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Feature similarity, a sensitive method to
capture the functional interaction of brain
regions and networks to support flexible
behavior
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Nan Lin1,2,3, Jonathan Smallwood 7, Elizabeth Jefferies 4 & Yi Du 1,2,3

Thebrain is a dynamic systemwhere complex behaviours emerge from interactions across distributed
regions.Accurately linkingbrain function to cognition requiresmethodssensitive to these interactions.
We introduce Feature Similarity (FS), which integrates a broad set of interpretable time-series features
—such as covariance, temporal dependencies, and entropy —to move beyond traditional single-
metric approaches. FS captured functional brain organization: regions within the same network
showedgreater similarity than those in different networks, and FS identified the principal gradient from
unimodal to transmodal cortices. Compared with Pearson correlation-based functional connectivity
(FC) and 46out of 49 statistical pairwise interactionmetrics (SPIs), FS demonstrated greater sensitivity
to task modulation. Critically, FS revealed a task-dependent double dissociation in the Dorsal
Attention Network, interacting more strongly with the Visual network during working memory but with
the default mode network during long-term memory. FS thus provides a powerful tool for uncovering
task-specific brain network interactions.

A central aim of cognitive neuroscience is to understand how brain regions
interact to support flexible behaviour. The increasing availability of large-
scale datasets, where participants performmultiple cognitive tasks, provides
a valuable opportunity to address this question. However, existingmethods
typically focus on a single measure of interaction, such as co-variability,
failing to capture the multidimensional nature of brain interactions1. As a
result, these methods struggle to reliably track task-dependent changes in
network interactions. Since the choice of interaction metric fundamentally
shapes our understanding of the brain’s functional organization, there is a
critical need for a more comprehensive approach that integrates multiple
features to capture context-dependent functional interactions.

Current neuroimaging methods typically measure specific aspects of
functional interactions but overlook their complex, multidimensional nat-
ure.Many rely on temporal correlation, assessing neural synchronybutwith
notable limitations. For example, within-subject functional connectivity
(FC, here operationalized as Pearson correlation–based coupling between

regional time series in this study) cannot distinguish stimulus-driven from
intrinsic correlations, reducing task sensitivity2, while inter-subject FC
(ISFC) isolates stimulus-driven effects but requires identical stimuli across
participants, limiting its applicability2. Psycho-physiological interactions
assess task-dependent connectivity but rely on predefined seed regions and
assume a linear relationship with task conditions, restricting flexibility3.
Dynamic causal modelling infers directed interactions but requires a priori
model specification, assumes stationarity, and is computationally limited to
small networks4. Recently, many statistics of pairwise interaction (SPIs)
from fields like Earth system and finance have been applied to brain data1,5,
yet they still focus on single interaction features (e.g., causality, co-varia-
bility) rather than integrating multiple dimensions. Consequently, these
unidimensional metrics often yield inconsistent or contradictory findings.
For instance, frontoparietal control network (FPCN) exhibits negative FC
with default mode network (DMN)6, suggesting opposing functions, yet
both share similar timescales7, implying shared functional properties. Such
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inconsistencies underscore the limitations of unidimensional approaches
and highlight the need for a multidimensional method sensitive to task-
dependent modulations.

Recent advances have introduced multi-metric approaches to func-
tional connectivity, such as similarity network fusion8, frameworks that
integrate connectivity with nodal properties9, composite FCmetrics derived
from curated statistics10, and multi-metric analyses that enhance clinical
group discrimination11. These studies highlight the value of combining
metrics and provide a foundation for the present work.

Feature Similarity (FS) extends this line of work by leveraging a large
feature space (>7000 interpretable time-series features from the hctsa
library; Fulcher, 2018; Fulcher et al., 2013) (see Fig. 1). Examples include
autocorrelation (temporal dependence/intrinsic timescale), entropy (signal
complexity and predictability), and variance or skewness (distributional
properties). For each region, these features form a profile of local dynamics,
and FS between two regions is defined as the Pearson correlation between
their feature profiles12. In this way, FS is a pairwisemetric derived from local
dynamics that indexes the similarity of temporalfingerprints across regions.
Whereas FC captures synchronous co-fluctuations of raw time series, and
SPIsoffer diversebut single-property interaction statistics (e.g., causality, co-
variability, nonlinear dependence), FS captures resemblance in underlying
dynamical profiles, providing a complementary view of brain interactions.

Individual features also correspond to distinct functional roles. For
instance, early visual areas andDMNoccupy opposing ends of the timescale
hierarchy: early visual areas exhibit rapid autocorrelation decay, whereas
DMNregions show gradual decay2,7,13–15. This timescale difference underlies
their functions: early visual representations are minimally influenced by
prior knowledge, while DMN activity is strongly shaped by it16. Similarly,
transmodal regions such as FPCN and DMN, though often negatively
correlated in FC6, share long timescales7 and process information over
extended periods, supporting higher-order functions like maintaining task
goals16,17. These examples illustrate how multidimensional features reveal
functional commonalities beyond those captured by FC or other
unidimensional SPIs.

Crucially, features also vary across tasks. For example, neural time-
scales shorten in transmodal regions during story comprehension but
lengthen during motor and working memory taskss18,19. Such shifts reflect
the brain’s adaptive reconfiguration and suggest that multidimensional
features are particularly sensitive to task influences. In line with this, FPCN
exhibits greater FSwith thedorsal attentionnetwork (DAN)duringworking
memory tasks and FS with the memory control network during long-term
memory tasks6. Motivated by this, we apply FS as a hypothesis-free, data-
driven approach to test how inter-regional interaction patterns reconfigure
across diverse tasks, with the goal of detecting subtle brain interactions that
may be overlooked by conventional connectivity metrics. While temporal
correlation (FC) andotherunidimensionalmeasures (e.g., SPIs)may appear
stable, underlying properties such as signal complexity, variability, and
autocorrelation may reveal greater task sensitivity. By integrating these
dimensions, FS may provides a richer lens on brain interactions than uni-
dimensional approaches.

To evaluate FS’s sensitivity in capturing task-dependent network
interactions, we examined the functional relationship between DAN and
DMN. Traditionally, DAN, which directs external attention, has been
considered antagonistic to DMN, which supports internally directed cog-
nition such asmemory retrieval and semantic processing20. This opposition
is reflected in their typical anticorrelation and DAN’s strong FC with the
Visual network, reinforcing its role in sensory-driven attention. However,
recent evidence challenges this strict dichotomy. Using multiple metrics,
DAN has been shown to be topographically positioned between the Visual
network and DMN, allowing it to flexibly interact with both based on task
demands6. Moreover, DMN-DAN interactions are integrated into broader
network interactions involving the FPCN21, which shares properties with
both DMN and DAN and plays a pivotal role in flexible cognition by
bridging external attention and internal processing. FPCN cooperates with
DMNvia thememory control network during long-termmemory tasks but

not during working memory tasks (see Fig. 2)6, suggesting that DAN, too,
may align more with DMN in long-term memory tasks, shifting from
external sensory attention to internally guided retrieval. Our results
demonstrate that FS captures these task-driven shifts more effectively than
FC and 46 out of 49 SPIs, revealing a double dissociation – defined here as
opposing patterns of interaction across two conditions:DAN interactsmore
with the Visual network during working memory tasks and with DMN
during long-termmemory tasks—a distinction that FC andmost SPIs fail to
detect. These findings highlight FS’s unique ability to uncover nuanced,
task-dependent brain interaction, establishing it as a powerful tool for
studying cognitive flexibility in brain networks.

Results
The results are divided into three sections. (i) First, we took an existing
individualized parcellation of the cortex to identify the parcels of each
network and examined whether FS is equally capable of capturing the
network structure as FC does. As expected, regions belonging to the same
intrinsic functional networks had greater FS compared to regions in dif-
ferent networks. (ii) Next, we examined whether FS could capture the
organizational principles of the cortex as is seen in FC. We found FS cap-
tured the principal intrinsic connectivity gradient that separates sensory-
motor regions from transmodal areas, as well as the second component that
separates somatomotor and auditory from visual cortex, which have been
previously describedusing decompositions of FC. (iii), Finally, we examined
whether FS is more sensitive to task-induced changes in brain interactions
than FC and most SPIs by examining how these metrics characterise net-
work interactions across working memory and long-term memory tasks.
Specifically, we asked whether FS is superior than FC and SPIs in their
capacity to identify differences in the way that DAN interacts with Visual
network and DMN during working memory and long-termmemory tasks.

The FS method consists of the following steps (see Fig. 1):
Step 1: Extract a diverse set of interpretable features from the time-

series data. In this study, FSwas implementedusingmore than7000 features
from the hctsa library22,23, encompassing distributional properties (e.g.,
skewness), temporal dependencies (e.g., autocorrelation), and predictability
(e.g., entropy).

Step 2: Calculate FS between brain regions by calculating the Pearson
correlation coefficients of the extracted features. FS is a pairwise metric
derived from local intra-regional dynamics to assess inter-regional inter-
actions, rather than a measure of local dynamics alone.

