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A B S T R A C T

Gesture recognition using high-density surface electromyography (HD-sEMG) signals has attracted

significant attention in myoelectric control. While recent studies report high intraday performance,

interday accuracy often drops due to poor generalizability, limiting real-world deployment. To

improve robustness, we propose a Diffusion-based Hand Gesture Recognition framework (DiffHGR)

that integrates diffusion-based data augmentation with autoencoder representation learning. During

training, a Diffusion (Diff) component corrupts HD-sEMG signals through a forward Gaussian

diffusion process and employs a U-Net–based denoiser to reconstruct high-fidelity signals, which are

used to augment the training set with diverse samples. Meanwhile, an Autoencoder (AE) component

learns discriminative latent representations for gesture classification, enhanced via skip connections

from the Diff encoder to reuse multi-scale denoising features. To address cross-day distribution shifts,

we further introduce a lightweight few-shot calibration protocol. During calibration, the Diff is kept

frozen and is used only as a generator to synthesize additional samples that augment the limited

target-day data, while the AE encoder and classifier are updated for fast adaptation. During online

inference, prediction is performed solely by the calibrated AE encoder and classifier, with the Diff

generator inactive in the inference path, enabling low-latency deployment. Extensive experiments

demonstrate that DiffHGR consistently outperforms other benchmark models. Real-time validation

further confirms its robustness and practical applicability. These results highlight the effectiveness of

combining diffusion-driven data augmentation and autoencoder-regularized representation learning

for robust HD-sEMG-based gesture recognition.

1. Introduction

Hand gesture recognition (HGR) provides an intuitive,

convenient, and natural human-computer interaction way. It

has been applied in a wide range of applications, such as

prosthesis control [1], interaction systems [2; 3] and virtual

reality game [4]. The common HGR technologies mainly

involve three types of sensors, i.e., data gloves [5], vision-

based sensors [6] and surface electromyography (sEMG) [7].

Among these, high-density surface electromyography data

(HD-sEMG) can capture detailed muscle activities, it thus

has been widely used for HGR in the past decades [8–10].

The most common approaches to decode HD-sEMG

signals into hand gestures are machine learning-based clas-

sifiers, such as linear discriminant analysis (LDA) [11],

support vector machine (SVM) [12], random forest (RF)

[13], and artificial neural network (ANN) [14]. However,

these methods are hindered by cumbersome hand-crafted

feature extraction [15], and the optimal combinations of

hand-crafted features varied with different conditions [16].

Deep learning (DL) methods have recently proven to be a
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powerful model to extract complex hidden features auto-

matically, thus they can learn the more robust and invari-

ant representations of EMG signals than machine learning

methods. For example, Yang et al. proposed a multi-stream

residual network (MResLSTM) for dynamic hand movement

recognition [17]. Karnam et al. introduced a hybrid CNN

and Bi-LSTM architecture for hand activity classification

[18]. Zhang et al. proposed a convolutional neural network

with multi-attention for hand gesture recognition [19]. Mon-

tazerin et al. introduced a Vision Transformer (ViT) based

method to recognize hand gestures [20]. However, these

methods are generally trained and evaluated using sEMG

signals collected on the same day. The performance of

these methods may be seriously degraded when a trained

model is tested with data collected on a different day. This

degradation arises from the neglect of factors such as sensor

misplacement, sensor displacement, and variations in human

neurophysiology and skin conductivity across different days

[8]. Thus, it is essential to improve the generalizability of

these HGR methods by ensuring high reliability on different

days [21].

To address the issue of cross-day variation and im-

prove model generalization, transfer learning and adver-

sarial learning have been widely adopted [4; 22; 23]. The

fine-tuning technique is mainly one of the transfer learning

methods. For instance, Côté-Allard et al. proposed three

ConvNet architectures combined with a transfer learning
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strategy for sEMG-based hand gesture recognition, demon-

strating improved performance after transfer learning [22].

Chen et al. introduced an effective CNN+LSTM network

and a finetuning framework for gesture recognition tasks

[24]. Wang et al. proposed a CNN-AM model using an

attention mechanism and transfer learning for sEMG-based

hand gesture estimation [25]. Although these existing ap-

proaches have achieved high classification accuracy by using

transfer learning, several challenges remain, which can be

summarized as follows: (1) reliance on a large amount of

labeled data, (2) limited generalization to new gestures, and

(3) dependence on larger window sizes ranging from 150

ms to 300 ms. In response to these challenges, Hu et al.

proposed the ViT-MDHGR method, which demonstrates

the effectiveness of using short time windows and minimal

calibration for multi-day hand gesture recognition [8]. While

their work proves the feasibility of using small window sizes

and few calibration trials to address cross-day variability, it

does not explore the generalization to a larger set of gestures,

which is critical for practical applications that require a

broader gesture repertoire. Adversarial learning is another

promising method to improve model generalization by gen-

erating diverse training data, addressing the requirement

of a large amount of labeled data. For example, Chen et

al. introduced a deep convolutional generative adversarial

network (DCGAN) to enhance multiple-channel EMG data,

with results showing that the synthetic data could increase

the diversity of the original dataset [26]. Shi et al. developed

a low-shot adversarial network incorporating physics-based

information to estimate muscle and joint kinematics from

sEMG signals [27]. Lee et al. proposed a recursive domain

adversarial neural network with data synthesis, which up-

dates the EMG classifier to a target day in a semi-supervised

manner for robust cross-day HGR [28]. Lin et al. developed a

robust framework named RoHDE based on GAN, and their

findings indicated that the proposed RoHDE can generate

synthetic HD-sEMG signals to simulate recording condi-

tions affected by disturbances [29]. Despite their promising

results, GAN-based methods face challenges in terms of

training stability and sample diversity.

To overcome these limitations, diffusion models, an

emerging class of deep generative models, have gained at-

tention due to their stable training processes and ability to

generate high-quality synthetic data [30; 31]. In this study,

we propose a Diffusion-based Hand Gesture Recognition

(DiffHGR) framework DiffHGR consists of two key compo-

nents: the Diff component, which performs diffusion-based

signal reconstruction and is used to generate high-fidelity

synthetic HD-sEMG samples for data augmentation, and the

AE component, which learns discriminative latent represen-

tations for gesture classification. The key contributions are

summarized as follows:

1. Diff Component: Utilizes a U-Net architecture to perform

the forward and reverse diffusion processes, capturing

both low-level and high-level features from HD-sEMG

signals. The model is trained to minimize the reconstruc-

tion loss between the generated synthetic signals and the

original data, effectively enhancing signal reconstruction

and augmenting training data.

2. AE Component: Extracts rich latent representations of

HD-sEMG signals essential for accurate gesture classi-

fication. The AE benefits from skip connections from

the Diff component, allowing it to correct for loss of

information incurred during the denoising process and

refine feature extraction.

