
Cost-effectiveness of paramedic administered ketamine compared to morphine for the management of acute severe pain from traumatic injury

Received: 27 March 2025

Accepted: 31 December 2025

Published online: 13 January 2026

Cite this article as: Khan K.A., Smyth M., Perkins G.D. *et al.* Cost-effectiveness of paramedic administered ketamine compared to morphine for the management of acute severe pain from traumatic injury. *Cost Eff Resour Alloc* (2026). <https://doi.org/10.1186/s12962-025-00712-x>

Kamran A. Khan, Michael Smyth, Gavin D. Perkins, Joyce Yeung, Alison Walker, Rebecca McLaren, Gordon Fuller & Stavros Petrou

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

Title page

Title:

Cost-effectiveness of paramedic administered ketamine compared to morphine for the management of acute severe pain from traumatic injury.

Authors names, academic and professional affiliations, and complete addresses:

Authors:

Kamran A Khan	Warwick Medical School, University of Warwick, Coventry, UK
Michael Smyth	Warwick Medical School, University of Warwick, Coventry, UK
Gavin D Perkins	Warwick Medical School, University of Warwick, Coventry, UK
Joyce Yeung	Warwick Medical School, University of Warwick, Coventry, UK
Alison Walker	West Midlands Ambulance Services NHS Trust, Brierley Hill, Dudley, UK
Rebecca McLaren	Yorkshire Ambulance Services NHS Trust, Wakefield, UK
Gordon Fuller	School of Health and Related Research, University of Sheffield, Sheffield, UK
Stavros Petrou	Nuffield Department of Primary Care Health Sciences, University of Oxford, UK

Corresponding author: Kamran A Khan

Corresponding author email: k.a.khan@warwick.ac.uk

Centre for Health Economics at Warwick (CHEW), Warwick Medical School, Gibbet Hill Campus, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL

Word count Abstract: 356

Abstract

Background

Pain after traumatic injury is common, yet few patients receive adequate pain relief. NHS paramedics have a limited formulary to treat severe pain.

Objectives

To estimate the cost-effectiveness of ketamine versus morphine for severe pain in acute traumatic injury.

Methods

A cost-utility analysis was conducted based on data from a pragmatic, multicentre, randomised controlled trial (PACKMAN). The base-case analysis took the form of an intention-to-treat analysis conducted from a UK National Health Service (NHS) and personal social services (PSS) perspective and separately from a societal perspective. Costs (£ 2021–2022 prices) were collected prospectively over a 6-month follow-up period. A bivariate regression of costs and quality-adjusted life-years (QALYs), with multiple imputation of missing data, was conducted to estimate the incremental cost per QALY gained and the incremental net monetary benefit (INMB) of ketamine in comparison to morphine. Sensitivity and pre-specified subgroup analyses explored uncertainty and heterogeneity in cost-effectiveness estimates.

Results

Participants (n=416) were randomised to ketamine (n=206) or morphine (n=210) amongst whom complete data for the economic evaluation was available for 189 (45.4%) participants. Mean (standard deviation [SD]) observed NHS and PSS costs over 6 months were £5,191 (£3,155) in the ketamine arm versus £5,143 (£3,897) in the morphine arm (mean difference [MD]: £47). Mean

(SD) observed QALY estimates were 0.309 (0.10) versus 0.293 (0.010), respectively (MD: 0.016).

The base case (imputed) analysis generated an incremental cost of -£117 (95%CI: -£849 to £597) and incremental QALYs of 0.025 (95%CI: 0.010 to 0.041), indicating a 92%-96% probability of cost-effectiveness at cost-effectiveness thresholds of £20,000 and £30,000 per QALY. A sensitivity analysis, using observed data only (without imputation) generated an incremental cost of £233 (95%CI: -£783 to £1216) and incremental QALYs of 0.016 (95%CI: -0.013 to 0.044), indicating a lower 54%-62% probability of cost-effectiveness. The base-case cost-effectiveness results remained robust to other sensitivity analyses.

Conclusions

This economic evaluation found that ketamine administered by paramedics to adults with severe pain following traumatic injuries is cost-effective compared to morphine. However, our results are subject to high levels of missing data, which were handled through recommended multiple imputation techniques.

Keywords

Economic costs, Health-related quality of life, Cost-effectiveness, ketamine, morphine, severe pain, acute traumatic injury

1 Background

2

3 It has been reported that trauma accounts for 24% of UK ambulances service
4 workload (1).. At least 70% of ambulance calls involve patients experiencing pain
5 (2). NHS paramedics have a limited formulary to treat severe pain (2).
6 Observational studies suggest that current treatments leave many patients with
7 inadequate pain relief in the prehospital environment (3-7). In 2004, the World
8 Health Organisation declared that effective management of pain is a universal
9 human right (8). Poorly managed acute pain is also associated with increased
10 chronic pain. Studies indicate chronic pain is common following trauma with a
11 reported incidence of 15-30%, increasing to 62% in patients suffering major
12 trauma (9-11). Poorly managed postoperative pain leads to persistent pain in 10-
13 50% of common surgeries, and that pain is severe in about 2-10% of these
14 patients (12). Military personnel injured in recent conflicts demonstrate a link
15 between acute pain management and depression and post-traumatic stress
16 disorder (PTSD). Early aggressive pain management exerts a protective effect on
17 the development of PTSD (odds ratio (OR) 0.47 (95%CI 0.34-0.66) and
18 depression (0.40 (95%CI 0.17 – 0.94).(13, 14) Provision of early and effective
19 analgesia has the potential to reduce the risk of developing chronic pain and
20 adverse mental health outcomes post trauma, which may in turn impact on
21 patient's long term quality of life (15, 16).

22 A barrier to effective pain treatment is the limited formulary available to
23 paramedics. The most frequently used drug for moderate to severe pain outside
24 a hospital is morphine (17). Yet morphine has several side effects (nausea,
25 confusion, dizziness, drowsiness, respiratory depression, arrhythmia) that may
26 limit its use (18-21). This, and concerns about the risk of persistent opioid use

27 following initial exposure, limits effective use by clinicians (22). Ketamine is
28 perceived by many to be an ideal prehospital analgesic agent, favoured for its
29 rapid onset of action, effective analgesia, good haemodynamic stability, and
30 preservation of upper airway reflexes (23). Ketamine has a distinct dose-
31 response gradient in which smaller doses (0.1-0.3 mg/kg) are analgesic and
32 larger doses (2 mg/kg) have an anaesthetic effect (24). It exerts its effect by
33 “disconnecting” the thalamocortical and limbic systems, effectively dissociating
34 the central nervous system (CNS) from outside stimuli (e.g. pain, sight, sound)
35 (25). Ketamine also stimulates the sympathetic nervous system and moderately
36 increases heart rate and blood pressure. Ketamine does not affect respiration;
37 patients breathe spontaneously and maintain airway control (26). Furthermore,
38 there is evidence to indicate that perioperative ketamine analgesia may prevent
39 hyperalgesia, reducing the risk of developing persistent post-operative pain (27,
40 28). This suggests the potential for ketamine analgesia to be associated with a
41 lower incidence of chronic pain post trauma.

42 Ketamine has been advocated as an ideal prehospital analgesic due to its
43 favourable pharmacokinetics (29). In the UK, ketamine is currently restricted for
44 use by prehospital doctors and a limited pool of specialist critical care
45 paramedics (CCPs), targeted at the small number of cases needing critical care
46 support (30, 31). The lack of evidence and UK experience with ketamine limits
47 access to a potentially effective treatment. Most trials of ketamine for analgesia
48 have been small, of insufficient quality and were conducted in North America or
49 Australia (32-36). Patient expectations and approaches to health service delivery
50 in these countries differ from the UK. No studies addressing the cost-
51 effectiveness of ketamine for analgesia have been published. The National
52 Institute for Health and Care Excellence (NICE) in the UK has identified the need
53 for a pragmatic, randomised trial to determine the clinical and cost-effectiveness

54 of ketamine against standard care (morphine)(37). This study therefore aimed to
55 estimate the cost-effectiveness of ketamine for severe pain in acute traumatic
56 injury when delivered by UK paramedics. The findings are intended to inform
57 policy makers, guideline developers and ambulance services as to whether
58 ketamine should be added to the paramedic formulary.

