interacts with other
partners (as indicated by prolonged dwell
times within the foci).

FCCSiis an extension of FCS that utilises two or = Directly measures interactions between « Requires careful optimisation of fluorophores to
more spectrally distinct fluorophores to two or more differently labelled prevent spectral overlap.
determine whether different molecules molecular species. « More complex microscopy setup and more
interact. As in FCS, temporal fluctuationsin -~ « Can quantify the interaction strength ~ challenging data analysis than FCS.
intensity are measured for each fluorescently  (Kd) between fluorescently labelled ~ « Retains all the disadvantages of FCS.
tagged species. The fluctuation traces from  molecules in vivo.
each fluorophore are then compared to reveal « Can detect co-diffusion and co-binding
co-ordinated molecular behaviour (e.g. events with a very high sensitivity.
simultaneous diffusion, prolonged co-dwell  « Retains all the advantages of FCS.
times) indicative of molecular interactions.

(ontinued
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Table2: Continued.

Biophysical tool Technical overview Advantages Disadvantages
Number and brightness (N&B) N&B s an extension of FCS in which a region of ~ « High spatial resolution, allowing - Molecule(s) of interest must be labelled with
[352,354] interest (ROI is repeatedly raster scanned with molecular oligomerisation states to be  bright, photostable fluorophores to reduce

' a confocal microscope. Frame-to-frame determined and localised within living  photobleaching and photoblinking.

fluctuations in the fluorescence intensity arise ~ cells. « Requires a high-quality, low-noise confocal

due to changes in the number of fluorescent ~ « Relatively straightforward data analysis. microscope to minimise background fluorescence.
molecules within the ROI (i.e. due to « Effective at low fluorophore

diffusion), and from differences in their concentrations, minimising perturbation

oligomeric state. As multimers exhibit more  to the system under study

fluorescence and larger intensity fluctuations

than monomers, the molecule’s oligomeric

state can be determined by analysing the

variance and mean fluorescence intensity over

time.
Single molecule tracking (SMT) SMT s an advanced super-resolution microscopy « Direct, real-time visualisation of « Requires molecule(s) of interest to be labelled
[(355] tool that enables individual fluorescently individual fluorescently labelled with bright, photostable fluorophores to reduce

labelled molecules to be imaged and tracked  molecules. photobleaching and photo-blinking.

over time. When analysed, these data provide « Detects heterogeneity in molecular = Molecular tracking accuracy is limited by signal-
insights into molecular movement (e.g. free  dynamics (e.g. confined vs. directed to-noise ratio, and motion blur.

diffusion, confined, directed motion), motion, fast vs. slow diffusion). « (hallenging data analysis that often needs
alongside the duration of binding events. As - Generates spatially resolved trajectory ~ specialised tracking algorithms.

such, SMT facilitates the measurement of track data, revealing where key molecular

heterogeneous diffusion behaviour and behaviours occur at a subcellular level.

binding dynamics at the single-molecule

level.

to estimate the in vivo K of ER and the TIF2 transcriptional coactivator under different ligand conditions
(agonist < 6 nM; antagonist > 3 uM; unliganded ~ 200 nM).

Current proteomics approaches for investigating SHR-protein
interactions

Proximity labelling mass spectrometry

Proximity labelling mass spectrometry (PL-MS) is a powerful method for identifying novel protein-protein
interactions. In brief, PL-MS uses a bait-enzyme fusion protein to covalently label interacting partners (i.e.
prey) with distinct molecular tags, enabling their enrichment via affinity purification and identification

by mass spectrometry. Typically, liquid-chromatography tandem mass spectrometry (LC-MS/MS) is
employed. Affinity-purified prey proteins are enzymatically digested (e.g. with trypsin), generating peptides
that are separated by LC and analysed using electrospray-ionisation (ESI) tandem MS. The resulting
peptide mass spectra are then matched to proteomics databases to identify the original prey proteins. For
reviews of MS-based proteomics tools, see Han et al. [364], Yates et al. [365] and Dau et al. [366].

