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The binary black hole signal GW250114, the loudest gravitational wave detected to date, offers a unique
opportunity to test Einstein’s general relativity (GR) in the high-velocity, strong-gravity regime and probe
whether the remnant conforms to the Kerr metric. Upon perturbation, black holes emit a spectrum of
damped sinusoids with specific, complex frequencies. Our analysis of the postmerger signal shows that at
least two quasinormal modes are required to explain the data, with the most damped remaining statistically
significant for about one cycle. We probe the remnant’s Kerr nature by constraining the spectroscopic
pattern of the dominant quadrupolar (£ = m = 2) mode and its first overtone to match the Kerr prediction
to tens of percent at multiple postpeak times. The measured mode amplitudes and phases agree with a
numerical-relativity simulation having parameters close to GW250114. By fitting a parametrized
waveform that incorporates the full inspiral-merger-ringdown sequence, we constrain the fundamental
(¢ = m = 4) mode to tens of percent and bound the quadrupolar frequency to within a few percent of the
GR prediction. We perform a suite of tests—spanning inspiral, merger, and ringdown—finding constraints
that are comparable to, and in some cases 2-3 times more stringent than those obtained by combining
dozens of events in the fourth Gravitational-Wave Transient Catalog. These results constitute the most
stringent single-event verification of GR and the Kerr nature of black holes to date, and outline the power of

black-hole spectroscopy for future gravitational-wave observations.

DOI: 10.1103/6¢61-fm1n

Introduction—On January 14, 2025, the LIGO detectors
[1] recorded the loudest gravitational-wave (GW) signal to
date, GW250114_082203 (hereafter GW250114) [2]. The
Virgo [3] and KAGRA [4] interferometers were offline at
the time. The high network signal-to-noise ratio (SNR) of
76 makes GW250114 an especially powerful probe of
whether Einstein’s theory of general relativity (GR) [5],
and, in particular, its rotating vacuum black hole (BH)
solution [6], accurately describe the observed gravitational
radiation.

The nonlinearity of Einstein’s field equations, coupled
with the interdependence of metric and matter, the inherent
gauge freedom, and the complexity of the initial-value
problem [7,8] have made solving these equations notori-
ously challenging. Following the spherically symmetric
solution [9] in 1916, the search for an exact rotating
axisymmetric solution in vacuum spanned nearly 50 years,
until the Kerr metric breakthrough [6]. This was followed by
efforts to establish the uniqueness of static and stationary
solutions, including their full characterization by conserved
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quantities, such as mass, spin, and charge [10-15]. The Kerr
metric’s simplicity has enabled the derivation of unexpected
properties, including integrability for geodesic motion [16],
the Penrose process [17,18], and the four laws of BH
mechanics [19]. The solution’s application to rotating BHs
has had a profound impact on astrophysics, particularly
once quasars were discovered [20]. The Kerr solution
underpins waveform models used to detect GWs and infer
properties of dark objects. Thus, finding that these objects
do not conform to Kerr BHs would have far-reaching
implications for both astrophysics and fundamental physics.

From shortly after its inception, the theory of GR
has withstood a broad array of experimental probes.
Nevertheless, there are open questions associated to BHs,
such as their stability [21-24], the existence of singularities
inside their event horizon [25], and Hawking’s information-
loss paradox [26,27]. Furthermore, GR is known to be
incomplete in the quantum domain and requires a dark
sector (dark matter and dark energy) to explain cosmologi-
cal observations, motivating continued searches for possible
deviations and viable extensions of the theory [28]. Some
gravity theories alternative to GR admit the Kerr metric as a
solution [29,30], thus tests of GR and tests of Kerr
spacetime are complementary.

In the last ten years, GW observations from binary black
hole (BBH) coalescences [31,32] (as well as, from binary
neutron stars and mixed binaries) have provided a unique
laboratory for testing GR in the strong-gravity, dynamical,
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and high-velocity regime, where potential departures from
GR are expected to be most pronounced [28-30,33]. Since
the first detection of a BBH coalescence [34,35], the
growing catalog of GW events [32,36-39] has enabled
increasingly stringent bounds of the inspiral, merger, and
ringdown phases [40-43]. These results complement other
GR investigations—Solar System tests, binary-pulsar
experiments, observations of massive BHs at galactic
centers, and cosmological measurements [28,44-49]—
which span low-velocity, quasistatic, weak-field regimes
and, in some cases, strong-field environments with self-
gravitating bodies.