59 **Methods**

60

61 **Trial background**

62 The Paramedic Analgesia Comparing Ketamine and MorphiNe (PACKMAN) Trial
63 was a pragmatic, multicentre, randomised, double blind randomised controlled
64 trial (RCT) comparing the clinical and cost-effectiveness of ketamine versus
65 morphine for severe pain in acute traumatic injury: the protocol has been
66 published previously (38). In brief, acute trauma patients, aged 16 and over, who
67 reported a pain score $\geq 7/10$ on a 0-10 numeric rating scale (NRS) following acute
68 traumatic injury, with Intravenous (IV) or intraosseous (IO) access, determined by
69 a paramedic to require IV morphine or equivalent were eligible. The trial had a
70 prespecified target sample size of 446 participants (38). Recruitment occurred
71 between 10th November 2021 and 16th May 2023 from two large NHS ambulance
72 services (West Midlands and Yorkshire NHS Ambulance Services) in England. The
73 treatment intervention, ketamine, was supplied in ampoules containing 15 mg in
74 1 ml. The control intervention, morphine, was supplied in ampoules containing
75 10 mg in 1 ml. The trial drugs were administered by slow IV (or IO) injection,
76 titrated to effect over five minutes, aiming to give the minimal effective dose. If
77 the patient continued to report pain 5 minutes after receiving the first full
78 syringe (10 ml), a second syringe was prepared and administered in a similar
79 manner by the attending paramedic. A maximum of 20 ml of trial drug could be

80 administered, equating to a maximum dose of either 20 mg morphine or 30 mg
81 ketamine. The ampoules were labelled as trial related investigational medicinal
82 product (IMP) and paramedics were not able to identify which treatment they
83 were administering (38). Participants were randomised (1:1 ratio) to either
84 ketamine or morphine. Numbered study drug packs in a pre-randomised
85 sequence, were carried by participating ambulance paramedics. Randomisation
86 occurred when the trial IMP pack was opened. The primary clinical outcome was
87 the Sum of Pain Intensity Difference (SPID) assessed using a 0-10 numeric rating
88 scale. Pain intensity was recorded prior to treatment administration and then at
89 regular intervals following randomisation until arrival at hospital. Other important
90 outcomes included overall pain relief, patient experience, tolerability, and the
91 economic outcomes described below.

92

93 **Overview of economic analyses**

94 The cost-utility analysis involved evaluation of economic costs, health-related
95 quality of life (HRQoL) outcomes and cost-effectiveness of ketamine versus
96 morphine where cost-effectiveness was expressed in terms of incremental cost
97 per quality adjusted life year (QALY) gained. The base-case economic evaluation
98 took the form of an intention-to-treat, imputed analysis conducted from a UK
99 National Health Service (NHS) and personal social services (PSS) perspective in
100 line with the NICE reference case (39). The NHS payer perspective considers
101 intervention-related treatment costs and other health service resource use and
102 costs whilst a personal social services perspective includes services provided by
103 local authorities for vulnerable groups, including older people. A six-month time
104 horizon was used for the economic evaluation, consistent with the duration of
105 trial follow-up. Three months is typically regarded as the threshold for chronic

106 pain, and extending follow-up to six months allowed observation of whether early
107 effects persist into the chronic phase. No discounting was required due to the
108 time horizon adopted.

109

110 **Costs**

111 Three broad resource use and costs categories were delineated for cost
112 estimation: (i) Direct intervention costs (medication costs); (ii) Direct healthcare
113 and PSS (e.g. medications for side-effects, outpatient appointments, community
114 health and social care) use during the 6 month follow-up; and (iii) for the
115 purposes of a sensitivity analysis conducted from a societal perspective also
116 included non-NHS & PSS costs (e.g. value of lost productivity, out of pocket
117 expenses). All costs were expressed in pounds sterling and valued in 2021-22
118 prices. Where required, costs were inflated or deflated to 2021-22 prices using
119 the NHS Cost Inflation Index (NHSCI)(40). The PACKMaN trial focused on
120 administration of two alternative medications for pain relief in patients with
121 severe pain. The intervention arm received ketamine hydrochloride whilst the
122 control arm received morphine sulphate. The intervention components, how they
123 were collected, associated resource use and source of unit costs are summarised
124 in Supplementary Table 1 (Appendix). In accordance with NICE guidance, we
125 captured NHS and PSS costs for both arms of the trial (39). This included within-
126 ambulance costs, inpatient care, outpatient care, community care, accident and
127 emergency admission, medication, and personal social services. The methods for
128 capturing the resource use and the sources for unit costs are outlined in
129 Supplementary Table 2 (Appendix). Within ambulance costs were captured
130 through the ambulance service data form, index admission costs were collected
131 via the hospital data collection form, whilst the remaining health and social

132 service resource use was collected through participant-completed questionnaires
133 completed at 3 and 6 months post-randomisation. The identified resource inputs
134 were valued using unit costs (Supplementary Table 3) identified through national
135 cost compendia in accordance with NICE's Guide to the Methods of Technology
136 Appraisal (39). Unit cost data were derived based on NHS England's National
137 schedule of NHS costs 2021-22 schedules (41), the Personal social services
138 research unit (PSSRU) Unit Costs of Health and Social Care 2022 compendium
139 (40), 2021-22 volumes of the British National Formulary (42), NHS Supply Chain
140 Catalogue 2021-22 (43), and the 2021-22 National Health Service Business
141 Service Authority (NHSBSA) Prescription Cost Analysis (PCA) schedule (44).
142 Analyses from a societal perspective additionally encompassed economic values
143 for work absences (by patients and their caregivers), travel costs and privately
144 incurred health expenditures. Cost information was self-reported by trial
145 participants.

146

147 **Health-related quality of life outcomes**

148 HRQoL were assessed using the EQ-5D-5L instrument, which defines HRQoL in
149 terms of five dimensions (mobility, self-care, usual activities, pain/discomfort,
150 anxiety/depression), each with five levels of severity(45). The EQ-5D-5L was
151 chosen because it provides improved descriptive sensitivity, greater
152 discriminatory power, and reduced ceiling effects compared with the EQ-5D-3L,
153 particularly in populations with mobility and pain problems such as trauma and
154 musculoskeletal patients (46-48). For ethical, logistical and pragmatic reasons, it
155 was not possible to capture baseline EQ-5D-5L measurements in patients
156 suffering acute pain following trauma within this trial. This is not uncommon
157 within trials involving emergency and critical care settings (49). Ideally, the EQ-

158 5D-5L would be completed at the time of randomisation or as soon as possible
159 afterwards. This however was not possible in this trial. National age and gender
160 specific norms for EQ-5D utility values were therefore applied at baseline (50).
161 These normative values, derived from a large, nationally representative sample
162 of the English population, were estimated using EQ-5D responses collected
163 through the Health Survey for England and weighted to reflect the demographic
164 structure of the population. Utilities were calculated for each age-gender stratum
165 using the recommended UK EQ-5D value set, and participants in this trial were
166 assigned the normative utility corresponding to their age group and gender at
167 randomisation. HRQoL at 3 and 6 months post-randomisation was assessed using
168 patient-completed EQ-5D-5L responses. Responses to the EQ-5D-5L descriptive
169 system were mapped onto the EQ-5D-3L value set using the Alava HM et al.
170 interim cross-walk algorithm (51), as recommended by NICE in England and
171 Wales (39). Empirical analyses show that cross-walked EQ-5D-5L utilities have a
172 compressed distribution with lower variance and slightly lower mean values
173 compared with native 3L or 5L utilities (52). This redistribution can reduce
174 sensitivity to small changes in health, leading to slightly more conservative QALY
175 estimates (53). Patient-level QALYs were estimated using the area under the
176 curve approach, assuming linear interpolation between the utility scores, i.e., the
177 preference-based values attached to the health states generated from the EQ-
178 5D-5L descriptive system.