Of the various PL-MS techniques available, BioID and APEX have emerged as the most widely adopted
(Table 3). While their application to SHRs remains limited, Lempidinen et al. [373] used BioID to identify
both known (e.g. MED1, SRC1-3) and novel (e.g. BCOR, TLE3) interacting partners of hGR and hAR.
Similarly, Agbo et al. [374] used BioID to characterise the interactome of hERa. To our knowledge, APEX
has not yet featured in SHR research, though it has been applied successfully to study other proteins, such
as the angiotensin II type 1 G-protein coupled receptor (AT1R) [375].

Rapid immunoprecipitation mass spectrometry of endogenous proteins

Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) integrates cross-linking
immunoprecipitation (XL-IP) with mass spectrometry to identify novel interacting partners of specific
bait proteins [215,321,376,377]. In this method, live cells are treated with chemical cross-linkers (e.g.
DSP, formaldehyde) to preserve native protein-protein and protein-DNA complexes, before lysing under
non-denaturing conditions. The stabilised bait-prey assemblies are then isolated via IP and enzymatically
digested, typically on-bead using trypsin, to generate unique peptides from each protein. Alternative
proteases, including chymotrypsin, elastase, proteinase K, AspN and GluC, can also be used to expand
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Table 3: Overview of proximity labelling mass spectrometry (PL-MS) techniques for studying protein-protein interactions.

PL-MS method Technical overview Advantages Disadvantages

Proximity-Dependent Biotin [dentification The bait protein is fused to a mutant £ coli-~+ Can be performed in vitro and in vivo. « The bait-BirA* fusion protein and the native

(BiolD) derived promiscuous biotin ligase (BirA™™; .+ Affinity purification of biotinylated  bait protein may exhibit different expression
BirA*), which facilitates the biotinylation of - prey proteins is relatively levels or subcellular localisations, potentially

(367-370) prey proteins within a 10 nm radius of e straightforward. affecting the interactome.

bait-BirA* fusion protein. Biotinylated prey is - Captures all bait-prey binding events - The BirA* biotin ligase is slow, requiring long
subsequently isolated via biotin-streptavidin  within a 10 nm radius of the bait-BirA* incubations (1824 hours) with biotin to
affinity purification, before subjecting to fusion protein, including those that are  sufficiently label prey proteins. This limitation
tryptic-digest LC-MS/MS (or similar weak or transient. has been addressed with new optimised BirA
proteomic MS tools) for identification. mutants that can tag prey proteins with biotin
in under 10 minutes — for example, TurbolD
and MiniTurbo [369].
« All BirA enzymes selectively attach biotin to
primary amines, meaning only prey proteins
with accessible lysine e-amino groups or N-
termini will be tagged.

Proximity-Dependent Ascorbate Peroxidase (APEX) ~ The bait protein is fused to an engineered - Affinity purification of biotinylated ~ + The bait-APEX fusion protein and the native
[371,372] ascorbate peroxidase enzyme (APEX), which  prey proteins is relatively bait protein may exhibit different expression
' uses Hy07 and biotin-phenols to generate  straightforward. levels or subcellular localisations, potentially

highly reactive biotin-phenoxy! radicals. These. Captures all bait-prey binding events  affecting the interactome.

radicals biotinylate electron-rich amino acid  within a 20 nm radius of the bait-APEX - All APEX enzymes selectively attach biotin to
residues (e.. Tyr, Trp, His, Cys) within a 20 nm- fusion protein, including those that are — electron-rich amino acid residues, limiting the
radius of the bait-APEX fusion protein. weak or transient. number of prey proteins that can be labelled.
Biotinylated prey proteins are subsequently . APEX enzymes sufficiently label prey - All APEX enzymes require cytotoxic H,0; as a
isolated via biotin-streptavidin pulldown and - proteins with biotin in under 1 minute, - cofactor, making in vivo studies challenging.
identified by tryptic-digest LC-MS/MS (or  rendering APEX suitable for temporal

another comparable proteomic MS approach). proteomics experiments.

Notably, a catalytically enhanced APEX mutant
(APEX*™*- APEX2) is now commonly used.

peptide coverage [366]. These peptides are subsequently analysed through LC-MS/MS, or another
comparable proteomic MS approach [364-366], with the resulting spectra searched against proteomic
peptide databases to identify interacting partners of the bait protein (Figure 9). This core RIME workflow
can also be coupled with various peptide labelling methods to enable the simultaneous analysis of multiple
different samples, as outlined in Table 4.