In vacuum, BHs in binaries adiabatically and steadily
approach each other during the inspiral until they merge,
driven by GW emission, a purely tensorial radiation in GR,
dominated by the quadrupolar multipole [50]. According to
GR, after the two BHs merge, a highly distorted remnant
BH is formed, which equilibrates by emitting gravitational
radiation [51-53]. In the 1970s, Vishveshwara and Press
[54,55], using results from Regge, Wheeler, and Zerilli
[56,57], made a significant discovery. In response to an
incoming pulse of radiation, BHs ring the spacetime,
emitting a superposition of damped sinusoids with discrete
frequencies and decay times, depending solely on the
intrinsic properties of the BH, notably its mass and spin.
This follows from the no-hair theorem [6,10-15], which
states that in four-dimensional vacuum GR, a stationary BH
that is nonsingular outside the horizon is fully characterized
by its mass and spin. Since those pioneering works [54,55],
using sophisticated analytical and numerical methods in BH
perturbation theory [58-62], the full first-order BH spec-
trum has been computed for rotating BHs, revealing also the
presence of GW tails [63,64] at late times. It was also noted
[61] that with the advent of GW astronomy, detecting BH’s
quasinormal mode (QNM) frequencies could confirm their
existence with a certainty comparable to the way the 21 cm
line unequivocally identifies interstellar hydrogen. This
started the BH-spectroscopy program [61,65-72]. A meas-
urement of the frequency and damping rate of a single mode
suffices to constrain the final-state mass and spin.
Measurements of multiple mode frequencies and damping
times enable a test of the no-hair theorem [17,73-75]
through the consistency of the modes’ properties with the
Kerr prediction [6]. In principle, the QNMs are affected by
electromagnetic charges, but we expect the latter to be
negligible for astrophysical BHs [76-79]. Several studies in
the last few years have investigated the presence of QNMs
in GW data claiming different levels of significance
[35,43,80-85].

In this Letter, we perform several studies of GW250114,
aimed at constraining deviations from the GR predictions
throughout the inspiral, merger, and ringdown; the Kerr
nature of the components in the binary; and of the remnant
via BH spectroscopy. Extending the recent work in Abac
et al. [2], we investigate the postmerger stage with different

ringdown models and methods. We corroborate our findings
for the amplitudes and phases of the quadrupolar QNMs
with results of a numerical-relativity (NR) simulation
having parameters close to GW250114. We bound the
spectroscopic pattern of the dominant quadrupolar mode
and its first overtone to match the Kerr prediction at multiple
postpeak times, while constraining, for the first time, the
hexadecapolar fundamental-mode frequency using a para-
metrized waveform model for the full signal. We use
waveform models with parametrized deviations from GR
to set the most stringent bounds on the post-Newtonian (PN)
parameters determining the GW phasing during the inspiral,
perform signal consistency tests, and use them to assess the
increase of the BHs area from the inspiral to the ringdown at
high credibility. Overall, GR and the Kerr metric once again
remain empirically unshaken.

GW250114—Using the inspiral-merger-ringdown (IMR)
quasicircular, spin-precessing NRSur7dg4 model [86], Abac
et al. [2] found that the wave morphology is consistent
with a BBH with component masses 33.6f&"§Mo and
32.2f(l)"§M® and dimensionless spin magnitudes < 0.24
and <0.26 (90% credible intervals). Its eccentricity is
constrained to e <0.03 at a reference frequency of
13.33 Hz, using eccentric aligned-spin models [87,88].

BH spectroscopy of the remnant alone—In GR, after a
dynamical phase surrounding a BBH merger, the post-
merger signal is dominated by a superposition of expo-
nentially damped sinusoids corresponding to QNMs of the
final Kerr remnant with redshifted mass M;(1 + z), where
z is the cosmological redshift, and dimensionless spin y
[51-53].

While the prompt response [65,89,90], dynamical
effects [91-93], higher-order perturbative terms [94-97],
and other noninearities [51] are expected to contribute to
the early postmerger signal, they are subdominant to the
QNMs at sufficiently late times [98,99]. Gravitational-
wave tails [63,64,100-103] dominate at much later times.
Here, because of some theoretical modeling uncertainties,
we neglect these other contributions, focusing on the
exponentially decaying sinusoidal QNM component and
assume that the plus and cross polarizations of the
postmerger signal at the detectors take the form [35]

—ih. = E ~t/Temn [ AR o=27if ot L p27if gyt
h+ lhx - e ‘ (Afmne ’ +At’mne ‘ ’

7=
0<m<e
nz0
(1)
where the complex numbers AR~ and AL~ encode the

amplitudes and phases of the right- and left-circularly
polarized components of the mode, and depend on the
excitations imprinted on the spacetime by the progenitors’
dynamics [104-109]. The frequency f,,, and the damping
time 7,4, correspond to the Kerr QNM frequencies and
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damping times, and are indexed by the angular-mode
numbers ¢ and m, and the radial-overtone number n
[58-60]. The amplitude of the elliptically polarized mode
at time ¢t = 0, which we take to be the starting time of fits of
Eq. (1) to GW250114, is Az, = |AX |+ |AL | [110].
Given GW250114’s properties, in Eq. (1) we have neglected
retrograde modes, which are known to be less excited and
less important than prograde modes for this type of system
[106,111,112].