179

180 **Handling of missing data**

181 Multiple imputation by chained equations was used to predict missing costs and
182 health utility scores based on the assumption that data were missing at random
183 (MAR). To examine the plausibility of the MAR assumption, we conducted a series

184 of logistic regression analyses comparing baseline demographic, clinical, and
185 trial process variables between participants with and without missing EQ-5D and
186 cost data at follow-up. Several variables including baseline EQ-5D, age, and
187 ambulance service were found to be associated with missingness and were
188 therefore included in the imputation model to strengthen the plausibility of the
189 MAR assumption. Imputation was achieved using predictive mean matching,
190 which has the advantage of preserving nonlinear relationships and correlations
191 between variables within the data. Fifty imputed datasets were generated to
192 inform the base-case and subsequent sensitivity and subgroup analyses.
193 Parameter estimates were pooled across the imputed datasets using Rubin's
194 rules to account for between- and within-imputation components of variance
195 terms associated with parameter estimates (54).

196

197 **Cost-effectiveness analysis**

198 Mean resource use, cost and health utility values were compared between the
199 trial arms using two sample t-tests. Mean incremental costs and mean
200 incremental QALYs were estimated using seemingly unrelated regression (SUR)
201 methods that account for the correlation between costs and outcomes (55).
202 Differences between groups, along with confidence intervals (CIs), were
203 estimated using non-parametric bootstrap estimates (10,000 replications) of
204 regression models. The cost equation was adjusted using: type of ambulance
205 service (West Midland Ambulance Service (WMAS), Yorkshire Ambulance Service
206 (YAS)), age category (<60, \geq 60), gender (male, female), administration of IV
207 analgesia prior to randomisation (Yes, No), and weight ((i) >0 and <70 , ii) ≥ 70
208 and <85 , iii) ≥ 85 kg). The QALY equation was adjusted using baseline utilities,
209 ambulance service (WMAS, YAS), age category (<60, \geq 60), gender (male,

210 female), administration of IV analgesia prior to randomisation (Yes, No), and
211 weight ((i) >0 and <70 , ii) ≥ 70 and <85 , iii) ≥ 85 kg)). Following imputation,
212 bootstrapping was used to generate the joint distribution of costs and outcomes
213 and to populate a cost-effectiveness plane. The incremental cost-effectiveness
214 ratio (ICER) for ketamine was estimated by dividing the between-group
215 difference in adjusted mean total costs by the between-group difference in
216 adjusted mean QALYs. Mean ICER values were compared against cost-
217 effectiveness threshold values (i.e. society's willingness to pay for an additional
218 QALY) ranging between £20,000 and £30,000 per QALY gained in line with NICE
219 guidance (39). ICER values lower than the threshold are considered cost-
220 effective for use in the UK NHS. The incremental net monetary benefit (INMB) of
221 switching from morphine to ketamine was also calculated at each of these cost-
222 effectiveness threshold values. The net monetary benefit is the economic benefit
223 of an intervention (expressed in monetary terms) net of all costs. A positive
224 incremental NMB suggests that, on average, ketamine is cost-effective compared
225 with morphine, at the given cost-effectiveness threshold.

226

227 **Sensitivity and subgroup analyses**

228 Pre-specified sensitivity analyses were undertaken to assess the impact of
229 uncertainty surrounding components of the economic evaluation and included
230 restricting the analyses to complete cases (i.e. the sample of participants with no
231 missing costs or outcome data at any time point), replicating the analysis from a
232 societal perspective, and changing the baseline utility assumption (assumed a
233 fixed utility of 0 for everyone). Prespecified subgroup analyses were conducted
234 by age category (<60 , ≥ 60), gender (male, female), administration of IV
235 analgesia prior to randomisation ((Yes, No), weight (i) >0 and <70 , ii) ≥ 70 and

236 <85, iii) ≥ 85 kg). Interaction terms between treatment and each subgroup
237 variable were included in the regression models to formally test whether the
238 effect of ketamine on costs and QALYs differed across subgroups. In addition, a
239 scenario analysis was conducted estimating the incremental cost per score point
240 reduction in the sum of pain intensity difference (SPID) the time horizon for this
241 was constrained to the period between randomisation and initial hospital
242 discharge.

243 Results

244

245 **Study population and data completeness.**

246 Baseline characteristics of participants were well-matched between the
247 randomised groups (Table 1). Complete QALY profiles were available for 196
248 (47%) participants based on the EQ-5D-5L (Table 2). Completion of resource use
249 data for the economic evaluation was similar (53%-57%) at each time-point
250 between the ketamine and morphine groups (Table 2). There were no differences
251 in the sociodemographic characteristics between participants with or without
252 complete data (Supplementary Table 4).

253

254 **Cost of intervention**

255 Mean total intervention costs are presented for each group (Supplementary
256 Table 5). These varied between £21.76 (ketamine) and £23.89 (morphine). The
257 information on cost components can be found in Supplementary Table 3.

258

259 **Resource utilisation**

260 For health and personal social service use, shown in Supplementary Table 5,
261 there were no differences between the two groups in utilisation of hospital
262 inpatient and outpatient care. In terms of community-based health and social
263 care, there were higher visits to the GP for the ketamine arm (mean (SD) 2.45
264 (1.79)) vs the morphine arm (mean (SD) 1.50 (0.79)). For all other categories of
265 community-based health and social care, there were no differences between the
266 two groups in resource utilisation.

267

268 **Total economic costs**

269 For the base-case (imputed) analysis, mean NHS and PSS costs, inclusive of
270 intervention costs, over the entire follow-up period were £5207 for the ketamine
271 arm versus £5324 for the morphine arm (Supplementary Table 6). There was an
272 incremental cost saving in the ketamine arm of £117. Mean total societal costs,
273 for the entire follow-up period, inclusive of the intervention cost, were £6266 in
274 the ketamine arm compared with £6373 in the morphine group (Supplementary
275 Table 6). This generated an incremental cost increase of £107 in favour of the
276 ketamine arm. The estimates of economic costs for non-imputed (complete)
277 cases are shown in Supplementary Table 5 and follow the same pattern as the
278 imputed base case analysis.

279 **Health-related quality of life outcomes**

280 For the base-case analysis, mean (SE) participant reported QALY estimates for
281 the entire period were 0.314 (0.01) for the ketamine arm versus 0.289 (0.01) for
282 the morphine arm; the mean between group difference was 0.0253
283 (Supplementary Table 6).

284

285 **Cost-effectiveness results: base-case analysis (imputed costs and**
286 **adjusted**

287 The base-case economic evaluation (NHS and PSS perspective, imputed costs
288 and QALYs and adjusted for covariates) indicated that ketamine was associated
289 with lower NHS and PSS costs (-£117, 95% CI – £849 to £597) and an
290 improvement in QALYs (0.025, 95% CI 0.010 to 0.041). Ketamine was associated
291 with a lower cost and an improvement in health outcomes compared to
292 morphine, and is therefore considered dominant.. The associated mean INMB at
293 cost-effectiveness thresholds of £20,000 and £30,000 per QALY were £631 and
294 £884, respectively (Table 3). The base-case mean INMB was >0, suggesting that
295 the use of ketamine would result in an average net economic gain. The
296 probability of cost-effectiveness for ketamine was estimated as 92% and 96% at
297 cost-effectiveness thresholds of £20,000 and £30,000 per QALY, respectively.