3. Joint training between Diff and AE Components: The

two components are trained in a unified framework un-

der a composite objective, where the Diff component is

optimized by its diffusion reconstruction loss, while the

AE is optimized by the reconstruction-gap and classi-

fication losses. The denoising-aware features from the

Diff encoder are skip-connected to assist AE decod-

ing, thereby combining diffusion-driven augmentation

with discriminative representation learning and improv-

ing cross-day/cross-subject generalization.

4. Few-Shot Calibration: DiffHGR achieves robust cross-

day performance with minimal calibration. The frame-

work demonstrates excellent performance with few-shot

augmented data from a new day, achieving an aver-

age accuracy of 90.27% across 20 subjects, surpassing

benchmark methods such as CNNAM (83.38%), ViT-

MDHGR (58.15%), DANN_CRC (84.87%), and DC-

GAN (84.33%).

The remainder of this paper is organized as follows:

Section 2 describes the proposed method DiffHGR in detail.

Section 3 provides the experimental results and findings.

Section 4 discusses the results and outlines potential di-

rections for future work. Lastly, Section 5 concludes the

findings of this work.

2. Methodology

This section first presents three public HD-sEMG datasets

selected in our experiments and introduces preprocessing

methods applied in each dataset. Secondly, we introduce

the main framework of the proposed DiffHGR method,

which includes a Diff component and an AE component.

Finally, we describe the hyperparameter setting, benchmark

methods, and evaluation metrics.

2.1. Datasets
2.1.1. Hyser PR dataset

The Hyser PR dataset [32], consisting of HD-sEMG

data from twenty subjects (12 male, 8 female, 21-34 years

old). The goal and the experimental protocol were explained

to each participant. This dataset includes 34 gestures. HD-

sEMG signals were acquired with a sampling rate of 2048

Hz, using four 8 × 8 array electrodes (256 channels in total).

Two were placed on each of the extensor and flexor muscles.

Each gesture is executed with 6 trials, each lasting one-

second duration. Data was collected from two distinct days,

with intervals ranging from 3 to 25 days, and are referred
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Figure 1: Detailed illustration of Stage A in DiffHGR. The Diff component reconstructs high-ődelity signals from corrupted inputs
via a reverse diffusion process, while the AE component extracts discriminative features and enhances classiőcation with skip
connections from the Diff encoder. Both components are jointly optimized using reconstruction and classiőcation losses.

to as session 1 and session 2, respectively. The acquired

HD-sEMG signals are filtered by applying an eight-order,

high-pass with a cutoff frequency of 10 Hz and an eight-

order, low-pass with a cutoff frequency of 500 Hz Butter-

worth filters. A notch filter combination is then applied to

reduce power line interference at 50 Hz and its harmonic

components up to 400 Hz. Finally, we split the data using a

62.5 ms sliding window with a 10 ms sliding step.

2.1.2. CapgMyo DB-a dataset

The CapgMyo DB-a dataset [33], consisting of HD-

sEMG data from 18 subjects. This dataset includes 8 dis-

tinct finger gestures, with each gesture being performed

for a duration ranging from 3 to 10 seconds, followed by

a 7-second rest period. HD-sEMG signals were acquired

with a sampling rate of 1000 Hz, using 8 × 16 electrodes

(128 channels in total). Each subject executed each gesture

10 repetitions. The power-line interference is removed and

the acquired HD-sEMG signals are filtered by applying a

second-order Butterworth band-stop filter (44-55 HZ). For

each gesture and trial, the middle one-second window of data

is used (1000 sample points). Finally, we split the data using

a 128 ms sliding window with a 50 ms sliding step.

2.1.3. CSL-HDEMG dataset

The CSL-HDEMG dataset [34], consisting of HD-sEMG

data from 5 subjects. This dataset includes 27 gestures. HD-

sEMG signals were collected with a sampling rate of 2048

Hz, using 192 electrodes. Data of each subject was collected

over 5 sessions and each gesture was performed 10 trials in

each session. The powerline noise and cable motion artifacts

are removed, and the acquired HD-sEMG signals are filtered

by applying a fourth-order Butterworth band-pass filter (20-

400 HZ). For each gesture and trial, the middle one-second

window of data is used. Additionally, [34] points out that

every eighth channel does not contain meaningful data. This

paper ignored these channels, and a total of 168 channels of

usable data were used.

2.2. Framework Overview
The main framework of the DiffHGR consists of three

training stages. 1) Stage A: Joint training of Diff and AE

components. As shown in Figure 1, Stage A jointly trains

two core components: the Diff component for signal gener-

ation and the AE component for feature extraction and clas-

sification. The Diff component adopts a denoising diffusion

probabilistic model (DDPM), where the original HD-sEMG

signal 𝐱 from the training set train is progressively noised

into 𝐱𝑡 and then reconstructed to 𝐱̂ using a U-Net-based

reverse diffusion process. The reconstruction loss Diff is
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computed between 𝐱̂ and 𝐱 to update the Diff component.

Simultaneously, the AE component, consisting of encoder

𝐸, decoder 𝐷, and classifier 𝐶 , processes the original input

𝐱 to extract latent features 𝐳 and reconstruct 𝐱̃. Skip connec-

tions from the Diff encoder enhance feature representations.

The AE loss AE comprises a reconstruction gap loss gap

and an auxiliary classification loss aux, computed using the

classifier’s output. Both Diff and AE guide the end-to-

end optimization of the full network. 2) Stage B: Synthetic

sample generation and mixing. Once the Diff component

is trained, we apply it to generate synthetic HD-sEMG

samples 𝐱̂ for each input 𝐱 from the training set train. These

samples, denoted as (𝐱̂, 𝑦), preserve the original gesture

labels and are collected into a synthetic set syn. A random

subset of syn is selected with ratio 𝑝, and mixed with the

original training set to build a hybrid dataset mix used

for training the final classifier. This strategy enhances data

diversity while maintaining class consistency. 3) Stage C:

Discriminative classifier training. As shown in Figure 2,

the mixed dataset is fed into the frozen AE encoder, and the

extracted latent embeddings 𝐳 are input to the final classifier

𝐶∗. The classifier is trained from scratch using the cross-

entropy loss C between predictions 𝐲∗ and ground-truth

labels 𝐲∗. This stage ensures that the classifier generalizes

well to both original and generated samples. The detailed

three-stage training pipeline is shown in Algorithm 1.

For an interday or intersubject scenario, we perform a

lightweight few-shot calibration using a small number of la-

beled trials from the target condition. During calibration, the

Diff component is kept frozen and used only to synthesize

augmentation samples. We then adapt the DiffHGR in two

steps: 1) we first update the encoder 𝐸 of the AE component

while others are frozen, so that the latent representation 𝐳

aligns to the target condition while preserving task-relevant

structure, 2) we subsequently update the classifier 𝐶∗ using

the combination of real and synthetic samples to refine the

decision boundary. After calibration, inference prediction is

performed by executing only the updated AE encoder and

classifier, while the diffusion generator remains inactive in

the inference path.