Step 3: Examine how FS varies across different tasks.
To estimateFC,we computedPearson correlation coefficients between

regional time series for each run of each task and each participant, and
applied xDF correction to account for temporal autocorrelationwithin time
series and instantaneous/lagged cross-correlations, thereby yielding more
precise and reliable estimates. ForbothFCandFS, this produced a400 × 400
matrix per run per participant, with all values Fisher-z transformed prior to
averaging. Participant-specific matrices were obtained by averaging across
runs within each task, and group-average matrices were derived by aver-
aging across participants when required.

Regions belonging to the same intrinsic functional network have
greater FS compared to regions in different networks
We first tested whether parcels within the same network exhibited similar
features using participant-specific matrices. We selected Kong et al.’
parcellation24 as it allows for individual-specific parcellations with greater
homogeneity6 while capturing the inherent heterogeneity of large-scale
networks like DAN and FPCN. Regionswere considered similar in terms of
features if the features of two regions were significantly correlated25. FS
captures regions with similar dynamical properties but not necessarily
synchronous activity (Fig. 1). For example, while FPCN-A and DMN both
have longer timescales, they often exhibit negative FC6.

As expected, regions within the same functional network showed
higher FC compared to those between networks, both at rest
(t(244) = 136.09, p < 0.001) and during tasks (spatial working memory,
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t(25) = 26.33, p < 0.001; math, t(25) = 26.36, p < 0.001; semantic feature
matching, t(27) = 70.02, p < 0.001; semantic association, t(29) = 57.60,
p < 0.001) (Fig. 3). Similarly, FS was higher within networks compared to
between networks, both at rest (t(244) = 91.24, p < 0.001) and across tasks
(spatial working memory, t(25) = 18.35, p < 0.001; math, t(25) = 14.51,
p < 0.001; semantic feature matching, t(27) = 42.27, p < 0.001; semantic
association, t(29) = 38.04, p < 0.001) (Fig. 3). All p-values were FDR-
corrected. These findings suggest that FS can capture intrinsic network
structure traditionally captured by FC.

We also assessed the similarity between FC and FS by correlating the
FC and FS matrices at rest and during tasks. We observed weak but sig-
nificant positive correlations between FC and FS as indicated by arrows
(Fig.3) at rest (r = 0.29, p = 0.0001) and during tasks (spatial working
memory, r = 0.37, p = 0.0001; math, r = 0.33, p = 0.0001; semantic feature
matching, r = 0.33, p = 0.0001; semantic association, r = 0.33, p = 0.0001).
All p-values were FWE-corrected using maximum r values (Method 4.5.4).
The positive correlations suggest that regions with similar time-series fea-
tures exhibited coherent spontaneous fluctuations. However, the largest

Fig. 2 | The experimental design. To tap working memory, we included two tasks: a
spatial working memory task required participants to keep track of sequentially
presented locations, while math decisions involved maintaining and manipulating
numbers which rely more on working memory. To tap long-term memory, we
included two tasks that required controlled retrieval of knowledge; a semantic

feature matching task required participants to match probe and target concepts
according to a particular semantic feature (colour or shape), while a semantic
association task involved deciding if pairs of words were linked in meaning.
Response periods are indicated by a red box.

Fig. 1 | The workflow of the FS and FC analysis. A Individual-specific parcellation
divided the whole brain into 400 parcels across 17 networks24. BAverage time series
of each parcel. C Functional connectivity involved calculating Pearson correlation
coefficients between the time-series of parcels for each participant. D Extraction of
features of time series for each parcel. E Pearson correlation coefficients of the
extracted features represent the pairwise feature similarity between all possible

combinations of brain parcels. F, G Group-level FC and FS matrices were obtained
by averaging participant-level matrices across runs and subjects. (Vis = Visual, Aud
=Auditory, SM= Sensory-motor, DAN=Dorsal attention network, VAN=Ventral
attention network, FPCN = Fronto-parietal control network, Lang = Language,
DMN = Default mode network; p1–p400 represent the 400 parcels, and n1–n17
represent the 17 networks in the analysis).
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correlation was 0.37, indicating that these metrics also capture different
information.

FS reveals unique organizational principles beyond FC
We then asked whether FS and FC captured similar or distinct components
by examining group-average matrices at rest. Firstly, we performed
dimension reduction analysis (diffusion embedding)26 on the resting state
FC matrix for the HCP dataset (Fig. 3A). We focused on the three com-
ponentswith the largest eigenvalues, as they explain 28.02%variance in total
and have clear interpretation (see Fig. 4I for scree plot). Consistent with
previous studies26–29, the first component explaining 12.75% of the variance
corresponded to the principal gradient described by Margulies et al.26. This
component separated sensory-motor regions (shown in purple-blue in
Fig. 4A) from transmodal areas (shown in red-white in Fig. 4A). The second
component explained 11.29% of the variance and separated somatomotor
and auditory cortex (shown in purple-blue in Fig. 4B) from visual cortex
(shown in red-white in Fig. 4B). The third component explained 3.98% of
the variance and separated FPCN regions (shown in purple-blue in Fig. 4C)
from DMN regions (shown in red-white in Fig. 4C).

Similarly, we performed dimension reduction analysis on the resting
state FS matrix for the HCP dataset (Fig. 3F), using the procedures above.
The three components with the largest eigenvalues explained 23.23% of the
variance (see Fig. 4I for scree plot). FS captured two components that were
similar to the results for FC, and one not uncovered by FC (Fig. 4). The first
principal component of FS explained 12.19% of the variance and had a
distinct spatial distribution from the first three components of FC: it did not
show significant correlations with any of the components of FC (p > 0.05;
Fig. 4D). The next two components of FS were seen in FC data (Fig. 4). The
second component of FS (explaining 7.11% of the variance; Fig. 4E) aligned
with the principal gradient of FC (Fig. 4A), separating sensory-motor from
transmodal cortex, with a strong correlation between components (r = 0.89,
p = 0.0001, spin permutation corrected). The third component of FS
(explaining the 3.94% variance; Fig. 4F) corresponded to the second com-
ponent of FC (Fig. 4B), separating somatomotor and auditory cortex from

visual cortex, with a strong correlation between components (r = 0.87,
p = 0.0001, spinpermutation corrected).Thesefindings further confirmthat
FS captures meaningful information, i.e., organizational principle.

To gain insight into the first component of FS, we investigated its
correlation with the map of intrinsic timescale, which reflects the temporal
duration of ongoing inputs that the brain can process. The first component
resembles the distribution of intrinsic timescale reported by Raut et
al.7,which is longest in transmodal regions18. We therefore estimated
intrinsic timescale for each parcel by measuring the decay of the temporal
autocorrelation function and quantifying the time taken for the auto-
correlation function to reach a threshold of r = 0.5, which is half of the full
width at half maximum. Higher values indicate longer processing times for
ongoing inputs. Our results align with Raut et al.7, showing short timescales
in insula and cingulate cortex, and long timescales in angular gyrus, pos-
terior cingulate cortex, and frontal pole. (Fig. 4G). We found that the first
principal component, which explained the most variance in FS, was sig-
nificantly correlated with the intrinsic timescale map (left hemisphere:
r = 0.82, p = 0.0001; right hemisphere: r = 0.80, p = 0.0001; Fig. 4H, cor-
rected for spatial autocorrelationusing spinpermutation), indicating that FS
can capturemeaningful information not captured by traditional FC, such as
the intrinsic timescale of the brain’s response.

FS showed greater variation across tasks than FC
The above analyses showed that FS captured similar information to FC but
also additional dimensions of cortical organisation. Next, we examined
whether FS was more sensitive to task modulation than FC. FC measures
pairwise co-fluctuation between regional time series (Pearson correlation).
FS, by contrast, is a pairwise temporal similarity computed on per-region
feature profiles that summarize local dynamics (e.g., entropy, autocorrela-
tion, stationarity, spectral slope). FS therefore bridges local and pairwise
levels by comparing local dynamical fingerprints across regions and inte-
gratesmultiple feature dimensions, rather than targeting a single interaction
property as in many SPIs. Given that tasks impose specific cognitive
demands and engage distinct neural processes, the brain’s functional

Fig. 3 | FC and FS matrices at rest and during each task. Regions within the same
intrinsic functional network showed greater FC and FS than regions in different
networks across all tasks and rest. FC and FS were positively but weakly correlated in
each condition (p < 0.0001). Colorbars indicate z-scored values for eachmeasure: FC
panels (A–E) display z (xDF-corrected correlation) values, reflecting correlation

strength corrected for temporal autocorrelation using the xDF method, while FS
panels (F–J) display z (standardized feature similarity) values, reflecting z-scored
feature-similarity measures without xDF correction. Differences in value ranges
reflect the use of xDF correction for FC only.
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organizationundergoesmodulation atmultiple levels. Temporal correlation
(as captured by FC) may remain stable under certain conditions, but the
underlying features of the time-series, such as signal complexity, variability,
and temporal autocorrelation,may exhibitmore sensitivity to these changes.
This multidimensional analysis may allow FS to detect subtle changes in
brain interactions during tasks that may be missed by FC.