RIME-based methodologies have been widely used to map SHR interactomes. For instance, seminal
work by Mohammed et al. [215] employed SILAC-RIME in MCEF-7 cells to identify hERa-binding partners
following treatment with either 17B-estradiol or tamoxifen, confirming several known hERa interacting
partners (e.g. SRC3, FOXA1 and GREBL1). Later work by the same group applied gPLEX-RIME to expand
the MCF-7 hERa interactome [321], with various novel binding partners being detected following 17f-
estradiol stimulation (e.g. CBX3, NIPBL, FOXK1). This work also revealed tamoxifen treatment reduced
hERa binding to some proteins (e.g. SRC3, GREB1), while enhancing interactions with others (e.g. SMRT,
HDAC?2, several SWI/SNF subunits). SILAC-RIME has also been used to map the interactomes of hPR-A
and hPR-B in T47D-C42 cells with or without progestin, identifying several previously reported cofactors
common to both hPR isoforms (e.g. FKBP5, PARP1), alongside novel isoform- and ligand-state-specific
interacting partners [379]. More recently, a label-free DIA-NN enabled RIME (DIANNeR) analysis of hGR
across a diverse range of cell types has been reported, including normal untransformed cells and patient-
derived xenografts (PDXs), providing a more detailed understanding of the complex hGR interactome
[378].

Future methods for studying protein-protein interactions
UV-driven cross-linking coupled with RIME (UVXL-RIME)

A key limitation of current RIME-based tools is their tendency to isolate large multi-protein complexes,
making it difficult to distinguish direct interactions from indirect interactions, and limiting structural
insights into bait-prey binding events. These challenges could feasibly be addressed by tagging the bait
protein with short-range UV-inducible photocross-linking probes that would functionally replace the
chemical cross-linking step in the RIME workflow. Although several approaches can be used to achieve
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Figure 9: Schematic of the rapid immunoprecipitation mass-spectrometry of endogenous proteins (RIME) workflow.

Notably, the lysis step can be modified to extract cellular nuclei, allowing interactions between SHRs and nuclear proteins to be investigated at the chromatin. In such cases,
sonication is performed to shear the chromatin prior to immunoprecipitating the protein of interest. LFC plot was adapted from [318]. LFC, log-fold change.

this, two promising strategies are metabolic glycan labelling (for N/O-glycosylated proteins) [380-386] and
amber stop codon suppression [387-395] (Figure 10).

Metabolic glycan labelling involves supplementing cells with monosaccharide analogues that contain
unnatural chemical groups (e.g. azides, alkynes). These non-native sugars are taken up by the cells,
processed into nucleotide-sugar donors by monosaccharide salvage pathways [384] and inserted into
endogenous glycan chains in place of the native form of the sugar by the cellular glycosylation machinery
[380-386]. In contrast, amber stop codon suppression employs a genetically engineered tRNA/aminoacyl
tRNA synthetase (RS) pair to override an internal amber stop codon (UAG) in the bait mRNA transcript,
facilitating the site-specific incorporation of unnatural amino acids into the bait protein [387-395]. If these
unnatural amino acids or sugars carry UV-inducible photocross-linking groups (e.g. diazirines [396]), they
could covalently capture bait-interacting partners within a small radius ( < 2 nm) of their insertion site.
Theoretically, such an approach would remove large multi-protein complexes from the RIME workflow
while providing structural data about bait-prey binding events.

Notably, both amber stop codon suppression [395] and metabolic glycan labelling [384] have recently
been implemented within mammalian cells, demonstrating their compatibility with complex eukaryotic
systems. As such, coupling these methods with existing RIME workflows represents a feasible and
promising next step.

Subcellular protein-localisation coupled with RIME (LOPIT-RIME)

Current RIME methods aim to enrich for bait-prey interactions that occur at the chromatin. Since
many SHRs have both non-genomic and RNA-binding roles, technologies capable of systematically
mapping SHR interactomes across multiple subcellular compartments would be of great interest. One
possibility is the integration of RIME with the LOPIT protocol outlined by Dunkley et al. [397,398].
In LOPIT, cell lysates are fractionated via detergent-based chromatin enrichment and density gradient
ultracentrifugation. Proteins from each fraction are then enzymatically digested to generate peptides,
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Table 4: Overview of rapid immunoprecipitation mass spectrometry (RIME) techniques for studying protein-protein interactions.