298 The joint distribution of costs and outcomes for the base-case analysis is
299 presented graphically in Fig. 1, with axes labelled for incremental costs and
300 incremental QALYs and the four quadrants of the cost-effectiveness plane
301 labelled to aid interpretation. The figure displays the results of 5,000 bootstrap
302 simulations, with two reference lines representing willingness-to-pay thresholds
303 of £20,000 and £30,000 per QALY. A higher proportion of bootstrap simulations
304 falling below these threshold lines indicates a greater probability that ketamine
305 is cost-effective. The cost-effectiveness acceptability curve is shown in Fig. 2,
306 with a horizontal reference line at 50% probability to aid interpretation. Points
307 above this line indicate that the intervention is more likely than not to be cost-
308 effective at the corresponding willingness-to-pay threshold, whereas points
309 below indicate a lower probability. For ketamine, the curve remains above the

310 50% line across commonly cited cost-effectiveness thresholds, indicating a
311 higher likelihood than not that the intervention is cost-effective.

312

313 **Sensitivity and subgroup analyses**

314 The sensitivity analysis conducted from a societal perspective found a similar
315 probability that ketamine was cost-effective of between 86 and 92% across cost-
316 effectiveness thresholds (Table 3). The sensitivity analysis based on complete
317 cases showed that there was no difference in costs and QALYs and the
318 probability that ketamine was cost-effective decreased to between 54 and 62%
319 across cost-effectiveness thresholds. Using a baseline utility of 0 for all
320 participants did not impact the results.

321 The pre-planned subgroup analyses suggested that ketamine was more cost-
322 effective in the following subgroups: participants aged ≥ 60 , males, and
323 participants that did not receive IV analgesia prior to randomisation (Table 3).
324 However, the interaction terms in the underlying regression models were not
325 statistically significant, indicating that differences in cost-effectiveness across
326 these subgroups should be interpreted cautiously. The scenario analysis
327 estimating the cost per unit change in SPID score indicated that ketamine was
328 associated with an increase in costs from randomisation to initial discharge from
329 hospital (£436, 95% CI – £100 to £973) and a reduction in total pain (0.0979,
330 95% CI -0.444 to 0.640). The mean ICER for ketamine was estimated at £4,195
331 (northeast quadrant) per unit pain score reduction, i.e. on average, ketamine
332 was associated with a higher cost and a reduction in pain score.

333

334 **Discussion**

335 This trial-based economic evaluation revealed that the use of ketamine led, on
336 average, to a modest increase in health-related quality of life, without increased
337 cost, over a 6-month follow-up period. The resulting ICER from an NHSS and PSS
338 perspective falls favourably below the recommended NICE cost-effectiveness
339 threshold of £20,000 per QALY though the uncertainty around the mean ICER
340 was large. From a societal perspective, ketamine was similarly cost-effective.
341 There was no difference in clinical effectiveness (pain relief) when compared to
342 morphine from randomisation to arrival at hospital.

343 There were some challenges when analysing the trial data, including persistent
344 missingness at both follow up points, an imbalance of missingness by ambulance
345 service, and a bimodal pattern of costs in both treatment arms. Given that over
346 half of EQ-5D observations were missing at 6 months, the plausibility of the MAR
347 assumption warranted particular consideration.. Although MAR cannot be
348 empirically verified, the robustness of the imputation was explored by varying
349 the imputation seed and number of (discarded) burn-ins: the results were stable.
350 Burn in traces were checked for adequate mixing and adequacy of the Markov
351 chain Monte Carlo (MCMC) process. The number of draws used for the imputation
352 was 50, this was adequate when checked against the uppermost fraction of
353 missing information (FMI), which was 40%. There is no formal way of checking if
354 the data are missing not-at-random (MNAR), but variables were identified that
355 predicted missingness and included in the imputation model. This approach
356 helps satisfy the conditions under which MAR is more credible. A seemingly
357 unrelated regression model was used for the base case analysis as it features
358 the natural scale of the data and assumes normality of the bootstrap estimates
359 for sample means. The distribution family for the dependent variables was

360 explored and a gamma distribution with log link was found to improve the cost
361 model specification, while the gaussian distribution was retained for the QALY
362 variable. To preserve a bivariate analysis, a version of the base case was run
363 using generalized structural equation modelling (GSEM) producing statistically
364 similar findings. Several covariates in the base case model were significant.
365 These were explored to see if they interacted with treatment where a significant
366 interaction would suggest varying cost-effectiveness for the interaction sub-
367 groups. The consistency of findings across sensitivity analyses provides some
368 reassurance that departures from MAR, if present are unlikely to have materially
369 influenced the conclusions. However, the possibility of missing-not-at-random
370 (MNAR) mechanisms cannot be ruled out entirely and represents a limitation of
371 the analysis.

372

373

374 Our imputed analyses of cost-effectiveness outcomes gave a more optimistic
375 estimate, reflecting some adjustment for the patterns of missingness. The
376 evidence of HRQoL benefits adds to the emerging evidence base from clinical
377 trials that demonstrate improvements in pain from ketamine. (32-36) Without
378 economic modelling beyond the current parameters of the trial, the longer-term
379 cost-effectiveness of ketamine cannot be ascertained.

380 Although ketamine appeared less cost-effective in participants who were
381 younger, required analgesia prior to randomisation, or were female, none of the
382 interaction terms reached statistical significance. As with all sub-group analyses,
383 these should be considered exploratory only, and our primary estimates account
384 for all people. We used a pragmatic approach to sampling, and hence our
385 findings should be generalisable. To the best of our knowledge there is no

386 comparable evidence for cost-effectiveness of ketamine in trauma patients in the
387 broader literature.

388

389 Strengths of the current economic evaluation are that the trial was prospectively
390 designed for a cost-effectiveness analysis using individual-level data to reach a
391 confirmatory conclusion. There are some limitations to this economic evaluation.

392 Firstly, utility measurements were collected at only two time-points (3 months
393 and 6 months) post-randomisation. Evidence suggests that the timing of
394 assessment can significantly influence cost-effectiveness results when using the
395 EQ-5D, particularly when participants experience recurrent health fluctuations
396 (56). In such cases, the linear interpolation of utility data may fail to reflect

397 HRQoL fluctuations over short periods and the uncertainty is compounded by
398 missing data. While the trial may have captured differences in chronic pain, it
399 may have missed changes in acute pain occurring before the three-month follow-
400 up. Secondly, resource use data were retrospectively recalled by participants,
401 and this could have led to recall bias, though we cannot predict the direction of
402 this bias. Findings from literature are mixed, suggesting that resource use may
403 be under-reported, over-reported or they may be good agreement between

404 patient/carer recall and data extracted from medical records, depending on how
405 well the resource use measures are structured (57). Because the recall periods
406 and questionnaires were standardised across randomised groups, retrospective
407 recall is unlikely to have biased results in favour of one group. Thirdly, our
408 approaches to collecting resource use data did not disentangle resource use
409 associated with trauma from resource use associated with broader health
410 factors. Fourthly, there were high levels of missingness in the study data.

411 However, we handled missingness within the health economic data through

412 recommended multiple imputation techniques that address the inherent biases
413 associated with estimating effects on the basis of complete data.

414

415 **Conclusions**

416 In this economic evaluation based upon a randomised controlled trial, ketamine
417 administered by paramedics to adults with severe pain following traumatic
418 injuries was cost-effective compared to morphine.