2.3. The Diff component based on DDPM
As illustrated in Figure 3, DDPM corrupts training data

by gradually adding Gaussian noise in the forward diffusion

process. It then learns to recover the corrupted data during

the reverse process [30]. Consequently, a trained DDPM

model can generate fake data from arbitrary Gaussian noise.

Specifically, both the forward and reverse processes are

defined as parameterized Markov chains. In the forward

diffusion process, the original HD-sEMG data 𝐱 can be

denoted as 𝐱0, and the corrupted data after t steps can be

defined as:

𝑝(𝐱𝑡 ∣ 𝐱𝑡−1) =  (𝐱𝑡;
√
1 − 𝛽𝑡𝐱𝑡−1, 𝛽𝑡𝐈) (1)

𝑝(𝐱1, 𝐱2,⋯ , 𝐱𝑡,⋯ , 𝐱𝑇 ∣ 𝐱0) =

𝑇∏

𝑡=1

𝑝(𝐱𝑡 ∣ 𝐱𝑡−1) (2)

x

t
x x̂


x


x ˆ y 

y

Backpropagation

Forward    

Diffusion

Diff component

C


(a)

(b)

z

Figure 2: Illustration of Stage B and Stage C in DiffHGR. (a)
The Diff component generates synthetic HD-sEMG samples
𝐱̂ from original signals. We augment training data with the
generated HD-sEMG data. (b) We train a őnal classiőer with
the augmented HD-sEMG data.

Algorithm 1 DiffHGR Three-stage Training

Require: Training loader train, test loader test ; epochs

𝐸; mix ratio 𝑝; weight 𝛼

Ensure: Trained Diff𝜃 , AE𝜙={𝐸𝜙, 𝐷𝜙, 𝐶𝜙}, final classi-

fier 𝐶∗

1: Initialize Diff (DDPM) Diff𝜃 , AE (𝐸𝜙, 𝐷𝜙, 𝐶𝜙), final

classifier 𝐶∗
𝛾

Stage A: Joint training of Diff and AE

2: for epoch = 1…𝐸 do

3: for (𝐱, 𝐲) ∈ train do

4: (𝐱̂, skips, _, 𝜖, 𝑡) ← Diff𝜃(𝐱)

5: Diff ← ‖𝐱̂ − 𝐱‖1; update 𝜃 on Diff

6: 𝐱̃ ← 𝐷𝜙(𝐱, 𝐱̂, skips, 𝑡); 𝐳 ← 𝐸𝜙(𝐱); 𝐲̂ ← 𝐶𝜙(𝐳)

7: gap ← ‖𝐱̃ − stopgrad(Diff )‖1
8: aux ← ‖𝐲 − 𝐲̂‖2
9: AE ← gap + 𝛼aux

10: update 𝜙 on AE

11: end for

12: end for

Stage B: Synthesis and mixing (via Diff)

13: syn ← ∅

14: for (𝐱, 𝐲) ∈ train do

15: (𝐱̂, _, _, _, _) ← Diff𝜃(𝐱) ⊳ reconstruction

16: syn ← syn ∪ {(𝐱̂, 𝐲)}

17: end for

18: syn ← RandomSubset(syn, 𝑝); Build mixed loader

mix from train and syn

Stage C: Classifier training on encoder features of

AE

19: for epoch = 1…𝐸 do

20: for (𝐱∗, 𝐲∗) ∈ mix do

21: 𝐳 ← 𝐸𝜙(𝐱
∗); 𝑦̂∗ ← 𝐶∗

𝛾 (𝐳)

22: C ← CE(𝐲∗, 𝐲∗); update 𝛾 on C

23: end for

24: Evaluate on test

25: end for
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Table 1

The structure of the Diff component, which adopts a U-Net-inspired structure with three downsampling and three upsampling
blocks, followed by a őnal convolutional layer. GroupNorm and PReLU are used throughout to stabilize training and enhance
non-linearity.

Layer Type Input Shape Output Shape

1 Conv1d + GroupNorm + PReLU + MaxPool1d [batchsize, 256, 128] [batchsize, 128, 64]

2 Conv1d + GroupNorm + PReLU + MaxPool1d [batchsize, 128, 64] [batchsize, 256, 32]

3 Conv1d + GroupNorm + PReLU + MaxPool1d [batchsize, 256, 32] [batchsize, 384, 16]

4 Upsample + Conv1d + GroupNorm + PReLU [batchsize, 384, 16] [batchsize, 128, 32]

5 Upsample + Conv1d + GroupNorm + PReLU [batchsize, 128, 32] [batchsize, 128, 64]

6 Upsample + Conv1d + GroupNorm + PReLU [batchsize, 128, 64] [batchsize, 256, 128]

7 Conv1d [batchsize, 256, 128] [batchsize, 256, 128]

0x
1x 1t−x

t
x T

x… …

( )1t t
q −x x

( )1t t
p −x xForward diffusion process:

Reverse process:

Figure 3: Denoising diffusion probabilistic model is shown. 𝐱0
represents the original HD-sEMG signals, and 𝐱𝑇 represents the
corrupted data after T steps transformation.

where 𝑇 is the total number of diffusion steps, 𝛽𝑡 is from a

fixed variance schedule, and 𝐱𝑡 =
√
1 − 𝛽𝑡𝐱𝑡−1+

√
𝛽𝑡𝝐𝒕, 𝝐𝒕 ∼

 (0, 𝐈) is latent variable of DDPM. According to the rule

of the sum of normally distributed random variables, we can

directly sample 𝐱𝑡 from the original data 𝐱0 for arbitrary t

with :

𝑝(𝐱𝑡 ∣ 𝐱0) =  (𝐱𝑡;
√
𝛼̄𝑡𝐱0, (1 − 𝛼̄𝑡)𝐈) (3)

Here, 𝐱𝑡 =
√
𝛼̄𝑡𝐱0+

√
1 − 𝛼̄𝑡𝝐, 𝝐 ∼  (0, 𝐈), 𝛼𝑡 = 1− 𝛽𝑡,

and 𝛼̄𝑡 =
∏𝑡

𝑖=1. Finally, the data 𝐱0 can be transformed into

𝐱𝑇 ∼ 𝑝(𝐱𝑇 ), where 𝑝(𝐱𝑇 ) ∼  (𝐱𝑇 ; 0, 𝐈).

