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ABSTRACT

Despite advances in route optimization and navigational technolo-
gies, pedestrians still face challenges navigating complex urban 
spaces. This study aims to identify and quantify the multidimen-
sional factors that influence pedestrian navigation, with the focus 
on why people get lost. The collected data from an online survey in 
which 64 participants reported the locations and contextual infor-
mation of their getting lost events. Building upon literature, expert 
interviews, and collected data, we identify and quantify 14 environ-
mental, situational, and personal factors influencing pedestrian 
navigation. We utilize a dual-analytical approach that combines 
expert-led analytic hierarchy process (AHP) analysis with data- 
driven regression models to derive distinct weighting schemes for 
the factors. While the approach based on experts’ opinion (i.e. AHP) 
demonstrates that familiarity, self-orientation skills, and access to 
reliable navigation tools are the most important contributing fac-
tors, data-driven models additionally highlight the significance of 
environmental complexity, such as angular distance between exits 
and number of landmarks near decision points. Importantly, expert- 
led and data-driven methods reveal different but complementary 
influences on pedestrian navigation, underscoring the value of 
combining specialist knowledge with insights derived from 
observed data to improve our understanding and guide the crea-
tion of more navigable urban environments.
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1. Introduction

Navigating through urban environments poses unique challenges, heightened by 

individual differences in cognitive abilities and technological familiarity (Coutrot 

et al. 2022; Epstein et al. 2017). While urban spaces are designed to ease navigation, 

the diverse nature of human cognition and varying abilities to utilize mobile naviga-

tion applications create a spectrum of navigational efficiencies among city dwellers 

(Sonmez and Onder 2019). Furthermore, it remains a complicated process to create 

navigational applications suitable for different type of users (Hunter, Anderson, and 
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Belza 2016). This disparity raises critical questions about the inclusivity of urban 

planning and the effectiveness of existing navigational aids, highlighting 

a significant problem: The need for a deeper understanding of how people interact 

with and navigate through complex urban spaces, and what main factors lead to 

people getting lost so we can design both optimal urban planning and supportive 

assistive technologies. The objective of this study is to identify and assess the impor-

tance of personal, situational, and environmental factors that contribute to pedestrians 

getting lost in Greater London. To achieve this, three research questions are formu-

lated as follows: (1) Which factors are most associated with pedestrians getting lost in 

Greater London? (2) How do AHP and regression approaches compare in evaluating 

these factors? (3) What complementary insights do these approaches provide into the 

phenomenon of getting lost?

Research into human navigation has often focused on route optimization – the 

strategies individuals employ to travel from point A to point B (Tyagi, Singh, and Singh  

2022). However, this approach often overlooks the multidimensional nature and factors of 

human navigation, which is not merely about finding the shortest path but also involves 

the complex interplay of cognitive processes, emotional states, and urban environment 

(Gath-Morad et al. 2022; Hölscher, Brösamle, and Vrachliotis 2012). Our study shifts the 

focus from route optimization to the phenomenon of getting lost. Extensive research 

from cognitive psychology, geography, and urban studies has laid the groundwork, 

revealing how memory, perception, and spatial reasoning affect navigation (Walkowiak 

et al. 2023). The novel aspect of our research lies in its empirical foundation: a survey in 

which participants annotated their approximate locations of getting lost while navigating 

the urban environment. Rather than focusing on route scenarios, it starts with the areas 

where people had difficulty navigating, providing a different perspective on urban 

navigability challenges.

In the context of pedestrian navigation, we define ‘getting lost’ as a state of spatial 

disorientation, essentially a breakdown in wayfinding (the cognitive element of naviga-

tion that guides movement) where the traveller becomes uncertain of their location or the 

correct route to their destination (Darken and Peterson 2002; Montello and Sas 2006). 

Lynch (1964) observes that even momentary disorientation in a city can provoke anxiety 

and that the very word ‘lost’ implies ‘much more than simple geographical uncertainty’, 

carrying overtones of ‘utter disaster’. Also, Lynch (1964) argues that a well-structured, 

‘legible’ environment gives people a sense of security by helping them maintain orienta-

tion. Hunter, Anderson, and Belza (2016) further define wayfinding as the integration of 

cognitive and embodied processes in interaction with environmental cues, suggesting 

that disruptions to this dynamic (i.e. instances of ‘lostness’) can range from minor 

uncertainties to severe disorientation. Wayfinding research similarly frames lostness as 

any lapse in navigational awareness, from minor missteps to severe confusion. Montello 

and Sas (2006) define geographic disorientation (i.e. getting lost) as uncertainty about 

one’s whereabouts or direction, noting that such disorientation may be long-lasting and 

serious but is very often minor and temporary. Even brief episodes of being lost are 

common and can generate anxiety, frustration, or delays (Montello and Sas 2006). 

Similarly, Darken and Peterson (2002) report that disoriented travellers tend to be 

‘anxious, uncomfortable, and generally unhappy’, reinforcing that even short-lived loss 

of orientation is a significant event in navigation.
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Accordingly, this study adopts a broad definition of ‘getting lost’ that considers 

both minor wayfinding errors (e.g. a wrong turn quickly corrected) as well as pro-

longed disorientation. In our survey, participants were instructed to report any 

instance of losing track of their location or intended route, so both small detours 

and longer events of confusion were counted as instances of having ‘gotten lost’. We 

also note that, because our study relies on self-reported getting lost events, cultural 

norms may shape individuals’ willingness to acknowledge or disclose disorientation, 

meaning that self-estimates of getting lost could vary across contexts (Walkowiak et al.  

2023).

The focal point of our research is the Greater London region, a metropolitan labyrinth 

known for its complexity and diversity (Boeing 2019; Maguire, Nannery, and Spiers 2006). 

By employing a dual-analytical approach, our study compares expert-led evaluations, 

grounded in analytic hierarchy process (AHP) analysis (Goepel 2018), with data-driven 

insights derived from Ordinary Least Squares and Ridge Regression techniques. This 

methodological blend allows us to dissect the nature of urban navigation, examining 

factors such as urban complexity, self-orientation skills, personal context, and familiarity 

with the environment. Through this mixed-methods approach, we aim to uncover pat-

terns and discrepancies in urban navigational efficiency and provide the basis for future 

targeted interventions.