419

420

421 **List of abbreviations**

422	CCPs	Critical care paramedics
423	CI	Confidence intervals
424	CNS	Central nervous system
425	FMI	Fraction of missing information
426	GSEM	Generalized structural equation modelling
427	HRQoL	Health-related quality of life
428	ICER	Incremental cost-effectiveness ratio
429	IMP	Investigational medicinal product
430	INMB	Incremental net monetary benefit
431	IO	Intraosseous
432	IV	Intravenous
433	MAR	Missing at random
434	MCMC	Markov chain Monte Carlo
435	MD	Mean difference
436	MNAR	Missing not-at-random
437	NHS	National health service
438	NHSBSA	National Health Service Business Service Authority
439	NHSCII	NHS Cost Inflation Index
440	NICE	National Institute for Health and Care Excellence
441	NRS	Numeric rating scale
442		
443	OR	Odd ratio
444	PACKMAN	Paramedic Analgesia Comparing Ketamine and MorphiNe
445	PCA	Prescription Cost Analysis
446	PSS	Personal social services
447	PSSRU	Personal social services research unit
448	PTSD	Post-traumatic stress disorder
449	QALY	Quality-adjusted life-year
450	RCT	Randomised controlled trial
451	SD	Standard deviation
452	SPID	Sum of Pain Intensity Difference
453	SUR	Seemingly unrelated regression
454	WMAS	West midland ambulance service
455	YAS	Yorkshire ambulance service
456		

457

458 **Declarations**

459 **Ethics approval and consent to participate**

460 Ethics approval for the PACKMAN trial was granted by the West of Scotland
461 Research Ethics Committee (REC number 16/LO/0349) on 01/09/2020. The study
462 was conducted in accordance with the principles of the Declaration of Helsinki
463 and Good Clinical Practice guidelines. Patients were screened by attending
464 paramedics, and verbal assent to participation was obtained prior to
465 randomisation. Written informed consent was subsequently obtained by trained
466 research paramedics, either during the patient's hospital stay or following
467 discharge from hospital.

468 **Trial registration**

469 The trial was registered with the International Standard Randomised Controlled
470 Trial Number (ISRCTN) registry (ISRCTN14124474) on 22 October 2020.

471 **Consent for publication**

472 Not applicable.

473 **Availability of data and materials**

474 The datasets analysed during the current study are available from the
475 corresponding author upon reasonable request.

476 **Competing interests**

477 None

478 **Funding**

479 The PACKMaN trial was funded by the National Institute for Health and Care
480 Research Health Technology Assessment Programme (HTA NIHR128086).

481 **Author contributions**

482 CRediT author statement

483 **Kamran Khan:** Methodology, Formal analysis, Writing – Original draft

484 **Michael Smyth:** Conceptualization, Funding acquisition, Writing -Review &

485 Editing

486 **Gavin Perkins:** Conceptualization, Funding acquisition, Writing -Review &

487 Editing

488 **Joyce Yeung:** Conceptualization, Funding acquisition, Writing -Review & Editing

489 **Alison Walker:** Conceptualization, Funding acquisition, Writing -Review &

490 Editing

491 **Rebecca McLaren:** Conceptualization, Funding acquisition, Writing -Review &

492 Editing

493 **Gordon Fuller:** Conceptualization, Funding acquisition, Writing -Review &

494 Editing

495 **Stavros Petrou:** Conceptualization, Funding acquisition Writing -Review &

496 Editing, Supervision

497

498 **Acknowledgements**

499 SP receives support as a National Institute for Health and Care Research (NIHR)

500 Senior Investigator (NF-SI-0616-10103) and from the NIHR Applied Research

501 Collaboration Oxford and Thames Valley.

502 GDP is supported by the National Institute for Health Research (NIHR) Applied

503 Research Collaboration (ARC) West Midlands.

504 The views expressed are those of the author(s) and not necessarily those of the
505 NIHR or the Department of Health and Social Care

ARTICLE IN PRESS

Table 1: Baseline characteristics by trial arm

	Ketamine (n=206)	Morphine (n=210)
Baseline characteristics		
Ambulance service (n, %)		
WMAS	107 (51.9%)	109 (51.9%)
YAS	99 (48.1%)	101 (48.1%)
Age category (n, %)		
<60	85 (41.3%)	82 (39.0%)
≥60	121 (58.7%)	128 (61.0%)
Gender (n, %)		
Female	110 (53.4%)	110 (52.4%)
Male	96 (46.6%)	100 (47.6%)
Analgesia ¹ (n, %)		
No	119 (57.8%)	122 (58.1%)
Yes	87 (42.2%)	88 (41.9%)
Weight category (n, %)		
>0 and <70	72 (35.0%)	62 (29.5%)
≥70 and <85	71 (34.5%)	69 (32.9%)
≥85	63 (30.5%)	79 (37.6%)
Baseline utilities ² (mean (SD)	0.7809 (0.07)	0.7818 (0.08)
Baseline Pain Score	8.8358 (1.19)	8.8469 (1.21)

¹Administration of IV analgesia prior to randomisation.

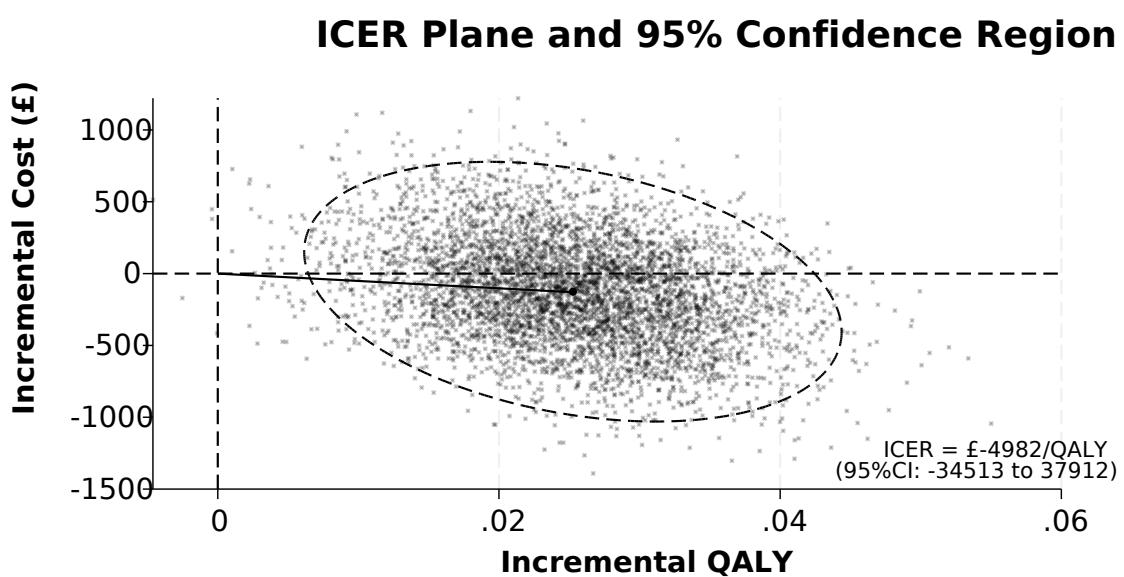
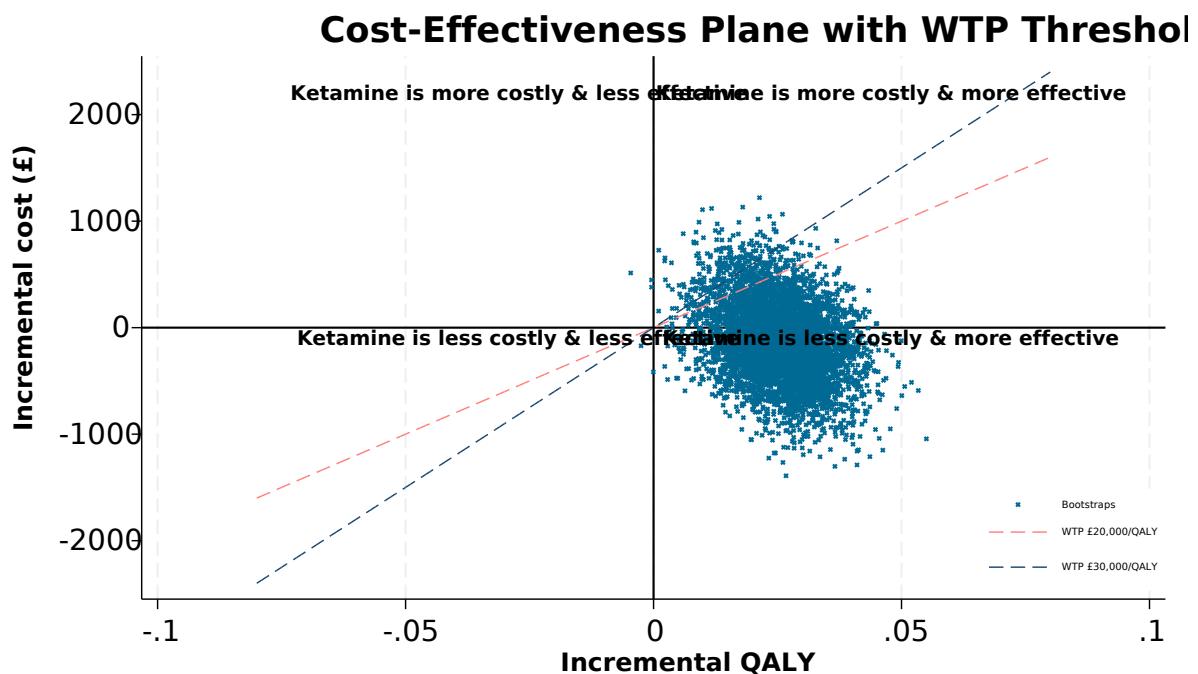
²Age and gender specific population norm values.