The reverse diffusion process learns the reversal of the

forward process, thereby recovering the original data distri-

bution. Ho et al. [30] proposed training a neural network

to predict the noise added during the forward process. It

starts with standard Gaussian noise sampled from 𝑞(𝐱𝑇 ) ∼

 (𝐱𝑇 ; 0, 𝐈). The reverse process is described as follows:

𝑞(𝐱𝑡−1 ∣ 𝐱𝑡) =  (𝐱𝑡−1;𝜇𝜃(𝐱𝑡, 𝑡),Σ𝜃(𝐱𝑡, 𝑡)) (4)

𝑞(𝐱0, 𝐱1,⋯ , 𝐱𝑡,⋯ , 𝐱𝑇 ) = 𝑞(𝐱𝑇 )

𝑇∏

𝑡=1

𝑞(𝐱𝑡−1 ∣ 𝐱𝑡) (5)

where 𝜇𝜃(𝐱𝑡, 𝑡) and Σ𝜃(𝐱𝑡, 𝑡) represent the mean and the

covariance obtained by training a network 𝝐𝜃(𝐱𝑡, 𝑡). The

training objective of this network is to ensure the predicted

noise is consistent with the actual added one as follows:

 = 𝔼𝐱0,𝝐,𝑡

[
‖𝝐 − 𝝐𝜃(𝐱𝑡, 𝑡)‖2

]
(6)

In contrast, given the corrupted HD-sEMG data of each

window 𝐱𝑡, this study trains a Diff component to predict the

uncorrupted signal, instead of estimating the added noise.

During training, the forward diffusion step 𝑡 is randomly

sampled for each sample to expose the model to different

noise levels, whereas the reverse process uses a single-step

denoising without iterative reverse diffusion. As shown in

Figure 1, the Diff component mainly comprises three down-

sampling convolution layers, three upsampling convolution

layers, and an additional one-dimensional convolution layer.

The detailed structure of the Diff component network is

shown in Table 1. After forward propagation, the output of

the Diff component 𝐱̂ is obtained. We employ 𝐿1 loss as the

loss function to measure the absolute differences between

the Diff component output and the original signal:

Diff = ‖𝑥̂ − 𝑥‖1 (7)

The objective function encourages the Diff component to

produce output similar to the uncorrupted data. The param-

eters of this component can be updated as follows.

𝜃 ← 𝜃 − 𝜂1∇𝜃Diff(𝜃) (8)

where 𝜂1 is the learning rate.

2.4. The AE component
The forward process may introduce information loss,

which the AE component aims to mitigate by identifying and

rectifying these losses to extract meaningful representations

for gesture classification tasks. The AE component is com-

posed of an encoder 𝐸, a decoder 𝐷, and an auxiliary classi-

fier . The encoder processes the original HD-sEMG data 𝐱

and maps it into a compressed latent space, while the decoder

network reconstructs the signal from the latent representa-

tion. They are the same structure as the Diff component,

excluding the last one-dimensional convolution (Conv1D)

layer. The classifier is composed of three linear layers. The

detailed structure is shown in Table 2. The encoder-decoder

pair is trained jointly with the Diff component. Specifically,

during joint training, the decoder𝐷 receives multi-scale skip

connections from corresponding layers of the Diff encoder,

allowing it to reuse denoising-aware intermediate features
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Table 2

The structure of the AE component. The encoder reduces temporal dimensions to extract compact features, the decoder
reconstructs signals from latent space, and the classiőer predicts gesture labels from the latent embedding.

Layer Type Input Shape Output Shape

Encoder

1 Conv1d + GroupNorm + PReLU + MaxPool1d [batchsize, 256, 128] [batchsize, 256, 64]

2 Conv1d + GroupNorm + PReLU + MaxPool1d [batchsize, 256, 64] [batchsize, 256, 32]

3 Conv1d + GroupNorm + PReLU + MaxPool1d [batchsize, 256, 32] [batchsize, 256, 16]

Decoder

1 Upsample + Conv1d + GroupNorm + PReLU [batchsize, 256, 16] [batchsize, 128, 32]

2 Upsample + Conv1d + GroupNorm + PReLU [batchsize, 128, 32] [batchsize, 128, 64]

3 Upsample + Conv1d [batchsize, 128, 64] [batchsize, 256, 128]

Classiőer

1 Linear+ GroupNorm + PReLU [batchsize, 256] [batchsize, 512]

2 Linear+ GroupNorm + PReLU [batchsize, 512] [batchsize, 512]

3 Linear [batchsize, 512] [batchsize, 34]

and compensate for potential information loss introduced by

the forward diffusion. In addition, both the original signal

𝐱 and the denoised output of the Diff component 𝐱̂ are

concatenated to the last decoding stage via skip connections,

which further encourages structurally consistent reconstruc-

tion. Meanwhile, the classification objective imposed on 

regularizes the AE to learn discriminative representations

for robust gesture recognition. By integrating these connec-

tions, the decoder can leverage the structural information of

the original signal along with the details reconstructed by the

Diff component, learning more meaningful representations.

To improve the feature representation, the output of the

encoder is passed through an adaptive average pooling layer,

which aggregates the features into a fixed-size representation

𝐳. This compressed representation 𝐳 serves as the input

to the classifier 𝐶 , which is responsible for predicting the

gesture class label.  is jointly trained with the encoder and

decoder networks. The objective function for training the AE

component is defined as:

AE = ‖𝐱̃ − stopgrad(Diff)‖1 + 𝛼‖𝐲 − 𝐲̂‖2 (9)

where 𝐲 is the true labels, 𝐲̂ is the predicted labels, stopgrad(⋅)

denotes the stop-gradient operation, and 𝛼 is a hyperparam-

eter. The parameters of this component can be updated as

follows.

𝜙 ← 𝜙 − 𝜂2∇𝜙AE(𝜙) (10)

where 𝜂2 is the learning rate.

The Diff and AE components are trained jointly in a

multi-objective optimization framework. The Diff compo-

nent generates diverse synthetic data that captures the essen-

tial features of the original HD-sEMG signals. At the same

time, the AE component extracts discriminative representa-

tions for gesture classification, strengthened by denoising-

aware multi-scale features delivered through skip connec-

tions from the Diff encoder.

2.5. Data augmentation and gesture classification
After training Diff and AE, the trained Diff component

can be used to generate high-quality synthetic HD-sEMG

data. As shown in Figure 2, the original HD-sEMG data

is augmented by adding an equal amount of synthetic HD-

sEMG data, resulting in the augmented dataset denoted

as 𝐱∗, increasing the diversity of the training data. The

augmented data 𝐱∗ is then fed into the trained AE encoder

network 𝐸, which maps the data into a latent representation

by collapsing the time dimension into a single feature vector.

This latent representation, which captures the underlying

patterns in the HD-sEMG data, serves as the input to a clas-

sification network ∗. The classification network consists of

three linear blocks. Each of the first two blocks contains a

linear layer followed by group normalization and a PReLU

activation function, which helps the network learn nonlin-

ear representations. The final linear layer in ∗ performs

the gesture classification, outputting the predicted gesture

labels. Finally, we calculate cross-entropy loss between the

true labels and the predicted labels and backpropagate to

update ∗.