This paper is structured to methodically unfold our findings and their implications. We 

begin by discussing the data collection process and the key factors considered, detailing 

the employed methodology – including the AHP and regression analyses – and present-

ing the results, which include analyses of multicollinearity and the evaluation of estimated 

weights. Finally, we reflect on the implications of our findings. Through this structured 

exploration, this study contributes to the interdisciplinary field of spatial cognition and 

computation, aiming to aid in the development of more navigable urban environments 

and applications.

2. Data

This research employs two established methods of analysis in parallel, in order to 

compare ‘expert-led’ and ‘data-driven’ analytical approaches to the ease of navigating 

urban environments. In both cases, a set of 14 factors identified from the established 

literature concerning navigation ability, urban complexity, and spatial cognition is used 

to measure environmental, situational, and personal factors which might influence the 

propensity of an individual to lose their way during a navigation task. These factors 

were identified through a focused review of relevant literature on wayfinding, disor-

ientation, and spatial cognition in urban environments, complemented by a series of 

brainstorming discussions among the research team to consolidate and refine the list. 

This process was exploratory rather than systematic, with the purpose of deriving 

a comprehensive and practically relevant set of factors. Data relating to incidents 

where individuals ‘got lost’ are then divided into two distinct sets: in the former 

case, expert-led AHP (a structured approach for multi-criteria decision-making pro-

blems) is used to establish the relative importance of each factor; in the latter, OLS and 

Ridge Regression methods are employed to find the optimal weights for each factor. 

This process is outlined in Figure 1.
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2.1. Data collection

To understand how and why individuals lose their way during navigation tasks, it is 

necessary to observe instances where this occurred. Data relating to specific incidents 

of getting lost were therefore collected through an online survey administered through 

the ‘Prolific’ platform in 2022. To address potential recall bias and enhance the reliability 

of the collected data, all participants were explicitly instructed at the outset: ‘Please do not 

respond to the survey if you are not certain about the details of your getting lost event’. 

The sample for the survey was also vetted via ‘Prolific’: 103 individuals participated in the 

full survey following a screening of the 400 initial respondents, which excluded partici-

pants who offered their recollections of incidents that occurred over a year ago and were 

therefore likely not reliable. Responses indicating uncertainty or vague recollections were 

Figure 1. Process flowchart.
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also removed from the dataset. This multi-step vetting process ensured that only recent 

and reliably remembered events were included in the final analysis.

The one-year recall window was selected in line with established practice in survey 

methodology, where 12-month reference periods are commonly used for quantitative 

recall (Bradburn, Rips, and Shevell 1987; Wagenaar 1986). Prior research has demonstrated 

that critical details for personal events are already subject to significant memory loss after 

1 year, with loss rates increasing steeply for longer intervals. This makes a 1-year window 

an effective balance between sample size and data reliability. To participate in the full 

survey, the incident described by respondents also needed to have taken place within the 

‘Greater London Area’ (also colloquially described to potential survey participants as 

‘within the M25’) and respondents were required to be generally familiar with London 

(in other words, they were intended to be undertaking everyday tasks, rather than visiting 

purely for touristic purposes).

Participants were asked to provide their basic demographic information (age and 

gender, given in Table 1) and general travel habits (including most frequently utilized 

forms of transport), in addition to information regarding the location at which they got 

lost, how they were navigating at the time, and what they considered the relevant factors 

leading to them losing their way. This was primarily obtained via a combination of ordinal 

categorical, binary choice, and open-ended questions, but participants were also asked to 

mark the location at which they got lost on a map (as accurately as they were able to 

recall). Since this research primarily focuses on examining environmental, situational, and 

human factors that influence navigation efficiency, with the potential to inform urban 

design for improved wayfinding, the subsequent analysis does not incorporate demo-

graphic variables related to instances of getting lost. The general area in which each 

respondent reported their incident is given in Figure 2.

Each survey response was assessed for the quality and consistency of the geospatial 

information provided. As participants submitted both a point on a map and a textual 

description, the latter was used to verify the former. Participants were aware of the 

purpose of the survey, and the descriptions they provided were often quite detailed. 

Therefore, where discrepancies arose, the textual description was given priority, and the 

geolocated point was adjusted accordingly. If a response was incomplete or could not be 

reliably interpreted into meaningful geospatial information (which typically occurred 

where the reported point and textual description were irreconcilably different), the result 

was excluded from further analysis.

Some participants reported instances of getting lost while driving. While this area is 

crucial for future research, the decision-making processes during driving may differ from 

those used in navigating active transportation methods, such as pedestrian navigation 

Table 1. Survey participants by age group and gender.

Gender

Female Male Prefer not to say Total

Age group 18–29 28 10 1 39
30–39 20 11 0 31
40–49 13 5 0 18
50–65 9 6 0 15
Total 70 32 1 103
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(Karimi, Jiang, and Zhu 2013). Accordingly, responses where the individual was driving 

were excluded. In addition, despite the screening of survey participants, several of the 

subsequently reported experiences were outside of the Greater London Area. These 

entries were also excluded from the analysis.

The remaining sample consists of 64 data points, each corresponding to a getting lost 

event. To extract related information from other data sources, each of these points was 

matched to the nearest junction in the Ordnance Survey (OS) Open Roads dataset by 

calculating the shortest distance between the observed ‘getting lost’ location and all 

available junctions. The geospatial information for each event was thus anchored to its 

closest junction. This process is illustrated by Figure 3(A).