RIME method Technical overview Advantages

Disadvantages

Rapid Immunoprecipitation Mass
Spectrometry of Endogenous Proteins
(RIME) [215]

preserve protein—protein and protein—DNA
interactions, followed by chromatin shearing.  context.

An antibody targeting the endogenous bait  « Avoids artefacts associated with protein
protein is used to immunoprecipitate associated overexpression or tagging.

protein complexes directly from nuclearor «+ Established ChIP-seq reagents translate to
chromatin-enriched lysates. After extensive  RIME.

washing, bound proteins are digested on-bead

and identified by LC—MS. RIME enables the

unbiased identification of proteins associated

with a native bait under near-physiological

conditions, without the need for tagging or

overexpression.

Stable Jsotopic Labelling by Amino Acids ~ Cells are cultured in media lacking specificamino « Enables identification novel interacting

in Culture acid residues (e.g. arg, Lys) and are
(SILAC-RIME) supplemented with isotopically distinct fight or - control.
heavy variants (i.e. *C/"*C, "N/®N) that differin. Can provide quantitative data about how
(215,377] mass. Separate cell populations — such s those protein-protein interactions change under

exposed to different drug treatments — different conditions.
incorporate these labelled amino acids during

protein synthesis, resulting in condition-specific

isotopic labelling of proteins. These isobaric

labels allow peptide abundances to be

quantitatively compared between conditions via

RIME, enabling changes in prey protein levels

across samples to be measured.

Quantitative Multiplexed (qPLEX-RIME) Separate cell populations (e.g. those treated with « Expanded capabilities of quantitative RIME
B21] different drugs) are processed using the beyond three concurrent samples.
standard RIME protocol. Following on-bead - Multiplexing reduces sample acquisition
enzymatic digestion, peptides from each time.
sample are labelled with isobaric tandem mass - The capacity for simultaneous condition
tags (TMITs), typically at the N-terminus or -~ analysis is restricted only by the number of
lysine e-amino groups. These TMTs are identical - isobaric TMTs available, with up to 34-plex
in mass so signal is additive at the MST level.  currently supported.
However, upon fragmentation, TMTs release
unique reporter ions that enable the
differentiation of peptides originating from
distinct samples during MS2 or MS3. As such,
QPLEX-RIME allows several conditions to be
examined within a single MS run, with the
relative intensities of the TMT reporter ions
facilitating quantitative comparisons of peptide
—and corresponding prey protein — abundance
between samples.

Label-free DIA-NN enabled RIME
(DIANNeR) [378].

Separate biological conditions are processed + Does not require isotopic or chemical
independently using a modified RIME workflow, labelling, reducing cost and experimental
without isotopic or chemical labelling. complexity.

Following on-bead digestion, peptides are

Cells are typically crosslinked with formaldehyde to. Enables identification of interacting partners - Largely qualitative interaction data.
of endogenous proteins in their native cellular « IgG-based background subtraction can be over-

stringent without quantification, excluding true
interactors detected in IgG controls.

« SILAC-RIME is restricted to a maximum of 3

partners of endogenous bait proteins over IgG conditions, as only three types of isotopic media

— light, medium and heavy — are available for
cell culture.
« Isotopically defined heavy media is more
expensive than standard culture media.

« TMT labelling costs increase with higher
multiplexing of samples.

« Pooled reference channels are required for
quantitative comparision across multiple TMT-
plexes.

« MS2-based TMT quantification is prone to ratio
compression, partially mitigated by MS3
approaches.

« Quantification is sensitive to batch effects and
requires careful experimental design.
« Pooled reference samples are required to control

+ Scalable to large numbers of conditions and  for run-to-run variation when analyses are not

analysed by data-independent acquisition (DIA) biological replicates, with no technical limit on performed concurrently.

on a Bruker timsTOF HT mass spectrometer.
Peptide identification and quantification are
performed using DIA-NN, which enables a
spectral library-free approaches to achieve high
sensitivity and reproducibility. Relative protein
abundances are inferred from peptide intensities
across samples, enabling quantitative
comparison of RIME interactomes in a label-free
manner.

sample number.
- Compatible with limited quantity samples
where metabolic labelling is not feasible.

which are labelled with TMTs (as in qPLEX-RIME; see Table 4) and analysed using LC-MS/MS/MS,
enabling the accurate identification of proteins within sub-organellar structures. In principle, combining
RIME and LOPIT to create a spatial RIME approach builds on the strengths of both methodologies, since
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Figure 10: Schematic representation of amber stop codon suppression (steps 1-4) and metabolic glycan labelling (steps 5-7).