2.6. Hyperparameter Setting
The training of the proposed DiffHGR framework in-

volves three consecutive stages (as illustrated in Algo-

rithm 1). In Stage A, we jointly train the Diff component

and the AE component using two RMSProp optimizers and

two cyclic learning rate schedulers. The base learning rate of

the RMSProp optimizer is set to 9×10−5, and the maximum

learning rate is set to 1 × 10−3. A batch size of 64 is used,

and the training runs for 200 epochs. An adaptive learning

rate reduction strategy is applied: the learning rate is reduced

by a factor of 10 if the validation loss does not improve for

10 consecutive epochs, and training is terminated early after

three such reductions. The loss weight 𝛼 that balances the

AE reconstruction and classification terms is empirically set

to 0.1. In Stage B, we use the trained Diff component to

generate synthetic samples and randomly select a portion

(𝑝 is set to 0%, 25%, 50%, 75%, or 100%) to augment the

original training set. In Stage C, the final classifier ∗ is

trained using the Adam optimizer with a learning rate of

1 × 10−5. During this stage, only the classifier parameters

are updated while the encoder is frozen. Each training stage
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is evaluated on the held-out test set to monitor generalization

performance and ensure reproducibility.

2.7. Benchmark Methods
To evaluate the advantages of the proposed DiffHGR in

cross-day hand gesture recognition, we compare our method

with four state-of-the-art benchmark methods. These bench-

marks were chosen based on their ability to handle cross-

day variability and their effectiveness in gesture recognition

tasks. CNNAM with transfer learning (CNNAM_TL) [25]

comprises a CNN-based feature extractor composed of three

two-dimensional convolution layers integrated with atten-

tion modules and a label classifier containing three fully

connected layers. ViT-MDHGR [8] is a compact ViT-based

network for multi-day dynamic hand gesture prediction,

which captures crossday features by learning the relation-

ships between HD-sEMG signals at any two timestamps

within a window. DANN_CRC [28] is a recursive DANN

structure with CRC data synthesis to augment the unlabeled

EMG signals of the target day for robust cross-day HGR.

DCGAN [26] consists of a generator and a discriminator.

The generator and discriminator are adversarially trained. To

further evaluate the ability to generate data, the training data

is augmented with synthetic data generated by the trained

generator. Then, the augmented data is fed into a MobileNet

classifier for training.

2.8. Evaluation Metrics
To comprehensively evaluate the effectiveness of the

proposed DiffHGR framework, we employ both classifica-

tion metrics and generative quality metrics. For classification

performance, we report standard metrics including classi-

fication accuracy, precision, recall, and F1 score. They are

calculated by:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 Score =
2 × precision × recall

precision + recall
(14)

where TP represents the number of true positives, FP rep-

resents the number of false positives, TN and FN represent

the number of the true negatives and false negatives, respec-

tively.

To further assess the quality and diversity of the syn-

thetic HD-sEMG data generated by the Diff component,

we adopt two widely used generative evaluation metrics:

Inception Score (IS) and Fréchet Inception Distance (FID).

The IS evaluates the diversity and semantic clarity of the

generated data by measuring the KL divergence between the

conditional label distribution and the marginal distribution.

A higher IS score indicates that the generated samples are

both diverse and confidently classifiable:

IS(𝐺) = exp
(
𝔼𝑥∼𝑝𝑔

[
DKL (𝑝(𝑦|𝑥) ‖ 𝑝(𝑦))

])
(15)

where 𝑝(𝑦|𝑥) denotes the predicted label distribution for a

generated sample 𝑥, and 𝑝(𝑦) is the marginal distribution

across all generated data.

The FID score evaluates the similarity between the real

and generated data distributions in feature space. A lower

FID indicates that the generated data is more similar to the

real data:

FID =
‖‖‖𝜇𝑟 − 𝜇𝑔

‖‖‖
2

2
+Tr

(
Σ𝑟 + Σ𝑔 − 2

(
Σ𝑟Σ𝑔

) 1

2

)
(16)

where 𝜇𝑟,Σ𝑟 and 𝜇𝑔 ,Σ𝑔 represent the means and covariances

of features extracted from real and generated data, respec-

tively.

These metrics, originally designed for image data, are

adapted to our HD-sEMG classification scenario by replac-

ing the standard Inception network with task-specific models

trained on our datasets. Specifically, first, the trained Diff

component is used to generate synthetic HD-sEMG signals.

The generated data, along with an equal number of real

data, is passed through the pretrained encoder of the AE

component, which transforms each input into a compressed

latent representation. These feature embeddings are used for

downstream IS and FID calculations. The extracted features

are input to the trained gesture classifier, producing softmax

outputs 𝑝(𝑦|𝑥) over gesture classes. These probabilities are

used to compute the IS score.

3. Results

3.1. Evaluation on Hyser Dataset
This study primarily evaluates the proposed method on

the Hyser dataset, which consists of two sessions collected

on different days, providing a real-world cross-day evalua-

tion. Specifically, we conduct leave-one-out cross-validation

in intrasession experiments for selecting test and validation

trials needed in intersession experiments. Furthermore, the

intrasession performance serves as a baseline for comparison

with intersession performance to assess the tolerable de-

crease in performance in cross-day hand gesture recognition

tasks.

3.1.1. Results of intrasession

We evaluate the performance of the proposed DiffHGR

method in session 1 (Day 1) and session 2 (Day 2), respec-

tively. These results are intended to serve as a baseline for

comparison with intersession performance. The intrasession

experimental results assess the ability of DiffHGR to recog-

nize gestures when trained and tested under consistent con-

ditions. We evaluate intrasession performance using leave-

one-trial-out cross-validation, with each subject conducting
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Figure 4: Intrasession classiőcation performance across 20 subjects. Bar plots indicate the classiőcation accuracy for each subject,
while the overlaid lines show the corresponding F1 scores.

6 training and testing experiments. The results are shown

in Figure 4 across 20 subjects. For each subject, we report

the best classification accuracy among 6 experiments, along

with the corresponding F1 score. The results demonstrate

that the proposed DiffHGR method achieves high classifica-

tion accuracies across all subjects. In session 1, the DiffHGR

achieves the highest accuracy of 97.03% (S1) and the lowest

of 87.19% (S16). Similarly, in session 2, the accuracy ranges

from 87.6% (S5) to 97% (S20). The consistent performance

across different subjects illustrates the stability and reliabil-

ity of the DiffHGR method when applied within a single-day

scenario.
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Figure 5: Intrasession performance comparison between the
proposed DiffHGR and other benchmark methods, illustrated
through box plots. Statistical signiőcance was assessed via
paired t-tests between DiffHGR and each baseline method
(∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001, "ns" indicates no
signiőcant difference).

Additionally, a comparative analysis of the DiffHGR

method with four benchmark methods is presented in Fig-

ure 5. These comparisons underline the effectiveness of the

proposed approach relative to other methods in terms of

classification accuracy and robustness within a session. As

shown in Figure 5, DiffHGR significantly outperforms all

benchmark methods in both sessions. It achieves the highest

average accuracies of 93.6% for session 1 and 93.31% for

session 2 across 20 subjects. We also note that the proposed

method has the lowest variances among 20 subjects of 2.3%
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Figure 6: Comparison results of intersession performance
between the proposed DiffHGR and other benchmark methods.
Green triangles denote the mean values, while the black
boxes within the violin plots represent the interquartile range,
spanning from the 25th percentile to the 75th percentile.

for session 1 and 2.48% for session 2. The low standard

deviations indicate that the performance of DiffHGR is

stable across different subjects within the same session. This

stability is crucial for practical applications, as it suggests

the proposed model can reliably recognize gestures without

significant performance fluctuations. For example, the max-

imum accuracy difference between subjects in session 1 is

9.84%, compared to larger variations seen in CNNAM, ViT-

MDHGR, DANN_CRC, and DCGAN, where the differences

are 13.34%, 22.31%, 11.8%, and 14.85% between subjects.