We computed the Pearson correlation coefficients between the group-
average task mean FC matrices (and, analogously, FS matrices) for every
possible task pair. For example, we calculated the Pearson correlation
coefficients of the FCmatrices of the spatial workingmemory task (Fig. 3B)
and math task (Fig. 3C). Similarly, we calculated the Pearson correlation
coefficients of the FS matrices of these two tasks (Fig. 3G, H). Then we
directly compared these two r values. We found correlations for FC were
consistently higher than those for FS across all 10 task pairs (Fig. 5A;
p < 0.05; see Table 1 for statistics), suggesting that FSmay bemore sensitive

to task differences than FC. Each data point in Fig. 5A reflects one task-pair
comparison based on group-averaged FC or FS matrices (rather than
individual subjects); the apparent extreme value corresponds to the
semantic feature matching versus semantic association pair and is not an
outlier.

We further confirmed the task sensitivity of FS at the participant level
by comparing FS and FC correlations between two working memory tasks
using each participant’s task-level matrices. Since the same participants
completed both the spatial working memory task and the math task, we
calculated the Pearson correlation coefficients between the FCmatrix of the
spatial workingmemory task and that of math task for each participant and
transformed the resulting r values to z values using Fisher’s transformation.
Similarly, we also calculated the Fisher’s z values between the FSmatrices of
the two working memory tasks for each participant. Finally, we compared
the z values of FC with those of FS by conducting paired t-tests. We found

Fig. 4 | The top three principal components of FC and FS revealed two similar
components and one distinct component.The first principal component of FC (A)
corresponds to the second principal component of FS (E), as indicated by the arrows
denoting a strong correlation (r = 0.89, p = 0.0001, corrected for spatial auto-
correlation using spin permutation), which separates sensory-motor regions from
transmodal areas. Similarly, the second principal component of FC (B) corresponds
to the third principal component of FS (F), with a strong correlation (r = 0.87,
p = 0.0001, corrected for spatial autocorrelation using spin permutation), separating
somatomotor and auditory cortex from visual cortex. These findings suggest that FS
captures similar organizational information to FC. However, the third principal

component of FC (C), which separates FPCN regions from DMN regions, was not
captured by FS. The first principal component of FS (D), which corresponds to the
intrinsic timescale gradient (G), was not captured by FC. G The intrinsic timescale
map shows short timescales in insula and cingulate cortex, and long timescales in
angular gyrus, posterior cingulate cortex, and frontal pole. H The first principal
component of FS was significantly correlated with the intrinsic timescale gradient
map in both the left (r = 0.82, p = 0.0001) and right (r = 0.80, p = 0.0001) hemi-
spheres (corrected for spatial autocorrelation using spin permutation). The histo-
grams illustrate the null model distributions. I Scree plots showing the eigenvalues
for the top eight principal components of FS (orange) and FC (blue).
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that the correlations of FC were greater than the correlations of FS for the
working memory tasks (Fig. 5B; t = 26.58, p < 0.001). We then conducted
the same analysis for the two semantic tasks, semantic featurematching and
association, and observed the same pattern (i.e., stronger correlation across
tasks for FC than for FS; Fig. 5C, t = 23.29, p < 0.001). The smaller corre-
lation of FS is not because the data of FS are noisier. By contrast, FS carries
meaningful task information, as FSmatrices correctly classify task labels for
working memory tasks (accuracy = 0.83, p = 0.0001) and long-term mem-
ory tasks (accuracy = 0.78, p = 0.0001), both significantly above chance level
(0.5) (see Supplementary Material 2.1 for detailed results). These findings
suggest that FS is more sensitive to task modulation than FC, because it
incorporates multiple aspects of time-series similarity beyond temporal co-
fluctuation. Despite comparable classification accuracy, FC showed greater
cross-task correlations than FS. This highlights the sensitivity of FC to
common connectivity patterns across tasks, while FS appears to capture
finer task-specific variations in interaction patterns, providing a com-
plementary perspective on task modulation.

FS captured network interaction patterns across tasks not
captured by FC
After showing that FS was generally more sensitive to taskmodulation than
FC, we examinedwhether FS could capture the varying network interaction

patterns across tasks that missed by FC using the participant-level task
matrices, with group effects tested across participants. We tested the
interaction difference between DAN and Visual network versus DAN and
DMN, to test the hypothesis that DAN ismore similar to Visual network in
working memory tasks, which rely more on visual features and working
memory, andmore similar toDMN in long-termmemory tasks, which rely
more on long-term memory. We expected that this pattern would be seen
more readily in FS, since this metric was more sensitive than FC to task
demands above.

Since the tasks were presented visually in the current study, we selected
DAN-A24, which is typically engaged together with Visual network and
showed greater feature similarity with Visual network than other attention
networks (DAN-B, Ventral attention network) in a classification analysis
(Supplementary Fig. 1). We compared FC and FS between DAN-A and
Visual network versus DAN-A and DMN across tasks, focusing on differ-
ences in the strength of these connections. For simplicity, we combined the
three visual subnetworks into a single visual network and the three default
mode subnetworks into a single DMN. While connectivity differences did
not vary across tasks when assessed with FC (Fig. 6, p > 0.05, FWE cor-
rected), there was a difference between working memory and long-term
memory tasks for FS (p < 0.001; FWE corrected). DAN-A always showed
greater FC with Visual network than with DMN at rest (Fig. 6,

Fig. 5 | FS showed greater variation across tasks
than FC. A Group-average FC matrices showed
higher correlations across tasks compared to FS
matrices. Each dot represents the Pearson correla-
tion coefficient between two group-average task
matrices, across the 10 possible task pairs (see
Table 1). Because this analysis is based on task pairs
rather than participant-level statistics, significance is
not indicated with asterisks, although FC correla-
tions were consistently higher than FS correlations
(p < 0.001). B Correlations of FC matrices between
the spatial working memory and math tasks were
greater than those of FS matrices. Each dot repre-
sents the Fisher-z–transformed correlation coeffi-
cient between the two task-specific matrices of one
participant (n = 27 biologically independent parti-
cipants). C Correlations of FC matrices between the
semantic feature matching and semantic association
tasks were significantly greater than those of FS
matrices. Each dot represents the Fisher-
z–transformed correlation coefficient between the
two task-specific matrices of one participant (n = 28
biologically independent participants).

Table 1 | FS showed greater variation across tasks than FC

Task 1 Task 2 r (FC) r (FS) z p

Rest Spatial working memory 0.68 0.33 96.31 <0.001

Rest Math 0.67 0.38 82.64 <0.001

Rest Feature matching 0.86 0.68 82.48 <0.001

Rest Association 0.88 0.68 110.49 <0.001

Spatial working memory Math 0.75 0.43 103.38 <0.001

Spatial working memory Feature matching 0.73 0.42 94.50 <0.001

Spatial working memory Association 0.71 0.42 88.63 <0.001

Math Feature matching 0.75 0.43 103.38 <0.001

Math Association 0.73 0.43 93.72 <0.001

Feature matching Association 0.98 0.94 86.35 <0.001

FCcorrelations across taskswereconsistently higher thanFScorrelations. Across all taskpairs, correlationsbasedonFCwere significantlyhigher than thosebasedonFS (allp < 0.001), indicating that FS is
more sensitive to task differences than FC.
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t(244) = 53.68, p < 0.001) and for each task (Fig. 6, spatial workingmemory,
t(25) = 16.19, p < 0.001; math, t(25) = 11.73, p < 0.001; semantic feature
matching, t(27) = 17.19, p < 0.001; semantic association, t(29) = 14.95,
p < 0.001), consistent with previous studies. However, DAN-A showed
greater FS with Visual network than with DMN at rest (Fig. 6,
t(244) = 10.58, p < 0.001) and in working memory tasks (Fig. 6, spatial
workingmemory, t(25) = 3.55, p = 0.004 ;math, t(25) = 3.19, p = 0.003), but
showed the opposite pattern in long-term memory tasks (Fig. 5, semantic
feature matching, t(27) =−2.86, p = 0.008; semantic association,
t(29) =−2.64, p = 0.01). These findings suggest that FS is more sensitive to
interaction patterns between networks that reflect differing cognitive
demands. We obtained consistent interaction patterns when FC was com-
puted either on task-residual time series after FIR regression or directly on
parcel time series, confirming that preprocessing differences do not account
for the greater task sensitivity of FS.