For site-specific insertion of unnatural amino acids to be possible, the amber stop codon suppression machinery must be engineered to recognise the amino acid of interest.
Furthermore, non-native sugar analogues are initially per-0-acetylated to enhance their lipid solubility, but are rapidly deacetylated in the cytoplasm. RS, aminoacyl tRNA

synthetase.

the existing qPLEX-RIME workflow could easily be modified with LOPIT prior to peptide generation. Such
a technique would facilitate research into how SHR interactomes differ between subcellular compartments

(e.g. nucleus vs. cytosol).

Methods for studying interactions between DNA and SHRs

Electrophoretic mobility shift assays

Electrophoretic mobility shift assays (EMSAs), or gel shift assays, are a classical in vitro technique used

to characterise SHR-DNA interactions [399]. This method requires only small quantities of the protein of
interest (POI) and DNA [400], although prior knowledge of the POI's DNA binding sequence is needed.
In brief, the POI and DNA are mixed, loaded into agarose or polyacrylamide gels [401] and separated by
electrophoresis. Due to their larger size, POI-DNA complexes migrate more slowly through the gel than
free linear DNA [402], allowing certain binding properties (e.g. dissociation constant; Kj7) to be estimated.
Crucially, because POI-DNA interactions are conformation dependent, both must remain in their native

state [401,403].

EMSAs have played a pivotal role in defining SHR binding to HREs. For instance, Kuntz and Shapiro
[404] used the technique to assess how dimerisation influences hERa DBD affinity for consensus and
non-consensus ERE half sites. Interestingly, dimeric DBD fragments had a higher affinity for both
consensus and non-consensus EREs, although weak monomeric binding (Kd ~ 160 nM) was observed
due to the ‘caging effect], in which the gel maintains a high local concentration of POI and DNA that

stabilises low-affinity interactions [405-407].

Bourdeau et al. [408] examined how ERE nucleotide substitutions altered hERa and mERa binding.
While both receptors still bound consensus EREs harbouring single nucleotide polymorphisms, further
substitutions markedly reduced binding. However, because this study used whole-cell extracts rather than
purified ER, a ‘super-shift’ assay, where POI-specific antibodies are used to further slow complex migration,

is needed to confirm DNA binding specificity [409].
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EMSAs were also employed by Nguyen et al. [410] to ascertain how the hAR P-box G577R mutation,
linked to partial androgen insensitivity, alters GRE binding. Intriguingly, the mutant receptor displayed
reduced or no affinity for several consensus and non-consensus GREs.

Chromatin immunoprecipitation (ChIP)

Chromatin immunoprecipitation (ChIP) is a fundamental technique for detecting protein-DNA
interactions in vivo [411], typically requiring millions to tens-of-millions of input cells [412]. In brief,
ChIP enriches genomic fragments that have specific transcription factors or histones bound to them. This
method is similar to IP and RIME, except cross-linked chromatin is fragmented into short fragments
prior to bait protein purification [413-416]. The chemical cross-linking is then reversed through heating,
releasing the DNA for purification. Once isolated, the DNA is analysed by sequencing (ChIP-seq) or
quantitative polymerase chain reaction (ChIP-qPCR) (Figure 11) [49,417]. As such, ChIP produces a
temporal ‘snapshot’ of where specific proteins are bound to the chromatin. Although not discussed here,
ChIP can also be integrated with other methods, such as chromatin conformation capture (e.g. 3C),
reviewed by Fullwood et al. [418] and Han et al. [419], to investigate SHR-induced conformational changes
in the 3D structure of genomic DNA [420-423].