Table 2: Missingness of data by follow-up visit

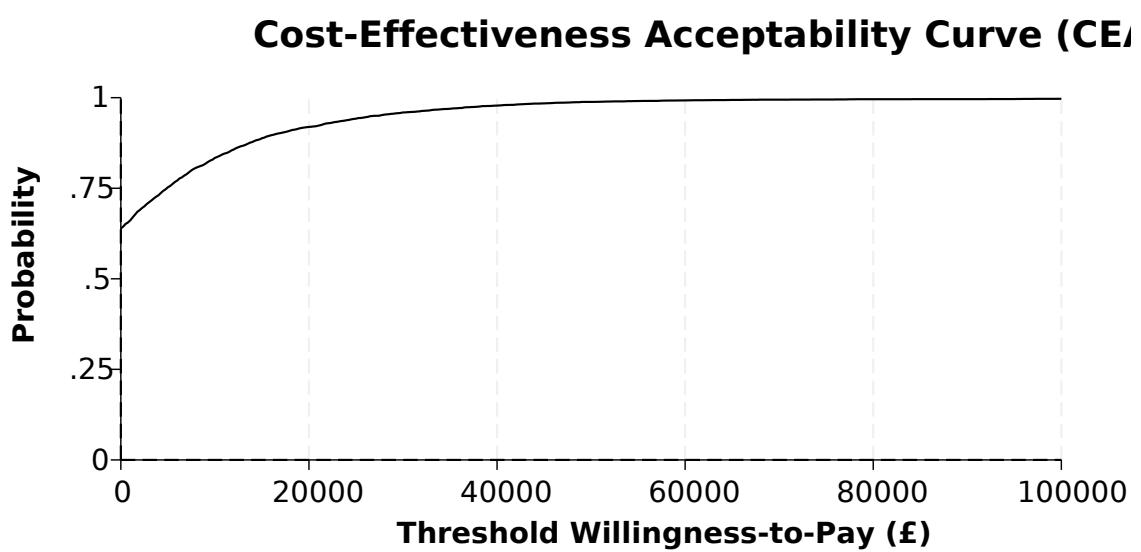
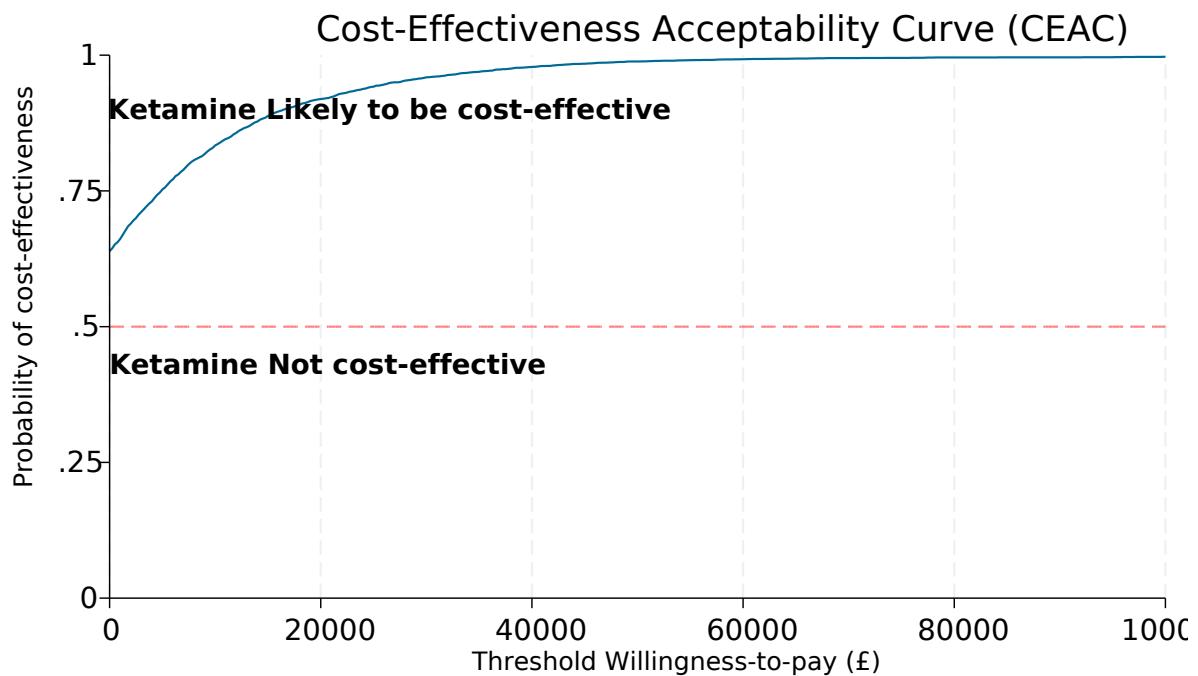
	Ketamine	Morphine	Total
	206 n (% missing)	210 n (% missing)	416 n (% missing)
Health status			
<i>EQ-5D Baseline (derived)</i>	0 (0.00%)	0 (0.00%)	0 (0.00%)
<i>EQ-5D 3 months</i>	92 (44.66%)	99 (47.14%)	191 (45.91%)
<i>EQ-5D 6 months</i>	99 (48.06%)	95 (45.24%)	194 (46.63%)
<i>EQ-5D All visits</i>	108 (52.43%)	112 (53.33%)	220 (52.88%)
Resource use 3months			
<i>Inpatient</i>	89 (43.20%)	93 (44.29%)	182 (43.75%)
<i>Outpatient</i>	88 (42.72%)	93 (44.29%)	181 (43.51%)
<i>Community &PSS</i>	88 (42.72%)	93 (44.29%)	181 (43.51%)
<i>Medication</i>	88 (42.72%)	95 (45.24%)	183 (43.99%)
<i>Special equipment</i>	88 (42.72%)	95 (45.24%)	183 (43.99%)
<i>Wider costs</i>	88 (42.72%)	95 (45.24%)	183 (43.99%)
Resource use 6months			
<i>Inpatient</i>	96 (46.60%)	93 (44.29%)	189 (45.43%)
<i>Outpatient</i>	96 (46.60%)	93 (44.29%)	189 (45.43%)
<i>Community &PSS</i>	97 (47.09%)	93 (44.29%)	190 (45.67%)
<i>Medication</i>	96 (46.60%)	96 (45.71%)	192 (46.15%)
<i>Special equipment</i>	97 (47.09%)	94 (44.76%)	191 (45.91%)
<i>Wider costs</i>	97 (47.09%)	94 (44.76%)	191 (45.91%)