2.2. Factors associated with getting lost

In accordance with 14 categories identified from existing research, the following informa-

tion was extracted from the survey data or supplementary data sources for each of the 64 

points. The inclusion of any particular category should not be interpreted as confirmation 

of its importance in navigating urban environments but rather that there is a theoretical 

or empirical reason to consider the extent to which it may have an influence:

2.2.1. Number of exits

Interpretation: More exits at a junction make it easier for an individual to get lost. Burns 

(1998) refers to this concept as ‘navigational degrees of freedom’. O’Neill (1991) expands 

Figure 2. Overview of the getting lost survey points per London Borough.
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Figure 3. Illustrations of the complexity of spatial methodologies. Illustration of city complexity measures for a dummy point. 3A: The snapping of the point at 
which a survey respondent reported getting lost to the nearest junction on the road network. 3B: The calculation of the smallest angle between two roads at the 
junction of the snapped point. 3C: The identification of the number of exits at the junction of the snapped point. 3D: The number of landmarks identified within 
a 100 m buffer of the snapped point. 3E: The number of turning points on the route between the edge of a 600 m buffer and the snapped point. The specifics of 
some routes (given in blue, orange, and red) are highlighted for illustrative purposes, but routes and turning points (given in black) from all intersections with the 
buffer are considered. 3F: The number of decision points on the route between the edge of a 600 m buffer and the snapped point. As for 3E, the route and decision 
points between each intersection with the buffer and the snapped point are considered.
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this general principle into his ‘Inter Connection Density’ measure, which demonstrated 

that greater complexity was connected to lower performance in navigating between two 

locations.

Measurement: The number of exits on the junction, as indicated by OS Open Roads. 

Only the junction itself is considered; turnings or branches after the junction are not 

included.

2.2.2. Angular distance between exits

Interpretation: Smaller angles between exits make exits more difficult to differentiate and, 

therefore, make it easier for an individual to get lost. Sadalla and Montello (1989), for 

example, show the difficulties demonstrated by test subjects in estimating angles when 

moving along a pathway.

Measurement: The minimum angle between any two adjacent exits at a junction”., as 

indicated by OS Open Roads.

2.2.3. Pedestrian flow

Interpretation: Areas with heavy pedestrian traffic make it easier for an individual to get 

lost. The findings of Langer and Saegert (1977), for example, highlight that crowdedness 

may influence the performance of individuals in carrying out tasks.

Measurement: Manually assessed using Google Street View Imagery (SVI), scored on 

a cale of 1–5 (with 1 being the lightest pedestrian flow and 5 being the heaviest 

pedestrian flow). The locations and corresponding scores for pedestrian flow are reported 

in Appendix B.

Note: We do not use SVI as a real-time source for quantifying pedestrian and transpor-

tation flow by counting the number of pedestrians or vehicles present. Instead, contextual 

information provided, such as commercial density (e.g. shops and cafés), and the width 

and continuity of pavements are used to infer pedestrian flow; the number of traffic lanes, 

visible signage, intersection complexity, and road hierarchy are considered in estimating 

transportation flow. Additionally, as London is a location with which we are highly 

familiar, we complemented the SVI-based assessment with direct local knowledge when 

ambiguity arose. The evaluation of pedestrian flow (as well as vehicle flow follows) is 

subjective to the author knowledge and the intepretation of visual information contained 

within SVIs avialable at each getting lost location.

2.2.4. Transportation flow

Interpretation: Areas with heavy vehicle traffic make it easier for an individual to get lost. 

There is evidence that navigating transport infrastructure can be a barrier to pedestrians, 

particularly when there is a high volume of traffic (Anciaes and Jones 2016). Measuring 

pedestrian and transportation flows are subject to the exact time when an individual got 

lost. However, given the available data, synchronising the two is impossible. This is 

because neither the survey participants reported their precise time of getting lost, nor 

the available pedestrian/transportation flow data could provide fine-grained temporal 

frequency data that aligns with it. Therefore, despite acknowledging the uncertainty 

caused by this, the best approximation could be achieved through the interpretation of 

the visual information contained in the available SVIs at each location where a person gets 

lost.
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Measurement: Manually assessed using SVI, scored on a scale of 1–5 (with 1 being the 

lightest transportation flow and 5 being the heaviest transportation flow).

2.2.5. Visibility

Interpretation: Lower visibility areas are more difficult to navigate and, therefore, make it 

easier for an individual to get lost (Gath-Morad et al. 2024). This draws on ideas from 

Kubat et al. (2012), who suggest that users in unfamiliar urban environments tend to 

follow visually connected routes.

Measurement: Self-reported score (on a scale of 1–5, with 1 being ‘Not relevant’ and 5 

being ‘Highly relevant’) by survey respondents, in relation to the category ‘Limited visibility’ 

for the question ‘Which of the following made you get lost (please rate by relevance)?’

2.2.6. Number of decision points

Interpretation: Routes involving a higher number of decision points are more complicated 

and, therefore, make it easier for an individual to get lost. Burns (1998) outlines that 

a decision point is essentially any point at which an individual encounters uncertainty 

along their route. Having more instances of uncertainty increases the number of choices 

made by the individual and may, therefore, increase the likelihood of an individual 

eventually making an incorrect choice.

Measurement: The mean number of decision points for simulated routes terminating at 

the point at which the survey respondent got lost. Decision points were defined as the 

number of ‘maneuvers’ on each route, as calculated by the ‘Project OSRM’ routing engine 

(Luxen and Vetter 2011) which utilizes OSM data. Origins of the simulated routes were all 

intersections between a 600 m buffer around the getting lost point and the OSM road 

network, which were subsequently snapped to the nearest junction.

Note: The 600 m distance is based on Transport for London’s estimate that the average 

Londoner walks 1.2 km per day (Transport for London 2018) and reflects that survey trips 

were typically one-way rather than round trips. This provides a suitable estimate of the 

distance walked by respondents, regardless of any additional modes of transport used.

2.2.7. Number of landmarks

Interpretation: Landmarks make it easier for individuals to navigate, so a lack of nearby 

landmarks makes it easier for an individual to get lost. There is notable literature regarding 

the interaction between landmarks and navigation. An overview is given by E. Chan et al. 

(2012) and Yesiltepe et al. (2021).

Measurement: As outlined by E. Chan et al. (2012), landmarks for the purposes of 

navigation have been conceptualised in a number of ways. In this instance, the number 

of OSM points of interest within a 100 m buffer is employed as a proxy. Using this proxy, 

we argue that the quantity of landmarks might not make a direct significant difference, 

but it does increase the possibility that one of these landmarks can be of use to the lost 

individual. An illustration of this process is given in Figure 3D.

2.2.8. Self-orientation skills

Interpretation: Individuals with poorer self-orientation skills will get lost more easily. 