ChIP-seq is especially useful for identifying the genomic origin of isolated DNA fragments, although
it is also the costliest ChIP assay [424]. In ChIP-seq, purified DNA fragments are sequenced using
next-generation sequencing (NGS) technology, as reviewed by Satam et al. [425]. The sequenced fragments
are then mapped to a reference genome, enabling the genomic origin of the fragments to be identified
[426]. Bioinformatic analysis is then used to identify ‘peaks’ — regions of the genome where mapped
sequences are overrepresented in the ChIP sample relative to background controls — thus indicating
where the transcription factor of interest is bound (termed ‘peak calling’) [427,428]. However, ChIP-seq
normalisation remains challenging, as differences in sequencing depth, IP efficiency, and global changes in
transcription factor occupancy between conditions can confound quantitative comparisons. [429,430]

ChIP-seq has been widely used to investigate SHR-genome interactions in disease states such as cancer.
For instance, Wilson et al. [431] utilised ChIP-seq to identify the androgen response element (ARE)
in prostate cancer cell lines. Additionally, Welboren et al. [432] used ChIP-seq to map the genomic
binding of ERa and RNA Polymerase II (Pol IT) in MCF-7 cells treated with 17p-estradiol (E2), or the
antagonistic ligands tamoxifen and fulvestrant (a selective ER degrader) [433,434]. For E2-activated genes,
both antagonists reduced ERa and Pol II binding. In contrast, for E2-repressed genes, tamoxifen induced
their down-regulation, while fulvestrant increased Pol II binding, highlighting the power of ChIP-seq to
detect cistrome changes under different conditions.

Beyond cell lines, ChIP-seq has also been successfully applied to patient-derived material. For example,
Ross-Innes et al. [298] deployed ChIP-seq on primary breast tumours to identify changes in hERa-
chromatin binding that were associated with different patient outcomes. Similarly, Severson et al. [435]
mapped ERa-, AR-, PR- and GR-chromatin binding in breast tumour samples from male and female
patients to elucidate sex-mediated cross-talk between SHRs, revealing these SHRs to be strongly colocalised
at genomic loci in both genders.

ChIP-qPCR continues to play a role in low-throughput genomic studies and for validating ChIP-seq
data [436-438]. For example, Bourdeau et al. [408] used ChIP-PCR to verify novel ERE sites within the
genome. In place of the NGS approaches used in ChIP-seq, ChIP-qPCR quantifies qPCR fluorescence to
measure transcription factor binding at a single locus [428]. Although ChIP-qPCR has a lower cost to entry
than ChIP-seq, it requires prior knowledge of the transcription factor’s DNA binding sequence to design
sequence-specific primers.

Importantly, the quality of ChIP data heavily depends on the quality of the antibody [439]. ChIP-
validated polyclonal and monoclonal antibodies do exist for ER, AR, MR and GR [440-443], although not
all antibodies are validated for the cell types used. Additionally, batch-to-batch variations in polyclonal
antibodies can affect specificity, while monoclonal antibodies carry a higher risk of epitope masking. As
a result, some studies use monoclonal antibody pools, although this increases cost. Poor antibody quality
can also result in off-target capture, which can mask on-target capture. Therefore, validating SHR-specific
antibodies in relevant cell lines is a critical step in ChIP research [444].
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Figure 11: Schematic overview of chromatin immunoprecipitation (ChIP).

Cells are chemically cross-linked to preserve native protein-DNA complexes prior to isolating the chromatin, and shearing via sonication. Target protein-DNA complexes are
then immunoprecipitated using antibody-conjugated Protein A/G magnetic beads. The chemical cross-links are subsequently reversed through heating, and the purified DNA is
analysed via qPCR or high-throughput sequencing approaches.

CUT&RUN and CUT&TAG

As described above, ChIP experiments are ‘high input, and thus cannot detect SHR binding in smaller cell
populations. While low-input ChIP-seq methods do exist (Table 5), to our knowledge their use in SHR
research is limited. Two commonly used low-input alternatives are Cleavage Under Targets and Release
Using Nuclease (CUT&RUN) [448] and Cleavage Under Targets and Tagmentation (CUT&TAG) [449],
which require hundreds of cells, or potentially single cells, respectively [450].