Additionally, the maximum accuracy difference between

subjects in session 2 for CNNAM is above 20%, while the

DiffHGR achieves consistency between different sessions.

We also performed paired t-tests between DiffHGR and the

other methods across all subjects, and the results show that

DiffHGR achieves statistically significant improvements in

accuracy over other baseline methods.

3.1.2. Results of intersession (cross-day)

This study aims to achieve high and stable hand gesture

recognition performance with a few-shot data for calibration.

To investigate the minimum needed trials for calibration,

we conduct intersession experiments by introducing transfer

learning. The HD-sEMG data from session 1 is utilized for

training and validation, while the data from session 2 is
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Figure 7: Confusion matrix comparison across őve methods after two-trial calibration on the Hyser dataset. The horizontal axis
indicates the predicted gesture label, and the vertical axis indicates the true label (34 gesture classes in total). Each heatmap cell
shows the classiőcation accuracy for a given (true, predicted) label pair.

used for calibration and testing. Specifically, the intersession

experiments consist of pre-training and calibration stages.

The intrasession experiments in session 1 are regarded as the

pre-training stage. Empirically, we observe diminishing re-

turns after two calibration trials, and 2-trial calibration yields

performance close to the intrasession (see Section 3.1.3).

Thus, the calibration phase involves three types of calibra-

tion experiments for each subject: 0-trial, 1-trial, and 2-trial

calibration. In 0-trial calibration, the pre-trained model is

directly tested with session 2 data. For 1-trial calibration,

the model is first calibrated with one calibration trial and

then tested on session 2 data. Similarly, 2-trial calibration

uses two calibration trials before testing on session 2 data.

All calibration experiments are implemented on individuals.

During 0 trial calibration experiments, pre-trained mod-

els achieve an average accuracy of 39.15% ± 16.82% across

all subjects. As presented in Figure 6, though there are

noticeable declines in performance compared to the intrases-

sion results, the proposed method outperforms almost all

the benchmark models. When calibrating the pre-trained

models on 1 trial or 2 trials data of session 2, the pro-

posed method achieves the average accuracies of 84.87%

± 3.53% and 90.27% ± 2.75% across 20 subjects, respec-

tively, while CNNAM achieves 76.31%± 6.03% and 83.38%

± 4.94%, ViT-MDHGR achieves 56.09% ± 15.13% and

58.15% ± 14.08%, DANN_CRC achieves 78.74% ± 4.96%

and 84.87% ± 4.64%, and DCGAN achieves 80.22% ±

3.72% and 84.33% ± 4.03%.

Calibration with just one trial from session 2 leads to

a significant improvement in accuracy, increasing by ap-

proximately 15.98% (S9) to 74.07% (S20) across subjects

compared to the pre-trained model. The 2-trial calibration

further enhances performance, which can almost match the

intrasession performance, only with an average 3.04% ac-

curacy gap. The results demonstrate that the model effec-

tively adapts to session variability with few-shot additional

data. Additionally, Figure 7 presents the confusion matrices

for five different methods after two calibration trials. The

confusion matrix provides a detailed view of how well

each method distinguishes between the various gestures.

As observed from Figure 7, the proposed DiffHGR method

demonstrates a superior ability to accurately distinguish 34

gestures compared to the benchmark methods. The diagonal

values, representing correct classifications, are consistently

higher for DiffHGR, indicated by more intense blue blocks

along the diagonal. In contrast, the off-diagonal areas, which

indicate misclassifications, are notably lighter and contain

fewer orange blocks in our method compared to the other

methods. This reduction in orange blocks highlights a lower

rate of misclassifications, meaning that our method is more

effective in minimizing confusion between gestures.

3.1.3. Minimum calibration trials for cross-day

adaptation

We further investigate the minimum calibration effort

required for reliable cross-day performance by varying the

number of labeled calibration trials collected from the target

session (session 2) from 0 to 4 trials per gesture. As shown in
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Figure 8, introducing only one calibration trial already yields

a substantial improvement over the zero-shot setting, and

increasing the budget to two trials further brings a significant

performance gain (𝑝 < 0.001). Notably, the performance

shows diminishing returns beyond two trials, as no statis-

tically significant improvement is observed when increasing

the calibration budget from two to three or four trials ("ns").

These results indicate diminishing returns beyond two trials

and suggest that two short calibration trials are sufficient to

effectively compensate for cross-day distribution drift while

keeping the annotation burden low. Therefore, unless other-

wise specified, we adopt the 2-trial calibration protocol in all

subsequent experiments that involve target-day adaptation.
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Figure 8: Cross-day accuracy under different calibration trials
(from 0 to 4 trials per gesture). Statistical signiőcance is
assessed using paired t-tests across subjects (∗𝑝 < 0.05, ∗∗𝑝 <

0.01, ∗∗∗𝑝 < 0.001, "ns" indicates no signiőcant difference).

3.2. Cross-subject evaluation on Hyser dataset
We further investigate the generalization ability of our

proposed DiffHGR framework in a cross-subject setting.

Cross-subject evaluation presents a greater degree of vari-

ability due to individual differences in physiological struc-

tures, skin impedance, and electrode placement. Although

our method is not explicitly optimized for inter-subject trans-

fer, it is still important to examine whether the learned repre-

sentations can adapt to unseen individuals with minimal cal-

ibration efforts. We conducted target evaluation experiments

on six unseen subjects using a calibration setting of 0-trial, 1-

trial, and 2-trial. As shown in Figure 9, in the 0-trial setting,

the average classification accuracy across unseen subjects

was significantly limited (e.g., only 15.19% for Subject 17).

This highlights the considerable intersubject variability in

sEMG signals. However, after incorporating just one labeled

calibration trial, performance improved dramatically across

all subjects, with accuracy exceeding 96% in all cases. A

further gain was observed in the 2-trial scenario, achieving

over 99% accuracy for most subjects. These results suggest

that the proposed DiffHGR method enables the model to

facilitate rapid adaptation to new subjects with limited su-

pervision.

Subject 1 Subject 4

Subject 6 Subject 10

Subject 17 Subject 19

Figure 9: Radar charts of classiőcation performance across six
target subjects in the cross-subject experiments, evaluated with
0, 1, and 2 calibration trials (k = 0, 1, 2). Each radar chart
summarizes őve metrics: accuracy, F1-score, recall, precision,
and AUC.