The task sensitivity of FSwas further confirmedwhenwe examined the
interaction differences between the domain general control network
(FPCN-A) and Visual network versus FPCN-A and DMN. Interaction
differences for FPCN-Aacross taskswere only capturedbyFS andnot byFC
(Fig. S2; See Supplementary Material 2.3 for detailed information). There
was no difference in FC across tasks for FPCN-A (p > 0.05, FWE corrected),
with FPCN-A always showing greater FC with Visual network than with
DMN at rest (t = 2.39, p = 0.02) and for each task (spatial workingmemory,
t = 11.36, p < 0.001; math, t = 11.44, p < 0.001; semantic feature matching,
t = 6.50, p < 0.001; semantic association, t = 3.62, p = 0.001). However, FS
revealed different patterns across tasks, with a greater difference between
FPCN-A and Visual network compared with FPCN-A and DMN for the
workingmemory than long-termmemory tasks (p < 0.001; FWEcorrected).
Specifically, FPCN-A showed similar FS with Visual network and DMN at
rest (t = 1.39, p = 0.17) and in themath task (t =−0.73, p = 0.47) but showed
greater FS with DMN than with Visual network in the spatial working
memory task (t =−4.97, p < 0.001) and long-termmemory tasks (semantic
feature matching, t =−9.12, p < 0.001; semantic association, t =−8.25,

p < 0.001). These findings support that FS is more sensitive to task mod-
ulation than FC.

FS captured network interaction patterns across tasks not cap-
tured by most SPIs
While FC (Pearson correlation) remains the dominant method for mea-
suring brain network interactions in fMRI, recent studies have shown that
other SPIs, previously applied in differentfields, can also be used tomeasure
neural interaction since some of them can classify brain states and condi-
tions in fMRI data1. To further assess FS’s sensitivity relative to these SPIs,
we initially selected all 67 SPIs that significantly classified states in the fMRI
film dataset and then refined this set to 49 SPIs with reasonable computa-
tional requirements (<5 hours per run per task per subject). These SPIs
derived from20 interactionmetrics across six categories: (1) BasicMethods,
such as precision, which quantifies pairwise associations while controlling
for the effects of other time series; (2) Distance-Based Similarity, which
measures statistical similarity or independence based on pairwise distances
between bivariate observations; (3) Causal Inference, which aims to infer
directed relationships; (4) Information-TheoreticMeasures, such asmutual
information which quantifies the total dependency between two variables;
(5) Spectral Measures, commonly computed in the frequency or time-
frequency domain. Examples include spectral coherencemagnitude, which
quantifies the alignment of frequency components in phase and amplitude;
and (6) Miscellaneous Methods: this category includes techniques such as
linearmodelfits, which estimate relationships through regression, andother
statistical tools that quantify pairwise interactions but do not fit into the
above categories (see Methods and Supplementary Material 1.3.3 for full
details). We examined whether the double dissociation observed by FS can
be replicated by each SPI by comparing the interaction matrices generated
by each SPI across tasks, focusing on key networks (DAN-A, Visual, and
DMN) using participant-level task matrices. Specifically, we conducted
paired t-tests for each task to assess differences between network pairs to
examine whether DAN-A showed greater interaction with Visual network

Fig. 6 | FS captured varying interaction patterns for DAN-A across tasks that
missed by FC. Top panel: DAN-A always showed greater FC with Visual network
than with DMN at rest and for each task and there was no difference across tasks.
Bottom panel: The difference between DAN-A and Visual network versus DAN-A
and DMN in the working memory tasks was greater than in long-term memory
tasks. DAN-A showed greater FSwithVisual network thanwithDMNat rest and for

the working memory tasks, but showed the opposite pattern in the long-term
memory tasks supported by DMN. Asterisks denote significance levels: p < 0.05 (*),
p < 0.01 (**), p < 0.001 (***); n = 245 (rest), 27 (spatial working memory), 27
(math), 28 (semantic feature matching), and 30 (semantic association); all represent
biologically independent participants.
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during the working memory task but with DMN during the long-term
memory tasks.

We found that 46 out of the 49 SPIs did not fully replicate the double
dissociationobservedwith FS.Of these, 22 lacked task sensitivity: 14 showed
consistently stronger interactionsbetweenDANandVisual networks across
all tasks, while 8 showed the opposite pattern (Fig. 7A). Representative
examples include covariance from the Basic Statistics category and longest
common subsequence from the Distance Similarity category (Fig. 7C).

Nine SPIs demonstrated limited sensitivity, eachdetecting only a single
dissociation. Among these, 9 revealed stronger DAN–Visual interactions
during working-memory tasks but failed to capture the reverse pattern
during long-termmemory tasks. An example is mutual information with a
Gaussian kernel from the Information Theory category (Fig. 7D). In con-
trast, 1 SPI showed the opposite single dissociation, detecting stronger
DAN–DMN interactions during long-term memory tasks but not the
complementary effect during working-memory tasks.

Only 1 SPI, the Hilbert–Schmidt Independence Criterion from the
Distance Similarity category, fully replicated the double dissociation, cap-
turing stronger DAN–Visual in teractions during working-memory and
stronger DAN–DMNcoupling during long-termmemory tasks (Fig. 7B). 2
others—DistanceCorrelation (Distance Similarity) and time-laggedmutual
information (Information Theory)—partially replicated the dissociation,
failing to reach significance for DAN–DMN interactions during the feature
matching task (FDR-corrected p = 0.05 and p = 0.07).

The remaining SPIs included 14 methods showing a reverse
single dissociation, defined as a reversal of the expected interaction pattern
in one condition (e.g., stronger DAN–Visual interaction during long-term
memory tasks) without the complementary reversal in the opposite
condition (working-memory), and 1 method showing a reverse double
dissociation. These patterns were difficult to interpret and the challenges
of using SPIs to detect task-specific interactions. Moreover, we observed
that different parameterizations of the same SPI could yield inconsistent
results (e.g., precision with EmpiricalCovariance revealed a reverse
single dissociation, whereas ShrunkCovariance showed no task sensitivity).
Full statistical results for all 49 SPIs, including their classification
(no sensitivity, single dissociation, double dissociation, reverse patterns),
are provided in Supplementary Table 2 and Supplementary Data 1. The-
se findings underscore the challenges of selecting appropriate SPIs and
parameter settings.

The failure of most SPIs to replicate the double dissociation observed
withFSunderscores the superior sensitivity of FS indetectingnuancedbrain
network interactions. Among the 49 SPIs tested, only a few (3 SPIs) suc-
cessfully replicated the double dissociation, further validating FS’s findings
and robustness. This dual observation highlights FS’s unique ability to
capture task-specific interactions that are often missed by other methods,
offering critical insights into cognitive flexibility and functional
reconfiguration.

Discussion
In this study, we introduce FS as a robust method for unveiling network
structures, brain topography, and task-induced modulations. FS validation
rests on two key observations: (1) regions within the same intrinsic network
exhibit greater FS than regions across networks, and (2) FS captures the
principal gradient from unimodal to transmodal cortices. Building on these
validations, FS demonstrated heightened sensitivity to task modulation,
revealing interaction patterns not detected by FC or by 46 of 49 SPIs. For
example, DAN-A showed greater FS with the Visual network during
workingmemory andwith theDMNduring long-termmemory, indicating
a functional reorientation across tasks that FC failed to capture.

The 49 SPIs tested provide a representative benchmark, and there is no
evidence that untestedmeasures would alter our conclusions. Of these, only
three reproduced aspects of the effect: the Hilbert–Schmidt Independence
Criterion (HSIC) fully detected it, while Distance Correlation and time-
lagged mutual information recovered it only partially. Their sensitivity to
nonlinear or temporal dependencies may explain this partial convergence,

but each required careful parameter tuning (e.g., the biased HSIC variant
detected the dissociation, whereas the original did not), highlighting their
limitations. By contrast, FS identified the effect without parameter adjust-
ment, underscoring its strength as a stable and integrative framework for
detecting nuanced brain interactions.

Our use of two independent datasets further strengthens these con-
clusions. HCP data showed that FS recovers stable large-scale principles
such as the unimodal–transmodal hierarchy, and these generalized to the
smaller York dataset, as indicated by consistent network organization and
highly correlated principal gradients27. The York dataset, with independent
runs for each task, was best suited for estimating task-specific FS and FC.
Although tasks differed in TR, run length, and design, these factors applied
equally to FC and FS; if theywere themain drivers, bothmetricswould have
shown similar patterns. Instead, FS revealed task-related modulations not
detected by FC. We do not claim that FS is always more sensitive than FC,
but highlight contexts where it reveals modulations beyond FC. Although
HCP also includes task data, its block design with relatively short condition
durations is not well suited for condition-specific analyses; resting-state
results from HCP were included only for completeness in the task mod-
ulation section.

FS extends multi-metric approaches by incorporating over 7000
interpretable time-series features into similaritymatrices derived from local
dynamics. Unlike prior frameworks that combine multiple connectivity
measures8–11, FS’s breadth and grounding in local dynamics enable both
recovery of stable organizational principles and sensitivity to diverse task
demands.Within this growing line of research, FS offers a generalizable and
powerful tool for studying brain network interaction. Importantly, FS is not
intended to replace FC or SPIs but to complement them. FC remains
valuable for characterizing intrinsic coupling patterns shaped by neuroa-
natomy, while SPIs capture specific interaction properties1,5. FS advances
these approaches by integrating a broad and interpretable feature space
derived from local dynamics.