Walkowiak et al. (2023), for example, demonstrate different navigation abilities across 

individuals.
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Measurement: This factor is measured through an open-ended question included in the 

survey where a large proportion of participants have provided discussion on their self- 

orientation skills either at the moment of getting lost or in the long term. The open-ended 

question acts as the basis of the factor measurement, which is constructed as follows: ‘In 

your own words, please briefly describe what happened when you got lost. Why do you 

think you lost your way?’ Four experts independently evaluated each response and 

assigned a score between 0 and 1, with 0 indicating the poorest and 1 the strongest 

orientation skills. The final score for each respondent was calculated as the average of the 

four expert ratings. For cases where no response was provided or where orientation ability 

could not reasonably be inferred, a neutral score of 0.5 was assigned to retain the 

observation.

2.2.9. Personal context

Interpretation: Tired or distracted individuals will get lost more easily. Burns (1998), for 

example, reports ‘distracted attention’ as the second most commonly reported cause of 

survey respondents losing their way.

Measurement: The mean self-reported score across two categories for the survey 

question ‘Which of the following made you get lost (please rate by relevance)?’; ‘I was 

tired’ and ‘Other distractions (mobile phone, listening to music, etc)’. Scored on a scale of 

1–5, with 1 being ‘Not relevant’ and 5 being ‘Highly relevant’.

2.2.10. Number of turning points

Interpretation: Routes involving a higher number of turning points are more complicated 

and therefore make it easier for an individual to get lost. This aligns with Bailenson, Shum, 

and Uttal (1998)’s idea of ‘road climbing’, in that people may favor longer, straight road 

segments (particularly when starting a route) even if this involves travelling further, due to 

cognitive effort of identifying optimal routes.

Measurement: Same as the method for Number of decision points, but number of ‘turns’ 

were counted instead of number of ‘maneuvers’. A turn must be a maneuver, but 

a maneuver would not necessarily be a turn; meaning that this category reflects the 

number of positive actions required to navigate a route (whereas Number of decision 

points reflects the number of active and passive, such as ‘continue’, actions combined).

2.2.11. City/smaller scale complexity

Interpretation: Areas with complex layouts make it easier for an individual to get lost. 

Stanitsa, Hallett, and Jude (2023), for example, note that spatial complexity is generally 

regarded as related to success in reaching a destination.

Measurement: The ‘orientation entropy’ for the appropriate London borough (as 

defined by OpenStreetMap (2022)), utilizing OSMnx (Boeing 2017), and adapted from 

the method outlined in (Boeing 2019).

2.2.12. Access to reliable map

Interpretation: This factor includes all forms of external aids or tools used to support 

navigation in the urban environment, the accuracy of the information they provide, and 

the reliability of access to these aids at critical moments. We use a broad definition of 

‘map’ to include not only traditional paper or digital maps, but also wayfinding kiosks, 
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handwritten or verbal directions, and routing applications. This reflects the diverse ways 

in which urban navigators access spatial information. A loss of access, inaccurate informa-

tion, or interruption of service (e.g. due to technical issues or ambiguous instructions) may 

all increase the risk of getting lost. For instance, Groves (2011) highlights GPS positioning 

errors in ‘urban canyons’.

Measurement: Binary classification.

2.2.13. Familiarity

Interpretation: Individuals are less likely to get lost on routes with which they are familiar, 

so a less familiar route will make it easier for an individual to get lost. O’Neill (1992) and 

Piccardi, Risetti, and Nori (2011) argue for the importance of environmental familiarity in 

navigation tasks.

Measurement: Self-reported score (0–100, with 0 being not familiar and 100 being very 

familiar) by survey respondents, in relation to the question ‘How familiar were you with 

the route that you were on when you got lost?’

2.2.14. Name similarity

Interpretation: Streets with similar names may cause confusion and therefore make it 

easier for an individual to get lost. The problem of similar-sounding street names is 

discussed in depth by K. Chan, Vasardani, and Winter (2015).

Measurement: Binary classification, where 1 signifies two similarly named roads within 

a 100 m buffer of the getting lost point. Similarity was determined by the Levenshtein 

distance, with a threshold score of 0.7.

Each factor outlined in Section 2.2 is normalized between 0 and 1 on the basis of 

observed values before use in regression analysis or weighted sum calculations. Boolean 

variables retained their original value at zero or one, while continuous variables were min- 

max scaled using the observed sample range. This approach enables comparability across 

all factors and eliminates the influence of differing original scales on the derived weights.

3. Methodology

3.1. Analytic hierarchy process

In Section 2.2, we identified 14 factors that may influence pedestrian navigation and 

contribute to a getting lost event. However, determining the relative importance of each 

factor requires further analysis. In this work, we address the evaluation of the weights of 

getting lost factors using AHP. AHP is a structured approach for multi-criteria decision- 

making problems. It decomposes complex problems into a hierarchy of more easily 

comprehended sub-problems, each of which can be analyzed independently. Through 

a mathematical process, AHP subsequently synthesizes these comparisons to assign 

a numerical weight to each factor, representing the relative importance of the factor in 

contributing to the outcome.

We applied AHP to assess the impact of various factors on their contribution to 

a getting lost event. This involves conducting pairwise importance comparisons of the 

14 factors, detailed in Section 2. To implement our AHP analysis, an online AHP survey was 

used which included all 14 factors and generated 91 pairwise comparison questions 
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accordingly, covering all possible pairwise combinations of these factors (Goepel 2018). 

Four researchers with expertise in geospatial data science, urban studies, and navigation 

were invited to complete the online survey, by choosing which factor in each pair they 

believed was more important in getting lost events and then assigning a priority level to 

their choice based on their knowledge and judgment. To assess the intercoder reliability 

among the four experts on the 14 factors, we computed Krippendorff’s Alpha (α) for 

interval data (Krippendorff 2018). The results of this analysis are provided in Appendix A. 

The total sum of the weights assigned to all factors equals one. This means each individual 

weight reflects the specific percentage that the factor contributes to the likelihood of 

a getting lost event. For our further analysis, we used the average score of each factor, 

calculated by taking the mean of the scores given by all four experts.

The online tool utilized for this research was AHP-OS. A full explanation of the specific 

implementation and underlying mathematics is outlined in Goepel (2018). AHP-OS utilizes 

the method of Alonso and Lamata (2006) for calculating the consistency ratio. For this 

article, the weighted geometric mean aggregation of individual judgments is selected for 

group aggregation.