3.3. Evaluation on CapgMyo and CSL-HDEMG

Datasets
In addition to the Hyser dataset, we further validate the

proposed DiffHGR method on two other publicly available

datasets, CapgMyo and CSL-HDEMG. Although they are

not collected across different days, they still exhibit cross-

trial variability. These datasets allow us to assess the per-

formance of DiffHGR in various environments. CapgMyo

dataset includes data from 18 subjects. For the evaluation,

we use 7 trials for training and 3 trials for testing. As

shown in Figure 10, DiffHGR consistently outperforms all

other benchmark methods, achieving the highest average

accuracy of approximately 96.13%. The data points in the

plot represent the performance across different subjects,

with DiffHGR showing the least variation, as evidenced

by its narrow interquartile range (IQR). This indicates that

DiffHGR is robust to trial-to-trial variability and performs

stably across different subjects. The CSL-HDEMG dataset

consists of data from 5 subjects, each with 5 sessions. For

session 5 as an example, 7 trials are used for training and 3

trials for testing. As illustrated in Figure 10, DiffHGR again

leads with an accuracy above 92%, outperforming the other

methods in terms of both accuracy and consistency across
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Table 3

Quantitative comparison of the IS and FID among different generative methods. Higher IS indicates better diversity and quality
of the generated samples, while lower FID reŕects closer alignment between the distribution of generated and real data.

DANN_CRC DCGAN DiffHGR(0%) DiffHGR(25%) DiffHGR(50%) DiffHGR(75%) DiffHGR(100%)

IS↑ 3.880 1.028 7.872 9.650 10.369 10.561 10.974

FID↓ 95.796 3271.117 3.937 3.792 3.875 3.893 3.982

different subjects. DiffHGR’s lower variation and tighter

IQR suggest that it effectively handles cross-trial variability.

In both datasets, DiffHGR demonstrates superior per-

formance, with a consistent accuracy range across subjects.

Notably, the box plots show that DiffHGR yields fewer

outliers and exhibits less variation in its performance com-

pared to methods like DCGAN and ViT-MDHGR, which

show more significant performance fluctuations. In addi-

tion, we conducted paired t-tests to statistically evaluate

the differences between DiffHGR and the baseline methods.

The results, annotated in Figure 10, indicate that DiffHGR

significantly outperforms all other methods on the CapgMyo

dataset and the CSL-HDEMG dataset. These results validate

the robustness and effectiveness of the proposed DiffHGR

method, not only in true cross-day scenarios (using the Hyser

dataset) but also in other situations, such as those presented

by CapgMyo and CSL-HDEMG. The ability of DiffHGR to

achieve high and stable performance across these different

datasets highlights its potential for generalizing to a wide

range of hand gesture recognition tasks.
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Figure 10: The evaluation comparison between DiffHGR and
other benchmark methods on CapgMyo and CSL-HDEMG
dataset. Statistical signiőcance was assessed via paired t-
tests between DiffHGR and each baseline method(∗𝑝 < 0.05,
∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001).

3.4. Evaluation of the quality and diversity of the

generated data
To further assess the quality and diversity of the gener-

ated data, we evaluate the Inception Score (IS) and Fréchet

Inception Distance (FID). These metrics are used to eval-

uate how well the generated synthetic data represents the

real HD-sEMG data in terms of its diversity and similarity

to the true data distribution. We compare the DiffHGR

method with two benchmark data augmentation methods:

DANN_CRC and DCGAN. These methods use synthetic

data generation as part of their training process to enhance

model performance on gesture recognition tasks. In partic-

ular, DANN_CRC uses a domain-adversarial approach to

augment training data for hand gesture recognition, while

DCGAN generates synthetic data through adversarial train-

ing to enhance the variety. For a fair comparison, we evalu-

ated different DiffHGR models using different ratios of syn-

thetic data incorporation (0%, 25%, 50%, 75%, and 100%)

for training classifiers. As shown in Table 3, DiffHGR con-

sistently outperforms the benchmark methods in terms of

IS. As the proportion of synthetic data used for training

increases from 0% to 100%, the IS score improves from

7.872 to 10.974, which suggests that DiffHGR can pro-

gressively enrich the diversity of the training distribution

without sacrificing sample quality. Regarding FID, DiffHGR

attains consistently low values across all settings, which

are orders of magnitude lower than those of DANN_CRC

and DCGAN. In our setting, the same Diff component of

DiffHGR is used to produce synthetic samples for all ratios.

Consequently, the small numerical differences in FID across

the 0-100% settings mainly reflect sampling randomness.

The key observation is that DiffHGR maintains a FID of

around 3.9 in all settings, indicating that the synthesized HD-

sEMG signals remain very close and stably aligned to the

real data distribution.

To further validate these quantitative metrics, we addi-

tionally visualize representative pairs of original and syn-

thetic HD-sEMG samples generated by DiffHGR (see Fig-

ure 11). First, in the time domain, the synthetic waveform

closely follows the envelope and fluctuation patterns of the

original EMG for the same subject and gesture, while still

exhibiting sample-wise variability rather than a simple copy.

Second, the power spectral density (PSD) curves of real and

synthetic signals almost overlap within the main 20–300 Hz

band, yielding a high Pearson correlation coefficient (e.g.,

CC = 0.988 in the illustrated case), which indicates that

the generator preserves the characteristic frequency content

of muscle activity. Third, the channel-wise RMS activation

maps show highly similar spatial activation patterns across

the electrode grid (e.g., CC = 0.986 between real and

synthetic maps), demonstrating that DiffHGR can reproduce

the multi-channel spatial synergy structure of HD-sEMG

signals. These time-domain, spectral, and spatial visualiza-

tions support that the synthesized signals are not artificial

artifacts, but realistic variations that faithfully reflect the

underlying real-data distribution.
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(a)
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Figure 11: Qualitative comparison between original and syn-
thetic HD-sEMG signals generated by DiffHGR for Subject 5
and Gesture 24.

Furthermore, we perform qualitative visualization of

the real and synthetic features using three popular dimen-

sionality reduction techniques: Principal Component Analy-

sis (PCA), t-distributed Stochastic Neighbor Embedding (t-

SNE), and Uniform Manifold Approximation and Projection

(UMAP). As shown in Figure 12, we present comparisons

for two representative subjects from the Hyser dataset: Sub-

ject 1 (left column) and Subject 17 (right column). Across

all three visualization methods, we observe a high degree

of overlap between real and generated features. PCA cap-

tures global variance structures and reveals that the syn-

thetic features are distributed in a manner similar to the

real data, without mode collapse or excessive concentra-

tion. The t-SNE and UMAP projections, which emphasize

local neighborhood structures and nonlinear manifold rela-

tionships, further demonstrate that the generated data are

well interleaved with the real data in feature space. These

results suggest that the proposed diffusion-based generative

module successfully preserves both global structure and

local similarity patterns of HD-sEMG signals. Such visual

consistency provides qualitative support for the effectiveness

of our generation process.