Severalmethodological considerations remain. Although derived from
pseudo-rest, our individualized parcellations showed higher within-parcel
homogeneity than group-level atlases, supporting their robustness while
noting future work should compare across parcellation schemes. We did
not explicitly control for inter-parcel distance, but the key double
dissociations we report (e.g., DAN-A with Visual versus DMN) cannot
be explained by spatial proximity alone, and FC—equally affected by dis-
tance—did not show these patterns. Incorporating distance correction
in future work would nonetheless strengthen FS’s interpretability. The
present implementation also assumes stationarity, as features were esti-
mated from the full time series. Future extensions could apply FS to shorter
windows or event-related designs to capture non-stationary changes in
network interactions, and benchmark it against dynamic FC approaches,
which track time-varying fluctuations in connectivity and have proven
useful for task-based fMRI. Our analyses further focused on edgewise cor-
relations, which capture task-related variations in pairwise interactions but
are not directly sensitive to topological reconfigurations (e.g., fragmentation
or hub structure). Combining FS with graph-theoretic measures such as
modularity, hubness, or global efficiency could therefore provide com-
plementary insights into task-induced network reorganization. While FS
builds on establishedmeasures such as covariance, coherence, and temporal
scale, the present study does not yet reveal which of the ~7000 extracted
features drive the observed network dissociations. Thus, FS offers an
interpretable framework in principle, but the neurobiological meaning of
the currentfindings remains limited. Futurework should identify the critical
feature dimensions underlying these effects to better link FS to neural
mechanisms.

Collectively, our findings demonstrate that FS offers a generalizable
and powerful framework for studying brain network interactions. By
enabling the detection of nuanced task-dependent modulations, FS has the
potential to resolve inconsistencies in prior research, inspire reanalysis of
existing datasets, and contribute to the development of new theoretical
frameworks in cognitive neuroscience.

https://doi.org/10.1038/s42003-025-09165-7 Article

Communications Biology |          (2025) 8:1776 8

www.nature.com/commsbio


Conclusion
Our results demonstrate that Feature Similarity (FS) represents a metho-
dological advance for understanding brain network interactions. Unlike
traditional measures, FS integrates a broad set of interpretable time-series

features into similarity matrices derived from local dynamics, allowing it to
capture subtle task-dependent modulations while also recovering stable
organizational principles. This design provides a generalizable and inter-
pretable tool for reanalysing existing fMRI datasets, resolving

Fig. 7 | Task-dependent interactions of DAN-A with Visual (purple) and DMN
(red) networks as measured by 49 SPIs, illustrating varying levels of task sensi-
tivity. A Heatmap showing the task-dependent interactions of DAN-A with Visual
and DMN networks across all 49 SPIs. Colours represent t-values comparing inter-
actions between networks, with blue indicating stronger Visual network interactions
and red indicating stronger DMN interactions. Each row in panel A is numbered to
correspond with the SPI indices in the Supplementary Data, where raw statistical
values and classifications of task sensitivity are provided. B Hilbert–Schmidt Inde-
pendence Criterion from the Distance Similarity category, a representative SPI that
successfully reveals the double dissociation, showing greater DAN-A-Visual interac-
tion during working memory and greater DAN-A-DMN interaction during long-term
memory tasks. C Longest common subsequence from the Distance Similarity

Category, a representative SPI that lacks task sensitivity, consistently showing greater
DAN-A-Visual interaction across tasks. D Mutual Information from the Information
Theory category, a representative SPI that reveals a single dissociation, showing greater
DAN-A-Visual interaction during working memory tasks but failing to reveal the
reverse pattern for long-term memory tasks. Significance levels are indicated
(*p < 0.05, **p < 0.01, ***p < 0.001, ns = not significant); n = 245 (rest), 27 (spatial
working memory), 27 (math), 28 (semantic feature matching), and 30 (semantic
association); all represent biologically independent participants. These examples
illustrate the variability in task sensitivity across SPIs, underscoring the unique sensi-
tivity of FS to task modulation. Panel C shows an SPI with no task sensitivity, and
D shows an SPI with weaker task sensitivity (single dissociation). These are included
for contrast with B to highlight the unique sensitivity of FS to task modulation.
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inconsistencies, and refining theories of cognitive flexibility. As neuroima-
ging methods and experimental designs continue to evolve, FS offers a
sensitive framework that can complement these advances and contribute to
adeeper understandingof the adaptivenature of brainnetwork interactions.

Methods
This study included three datasets, one publicly available dataset – the
Human Connectome Project (HCP)30 (https://www.humanconnectome.
org/), and two task fMRI datasets collected at theUniversity of York, UK6,29.

We analysed the resting state functional MRI (rsfMRI) data of 245
unrelated participants who completed all four resting state scans from the
S900 release of HCP dataset to investigate the functional hierarchy, FC, and
FS patterns. In addition, to comparewhether FC and FS can capture varying
interaction patterns to the same extent, we used two types of tasks (tapping
working memory and long-term memory retrieval) which are associated
with distinct neurocognitivemodes31. To tapworkingmemory, participants
completed easy and hard spatial working memory and arithmetic tasks
designed to localise domain general control regions32–34, which required
information to be maintained and manipulated. They also completed two
long-term memory tasks tapping knowledge in long-term memory, a
semantic feature matching task that involved linking probe and target
concepts (presented as written words) based on colour or shape, and a
semantic association task in which participants decided if pairs of words
were semantically associated or not6,29. These datasets have been previously
analysed6,29.

Participants
All participants were right-handed, native English speakers, had normal or
corrected-to-normal vision, and had no history of psychiatric or neurolo-
gical illness. For the HCP dataset, informed consent was obtained, and the
study was approved by the Institutional Review Board of Washington
University at St. Louis. For the York working memory and long-term
memory dataset, the research was approved by the York Neuroimaging
Centre and Department of Psychology ethics committees. All ethical reg-
ulations relevant to human research participants were followed.

We analysed the data of 245 neurologically healthy volunteers (130
males, 115 females), aged 23–35 years (mean = 28.21, SD = 3.67), from the
HCP dataset30.

31 neurologically healthy adults (26 females; age: mean ± SD = 20.60
± 1.68, range: 18–25 years) performed spatial working memory and math
tasks in York. One participant with incomplete data (only one of two ses-
sions) was removed. A functional run was excluded if (i) mean relative root
mean square (RMS) framewise displacement was higher than 0.2mm, (ii) it
had more than 15% percentage of total frames with motion exceeding
0.25mm, or (iii) a participant’s accuracy on the respective task was three
standard deviations below the group mean. If only run of one task was left
for a given participant after exclusion, the data from this task were removed
for this participant. These exclusion criteria resulted in a final sample of 27
participants for both the spatial working memory task and the math task.

We also analysed a long-term memory task dataset collected at the
UniversityofYork,UK. 31healthy adultswere recruited fromtheUniversity
of York (25 females; age: mean ± SD = 21.26 ± 2.93, range: 19–34 years).
The same exclusion criteria for functional runs were applied as above. For
the featurematching task, this left 23 participants with 4 runs, 4 participants
with 3 runs, and 1 participant with 2 runs. For the association task, there
were 24 participants with 4 runs, 3 participants with 3 runs, and 3 partici-
pants with 2 runs. To select experimental materials, we recruited 30 native
English speakers who did not participate in the main fMRI experiment as
subjects (21 females; age range: 18–24 years). These individuals rated the
colour and shape similarity as well as the semantic association strength for
each word pair.

Tasks paradigms
Spatial working memory task. Participants were required to maintain
four or eight sequentially presented locations in a 3 × 4 grid33, giving rise

to easy and hard spatial working memory conditions (see Fig. 2). Stimuli
were presented at the centre of the screen across four steps. Each of these
steps lasted for 1 s and highlighted one location on the grid in the easy
condition, and two locations in the hard condition. Thiswas followedby a
decision phase, which showed two grids side by side (i.e., two-alternative
forced choice (2AFC) paradigm). One grid contained the locations
shown on the previous four steps, while the other contained one or two
locations in the wrong place. Participants indicated their response via a
buttonpress and feedbackwas immediately providedwithin in 2.5 s. Each
run consisted of 12 experimental blocks (6 blocks per condition and 4
trials in a 32 s block) and 4 fixation blocks (each 16 s long), resulting in a
total time of 448 s (149 TRs).

Math task. Participants were presented with an addition expression on
the screen for 1.45 s and, subsequently made a 2AFC decision indicating
their solution within 1 s (see Fig. 2). The easy condition used single-digit
numbers while the hard condition used two-digit numbers. Each trial
ended with a blank screen lasting for 0.1 s. Each run consisted of 12
experimental blocks (with 4 trials per block) and 4 fixation blocks,
resulting in a total time of 316 s (105 TRs).

Semantic feature matching task. Participants were required to make a
yes/no decision matching probe and target concepts (presented as words)
according to a particular semantic feature (colour or shape), specified at the
top of the screen during each trial (see Fig. 2). The feature prompt, probe
word, and target words were presented simultaneously. Half of the trials
were matching trials in which participants would be expected to identify
shared features; while half of the trials were non-matching trials in which
participants would not be expected to identify shared features. For example,
in a colour matching trial participants would answer ‘yes’ to the word-pair
DALMATIANS—COWS, due to their colour similarity, whereas they would
answer ‘no’ to COAL -TOOTH as they do not share a similar colour.