Table 3: Cost-effectiveness results

	Incremental cost (95%CI)	Incremental QALYs (95%CI)	ICER	P²	P³	NMB²	NMB³
Base case							
Imputed costs and QALYs, adjusted ¹ (N=416) – 5000 bootstraps	-£116.63 (-£849 to £597)	0.0253 (0.0100 to 0.0406)	-£4982 (Dominates) (SE Quadrant)	0.919	0.959	£631.04	£883.65
Sensitivity analyses							
1 Inclusion of societal costs, imputed and adjusted ¹ (N=416)	-£107.31 (-£1326 to £1112)	0.0253 (0.0007 to 0.0500)	-£4242 (Dominates) (SE Quadrant)	0.8610	0.9194	£614.93	£867.57
2 Complete case analysis, adjusted ¹ (N=189)	£233.11 (-£783 to £1216)	0.0157 (-0.0131 to 0.0435)	£15,109 (NE Quadrant)	0.5402	0.6216	£74.57	£227.02
3 Baseline utility assumptions changes, imputed and adjusted ¹ (N=416)	-£116.63 (-£849 to £597)	0.0253 (0.0100 to 0.0406)	-£5047 (Dominates) (SE Quadrant)	0.9213	0.9605	£632.85	-£885.51
Subgroup analyses							
4 Age <60, imputed and adjusted ¹ (N=416)	£791.64 (-£422 to £2005)	0.0192 (-0.0049 to 0.0432)	£41,247 (NE Quadrant)	0.3330	0.4310	-£339.07	-£140.59
5 Age ≥60, imputed and adjusted ¹ (N=416)	-£722.78 (-£1610 to £165)	0.0294 (0.0089 to 0.0499)	-£24,561 (Dominates) (SE Quadrant)	0.9940	0.9940	£1310.20	£1604.42
6 Female, imputed and adjusted ¹ (N=416)	-£11.92 (-£940 to £916)	0.0090 (-0.0130 to 0.0310)	-£1,356 (SE Quadrant)	0.6180	0.6530	£204.47	£292.29
7 Male, imputed and adjusted ¹ (N=416)	-£234.80 (-£1413 to £944))	0.0440 (0.0230 to 0.0660)	-£5,331 (SE Quadrant)	0.9510	0.9790	£1163.44	£1611.50
8 Analgesia no, imputed and adjusted ¹ (N=416)	-£474.86 (-£1431 to £481)	0.0240 (0.0027 to 0.0453)	-£19334 (SE Quadrant)	0.9580	0.9660	£996.58	£1239.34
9 Analgesia yes, imputed and adjusted ¹ (N=416)	£379.65 (-£768 to £1527)	0.0272 (0.0033 to 0.0511)	£13,854 (NE Quadrant)	0.6050	0.7170	£174.15	£448.63
Scenario analyses							
4Cost per unit change in SPID score, adjusted (N=409)	£436.43 (-£99.96 to £972.83)	0.0979 (-0.4444 to 0.6402)	£4,195 (NE Quadrant)				



All models estimated using SUREG

¹cost equation adjusted using: Ambulance service (WMAS, YAS), age category (<60, ≥60), gender (male, female), Administration of IV analgesia prior to randomisation (Yes, No), weight (i) >0 and <70, ii) ≥70 and <85, iii) ≥85), QALY equation adjusted using baseline utilities, Ambulance service (WMAS, YAS), age category (<60, ≥60), gender (male, female), Administration of IV analgesia prior to randomisation (Yes, No), weight (i) >0 and <70, ii) ≥70 and <85, iii) ≥85)



² probability cost-effective or net monetary benefit at cost-effectiveness threshold of £20,000/QALY. ³ probability cost-effective or net monetary benefit at cost-effectiveness threshold of £30,000/QALY

⁴For this analysis costs were restricted to those occurred from randomisation to initial discharge. Pain score was adjusted using Ambulance service, age category, gender, Administration of IV analgesia prior to randomisation, and weight

Figure 1: Cost-effectiveness plane, base case (Imputed costs and QALYs, adjusted)

Figure 2: Cost-Effectiveness Acceptability Curve (CEAC), base case (Imputed costs and QALYs, adjusted)

References

1. Henderson T, Endacott R, Marsden J, Black S. Examining the type and frequency of incidents attended by UK paramedics. *Journal of Paramedic Practice*. 2019;11(9):396-402.
2. Berben SA, Schoonhoven L, Meijs TH, van Vugt AB, van Grunsven PM. Prevalence and relief of pain in trauma patients in emergency medical services. *The Clinical journal of pain*. 2011;27(7):587-92.
3. Alonso-Serra HM, Wesley K. Prehospital pain management. *Prehospital emergency care*. 2003;7(4):482-8.
4. Chambers J, Guly H. The need for better pre-hospital analgesia. *Emergency Medicine Journal*. 1993;10(3):187-92.
5. Ricard-Hibon A, Chollet C, Saada S, Loidant B, Marty J. A quality control program for acute pain management in out-of-hospital critical care medicine. *Annals of emergency medicine*. 1999;34(6):738-44.
6. Kyranou M, Puntillo K. The transition from acute to chronic pain: might intensive care unit patients be at risk? *Annals of intensive care*. 2012;2:1-11.
7. Jennings PA, Cameron P, Bernard S, Walker T, Jolley D, Fitzgerald M, et al. Long-term pain prevalence and health-related quality of life outcomes for patients enrolled in a ketamine versus morphine for prehospital traumatic pain randomised controlled trial. *Emergency Medicine Journal*. 2014;31(10):840-3.
8. Brennan F, Carr DB, Cousins M. Pain management: a fundamental human right. *Anesthesia & Analgesia*. 2007;105(1):205-21.
9. Rivara FP, MacKenzie EJ, Jurkovich GJ, Nathens AB, Wang J, Scharfstein DO. Prevalence of pain in patients 1 year after major trauma. *Archives of surgery*. 2008;143(3):282-7.
10. Daoust R, Paquet J, Moore L, Emond M, Gosselin S, Lavigne G, et al. Early factors associated with the development of chronic pain in trauma patients. *Pain Research and Management*. 2018;2018.
11. Williamson OD, Epi GDC, Gabbe BJ, Physio B, Cameron PA, Edwards ER, et al. Predictors of moderate or severe pain 6 months after orthopaedic injury: a prospective cohort study. *Journal of orthopaedic trauma*. 2009;23(2):139-44.
12. Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. *The lancet*. 2006;367(9522):1618-25.
13. Holbrook TL, Galarneau MR, Dye JL, Quinn K, Dougherty AL. Morphine use after combat injury in Iraq and post-traumatic stress disorder. *New England Journal of Medicine*. 2010;362(2):110-7.
14. Melcer T, Walker J, Bhatnagar V, Richard E, Han P, Sechrest 2nd V, et al. Glasgow Coma Scale scores, early opioids, and 4-year psychological outcomes among combat amputees. *J Rehabil Res Dev*. 2014;51(5):697-710.
15. Voscopoulos C, Lema M. When does acute pain become chronic? *British journal of anaesthesia*. 2010;105(suppl_1):i69-i85.
16. McGreevy K, Bottros MM, Raja SN. Preventing chronic pain following acute pain: risk factors, preventive strategies, and their efficacy. *European journal of pain supplements*. 2011;5(2):365-76.
17. Committee JRCAL. JRCALC Clinical guidelines 2022: Class Professional Publishing; 2022.
18. Chang AK, Bijur PE, Napolitano A, Lupow J, Gallagher EJ. Two milligrams iv hydromorphone is efficacious for treating pain but is associated with oxygen desaturation. *Journal of Opioid Management*. 2009;5(2):75-80.
19. Droney JM, Gretton SK, Sato H, Ross JR, Branford R, Welsh KI, et al. Analgesia and central side-effects: two separate dimensions of morphine response. *British Journal of Clinical Pharmacology*. 2013;75(5):1340-50.