We employ RINGDOWN [81,110] and pyRing [80,113] to fit
Kerr models of the form Eq. (1), as well as models with
agnostic complex frequencies, to the postpeak signal from
GW250114, starting at a range of times, 7., after 7., the
time at which NRSur7dg4’s maximum likelihood strain mag-
nitude over the two-sphere achieves its maximum
[2,80,81,86,110,114]. We adopt the reference peak time,
mass, and sky location from the ringdown fits in Abac et al.
[2], with 7y, = (1 +2)GM;/c* = 0.337 ms. Henceforth,
we refer to the Kerr modes in Eq. (1) as #mn, and a sum of
multiple modes is denoted as Zmn+ ¢'m'n’. The
RINGDOWN and pyRing codes have different native priors
and run settings, and therefore produce results for this
analysis that differ [2]. The results from both codes are
sufficiently qualitatively similar; however, in most cases we
show results from only one or the other code throughout.

As shown in Abac et al. [2], the postpeak data of
GW250114 is consistent with the 220 and 221 QNMs.
Here, we further motivate this identification, extend this
Lette using other ringdown models and methods, and test
the remnant’s Kerr nature at different postpeak times. In the
Supplemental Material [115], we also validate the use of
Eq. (1) at the times at which we apply our QNM models by
comparing to NR waveforms. We start by adopting an
agnostic sum of two damped sinusoids (2DS) whose
complex amplitudes, frequencies, and damping times are
arbitrary [35,42,43]. In the top panel of Fig. 1, we show that
the amplitude of the more rapidly decaying damped
sinusoid at various fit start times 7. is bounded away from
zero at >3c until 7. > 91, and it is nonzero at 3.5¢ at
t. = 6fy,. By examining the frequencies and damping
times of the two damped sinusoids shown by the red
contours in Fig. 2 (the other contours will be discussed
later), we find that they are broadly consistent with the 220
and 221 QNM:s predicted from the remnant mass and spin
inferred from the IMR analysis of GW250114 in GR. This
motivates fitting GW250114 with the 220 + 221 model. In
the bottom panel of Fig. 1, which shows the amplitude of the
221 QNM at various fit start times, we see that for the 220 +
221 model the 221 QNM’s amplitude is not only bounded
away from zero, but is consistent with the exponential decay
expected within the error bounds of the 221 QNM fit at
t. =61y, for 1. > 61y . At earlier times, the amplitude
deviates from its expected value, suggesting a breakdown of
the 220 + 221 model. Motivated by analysis of NR sim-
ulations [116], we find that if the 222 QNM is added to the
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FIG. 1. Consistency of postmerger data with two QNM:s. Top:

the inferred amplitude of the most rapidly decaying damped
sinusoid for the 2DS model at different fit times as measured by
RINGDOWN. The dots indicate posterior medians, while the thick
(thin) bars indicate the 50% (90%) credible interval; for each
time, they have been offset slightly for clarity. The gray bands
predict the median, 50%, and 90% credible ranges of amplitudes
over time from the 7. = 61, fit, marked by the first dotted line.
The second dotted line at £ = 9¢),, indicates the latest time that
the 90% credible range of the amplitude is distinct from zero. The
hatched region shows the greater than 3c-equivalent credible
region for the amplitude being strictly positive. Bottom: the
inferred amplitude of the 221 mode for the 220 + 221 (pink) and
220 + 221 + 222 (green) models as measured by pyRing. The first
dotted line indicates t. = 31, beyond which 220 + 221 + 222
fits yield 221 amplitudes consistent with that at 7. = 6¢y,,. The
second dotted line indicates 7. = 61, . The hatched curve shows
the > 20-equivalent credible region.

fit, then consistency at the 90% level with the amplitude at
t, = 61y, is obtained until 7, > 37y, , even though the
amplitude of the 222 QNM is never confidently measured
away from zero in these fits. These findings suggest that the
data is indeed consistent with the 220 and 221 QNMs over a
range of times.