3.2. Analysis

3.2.1. General description

Our dataset, comprising 64 data points, was randomly split into two even-sized groups for 

further analysis. The rationale for splitting the dataset was to ensure a fair evaluation of 

the weighting schemes. One-half of the data was used to derive weights via regression 

methods, while the other half was reserved for applying these weights and for testing 

purposes. This approach allows for a more robust comparison between expert-driven and 

data-driven weighting methods. For the first group, we computed the getting lost score 

for each data point. This process involved calculating the weighted sum of the individual 

factor scores, using the weights provided by experts through AHP analysis, as outlined in 

Section 3.1. Conversely, for the second group, instead of using the expert-provided AHP 

weights, we applied two distinct regression models to derive alternative sets of weights 

directly from the survey data. During this process, the target getting lost scores were 

uniformly set to one across all data points, and their individual factor scores were used for 

generating alternative weight sets. This approach was designed to evaluate different 

weighting schemes, potentially providing a more accurate reflection of each factor’s 

contribution to the getting lost event. The next step involved applying the derived 

weights from the data points of the second group to the first group. This led to the 

recalculation of the getting lost scores for the first group using these new weights from 

the regression models. The final stage of our analysis involves a comparative review of the 

getting lost scores of the first group, comparing those derived from AHP weights (expert- 

led) with those obtained from the second group’s regression models (data-driven).

In addition, we conducted both multicollinearity and correlation analyses on the 

getting lost matrix derived from the AHP approach, in order to further reveal the inter-

relationships among the factors. Multicollinearity arises when two or more factors in 

a regression model exhibit linear dependence, meaning that one factor can be predicted 

to a certain degree of accuracy using the others. Although multicollinearity does not 

necessarily reduce the overall predictive power of a model (O’brien 2007), it can impede 
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the accurate estimation of individual regression coefficients. To quantify the degree of 

collinearity, we calculated the Variance Inflation Factor (VIF) for all 14 factors in Group 1, 

using it as an established indicator of multicollinearity.

We subsequently performed regression analyses using both OLS and Ridge Regression 

on the data points in Group 2, yielding two distinct sets of weights. These regression- 

derived weights, along with the initial AHP-derived weights, were each applied to the 

data points in Group 1, resulting in three corresponding sets of getting lost scores for 

Group 1. To evaluate the statistical significance of differences among these three sets of 

scores, we first conducted the Shapiro–Wilk test (Shapiro and Wilk 1965) to assess the 

normality of the getting lost score distributions under each weighting scheme. Based on 

the results of these normality tests, we proceeded to conduct pairwise comparisons using 

both the t-test (for normally distributed data) and the non-parametric Wilcoxon signed- 

rank test as a robustness check for cases where normality could not be assumed.

Whilst the weights calculated by the OLS and Ridge regression techniques (discussed 

in Section 4.2) may be negative, the weights derived from the AHP analysis must be 

positive. For particular factor, we therefore transform the values for each data point to 

account for directionality. This is outlined in Table 2. A value of 1 for any given factor 

would imply that an individual was more likely to get lost.

3.2.2. Getting lost score of Group 1

For each data point in Group 1, we calculated the weighted sum of AHP weights and 

scaled factor values, resulting in the getting lost score for each data point as follows: 

Where S1 denotes the score matrix for getting lost of Group 1. X1 is a 32 � 14 matrix, 

where each row represents a data point and each column corresponds to one of the 14 

factors. ωahp is a known column vector of dimension 14 � 1, containing the weights 

derived from our expert-led AHP online questionnaire, as described in Section 3.1.

3.2.3. Weights estimation of Group 2

Group 2’s analysis aims to identify a distinct set of weights. These weights were optimized 

to maximize the overall getting lost scores for Group 2, indicating a higher likelihood of 

Table 2. Factor transformations and interpretation.

Factor Direction

ID1: Number of Exits x

ID2: Angular distance between exits 1 � x

ID3: Pedestrian Flow x

ID4: Transportation Flow x

ID5: Visibility x

ID6: Number of decision points x

ID7: Number of Landmarks near decision points 1 � x

ID8: Self-orientation skills 1 � x

ID9: Personal context x

ID10: Number of turning points x

ID11: City/Smaller scale complexity x

ID12: Access to reliable map x

ID13: Familiarity 1 � x

ID14: Name similarity x

JOURNAL OF LOCATION BASED SERVICES 13



getting lost events occurring. The overall getting lost score matrix of Group 2 is calculated 

as follows: 

Where S2 represents the getting lost score matrix for Group 2, with dimension 32 � 1, 

each element corresponding to the aggregated getting lost score for one of the 32 data 

points. The matrix X2 encapsulates the individual factor scores for each data point in 

Group 2. It is a 32 � 14 sized matrix, where each row corresponds to a data point, and 

each of the 14 columns represents one of the identified factors affecting the likelihood of 

getting lost. The vector ω2 is the weight vector to be optimised. It contains the weights for 

the 14 factors and is determined such that, when applied to X2, it maximizes the getting 

lost scores in S2.

Given that each factor in our dataset is normalized to the range [0,1], and the 

sum of the 14 factor weights is constrained to one, the maximum possible getting 

lost score for any data point is capped at one. Since all data points from both 

Group 1 and Group 2 are derived from real-life instances of getting lost, it is 

reasonable to anticipate that the weighted sum of each data point’s factors would 

approximate this maximum value at one. Therefore, to optimize the set of factor 

weights in a way that maximizes the likelihood of a getting event, we structured 

the maximized S2 matrix as an all-ones matrix, denoted as Smax. This approach 

aligns with our theoretical maximum, allowing us to effectively gauge the optimal 

combination of weights that correspond to the highest likelihood of getting lost 

based on our dataset.

In our study, we applied the Ordinary Least Squares (OLS) and Ridge Regression (RR) as 

two regression models to determine the optimal set of weights for the factors in Group 2. 

This approach is framed as an optimization problem, aiming to minimize the mean 

squared error (MSE) between the desired maximum getting lost scores and the scores 

calculated through the explored weights. Mathematically, the optimal weights maximiz-

ing the getting lost score can be expressed as follows: 

Where (3) and (4) represent the identified weights by using OLS and RR, respectively. 