This task included four runs and two conditions (two features: colour
and shape), presented in a mixed design. Each run consisted of four
experimental blocks (two 150 s blocks per feature), resulting in a total time
of 612 s (408 TRs). In each block, 20 trials were presented in a rapid event-
related design. In order tomaximize the statistical power of the rapid event-
related fMRI data analysis, the stimuli were presentedwith a temporal jitter
randomized from trial to trial35. The inter-trial interval varied from 3 to 5 s.
Each trial started with a fixation, followed by the feature, probe word, and
target word presented centrally on the screen, triggering the onset of the
decision-makingperiod.The feature, probeword, and targetword remained
visible until the participant responded, or for a maximum of 3 s. The con-
dition order was counterbalanced across runs and run order was counter-
balanced across participants. Half of the participants pressed a button with
their right indexfinger to indicate amatching trial and respondedwith their
rightmiddle finger to indicate a non-matching trial. Half of the participants
pressed the opposite buttons.

Semantic association task. Participants were asked to decide if pairs of
words were semantically associated or not (i.e., yes/no decision as above)
based on their own experience (see Fig. 2). Overall, there were roughly
equal numbers of ‘related’ and ‘unrelated’ responses across participants.
The same stimuli were used in the semantic feature matching task and
semantic association task. For example, DALMATIANS and COWS are
semantically related; COAL and TOOTH are not. The feature and
association tasks were often separated by one week. This task included
four runs, presented in a rapid event-related design. Each run consisted of
80 trials, with about half being related and half being unrelated trials. The
procedure was the same as the feature matching task except only two
words were presented on the screen.

Image acquisition
Image acquisition for HCP dataset. MRI acquisition protocols of the
HCP dataset have been previously described30,36. Images were acquired
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using a customized 3 T Siemens Connectome scanner having a 100 mT/
m SC72 gradient set and using a standard Siemens 32-channel radio-
frequency receive head coil. Participants underwent the following scans:
structural (at least one T1-weighted (T1w) MPRAGE and one 3D T2-
weighted (T2w) SPACE scan at 0.7-mm isotropic resolution), rsfMRI (4
runs ×14 min and 33 s), and task fMRI (7 tasks, 46.6 min in total). Since
not all participants completed all scans, we only included 339 unrelated
participants from the S900 release. Whole-brain rsfMRI and task fMRI
data were acquired using identical multi-band echo planar imaging (EPI)
sequence parameters of 2-mm isotropic resolution with a TR = 720ms.
The dMRI data consisted of one 1.25 mm isotropic scan for each parti-
cipant with 3 shell HARDI type acquisition, including b = 1000, 200,
3000 s/mm2, total for 270 non-collinear directions. Spin echo phase
reversed images were acquired during the fMRI scanning sessions to
enable accurate cross-modal registrations of the T2w and fMRI images to
the T1w image in each subject and standard dual gradient echo fieldmaps
were acquired to correct T1w and T2w images for readout distortion.
Additionally, the spin echo field maps acquired during the fMRI session
(with matched geometry and echo spacing to the gradient echo fMRI
data) were used to compute a more accurate fMRI bias field correction
and to segment regions of gradient echo signal loss.

Subjects were considered for data exclusion based on the mean and
mean absolute deviation of the relative root-mean-square motion across
either four rsfMRI scans, resulting in four summary motion measures. If a
subject exceeded 1.5 times the interquartile range (in the adverse direction) of
the measurement distribution in two or more of these measures, the subject
was excluded. In addition, functional runs were flagged for exclusion if more
than 25% of frames exceeded 0.2mm frame-wise displacement (FD_power).
These above exclusion criteria were established before performing the ana-
lysis, (for similar implementation, see (for similar implementation, see Fas-
kowitz et al., 2020; Sporns et al., 2021)). The data of 91 participants was
excluded because of excessive head motion and the data of another 3 parti-
cipants was excluded because their resting data did not have all the time
points. In total, the data of 245 participants was analysed after exclusions.

Image acquisition for Yorkworkingmemory dataset. MRI acquisition
protocols have been described previously17,37. Structural and functional
data were collected on a Siemens Prisma 3 T MRI scanner at the York
Neuroimaging Centre. The scanning protocols included a T1-weighted
MPRAGE sequence with whole-brain coverage. The structural scan used:
acquisition matrix of 176 × 256 × 256 and voxel size 1 × 1 × 1 mm3,
repetition time (TR) = 2300 ms, and echo time (TE) = 2.26 ms. Func-
tional data were acquired using an EPI sequence with an 800 flip angle
and usingGRAPPAwith an acceleration factor of 2 in 3 ×3 x 4 mmvoxels
in 64-axial slices. The functional scan used: 55 3-mm-thick slices
acquired in an interleaved order (with 33% distance factor), TR = 3000
ms, TE = 15 ms, FoV = 192 mm.

Image acquisition for York long-term memory dataset. MRI acqui-
sition protocols have been described previously17,37. Whole brain struc-
tural and functional MRI data were acquired using a 3 T Siemens MRI
scanner utilising a 64-channel head coil, tuned to 123MHz at York
Neuroimaging Centre, University of York. The functional runs were
acquired using a multi-band multi-echo (MBME) EPI sequence, each
11.45 min long (TR = 1.5 s; TEs = 12, 24.83, 37.66 ms; 48 interleaved
slices per volumewith slice thickness of 3 mm (no slice gap); FoV= 24 cm
(resolution matrix = 3 × 3 × 3; 80 × 80); 75° flip angle; 455 volumes per
run; 7/8 partial Fourier encoding and GRAPPA (acceleration factor = 3,
36 ref. lines); multi-band acceleration factor = 2). Structural T1-weighted
images were acquired using an MPRAGE sequence (TR = 2.3 s, TE =
2.3 s; voxel size = 1 × 1 × 1 isotropic; 176 slices; flip angle = 8°; FoV=
256 mm; interleaved slice ordering). We also collected a high-resolution
T2-weighted (T2w) scan using an echo-planar imaging sequence (TR =
3.2 s, TE = 56 ms, flip angle = 120°; 176 slices, voxel size = 1 × 1 × 1
isotropic; Fov = 256 mm).

Image pre-processing
Image pre-processing of HCP dataset. We used HCP’s minimal pre-
processing pipelines30. Briefly, for each subject, structural images (T1w
and T2w) were corrected for spatial distortions. FreeSurfer v5.3 was used
for accurate extraction of cortical surfaces and segmentation of sub-
cortical structures38,39. To align subcortical structures across subjects,
structural images were registered using non-linear volume registration to
the Montreal Neurological Institute (MNI152) space. Functional images
(rest and task) were corrected for spatial distortions, head motion, and
mapped from volume to surface space using ribbon-constrained volume
to surface mapping.

Subcortical data were also projected to the set of extracted subcortical
structure voxels and combined with the surface data to form the standard
CIFTI grayordinate space. Data were smoothed by a 2-mm FWHM kernel
in the grayordinates space that avoids mixing data across gyral banks for
surface data and avoids mixing areal borders for subcortical data. Rest and
task fMRI data were additionally identically cleaned for spatially specific
noise using spatial ICA+ FIX40 and global structured noise using temporal
ICA41. For accurate cross-subject registration of cortical surfaces, a multi-
modal surface matching (MSM) algorithm42 was used to optimize the
alignment of cortical areas based on features from different modalities.
MSMSulc (“sulc”: cortical folds average convexity) was used to initialize
MSMAll, which then utilized myelin, resting state network, and rfMRI
visuotopic maps. Myelin maps were computed using the ratio of T1w/T2w
images40. TheHCP’sminimally preprocessed data include cortical thickness
maps (generated based on the standardized FreeSurfer pipeline with com-
bined T1-/T2-reconstruction). For this study, the standard-resolution cor-
tical thickness maps (32k mesh) were used.

Image pre-processing of York working memory and long-term
memory dataset. The York datasets were preprocessed using fMRIPrep
20.2.1 [ref. 43, RRID:SCR_016216], with detailed methods previously
described in refs. 6,29. In brief, anatomical preprocessing involved
intensity non-uniformity correction, skull stripping, segmentation, and
surface reconstruction. Spatial normalization to MNI152 templates was
performed through nonlinear registration. For each BOLD run, func-
tional data preprocessing followed standard fMRIPrep procedures. This
included generating a reference volume, applying fieldmap correction,
and co-registering the BOLD reference to anatomical space. Motion
correction and slice-time correction were performed. Resampling was
done in the surface space - fsaverage, and final data were output in CIFTI
grayordinate space. Post-processing of fMRIPrep outputs was performed
using eXtensible Connectivity Pipeline (XCP)44. Volumeswith framewise
displacement greater than 0.3 mm were excluded before nuisance
regression. A total of 36 nuisance regressors, including motion para-
meters, global signal, white matter, and CSF signals, were regressed.
Residual time-series were band-pass filtered (0.01–0.08 Hz) and
smoothed with a 6.0 mm FWHMGaussian kernel. Detailed information
is provided in Supplementary Materials and Methods, Section 1.1.