In the Supplemental Material [115], we corroborate
these results using a NR simulation in GR. Specifically, we
demonstrate that the results in Fig. 1 are broadly consistent
with that of a simulated signal of a NR simulation with
parameters close to GW250114; we show that the relative
amplitudes and phases of GW250114’s 220 and 221
QNMs are consistent with those of the NR simulation
at the >38% credible level for 7. €[3,9]t);,. Separately,
using GW250114 we also find consistency among the final
mass and spin computed with the IMR analysis and the
various QNM models we fit.

In Fig. 2, we probe the Kerr nature of the remnant.
We examine the fit to the postpeak data of GW250114
with a 220 + 6221 model whose 221 QNM’s frequency
and damping time (f,,; and 7y,;) are allowed to vary
from their Kerr values (f21ker and 7pqger) by
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FIG. 2. BH spectroscopy with different QNMs. The 90%
credible regions for the 220 (solid) and 221 (dashed) QNM
frequencies and damping times as measured when fitting the
220 + 6221 model at . € {3, 6,9}, (green, pink, blue) and the
2DS model at .. = 9ty (red). In orange, the constraints from the
pSEOBNR analysis for the 220 (solid) and 440 (dot-dashed)
QNDMs. Black curves indicate the 220, 221, and 440 frequencies
and damping times inferred from the IMR remnant mass and spin
posteriors.

5?221 =In(f21/f221kerr) and 82321 = In(7221 /7221 Kerr)-
As suggested by the 2DS fit, the data are particularly
consistent with the 220 and 221 QNMs predicted by the
remnant mass and spin inferred by the full IMR analysis.
More specifically, we constrain 6f,,; = —0.13706! at
t. =31y, 8f 201 = 0.090%) [2] at 1. = 61y, and 6f ) =
—0.07592% at t. =91y, all at the 90% credible level.
However, the recovered amplitude of the 221 QNM is not
consistent with values at later times in the 37, fit,
indicating that the model may be fitting other content at
these times. Previously, analysis using the third
Gravitational-Wave Transient Catalog (GWTC-3.0) [43]
set 5}‘22] = 0.0Ifg_'zzg by analyzing the data from the peak
onward using pyRing, and hierarchically combining results
from 21 events [117]. In the following section, we will
return to this figure to discuss the pSEOBNR analysis.
Additionally, we perform an analysis that does not
measure the mode amplitudes, but filters out successive
Kerr QNMs from the data in the frequency domain: the
QNM rational filter (QNMRF) [118—120]. We adopt a hybrid
Bayesian-like approach, with a detection statistic D that is
analogous to a logarithmic Bayes factor, yet differs from the
Bayes factors used in other time-domain ringdown analyses
(see details in Supplemental Material [115]). Figure 3 shows
the difference between the QNMRF detection statistic and the
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FIG. 3. Filtering out two QNMs in the postmerger data.
Detection statistics for the QNMRF analysis with varying mode
content relative to the 1% FAP threshold over time [121]. At
times 7. < 10¢),, the QNMRF finds strong support for the 220 +
221 model over the single-mode 220 model. The 220 + 221 +
222 model is weakly preferred over the 220 + 221 model from
to = lty, to to = Sty,.

detection statistic corresponding to a 1% false-alarm prob-
ability (FAP) for the 220+ 221 and 220 + 221 + 222
models. Like the other analyses, the QNMRF finds strong
support for the 220 + 221 model over the single-mode 220
model for times 7. < 107, . Additionally, the three-mode
220 + 221 + 222 model is more weakly preferred over the
220 +221 model from t_ =1ty to t. = S5ty,. This
provides independent evidence that GW250114 is consis-
tent with the 220 and 221 QNMs.

BH spectroscopy with full signal—So far, we have
treated the complex amplitudes of the QNMs in Eq. (1)
as free parameters, and directly constrained them from the
data using only the postpeak signal. When these amplitudes
are instead predicted from the binary’s properties using NR
simulations in GR, consistency tests are feasible even with
a single mode [43,85,122]. This results in a more stringent
test of GR, at the cost of stronger assumptions about the
emission process: most existing amplitude models assume
the perturbed BH originates from a binary merger, and are
restricted to quasicircular orbits [104—109].