In CUT&RUN (Figure 12A), permeabilised cells are incubated with primary antibodies against the
protein of interest (POI), followed by secondary antibodies fused to micrococcal nuclease enzymes
(MNase) [448]. Upon POI-DNA binding, MNase cleaves the chromatin flanking the POI-binding site,
releasing DNA fragments for identification through NGS. Gegenhuber et al. [451] used this method to
identify estrogen-responsive genes in the brains of mice, revealing several ERa binding sites that promote
sex differences.

CUT&TAG is similar to CUT&RUN, except the secondary antibody tethers a transposase (Tn5) to
POI-DNA binding sites (Figure 12B) [452-454]. Tn5 integrates adaptor sequences into the genome that
flank the POI-DNA binding site, enabling amplification by qPCR or detection via NGS technologies.
CUT&TAG has been used by Guo et al. [455] to verify co-recruitment of SET with hERa to EREs.

Advantageously, CUT&RUN and CUT&TAG do not use formaldehyde cross-linking, which is
commonly used in conventional ChIP-seq and can introduce false positive POI-DNA interactions
[455,456], thereby reducing background noise compared with ChIP-seq. However, CUT&RUN and
CUT&TAG are more susceptible to nonspecific peaks due to differences in peak calling [457]. Moreover,
both techniques suffer from the same limitations as ChIP with regards to antibody requirements.

Single-molecule tracking (SMT)

Because ChIP, CUT&RUN and CUT&TAG only capture a temporal ‘snapshot’ of SHR-DNA interactions,
transient TF-chromatin binding events can be missed [458]. Real-time imaging tools such as single-
molecule tracking (SMT) [355], described in Table 2, provide a feasible way to address this limitation.
Accordingly, SMT is increasingly being used to study heterogeneous TF binding behaviours. In the
context of SHRs, Paakinaho et al. [459] employed HaloTag-receptor fusion proteins alongside SMT to
explore transient interactions of GR, AR, PR and ER with the chromatin [460]. In the absence of SHs, only
a small proportion (~15%) of SHRs were chromatin-bound at any one time. Following SH stimulation, this
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Table 5: Overview of low input ChIP methodologies for studying protein-DNA interactions.

Low input ChIP method Technical overview Advantages Disadvantages
Quick and quantitative ChIP Modified ChiP assay. Key differences in the - Requires > 100,000 cells. « Reducing the amount of input chromatin
Q-ChiP protocol include: + Rapid (completed in 1 day). increases the amount of background noise
Cross-linking cells in suspension (adherent cells * Higher efficiency than standard ChIP. - (although background subtraction s possible).
[45) S - Only one IP can be performed per DNA
would require trypsinisation). ﬂy‘one (an be periormed per
) o sample.
Includes a tube shift' step to ensure backgrou.nd - Uses formaldehyde for protein-DNA cross-
material that has adhered to the tube wall is linking, which i carcinogenic and toxic.
not recovered.

Cross-link reversal, proteinase K digestion of
proteins and DNA purification are combined
into a single step.

MicroChIP Similar to Q-ChIP but modified as follows: « Low input — can be performed on as few

pchiP For cross-linking, biopsies are thawed in & 100_ cells. o

[446] formaldehyde and sodium butyrate. « Applicable to tissue biopsies (both fresh
and frozen).

Tissue aggregates are removed. - Rapid (completed in 1 day).

« Higher efficiency than standard ChIP
+ Cheaper than ChiP-seq.

Ultra-low-input micrococcal nuclease-based ~ Modified ChIP assay. Key differences in the « Requires = 100,000 cells. « Reducing the amount of input chromatin
native ChIP protocol include: « (an achieve similar resolution to samples increases the amount of background noise.

ULI-NChIP Use of a micrococcal nuclease to fragment the 0 More than 1,000,000 cells

[447] DNA. « Minimises sequencing costs.

« Does not require formaldehyde cross-
Use of low-cycle PCR amplification to minimise linking.

over-representation of some fragments.

(A) <>

Tn5 activity
—p

\ Adaptor /

sequences

Figure 12: Overview of CUT&RUN and CUT&TAG methodologies.