The York University dataset was preprocessed using the default
parameters of fMRIPrep, while the HCP dataset was analysed in the
minimally preprocessed form provided by the consortium. Although dif-
ferent pipelines were applied, we relied on the standard procedures asso-
ciated with each dataset, and no direct comparisons were made between
York and HCP data.

Task fMRI analysis
Individual-specific parcellation. To account for anatomical and func-
tional variability, we used a multi-session hierarchical Bayesian model to
estimate individual-specific parcellations, following the methods in
refs. 6,24. This approach defines 400 individualized parcels across 17
networks per participant and the individual-specific parcellation showed
greater homogeneity than the parcellation using group atlas6,24. Although
the specific vertices for each parcel differ across participants, the MS-
HBM framework preserves cross-subject correspondence, ensuring

https://doi.org/10.1038/s42003-025-09165-7 Article

Communications Biology |          (2025) 8:1776 11

www.nature.com/commsbio


comparability of parcels across individuals. For each parcel in each
participant, we extracted the parcel time series by averaging the signals
across all vertices belonging to that parcel. Group-level FC and FS
matrices were obtained by first calculating parcel-wise matrices for each
participant in each task and then averaging them across subjects. In this
framework, network labels (e.g., DAN-A, DAN-B) are propagated con-
sistently across individuals by the MS-HBM model, and no post hoc
relabelling was performed. Further details are provided in the Supple-
mentary Materials and Methods (Section 1.2.1).

Constructing fMRI FC matrices. To investigate how FC varies across
tasks, we computed task-based and resting state FC matrices. We opted
not to use the traditional psychophysiological interaction method for
measuring task-state functional connectivity due to its potential to inflate
activation-induced task-state functional connectivity, which may iden-
tify regions that are active rather than interacting during the task45. Since
task activations can spuriously inflate task-based functional connectivity
estimates, it is necessary to correct for task-timing confounds by
removing the first-order effect of task-evoked activations (i.e., mean
evoked task-related activity, likely active during the task) prior to esti-
mating task-state functional connectivity (likely interacting during the
task)45. Specifically, we fitted the task timing for each task using a finite
impulse response model, a method that has been shown to reduce both
false positives and false negatives in FC estimation46–48. In long-term
memory tasks, approximately 5 timepoints were modelled for each trial.
For the working memory task, roughly 2.5 timepoints were modelled for
each trial.

Following task regression, we demeaned the residual time series for
each parcel and quantified the FC using Pearson correlation for each par-
ticipant, task and run. ThePearson correlation coefficientsmight be inflated
due to the temporal autocorrelation in task fMRI time series data49. To
address this, we corrected the Pearson correlation using a correction
approach, xDF, which accounts for both autocorrelation within each time
series as well as instantaneous and lagged cross-correlations between the
time series50. This method provides an effective degrees of freedom esti-
mator that addresses cross-correlations, thereby preventing inflation of
Pearson correlation coefficients. Our goal was not to remove temporal
autocorrelation, but to enhance the precision and reliability of correlation
estimates, reducing false functional connectivity between regions. We cal-
culated xDF-adjusted z-scored correlation coefficients to assess the inter-
regional relationships in BOLD time series, resulting in a 400 × 400
functional connectivity matrix for each participant, task, and run. Finally,
we averaged these functional connectivity estimates within networks, and
between pairs of networks, to construct a network-by-network functional
connectivity matrix. The same method was used to calculate the resting-
state functional connectivity of the HCP dataset and construct a corre-
sponding network-by-network functional connectivity matrix, except
without the task regression step. In addition to analyses using task-residual
time series after FIR regression, we also computed FC on parcel time series
without removing task-evoked responses. Both approaches yielded highly
consistent patterns, confirming that preprocessing differences do not
account for the observed effects.

Feature extraction of the time-series data. To investigate how the FS
patterns vary across tasks, we calculated task-based and resting state FS
using the extracted features. To extract the features of the time-series
required for this analysis, we used the time-series analysis toolbox
(hctsa)22,23. With this tool, we transformed each time-series in the dataset
into a set of over 7,700 features, which include, but are not limited to,
distributional properties, entropy and variability, autocorrelation, time-
delay embeddings, and nonlinear properties of a given time-series
(Fig. 1)22,25. We extracted features from the parcellated fMRI time-series
of each participant, each task, and each run separately. After the feature
extraction procedure, we removed the outputs of the operations that
produced errors and normalized the remaining features (about 6900

features) across parcels using an outlier-robust sigmoidal transform. The
resulting normalized feature matrix (400 parcels × ~7000 features × 4
runs) was used to predict networks labels of parcels to identify the DAN
subnetworkwith varying interaction patterns across tasks (Method 4.5.4)
and to construct FS matrix for further analysis (Method 4.5.4).

Constructing fMRI FS matrices. To investigate how FS patterns vary
across tasks, we calculated task-based and resting state FS matrices.
Specifically, we calculated Pearson correlation coefficients of the
extracted features, which represented the pairwise FS between all possible
combinations of brain parcels (Fig. 1). This resulted in a 400 by 400 FS
matrix for each run each task for each participant. The resulting corre-
lation values were Fisher-z transformed. Finally, to construct a network-
by-network FS matrix, we averaged the estimates of FS within networks
and between pairs of networks for further analysis. Unlike FC, which
required xDF correction to adjust for temporal autocorrelation and
cross-correlations, FS did not require xDF because it is based on static
feature profiles, with temporal autocorrelation deliberately retained to
preserve biologically meaningful properties.

To investigate whether functionally connected regions display similar
features, we calculated Pearson correlations coefficients for FS within and
between networks defined by resting state FC. Then we tested whether the
correlations for FS within networks were greater than the correlations
between networks by conducting paired t-test.

Additionally, we estimated the similarity between FC and FS by cal-
culating their correlations at rest and for each task. To control for multiple
comparison, we FWE-corrected the p values using permutation-based
maximum r values. Specifically, we created a null distribution using per-
mutation for each task and chose the maximum values among all the tasks.
We then compared the observed correlation value with the null distribution
to examine whether the correlation between FC and FS was significantly
greater than that expected from null distribution.

Dimension reduction analysis of FC and FS. To examine whether FC
and FS captured similar principal components, we performed dimension
reduction analysis on both resting state FCmatrix and FSmatrix derived
from the HCP dataset. For the FCmatrix, we first calculated resting state
FC for each run of each participant, as detailed in Method section
“Constructing fMRI FC matrices”. Subsequently, these individual con-
nectivity matrices were then averaged to calculate a group-level con-
nectivity matrix. We extracted ten group-level gradients from the group-
level connectivity matrix (dimension reduction technique = diffusion
embedding, kernel = None, sparsity = 0.9), in line with previous
studies37,51 using the Brainspace Toolbox52. This analysis resulted in ten
group-level gradients explaining maximal whole-brain connectivity
variance in descending order. A parallel analysis was performed for the FS
matrix, employing identical procedures except for the input, which
consisted of the FSmatrix as delineated inMethod Section “Constructing
fMRI FS matrices”. This analysis resulted in ten group-level gradients
explaining maximal whole-brain FS variance in descending order. We
retained the components explaining the most variance by looking at the
eigenvalues of each component in the scree plots shown in Fig. 3.

Finally, we examined the similarities between the first three compo-
nents captured by FC and FS, respectively via calculating the Pearson cor-
relations between corresponding components. Due to the spatial
autocorrelation present in each principal component, we created a null
distribution using spin permutation implemented in BrainSMASH53. This
approach simulates brainmaps, constrainedby empirical data, that preserve
the spatial autocorrelation of cortical parcellated brain maps. We then
compared the observed correlation value with the null distribution for left
hemisphere to examinewhether the correlationbetween twocomponents of
parcels in the left hemisphere was significantly greater than that expected
from spatial autocorrelation alone. Similarly, we examined the correlation
between two components of parcels in the right hemisphere using the same
methods. This analysis was performed for the two hemispheres separately
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because the geodesic distance between parcels was used to generate the
spatial-autocorrelation-preserving surrogate maps when creating the null
distribution. It was only possible to measure within-hemisphere geodesic
distance betweenparcels because the left and right hemisphere surfacemaps
were not on the same mesh.

Timescale analysis. The first component captured by FS matrix was
similar to the timescale gradient map reported before7, as determined by
visual comparison. To further understand this component, we calculated
its correlationwith the intrinsic timescale gradientmap,which represents
the temporal duration of ongoing inputs that the brain can process. The
intrinsic timescale for each parcel was characterized by the decay of the
temporal autocorrelation function, as the time taken for the auto-
correlation function to reach a threshold of r = 0.5 (i.e., half of the full
width at half maximum), consistent with prior studies7,54. A higher value
of the intrinsic timescale indicates longer ongoing inputs that the parcel
can process. Given the spatial autocorrelation present in this component
and the timescale gradient map, we created a null distribution using spin
permutation implemented in BrainSMASH53. We subsequently com-
pared the observed correlation value with the null distribution for each
hemisphere to determine whether the real correlations were significantly
greater than that expected by spatial autocorrelation alone.