Including additional premerger information, one can test
for deviations in QNM frequencies by analyzing a full IMR
waveform calibrated to NR simulations. The pSEOBNR
analysis [122-125] introduces fractional deviations
(8F smo» 5% smo) to the frequency and decay time of the
fundamental QNMs in the ringdown description of
SEOBNRv5PHM [126,127] as
Femo=Fomo(U+8F emo)s  Temo=7gmo(1 +6%4m0).  (2)

The GR predictions for these quantities are obtained
using the final mass and spin of the remnant BH, estimated
using NR fits based on the measured component masses
and spins [128,129]. Rather than isolating the post-merger
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stage, excluding the inspiral and merger phases, the
analysis uses the full IMR signal, assuming GR holds
up to the merger. The merger-ringdown model is based on a
factorized ansatz: the contributions of the fundamental
QNMs, modified via the parametrization in Eq. (2), are
multiplied by phenomenological, time-dependent ampli-
tudes calibrated to NR [127,130,131]. These amplitudes
aim to capture the ringdown prompt response [65,89,90]
and dynamical phase [91-93]. As for now, this approach
enables constraints on fundamental QNMs, but not on
overtones, whose effects are implicitly absorbed by the
time-dependent amplitudes rather than being parametrized
explicitly.

We first perform an analysis allowing for deviations in the
dominant 220 QNM only, which has been the focus of pre-
vious constraints [42,43,123,125]. Owing to GW250114 ’s
high SNR (~65 up to merger and ~40 postmerger), we
also extend the analysis to probe higher fundamental
QNMs. The nearly equal masses and low spins of the
binary’s components imply that multipoles with odd m
are suppressed due to rotational symmetry, while even-m
multipoles are expected to be more prominent [99,132,133].
The inclination (® = 0.78%,7 rad [2] at a reference fre-
quency of 20 Hz, when folded to [0, z/2]) and azimuthal
phase inferred from GW250114 favor the excitation of the
(¢, |m|) = (4,4) multipoles [2,133], which contribute an
SNR of 3.64_”11_;l to the full IMR signal [134]. Therefore, we
perform an analysis including deviations in both the 220 and
440 QNMs. We find minimal correlation between the
deviation parameters of the two modes, and in the following

we report constraints on (870, 5250 from the joint fit.
The results are summarized in Fig. 4. The frequencies and
damping times of both modes are consistent with the
predictions of GR, based on the Kerr remnant parameters
inferred from the inspiral. The dominant 220 QNM is
especially well constrained, with 5}’220 = 0.02*_’8:822 and
0Ty = —0.0lfg_'ég . Owing to the exceptional SNR of this
signal, these constraints are roughly twice as stringent as
those obtained by hierarchically combining [117,135]
results from 17 events in the fourth Gravitational-Wave
Transient Catalog (GWTC-4.0) [136], which have SNR
above 8 in the inspiral and postinspiral stages. That analysis
yielded 61550 = 0.0070-9 and 62,y = 0.167013. A measure
of consistency with GR is provided by the GR quantile Qgr
[42], which corresponds to the cumulative posterior prob-
ability enclosed by the isoprobability surface passing
through the GR prediction. A lower (higher) value of
Ogr indicates better (worse) consistency with GR. For
GW250114, the GR quantile is 54.2%, lower than for the
combined constraints from GWTC-4.0 [136], 85.1%. The
GWTC-4.0 results show a mild tension with GR [136],
potentially due to non-Gaussian or nonstationary noise
[42,125], parameter correlations amplified by unrealistic
astrophysical priors [43,137], intrinsic variance due to the

— GW250114
~-- GWTC-4.0 A

[\l
(e=)
T
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T
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—-0.4 —0.2 0.0 0.2 0.4

FIG. 4. Constraining the 220 and 440 QNMs using the full
signal. Marginalized posterior distributions for fractional devia-
tions in the frequency and damping time of the 220 QNM
(8f220- 6%220)» and in the frequency of the 440 QNM (8f449).
from the pSEOBNR analysis of GW250114. Hierarchically com-
bined results from GWTC-4.0 [136] are also shown. Triangles
mark the median values and vertical bars the symmetric 90%
credible interval.

limited number of events in the catalog [138], or unmodeled
selection effects that could systematically influence which
signals are included in the analysis.

We also constrain, for the first time, the frequency of the
subdominant 440 QNM, obtaining §f40 = —0.067033.
The damping time remains weakly constrained, with
8t440 = 0.207033. Since the pSEOBNR method employs
the entire IMR signal, it enforces continuity across the
waveform and does not allow the mode amplitudes to
vanish. As a result, the analysis cannot by itself establish
whether the 440 QNM is present in the data. However,
similar constraints do not appear in simulated signals that
exclude this mode or in lower-SNR events (see details in
the Supplemental Material [115]), lending support to the
interpretation that the constraint is driven by the presence of
the 440 QNM in the ringdown signal of GW250114.