Here, ω̂2 represents the estimated weights vector that minimizes the MSE. Smax is the 

matrix of desired maximum getting lost scores for Group 2, and X2 is the matrix con-

stituted by individual factor scores. The optimization process adjusts the weights ω2 to 

find the best fit between the predicted scores X2ω2 and the desired getting lost scores 

Smax. Compared with OLS regression in (3), the Ridge regression model in (4) introduces 

a regularization term. This term is the sum of the L2 norm of the weights, denoted as 

k ω2 k2
2. The symbol λ denotes the regularization parameter, which serves to reduce the 

risk of overfitting and enables more effective handling of multicollinearity in the model.
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Furthermore, we incorporated one additional constraint condition into the optimiza-

tion procedure to ensure the validity and applicability of our model. The condition is 

expressed as 
P14

i¼1 ω̂2i ¼ 1, mandates that the aggregate of all identified weights in the 

vector ω̂2 must equal one. This condition, where the sum of all weights equals 1, ensures 

that each weight reflects the proportion of its corresponding factor in the overall model.

4. Results

4.1. Multicollinearity and correlation

As shown in Table 3, several factors exhibit relatively high VIFs, particularly those with 

values exceeding the commonly used threshold of 5. These factors include the number of 

exits, angular distance between exits, pedestrian flow, number of landmarks near decision 

points, number of decision points, and number of turning points.

To further examine the relationships between these factors, a correlation matrix was 

constructed, as detailed in Figure 4. The results reveal a strong correlation between 

several pairs of factors. Notably, the number of exits and the angular distance between 

exits exhibit a correlation coefficient of 0.87. Pedestrian flow is correlated with the number 

of landmarks, with a coefficient of −0.68, and the number of decision points and the 

number of turning points show a correlation coefficient of 0.96.

4.2. Expert-led and data-driven weights

In our analysis, we applied both OLS and Ridge regression techniques to determine the 

weights of factors in Group 2. The outcomes of this analysis are presented in Figure 5, and 

the blue bar chart represents the AHP weights of Group 1, as specified in Section 3.1. 

Additionally, the weights of Group 2 derived through OLS and Ridge regression are 

depicted as orange and magenta bar charts, respectively.

To identify an appropriate penalty parameter λ for the Ridge regression model, we 

employed Ridge trace analysis (Hoerl and Kennard 1970; McDonald 2009). This technique 

plots the estimated regression coefficients against a sequence of λ values. When λ is small, 

the coefficients can fluctuate substantially, but as λ increases the curves gradually flatten, 

Table 3. Variance inflation factor (VIF) for each getting 
lost factor. (VIF greater than five is indicated in bold.)

Features VIF

ID1: Number of Exits 15.69

ID2: Angular distance between exits 22.88

ID3: Pedestrian Flow 5.76

ID4: Transportation Flow 4.48
ID5: Visibility 2.16
ID6: Number of decision points 42.19

ID7: Number of Landmarks near decision points 4.87

ID8: Self-orientation skills 2.46
ID9: Personal context 2.15
ID10: Number of turning points 37.20

ID11: City/Smaller scale complexity 1.65
ID12: Access to reliable map 2.73
ID13: Familiarity 4.73
ID14: Name similarity 2.08
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indicating that the estimates become less sensitive to further increases in λ. We selected 

λ ¼ 0:4 because, as shown in Figure 6, the slopes of the coefficient paths begin to stabilise 

around this value. This suggests that the shrinkage is sufficient to control variance without 

introducing excessive bias. The variances of the weights estimated through OLS and 

Ridge regression were 0.416 and 0.009, respectively.

4.3. Getting lost scores under different weighting schemes

We applied the weights estimated from OLS and Ridge regressions back to the data points 

of Group 1 and recalculated their getting lost scores using these new sets of weights. The 

mean and variance of getting lost scores for the data points in Group 1 are reported in 

Table 4. Both weights from OLS and Ridge regression produced higher getting lost scores 

compared to the original AHP scores in Group 1. OLS had an average score of 0.94, while 

Ridge regression had an average of 0.76, compared to AHP’s 0.59. Among the three 

weighting methods, the getting lost scores derived from OLS weights exhibited the 

greatest variance at 0.07, in contrast to substantially lower variances for weights from 

AHP and Ridge, at 0.01 and 0.03, respectively.

Figure 4. Correlation matrix among the 14 factors.
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The results of the Shapiro–Wilk normality test are summarized in Table 5. For the AHP- 

weighted getting lost scores, the W statistic is 0.97 with a p-value of 0.571. For the OLS- 

weighted scores, the W statistic is 0.98 with a p-value of 0.682. For the Ridge-weighted 

scores, the W statistic is 0.94 with a p-value of 0.083. To further assess and visualize the 

normality condition, Q–Q plots are presented in Figure 7. The Q–Q plot for the AHP- 

weighted scores displays points that largely align with the theoretically normal line, while 

the Q–Q plots for the OLS- and Ridge-weighted scores show greater deviations from 

normality.

The results of both the t-tests and Wilcoxon tests are presented in Table 6. For all 

comparisons between the AHP, OLS, and Ridge weighting methods, the p-values were 

found to be less than 0.001. These results indicate statistically significant differences in the 

getting lost scores derived from the three weighting methods.

5. Discussion and conclusion

Navigating through complex urban areas remains challenging for pedestrians, even 

with the assistance of optimized routes provided by advanced navigational tools, due 

to the complex interplay of various factors that impact pedestrian navigation and 

Figure 5. Weights from AHP analysis (on group 1), OLS, and RR (on group 2).
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often lead to confusion. In this work, we identify a list of factors that may cause 

pedestrians to get lost in urban areas, as well as their relative contributions by 

generating weighting systems from both expert-led and data-driven methods. 

Potential multicollinearity and correlation are revealed from the identified factors, 

leading us to employ both unregularized and regularized regression models to pro-

duce factor weights. We find that the scores for getting lost, calculated from both 

expert-led and data-driven methods, demonstrated distinct but complementary influ-

ences on pedestrian navigation.