(A) In CUT&RUN, primary antibodies raised against the protein of interest (SHR) are added to fixed, permeabilised cells. Secondary antibodies conjugated to micrococcal
nuclease (MNase) are then added. MNase cuts the genomic DNA either side of the SHR-binding site, releasing DNA fragments that can be identified through NGS. (B) CUT&TAG
is similar to CUT&RUN, except the secondary antibody tethers a Tn5 transposase to the protein of interest (SHR) binding site. Tn5 integrates adaptor sequences either side of the
SHR binding site, enabling amplification via PCR and identification through NGS.
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proportion increased substantially (~50%), although under both + SH conditions, most receptor binding
events exhibited rapid exchange dynamics (chromatin residence times of < 1 second).

Future methods for studying protein-DNA interactions

Several techniques have been proposed as alternatives to ChIP, CUT&RUN and CUT&TAG. One such
method, Calling Cards, goes beyond current single-cell TF binding tools (e.g. single-cell CUT&TAG [453])
by simultaneously generating binding and transcriptomic data at the single-cell resolution [461-464],
thereby allowing highly heterogeneous TF behaviours to be studied.

In situ Calling Card approaches employ TF-hyperactive PiggyBac transposase fusion proteins, which
integrate a Self-Reporting Transposon (SRT) cassette at genomic TF binding sites (Figure 13). The SRT
contains a promoter and reporter gene flanked by terminal repeats, but crucially lacks a polyadenylation
sequence (PAS). Consequently, when the reporter gene is expressed, RNA polymerase II continues into the
adjacent genomic region until it reaches a cryptic PAS, thereby incorporating the SRT into the mRNA of
TF-target genes [461,462]. Transfected cells can then be harvested via standard bulk or single-cell RNA-seq
protocols [462,463] to reveal TF binding information comparable with ChIP-seq, while also generating
transcriptomic data when single-cell methods are used [464].

Conclusions

The study of protein-protein and protein-DNA interactions remains central to advancing our
understanding of SHR biology in both normal and cancerous tissues.

Methods for exploring protein-DNA interactions (Supplementary Figure s1) are continually evolving,
allowing the study of increasingly smaller cell populations, with single-cell studies beginning to emerge.
These advances will provide critical insights into the role SHR signalling plays at a cellular level,

1. Cells are stably transfected with two
plasmids: one encoding a SHR-PiggyBac
transposase fusion protein (blue), the
other containing a reporter transposon

cassette (green).

OV
2. Expression of SHR-
@ PiggyBac fusion protein.
' é

A

4. Activated SHR dimers undergo
nuclear translocation and bind
to genomic SHR target sites.

O 3. SH ligands ( ) activate
endogenous SHRs, and SHR-
PiggyBac fusion proteins,

inducing receptor dimerisation.

6. Identification of
SHR binding sites
through single-cell < <

mRNA sequencing 5. SHR-PiggyBac fusion

platforms. x proteins facilitate
genomic integration of

Figure 13: Schematic of the potential application of a Calling Cards approach for investigating SHR binding patterns .

Self-reporting transposon (SRT) cassettes are stably integrated into the genome at SHR target sites by SHR-PBase fusion proteins. Each SRT cassette contains a promoter and
reporter gene flanked by PiggyBac inverted terminal repeat (ITR) sequences, but lacks a polyadenylation sequence (PAS). Consequently, when the reporter gene is transcribed
from the SRT promoter, RNA polymerase Il continues into the adjacent genomic DNA until it encounters a cryptic PAS, thereby incorporating the SRT into the mRNA of SHR
target genes. These mRNAs transcripts can then be analysed as using droplet-based single-cell sequencing platforms. PBase, PiggyBac transposase.
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whether between different cell types within a single tissue (e.g. mammary gland), or among cells within
heterogeneous tumours [465].

The development of methods for studying SHR-protein interactions at low cell numbers has been more
challenging, primarily due to the lack of signal amplification techniques (e.g. PCR for DNA-based studies),
and our reliance on shotgun MS-based proteomics. Nonetheless, advances in alternative protein detection
technologies [466], and the ongoing development of large-scale quantitative protein cross-linking methods
[467] show great promise.

In summary, years of technological progress has provided us with a widely successful toolkit for
exploring the role of SHRs in gene expression. Although the methods we have discussed typically have
higher requirements for cellular material than RNA-/DNA-seq methods, we are optimistic that ongoing
innovations will not only overcome these challenges but also deepen our understanding of SHR function
and regulation across various fields.
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