Beyond testing whether each mode is individually
consistent with GR, one can also test whether both
are consistent with originating from the same Kerr remnant,
as in classical no-hair-theorem tests [61,65-68,70].
In the pSEOBNR framework, this is done by reconstructing
the complex frequencies of the two modes from
Eq. (2), giving fay = 251.772) Hz, 7559 = 4.091)43 ms,
faso =503"132 Hz, and 7449 = 4.7737 ms. Their 90%
credible regions are shown as the orange solid and dot-
dashed curves in Fig. 2. These are then inverted to obtain
two separate estimates of the remnant’s mass and spin using
fitting formulas [68], shown in Fig. S3 in the Supplemental
Material [115]. We find that the estimates are mutually
consistent, and agree with both the IMR-inferred values and
with results from ringdown remnant-alone analyses.
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FIG.5. Constraints on the inspiral phase from GW250114. The
90% upper bounds on the magnitude |5¢;| of the PN inspiral
deviation coefficients from —1 PN to 3.5 PN and the first two
leading PCA parameters. For GW250114, blue filled (unfilled)
stars are for FTI (TIGER). The horizontal red stripes mark the
results from individual events from GWTC-4.0 using FTI.
Bounds obtained by hierarchically combining the results from
GWTC-4.0 are shown in the filled (unfilled) red squares for FTI
(TIGER) [136]. The right panel shows constraints on the two
leading PCA parameters that capture the dominant modes of
deviation across the 1.5-3.5 PN parameter space.

The presence of the (4,4) multipole is independently
supported by isolating the post-peak data in time domain,
with the KerrPostmerger model in pyRing [85]. This
model has also amplitudes calibrated to NR simulations at
merger [131,139,140]. Including the (4,4) mode is mildly
favored by a log,, Bayes factor of 0.54f8_‘11§ compared to a
model with only the dominant (2,2) mode. Allowing for
deviations from GR with the parametrization in Eq. (2),
we constrain the 220 QNM as 8fy = 0.09°03F and
8ty = —0.14703, while the 440 mode remains uncon-
strained. While less stringent than pSEOBNR, this analysis
quantifies the constraints achievable when isolating the
remnant’s relaxation.

The stringent pSEOBNR results can improve current
constraints on gravity theories beyond GR [141-145],
and constrain properties of exotic compact objects
[146,147]. As a concrete example, we consider dynamical
Chern-Simons (dCS) gravity [148], a parity-violating exten-
sion of GR in which the QNM spectrum receives corrections
controlled by a coupling length /a4cs [149]. Mapping the
bound on the 220 QNM frequency to the predicted dCS
correction yields an approximate constraint on the dCS
coupling length of /@gcs < 32.2(40.1) km, assuming
purely axial (polar) perturbations [149] (using the conven-
tions therein). Differently from GR, dCS gravity breaks
isospectrality [148]. These single-event bounds are com-
petitive with recent ringdown-only analyses of GW150914,
GW190521_074359, and GW200129_065458 [145].

The estimate is based on the posteriors for 5]?220 and
remnant mass and spin from the pSEOBNR analysis,
reweighted to a prior uniform in the dCS coupling length.
More robust constraints could be obtained from a Bayesian
analysis that directly uses waveform predictions in dCS
gravity [143,145].

Bounding post-Newtonian inspiral parameters—The
inspiral regime can be treated perturbatively within the
PN framework [150], an expansion in powers of v/c where
the nPN order corresponds to O([v/c]**). As the intrinsic
parameters of the binary uniquely determine the PN
coefficients ¢; in the GW phase at each order, we can
construct a consistency test of GR by introducing defor-
mation parameters at each PN order [151-157]. We only
consider variations in the individual PN coefficients
independently, treating them as free coefficients that
constrain the degree to which deviations from GR agree
with the data. The inspiral deviations are constructed so as
to represent a shift to the nonspinning PN coefficient, i.e.,
@i = (14 68¢,)pNS + @3, where ¢S denotes the nonspin-
ning coefficient and ¢} is the spin-dependent part of the
PN coefficient. In GR, the coefficients at —1 PN and
0.5 PN are explicitly zero and should be interpreted as
absolute deviations, while the other coefficients are
expressed as fractional deviations.

As in the GWTC-4.0 analysis [136], we use two
independent pipelines: Flexible Theory Independent (FTT)
[40,158] and Test Infrastructure for General Relativity
(TIGER) [159-161]. The pipelines have several methodo-
logical differences, including the cutoff frequency at which
corrections are turned off and choice of waveform models
used. The FTI pipeline employs the SEOBNRvSHM_ROM
model [127], which is restricted to aligned-spin configura-
tions, whereas TIGER utilizes the precessing-spin wave-
form model IMRPhenomXPHM_SpinTaylor [162,163]. Because
of technical changes in the pipelines, only events first
reported in GWTC-4.0 that meet the FTI or TIGER
selection criteria are analyzed [136]. For FTI, we use 18
events and for TIGER, we use 22 events.