Our findings from the correlation analysis are consistent with the elevated VIFs. For 

example, an increase in the number of exits at a junction typically corresponds to 

a decrease in the angular distance between these exits. Similarly, areas with a greater 

number of points of interest are likely to attract more pedestrians, and itineraries with 

Figure 6. Variation of estimated weights with respect to penalty parameter.

Table 4. Mean and variance of getting lost scores 
for group 1 by weights from both OLS and RR.

Method Mean GL Score Variance

AHP 0.59 0.01
OLS 0.94 0.07
Ridge 0.76 0.03

Table 5. Results of the Shapiro–Wilk test for normality on group 
1 getting lost scores under different weighting schemes.

Weighting Scheme Shapiro-Wilk Statistic p-value

AHP 0.97 0.571
OLS 0.98 0.682
Ridge 0.94 0.083

18 Y. WANG ET AL.



a higher number of decision points may lead to an increased number of turns, explaining 

the strong correlation observed between these two factors. The presence of multicolli-

nearity and correlation among factors highlights the need to utilize regularization tech-

niques to achieve more stable and interpretable results estimates.

The OLS model produces the highest average getting lost score, but also the greatest 

variance, indicating differences across scores and possible overemphasis of certain fac-

tors. In contrast, Ridge regression produces more balanced and consistent estimates, with 

variance lower than OLS and a mean score between those of AHP and OLS. By effectively 

mitigating multicollinearity, Ridge regression not only achieves lower variance and higher 

scores than AHP but also generates a weight distribution similar to expert-led estimates, 

underscoring its effectiveness in modelling getting lost events.

Our analysis revealed that the choice of three weighting schemes significantly influ-

ences the computed getting lost scores, as confirmed by both parametric and non- 

parametric significance tests. However, to answer the fundamental question—Why do 

pedestrians get lost?—we need to examine the factor weights produced by each method 

and their substantive interpretation. For the expert-led AHP approach, the most impor-

tant factors identified were familiarity with the environment, self-orientation skills, and 

access to reliable navigation aids. This reflects the expert view that people-centric factors 

are decisive in determining the likelihood of getting lost. Familiarity represents an 

individual’s personal knowledge of the area, while self-orientation skills capture their 

ability to navigate effectively in confusing environments. In addition, experts emphasise 

that external navigational support – such as maps or mobile navigation applications – can 

further strengthen a pedestrian’s ability to find their way. By contrast, the OLS model 

Figure 7. Q–Q plot of getting lost scores under different weighting schemes.

Table 6. Results of t-tests and Wilcoxon tests between three weighting 
methods.

Test Comparison Statistic p-value

t-test AHP vs. OLS �8:8 6.0 � 10−10

t-test AHP vs. Ridge �7:7 1.13 � 10−8

t-test OLS vs. Ridge 5:0 2.06 � 10−5

Wilcoxon test AHP vs. OLS 9:0 1.5 � 10−8

Wilcoxon test AHP vs. Ridge 22:0 2.5 � 10−7

Wilcoxon test OLS vs. Ridge 57:0 3.2 � 10−5

JOURNAL OF LOCATION BASED SERVICES 19



places the greatest positive weights on the angular distance between exits, number of 

turning points, and self-orientation skills. This indicates that the model considers the 

structural complexity of the route – such as how many choices a pedestrian must make 

and how many possible paths are available at a junction – as major determinants of 

getting lost. While self-orientation skills still play a significant role, the prominence of 

environmental factors suggests that the complexity of the urban layout may strongly 

influence navigation outcomes. However, the presence of negative weights for certain 

factors points to potential issues of multicollinearity and overfitting, which can lead the 

model to overestimate or underestimate the true importance of some variables. Also, it is 

noticeable that several pairs of highly correlated factors show opposite coefficient signs, 

such as the number of exits versus the angular distance between exits and the number of 

decision points versus the number of turning points. OLS still provides an overall unbiased 

fit to the data but multicollinearity inflates coefficient variance, making individual weights 

unstable and sometimes counterintuitive. The regularized Ridge regression model, on the 

other hand, provides a more balanced interpretation. The most influential factors include 

number of landmarks near decision points, angular distance between exits, familiarity and 

self-orientation skills. Similar to the OLS-derived weighting scheme, Ridge regression 

assigns relatively greater importance to the underlying complexity of the urban environ-

ment. Ridge regression reduces the magnitude of negative weights, thus offering more 

stable and generalizable estimates. This suggests that, compared to OLS, Ridge regres-

sion, as a data-driven method, is more capable of identifying the key contributors to 

getting lost while mitigating the distortions introduced by highly correlated factors in the 

dataset. The weighting schemes from expert-led AHP and regression models are distinct 

yet complementary in explaining pedestrian navigation: experts emphasised human- 

centric factors such as familiarity and self-orientation skills, whereas the regression models 

placed more weight on the environmental complexity around the getting lost locations. 

This difference may be explained by the fact that the AHP questionnaire was completed 

independently of the survey data, leading experts to consider general scenarios of getting 

lost, while the regression models were fitted to specific contextual information provided 

by the survey responses.

Taken together, the findings suggest that pedestrians become lost mainly due to two 

main strands of reasons. From a static view given by experts, individual reasons account 

for the largest share of getting lost events, while location-specific analysis from regression 

methods emphasises the environmental complexities. Three mechanisms of decision 

density, environmental complexity, and external support consistently emerge as central 

across methods, even though their relative weights differ between expert-led and data- 

driven approaches. By contrast, factors such as name similarity or transportation flows 

were less influential, reflecting that salience, timing, and perception may matter more 

than simple presence or quantity. Rather than providing definitive effect sizes, our 

analysis acts as an empirical case study of Greater London that illustrates how different 

factors contribute to pedestrians getting lost. The results highlight patterns – such as the 

importance of decision density, environmental complexity, and orientation support – that 

warrant further testing with richer data and in other contexts. While our study captures 

the state of being lost at specific locations, future work that incorporates itineraries and 

dynamic traces could help clarify the processes by which pedestrians gradually become 

disoriented.
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There are several limitations in this work, which also suggest directions for future 

research. Methodologically, our regression models revealed issues of multicollinearity, 

with some factors highly correlated, which complicates the interpretation of individual 

factor weights and produces negative weights in the OLS model. Although Ridge 

regression helps mitigate these distortions, the presence of unstable or counterintui-

tive weights highlights the challenges of disentangling highly interrelated urban 

navigation factors. This reflection is important for interpreting our findings and indi-

cates that further methodological refinement is needed, for example by exploring 

alternative modelling strategies that can better handle multicollinearity. A further 

limitation concerns the measurement of self-orientation skills, which are difficult to 

define and measure directly. In this study, we therefore relied on secondary proxies 

from open-ended questions. Future work should address this by designing a more 

sophisticated survey platform that enables participants to systematically evaluate their 

orientation skills, for example, through the Santa Barbara Sense of Direction Scale 