Calculating the correlations across tasks in FC and in FS. To test
whether FS wasmore sensitive to taskmodulation than FC, we calculated
correlations across tasks for both measures and compared their sensi-
tivities by assessing if FS showed weaker correlations than FC. We used
two methods: (i) we first calculated Pearson correlations (r1) for FC
across tasks for each possible pair of tasks at the group level (for instance,
between the spatial working memory and math tasks) using the task
mean FC matrices. Then, we repeated the process for FS (r2), using the
task mean FS matrices. Finally, we then compared the resulting corre-
lation values (r1 versus r2). (ii) We calculated the Pearson correlation
coefficients between the FC matrix of the spatial working memory task
and the FCmatrix ofmath task at the individual level for each participant
given that each participant completed both spatial working memory task
and math task. Then we repeated the process for FS, using the FS matrix
of each participant. Finally, we converted the r values to z values using
Fisher transformation and compared the z values of the FC with the ones
of the FS by conducting paired t-tests. The same procedures were applied
to the two long-term memory tasks (semantic feature matching versus
association).

Classification analysis—decoding task labels using FS matrix. To
determine whether feature similarity captures task information, we
conducted classification analyses to predict task labels (spatial working
memory versus math) using FS matrices of the working memory tasks of
all the participants, respectively. We employed scikit-learn’s55 linear
support vector machine classifier (SVC) with 5-fold cross-validation to
avoid overfitting and ensure reliable performance. To assess statistical
significance, we performed permutation tests by shuffling task labels 1000
times, creating a null distribution for comparison56. The same approach
was used for long-termmemory tasks (semantic feature matching versus
semantic association) using feature similarity matrices of long-term
memory tasks.

Comparing FC difference and FS difference between networks
across tasks. To investigate whether FS captured varying interaction
patterns across tasks that could not be captured by FC, we first calculated
the average FC between DAN-A and Visual network and between DAN-
A and DMN, across all runs per participant per task. Subsequently, we
calculated the relative FCdifference by subtracting the FCbetweenDAN-
A and DMN from the FC between DAN-A and Visual network. Finally,
we conducted paired-t tests for each task to examine the significance of
the FC difference between network pairs. We further investigated

whether the task influenced the FC difference between network pairs
using the maximum/minimum permutation test. We calculated the
mean FC difference between DAN-A and Visual network versus DAN-A
and DMN for each task and calculated the mean FC difference between
each task pair. To access statistical significance, we permutated the task
label 10000 times and then calculated the mean FC difference between
these two tasks to build a null distribution for each task pair. To control
the family-wise error (FWE) rate (p = 0.05, FWE-corrected) given the
inclusion of multiple task pairs, we utilized the permutation-based
maximummean FC difference andminimummean FC difference values
in the null distribution for each task pair. To evaluate significance, if
the observed mean difference value was positive, we counted the per-
centage of times that mean difference values in the maximum null dis-
tribution were greater than the observed ‘true’ mean difference values.
Conversely, if the observed mean difference value was negative, we
counted the percentage of times of mean difference values in the mini-
mum null distribution were less than the observed ‘true’mean difference
values.

We then examined whether task influences the FS differences between
targeted network pairs (DAN-A-Visual versus DAN-A-DMN) using the
same procedures but applied to FS. Our results showed that FS is more
sensitive to task modulation than FC in the DAN-A-Visual and DAN-A-
DMN comparison. To assess whether this holds for other networks, we
repeated the analysis, comparing FPCN-A-Visual versus FPCN-A-DMN.

Classification analysis—decoding network labels of parcels. Given
heterogeneity of DAN, we used a data-driven approach to identify
the subnetwork most likely to vary in interaction patterns during tasks
using the extracted features. Specifically, we conducted a classification
analysis on a normalized feature matrix (400 parcels by about 7000
features by 4 runs) to decode parcel network labels. After confirming
accurate classification, we examined the confusion matrix to identify
classification errors (Detailed information is provided in Supplementary
Materials and Methods, Section 1.2.3). This allowed us to explore net-
work similarity, as functionally similar networks are more likely to be
misclassified.

Constructing fMRI statistics of pairwise interaction matrices. Many
techniques have been developed to measure pairwise interactions in
complex systems, such as Pearson correlation in fMRI and mutual
information in signal processing. These methods, which range from
contemporaneous correlation coefficients to causal inference approa-
ches, are based on distinct quantitative theories and define interactions
differently. As a result, each method captures different information and
has varying sensitivity. However, since most methods focus on a single
aspect, their sensitivity may still be weaker than FS, which considers
multiple dimensions of information. To test this, we calculatedmany SPIs
using the Python Toolkit for Statistics for Pairwise Interactions (pyspi;
v0.4.11;. The parcel-based task fMRI time series were z-scored along the
time dimension before the calculation.

Different systems involve distinct interactions, causing SPIs to perform
variably across datasets (e.g., smartwatch activity, EEG, fMRI), with some
methods excelling only in specific datasets1. Therefore, it’s essential to select
SPIs that capture the relevant interactions for a given dataset. From the
original list of SPIs1, we initially selected all 67 SPIs that significantly clas-
sified states in the fMRI film dataset of comparable duration (770 s versus.
612 s for our semantic tasks) and then refined this set to 49 SPIs with
reasonable computational requirements (<5 h per run per task per subject).
This approach ensured the selected SPIswere both relevant andpractical for
our analysis.

The 49 SPIs used in this study were derived from 20 interaction
measures across six categories: (1) Basic Statistics: This category includes
measures such as covariance, which quantifies the linear relationship
between two variables, and precision, which captures pairwise associations
while controlling for the effects of other variables in the dataset.
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(2) Distance-Based Similarity: Thesemeasures quantify statistical similarity
or independence using pairwise distances between bivariate observations.
Examples include Euclidean distance and correlation distance, which
evaluatehow similar or dissimilar two variables are in their distributions. (3)
Information-Theoretic Measures: Metrics in this category include mutual
information, which quantifies the total dependency between two variables,
and joint entropy, which measures the combined uncertainty or informa-
tion content of two variables. (4) Causal Inference:Methods in this category
are designed to infer directed relationships. For example, regression error-
based causal inference determines the causal direction by analysing which
variable’s residuals are more independent of the predictor, indicating
potential causal influence. (5) Spectral Measures: These measures are
computed in the frequency or time-frequency domain. Examples include
spectral coherence magnitude, which quantifies the alignment of frequency
components in phase and amplitude, and phase locking value, which
measures the consistency of phase differences between two signals over
time. (6)MiscellaneousMethods: This category includes techniques such as
linearmodelfits, which estimate relationships through regression, andother
statistical tools that quantify pairwise interactions but do not fit into the
above categories. See SupplementaryMaterial 1.3.3 for a full list of SPIs used
in this study. The detailed information of these SPIs can be found in Sup-
plementary Table 1.

We calculated the pairwise statistics for the selected SPIs across all
subjects and compared the interactionmatrices across tasks, focusing onkey
networks (DAN-A, Visual, and DMN). We conducted paired t-tests for
each task to assess differences between network pairs and conducted FDR
correction to control for multiple comparisons. The same methods were
used when comparing FC and FS, with the only difference being the input
matrices derived from SPIs.

Statistics and reproducibility
We computed FC between and within brain networks using Pearson cor-
relation. We derived FS from multidimensional feature-based correlations
across regional time-series features. We applied diffusion embedding to FC
and FSmatrices to extract the principal connectivity components. We used
paired t-tests to examine task-related differences between FC and FS and
conducted classification analyses to identify subnetworks within the DAN.
We applied family-wise error (FWE) correction and spin permutation tests
to control for multiple comparisons. We also used spin permutation to
account for spatial autocorrelation in cortical data, ensuring that anatomical
proximity did not bias statistical significance.

All statistical analyses used biologically independent participants, with
sample sizes reported in the figure legends.We replicated previous findings
showing that regions within the same intrinsic functional network exhibit
higher FC and FS than regions across networks and that the first three
principal connectivity components of FC replicate those described by
Margulies et al. We further showed that FC and FS share two principal
components and differ in one. Extending these results, we demonstrated
that FS exhibits greater task-dependent variation than FC and captures
network interaction patterns across tasks that FC andmost other SPIs fail to
detect.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The HCP dataset is publicly available at https://www.humanconnectome.
org/. Raw data collected at the University of York cannot be shared at this
time due to consent limitations under UKGDPR. Researchers interested in
accessing this data should contact the Chair of the Research Ethics Com-
mittee at the York Neuroimaging Centre. Preprocessed data from the
University of York are available on the Open Science Framework57, and
results are accessible at https://github.com/Xiuyi-Wang/Feature_
similarity_Project.

Code availability
The analysis code is accessible at https://github.com/Xiuyi-Wang/Feature_
similarity_Project.
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