The results are summarized in Fig. 5. Due to the
significantly higher SNR of GW250114 during the inspiral
phase compared to the rest of the observed BBH population,
the FTI analysis of GW250114 provides constraints on a
subset of deviations that are 2—3 times more stringent than
the joint constraints derived from a hierarchical analysis
[117,135] of the GWTC-4.0 results [136]. The bounding
fractional deviations to the leading-order PN and 1.5PN
coefficients are 6y = 0.007005 and 8¢5 = —0.011J0; for
GW250114 compared to 8@y = —0.00100s and 5¢3 =
0.007 397 for GWTC-4.0. GW2501 14 being a shorter signal,
we do not place competitive constraints on the dipole ¢_,
compared to those obtained from GW170817 [40]. Overall,
the TIGER pipeline yields constraints that are less stringent
than the combined GWTC-4.0 results [136], likely due to
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the differing treatment of the cutoff frequency and transition
to merger-ringdown between the pipelines [136], and the
inclusion of spin-precession in the TIGER analysis.

To address the limitation of varying individual
PN coefficients independently, we perform a principal-
component analysis (PCA) to probe correlated deviations
across multiple PN orders [164—167], focusing on the 1.5 to
3PN coefficients [166,167].

The PCA analysis identifies the principal directions of
parameter covariance, with the leading component corre-
sponding to the linear combination of PN coefficients that
is best constrained by the data. The leading PCA compo-
nent can therefore yield tighter bounds than the individual
PN coefficients, while the sub-leading component, being
orthogonal to this optimal direction, can have weaker
constraints than the best measured PN coefficients. We
find that the FTI pipeline constrains the leading PCA

component to 5@% = —0.01700 (slightly better con-
strained than 6¢; = —0.01f8:8§ ) and the subleading com-

ponent to 5@;28 A, = 0.047012, consistent with GR (see
Fig. 5). A comparison of the PCA results to GWTC-4.0
is technically challenging as the PCA components corre-
spond to different linear combinations of PN parameters for
each event. This means that hierarchical inference requires
modeling the joint distribution across all six PN coefficients
[167]. Further details are presented in the Supplemental
Material [115].

Signal consistency tests—We now construct an analysis
complementary to the other tests, focusing on the consis-
tency between different portions of the signal, by employing
dimensionless deviation parameters that quantify the frac-
tional difference between the remnant mass M; and spin y;
inferred from the low- (f < fIMR) and high-frequency
(f > fIMR) portions of the GW signal [168—170]. The
cutoff fIMR is taken to be the GW frequency of the (2,2)
mode at the innermost circular orbit of the remnant Kerr BH
[171]. Ideally, the determination of whether a violation has
occurred should be independent on the selected cutoff
frequency. However, the stringency and sensitivity of the
test may exhibit some dependence on this choice. The
remnant properties are calculated using NR-calibrated fits
for the final state [129,172,173] applied to the median
values of the redshifted component masses, spin magni-
tudes, and spin angles as inferred from the full IMR analysis
[41-43]. Inference is performed in each of the frequency
regimes using IMRPhenomXPHM_SpinTaylor [162,163], with
priors that are uniform in component mass and spin
magnitude, and isotropic in the spin orientation. This choice
of priors leads to highly nonuniform priors on the deviation
parameters, and we therefore reweight the posteriors to
impose uniform priors on them [42,43].

If GR is valid, and our waveform models are sufficiently
accurate, the analysis in each of these regimes should yield
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FIG. 6. Consistency of GW250114 with a BBH in GR using
data from the inspiral and merger-ringdown. The 90% credible
regions of the two-dimensional posteriors on AM;/M; and
Aye/ie for GW250114 (filled blue), with (0, 0) being the
expected value for GR. The side panels show the marginalized
posteriors. The gray two-dimensional posteriors show the results
from individual events in GWTC-4.0 [136], while the red shaded
posteriors denote constraints derived from a hierarchical infer-
ence on these events. Triangles mark the median values and
vertical bars the symmetric 90% credible interval.

insp

consistent results. Thus, we have AM;/M; = 2(M;
M$ost1nsp) /( lensp + M?OSUHSP) and A)(f /)_{f -2 (){}nsp _