(Hegarty et al. 2002). Another limitation is that, while our survey collected the reported 

location at which respondents became lost, it did not include detailed itinerary 

information that could provide a richer context for the entire wayfinding process. As 

revealed by Gru¨bel et al. (2019), the inaccuracy of pedestrians’ mental maps versus 

the true environment can lead pedestrians to follow incorrect itineraries, ultimately 

causing them to get lost over time. Accordingly, future research should develop survey 

platforms that allow participants to capture both the locations at which they became 

lost and their itineraries, thereby yielding more comprehensive contextual information 

on getting lost events. In addition, some of the getting lost factors are subjectively 

evaluated, including visibility, pedestrian, and vehicle flow. This limitation highlights 

the need for approaches that can quantitatively measure these factors in the future. 

Finally, our findings are based on a case study of the Greater London Area. However, 

cultural norms and urban context may shape the experience of getting lost. Thus, 

future studies should examine the extent to which our findings generalise to other 

cities or cultural settings.

To conclude, across all weighting methods, self-orientation skills, familiarity and access 

to reliable maps or tools consistently emerge as leading contributors to pedestrians getting 

lost. Notably, expert-led weights place greater emphasis on people-centric factors, such as 

familiarity and self-orientation skills, whereas data-driven models, particularly OLS, high-

light structural features of the environment, such as the angular distance between exits. 

The Ridge regression results offer a middle ground between these perspectives, balancing 

personal and environmental influences. Additionally, the elevated weights assigned to 

factors like city or local-scale complexity in the regression models suggest that environ-

mental complexity is a significant, data-driven risk for disorientation, potentially under-

estimated by experts. This divergence further underscores the value of integrating both 

expert knowledge and data-driven analysis to gain a comprehensive understanding of the 

factors that contribute to pedestrian getting lost events in urban environments.
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Appendix A. Intercoder reliability (krippendorff’s α for interval data)

To quantify agreement among the four expert coders on the 14 factors, we computed 

Krippendorff’s Alpha (α) for interval data (Krippendorff 2018): 

α ¼ 1 �
Do

De

;

where Do is the observed disagreement and De is the disagreement expected by chance.

Observed disagreement. Let i ¼ 1; . . . ; N index items (factors), c ¼ 1; . . . ; K index coders (experts), 

and xic 2 R be coder c‘s weight for item i (missing values allowed), normalized at zero to one. Denote by 

Ci � f1; . . . ; Kg the set of coders who rated item i, with mi ¼ jCij. Using the squared Euclidean distance 

for interval data, the observed disagreement is the average pairwise squared difference within each 

item, aggregated over items:  

Do ¼

P

N

i¼1

P

c;c02Ci

c< c0

ðxic � xic0Þ
2

P

N

i¼1

mi

2

� � :

Expected disagreement. Let M ¼
PN

i¼1 mi be the total number of observed ratings, and 

fzug
M
u¼1 the pooled set of all ratings across items and coders. The expected disagreement is 

defined analogously as the average pairwise squared difference between two ratings drawn at 

random (without replacement) from this pooled distribution:  

De ¼

P

u< v
u;v2f1;...;Mg

ðzu � zvÞ
2

M

2

� � :

Result and interpretation. The outcome of AHP analysis across four experts (coders) and 14 factors 

(items) are illustrated in Table A1.

Applying the above to our data (four coders, 14 items) yields α � 0:69, indicating a moderate 

level of agreement.

Table A1. AHP weights derived from expert evaluation.

Factor Expert 1 Expert 2 Expert 3 Expert 4

ID1: Number of Exits 0.0260 0.0430 0.0370 0.0919
ID2: Angular distance between exits 0.0300 0.0246 0.0132 0.0919
ID3: Pedestrian Flow 0.0125 0.0128 0.0161 0.0284
ID4: Transportation Flow 0.0125 0.0140 0.0197 0.0275
ID5: Visibility 0.0853 0.0281 0.0675 0.0875
ID6: Number of decision points 0.0640 0.0306 0.0381 0.0555
ID7: Landmarks near decision points 0.0494 0.0875 0.0380 0.0655
ID8: Self-orientation skills 0.1428 0.1553 0.1446 0.1545
ID9: Personal context 0.0128 0.1715 0.1262 0.0979
ID10: Number of turning points 0.0393 0.0262 0.0278 0.0779
ID11: City/Smaller scale complexity 0.0681 0.0214 0.0554 0.0144
ID12: Access to reliable map 0.1776 0.1006 0.1588 0.1020
ID13: Familiarity 0.2582 0.2522 0.2449 0.0904
ID14: Name similarity 0.0215 0.0322 0.0127 0.0147
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Appendix B. pedestrian and vehicle flow assessment

To enhance transparency in how pedestrian and vehicle flow were assessed, we provide here both 

a geographic visualisation of the assigned scores and a set of illustrative examples from Google 

Street View (SVI).

A. Geographic visualisation of scores Figure A1 shows the spatial distribution of the manually 

assigned pedestrian and vehicle flow scores across the London study area.

B. Illustrative SVI examples Figure A2 presents example SVI images illustrating how scores 

were assigned. Four categories are shown (0, 0.25, 0.5, 1.0), each represented with one 

pedestrian-flow image and one vehicle-flow image, to demonstrate the visual cues used for 

evaluation.

Figure A2. Illustrative SVI images used for assigning pedestrian flow (ID3) and vehicle flow (ID4) 
scores. Two representative images are provided for each scoring category (from left to right: 0, 0.25, 
0.5, 1.0).

Figure A1. Geographic distribution of pedestrian flow (ID3) and vehicle flow (ID4) scores in London.
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