20. Wong J, Carvalho B, Riley E. Intrathecal morphine 100 and 200 µg for postcesarean delivery analgesia: a trade-off between analgesic efficacy and side effects. *International Journal of Obstetric Anesthesia*. 2013;22(1):36-41.
21. Zhou K, Sheng S, Wang GG. Management of patients with pain and severe side effects while on intrathecal morphine therapy: A case study. *Scandinavian journal of pain*. 2017;17(1):37-40.
22. Shah A. Characteristics of initial prescription episodes and likelihood of long-term opioid use—United States, 2006–2015. *MMWR Morbidity and mortality weekly report*. 2017;66.
23. Bredmose P, Lockey D, Grier G, Watts B, Davies G. Pre-hospital use of ketamine for analgesia and procedural sedation. *Emergency Medicine Journal*. 2009;26(1):62-4.
24. Porter K. Ketamine in prehospital care. *Emergency Medicine Journal*. 2004;21(3):351-4.
25. Green SM, Roback MG, Kennedy RM, Krauss B. Clinical practice guideline for emergency department ketamine dissociative sedation: 2011 update. *Annals of emergency medicine*. 2011;57(5):449-61.
26. Strayer RJ, Nelson LS. Adverse events associated with ketamine for procedural sedation in adults. *The American journal of emergency medicine*. 2008;26(9):985-1028.
27. McNicol E, Schumann R, Haroutounian S. A systematic review and meta-analysis of ketamine for the prevention of persistent post-surgical pain. *Acta Anaesthesiologica Scandinavica*. 2014;58(10):1199-213.
28. Stubhaug A, Breivik H, Eide P, Kreunen M, Foss A. Mapping of punctuate hyperalgesia around a surgical incision demonstrates that ketamine is a powerful suppressor of central sensitization to pain following surgery. *Acta Anaesthesiologica Scandinavica*. 1997;41(9):1124-32.
29. Bansal A, Miller M, Ferguson I, Burns B. Ketamine as a prehospital analgesic: a systematic review. *Prehospital and disaster medicine*. 2020;35(3):314-21.
30. McQueen C, Crombie N, Cormack S, Wheaton S. Prehospital use of ketamine for analgesia and procedural sedation by critical care paramedics in the UK: a note of caution? *Emergency Medicine Journal*. 2014;31(12):1029-.
31. von Vopelius-Feldt J, Benger J. Who does what in prehospital critical care? An analysis of competencies of paramedics, critical care paramedics and prehospital physicians. *Emergency Medicine Journal*. 2014;31(12):1009-13.
32. Galinski M, Dolveck F, Combes X, Limoges V, Smaïl N, Pommier V, et al. Management of severe acute pain in emergency settings: ketamine reduces morphine consumption. *The American journal of emergency medicine*. 2007;25(4):385-90.
33. Tran KP, Nguyen Q, Truong XN, Le V, Le VP, Mai N, et al. A comparison of ketamine and morphine analgesia in prehospital trauma care: a cluster randomized clinical trial in rural Quang Tri province, Vietnam. *Prehospital Emergency Care*. 2014;18(2):257-64.
34. Jennings PA, Cameron P, Bernard S, Walker T, Jolley D, Fitzgerald M, et al. Morphine and ketamine is superior to morphine alone for out-of-hospital trauma analgesia: a randomized controlled trial. *Annals of emergency medicine*. 2012;59(6):497-503.
35. Andolfatto G, Innes K, Dick W, Jennesson S, Zed P, Stenstrom R. P002: Prehospital analgesia with intra-nasal ketamine: a randomized double-blind pilot study. *Canadian Journal of Emergency Medicine*. 2018;20(S1):S57-S.
36. Johansson P, Kongstad P, Johansson A. The effect of combined treatment with morphine sulphate and low-dose ketamine in a prehospital setting.

Scandinavian journal of trauma, resuscitation and emergency medicine. 2009;17:1-5.

37. NG39 NG. Major trauma: assessment and initial management. Found at: www.nice.org.uk/guidance/ng39/evidence/full-guideline-2308122833 Pages. 2016:236-9.

38. Michelet F, Smyth M, Lall R, Noordali H, Starr K, Berridge L, et al. Randomised controlled trial of analgesia for the management of acute severe pain from traumatic injury: study protocol for the paramedic analgesia comparing ketamine and morphine in trauma (PACKMaN). Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2023;31(1):84.

39. NICE U. Guide to the methods of technology appraisal. National Institute for Health and Clinical Excellence (NICE) London, UK. 2022.

40. Jones KC, Burns A. Unit costs of health and social care 2022. 2022.

41. England N. National schedule of NHS costs FY21-22 2022 [Available from: <https://www.england.nhs.uk/publication/2021-22-national-cost-collection-data-publication/>].

42. NICE. British National Formulary [Available from: <https://bnf.nice.org.uk/>].

43. Digital N. NHS supply chain 2022 [Available from: <https://www.supplychain.nhs.uk/>].

44. NHSBSA. Prescription Cost Analysis (PCA) data 2022 [Available from: <https://www.nhsbsa.nhs.uk/statistical-collections/prescription-cost-analysis-england/prescription-cost-analysis-england-202122>].

45. Foundation ER. EQ-5D-5L user guide. EuroQol Research Foundation Rotterdam, The Netherlands; 2019.

46. Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Quality of life research. 2011;20(10):1727-36.

47. Janssen M, Pickard AS, Golicki D, Gudex C, Niewada M, Scalzone L, et al. Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multi-country study. Quality of life research. 2013;22(7):1717-27.

48. Buchholz I, Janssen MF, Kohlmann T, Feng Y-S. A systematic review of studies comparing the measurement properties of the three-level and five-level versions of the EQ-5D. Pharmacoeconomics. 2018;36(6):645-61.

49. Dritsaki M, Achana F, Mason J, Petrou S. Methodological issues surrounding the use of baseline health-related quality of life data to inform trial-based economic evaluations of interventions within emergency and critical care settings: a systematic literature review. Pharmacoeconomics. 2017;35:501-15.

50. McNamara S, Schneider PP, Love-Koh J, Doran T, Gutacker N. Quality-adjusted life expectancy norms for the English population. Value in Health. 2023;26(2):163-9.

51. Alava MH, Pudney S, Wailoo A. Estimating the relationship between EQ-5D-5L and EQ-5D-3L: results from an English Population Study. The University of Sheffield. 2020.

52. Van Hout B, Janssen M, Feng Y-S, Kohlmann T, Busschbach J, Golicki D, et al. Interim scoring for the EQ-5D-5L: mapping the EQ-5D-5L to EQ-5D-3L value sets. Value in health. 2012;15(5):708-15.

53. Parkin D, Devlin N, Feng Y. What determines the shape of an EQ-5D index distribution? Medical Decision Making. 2016;36(8):941-51.

54. Little RJ, Rubin DB. Statistical analysis with missing data: John Wiley & Sons; 2019.

55. Zellner A, Huang DS. Further properties of efficient estimators for seemingly unrelated regression equations. International Economic Review. 1962;3(3):300-13.

56. Schilling C, Dowsey MM, Clarke PM, Choong PF. Using patient-reported outcomes for economic evaluation: getting the timing right. *Value in Health*. 2016;19(8):945-50.
57. Ridyard CH, Hughes D. Review of resource-use measures in UK economic evaluations. *Unit Costs of Health and Social Care*. 2015;2015:22-31.

ARTICLE IN PRESS