AROSISPY /(0P POSINSPY L gych that the GR limit is given

by AM¢/M; = Ay;/is = 0. The core results are summa-
rized in Fig. 6. We infer AM;/M; =0.02")0] and
Ay /i = —0.01f8",111 from GW250114. We compare these
results with the ones obtained by hierarchically combining
the 12 events first reported in GWTC-4.0, yielding
AM;/M; = 0.0370'17 and Aye/z; = —0.017-3. Remar-
kably, the constraints derived from GW250114 alone yield
a consistency test of comparable stringency to the combined
analysis of GWTC-4.0 [136]. The GR quantile for the two-
dimensional posteriors from GW250114 is 49.5%, com-
pared to 19.5% for the GWTC-4.0 analysis [136].

We also exploit the results of the consistency test to
determine at what statistical significance the Hawking area
theorem [174], a fundamental consequence of the second
law of BH mechanics, holds. This theorem states that the
horizon area of a BH cannot decrease over time. Our
analysis yields a credibility of 4.8oprcT, representing the
statistical significance in standard deviations of the differ-
ence between the mean total area of the initial BHs and the
mean final BH’s area. This test differs from the more
agnostic strategy followed in Abac et al. [2], where the

041403-7



PHYSICAL REVIEW LETTERS 136, 041403 (2026)

initial and final areas of the objects are computed excluding
the GW data around the merger signal. In addition, the test
performed here splits the data in the frequency domain,
which is not equivalent to the time-domain analysis in Abac
et al. [2]. See the Fig. S6 in the Supplemental Material
[115] for the main results and further details.

Finally, in the Supplemental Material [115] we also
report the results of a residuals test [35,175,176], which
looks for excess coherent power in the detector network
after the maximum-likelihood waveform has been sub-
tracted from the data. The upper limit for the residual
network SNR is 6.86 at 90% credibility (p-value 0.34, see
Supplemental Material [115]). Thus, we do not find any
statistically significant coherent power beyond what is
expected from the noise background.

Conclusion—The outstanding improvement of the
LIGO detectors in the last decade [177—-179] has enabled
unprecedented observations [32,180]. In particular,
GW250114 was observed with the largest SNR to date
(65 up to merger and 40 postmerger) [2], approximately
three times that of the similar event GW150914 [181]. We
have performed the most stringent suite of tests of GR and
the Kerr nature for a BBH coalescence to date. Probing the
inspiral, merger and ringdown stages, we have set con-
straints comparable, and in some cases 2—3 times more
stringent, than the ones obtained combining tens loudest
events of GWTC-4.0 [136]. At least three QNMs have
been identified or constrained with several methods and
models: the quadrupolar 220 fundamental and first over-
tone 221, and the hexadecapolar 440 mode. We have found
that their spectroscopic pattern [61,65-68,70] aligns with
the Kerr metric prediction, and their amplitudes are
consistent with those measured in a NR simulation of
GW250114-like systems in GR. In summary, the single,
loud event GW250114 has yielded the scientific return of
dozens of previous detections, offering a preview of the
unprecedented science that upcoming LIGO-Virgo-
KAGRA observing runs [182] will unlock.

Strain data from the LIGO detectors for GW250114 are
available from the Gravitational Wave Open Science Center
[183]. All the material required for reproducing the figures,
including scripts and posterior distributions from the
analyses, is available in the data release [184].

This Letter made use of the following software, listed in
alphabetical order: ARVIZ [185], Asimov [186], Astropy [187—
189], Bayeswave [190], Bilby [191,192], Bilby_TGR [193],
CPNest [194], DYNESTY [195], Gwpy [196,197], H5PY
[198], IMRPhenomXPHM_SpinTaylor [162,163], Jupyter and
Python [199-201], LALSuite [202,203], Matplotiib [204,205],
NRSur7dg4 [86], NumPy [206], PANDAS [207,208], PESummary
[209], pyRing [80,113], pySEOBNR [210], Python [211], QNM
[212], RINGDOWN [110,213], Scipy [214,215], SEABORN [216],
SEOBNRvSPHM and SEOBNRvSHM_ROM [126,127,217,218],
sxs [219], and TQDM [220].

Note added—Recently an error in the likelihood function
used in the Bilby inference code was discovered, leading to
an overly constrained likelihood [221]. The impact of this
error is discussed in detail in the GWTC-4.0 methods paper
[222]. Following from investigations presented therein, we
expect differences in the inferred posterior distributions due
to this error to be small. Results for pSEOBNR, FTI, TIGER,
the PCA analysis, and the IMR consistency test have been
corrected. Other analyses are unaffected by this error.
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