3.5. Ablation and sensitivity studies
3.5.1. Component-wise ablation of Diff and AE

To disentangle the contribution of each component in

DiffHGR, we conducted a comprehensive ablation study

under the intrasession experimental setting. Specifically, we

evaluated four model configurations:

∙ Baseline: Both Diff and AE components are removed. A

simple encoder followed by a linear classifier is trained on

raw HD-sEMG data without any augmentation or recon-

struction.

Figure 12: Feature visualizations of real and generated signals
from the Hyser dataset using PCA, t-SNE, and UMAP. The
left column corresponds to Subject 1, and the right column
corresponds to Subject 17.

∙ Diff-only: The diffusion module is used to generate syn-

thetic training data, but the AE component is excluded.

Classification is performed by the same baseline encoder

and classifier.

∙ AE-only: The model is trained only on real data, but the

AE encoder–decoder structure is retained, including skip

connections from the diffusion encoder.

∙ DiffHGR: Both Diff and AE components are used. The

model is trained on a mixture of real and synthetic data,

and the AE decoder benefits from skip connections of the

Diff encoder to enhance representation learning.

The results, presented in Table 4, demonstrate that

both components independently contribute to performance

improvements. As shown, the AE component enhances the

learning of discriminative representation through recon-

struction and skip-connected features, leading to a sub-

stantial accuracy gain from 77.60% to 91.37% over the

baseline. Meanwhile, the Diff component alone improves

the generalization of the model by enhancing synthetic data,

achieving 89.42% accuracy. When both modules are jointly

integrated, the full DiffHGR model yields the best accuracy

of 93.6%, confirming their complementary roles. In addition

to the overall accuracy improvements, we also observe a

clear reduction in performance variance when both com-

ponents are enabled. Specifically, the standard deviation of

accuracy drops from 21.92% in the Diff-only configuration

and 6.95% in the AE-only configuration to only 2.3% in the

full DiffHGR model. This suggests that DiffHGR not only

improves accuracy but also enhances model stability across
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Table 4

Ablation study evaluating the individual contributions of the Diff component and AE component in the intrasession experiments.
We report the mean and standard deviation of four evaluation metrics (Accuracy, F1-score, Recall, and Precision) across all
subjects.

Methods Diff component AE component Accuracy F1-score Recall Precision

Baseline × × 77.60% ± 7.38% 75.25% ± 8.23% 75.42% ± 7.52% 77.68% ± 7.63%

Diff-only ✓ × 89.42% ± 21.92% 87.97% ± 24.99% 88.11% ± 24.45% 89.49% ± 16.47%

AE-only × ✓ 91.37% ± 6.95% 90.20% ± 12.19% 90.00% ± 11.40% 90.40% ± 10.13%

DiffHGR ✓ ✓ 93.6% ± 2.3% 91.41% ± 3.45% 91.52% ± 3.4% 91.95% ± 3.26%

subjects. The higher variance in the Diff-only setting reflects

that although synthetic data enhances generalization, the

lack of reconstruction guidance from the AE module may

lead to inconsistent representations. Conversely, the AE-

only configuration offers more stable yet slightly less robust

performance due to the absence of data augmentation. Their

combination allows the model to benefit from both stable

encoding and diverse training distributions, leading to the

best trade-off between performance and consistency.

3.5.2. Effect of diffusion-based data generation on

cross-day robustness

To further clarify the role of diffusion-based data aug-

mentation, we perform an additional comparison between

DiffHGR and the Baseline model defined in Section 3.5.1.

The Baseline model is obtained by removing the Diff and

AE components from DiffHGR, and retaining only the AE

encoder together with the classifier used in Stage C. In other

words, while DiffHGR trains an encoder–classifier using

both real and synthetic HD-sEMG signals after jointly train-

ing the Diff and AE components, the Baseline employs the

same encoder-classifier backbone but is trained on session 1

with real HD-sEMG data only, without any diffusion-based

data generation and augmentation. We evaluate both models

in a cross-day setting, where session 1 and session 2 are

recorded on different days.

Figure 13 summarizes the cross-day accuracies of Base-

line and DiffHGR under 0-trial, 1-trial, and 2-trial cal-

ibration, where the calibration trials are from session 2

recordings acquired on a different day than session 1. Bars

indicate the mean and standard deviation across 20 subjects,

and individual points show subject-wise results. Under the

0-trial condition, DiffHGR already achieves higher cross-

day accuracy than Baseline, indicating that diffusion-based

augmentation in session 1 improves the robustness of the

learned representations rather than degrading them. With

1-trial and 2-trial calibration, both methods benefit from a

small amount of labeled session 2 data. DiffHGR consis-

tently outperforms Baseline under the same annotation cost

(all 𝑝 < 0.001). Moreover, the subject-wise data points and

error bars in Figure 13 clearly show that DiffHGR not only

improves the mean accuracy but also reduces inter-subject

variability, leading to more stable cross-day performance.

These findings suggest that diffusion-based generation is not

intended to exhaustively model every future daily variation,

but to regularize the source domain training, while a few-

shot calibration phase efficiently aligns the model to the

actual target-day distribution.

Baseline DiffHGR Baseline DiffHGR Baseline DiffHGR

0-trial 1-trial 2-trial
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Figure 13: Comparison of cross-day recognition accuracies
between the real-only baseline and the proposed DiffHGR
under 0-trial, 1-trial, and 2-trial calibration settings. Statistical
signiőcance is assessed by paired 𝑡-tests (∗𝑝 < 0.05, ∗∗𝑝 < 0.01,
∗∗∗𝑝 < 0.001).

3.5.3. Performance comparison under different

window size

Recent studies confirmed that larger windows capture

more detailed information. However, they introduce longer

latency in myoelectric control. Given the requirement for

myoelectric pattern recognition systems to operate with a

response time of less than 300 ms for real-time application

[35; 36], we aim to determine the shortest window size

that can maintain high intersession HGR performance. This

paper investigates the effect of window sizes on intersession

performance. As shown in Figure 14, the 62.5 ms window

consistently outperforms the 31.25 ms window across all

calibration settings (0-trial, 1-trial, and 2-trial), with statis-

tically significant differences (𝑝 < 0.05). Compared to the

125 ms window, the performance difference of 62.5 ms is not

statistically significant, indicating comparable effectiveness.

Although the 250 ms window achieves significantly better

results than the 125 ms window in some settings, the latter

incurs a much higher latency, which limits its suitability for

real-time applications. Overall, the 62.5 ms window achieves

a favorable trade-off between performance and latency, mak-

ing it the most practical choice for our experiments.
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Figure 14: The impact of varying window sizes on intersession
performance evaluated across 20 subjects. Statistical signiő-
cance was assessed via paired t-tests between different window
settings (∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001, "ns" indicates
no signiőcant difference).

3.6. Computational efficiency analysis
To quantitatively assess the computational cost of the

proposed DiffHGR framework, we compare its training

and calibration efficiency with two generative baselines,

DANN_CRC and DCGAN. The results are summarized in

Table 5. All experiments in this study were conducted on

a workstation equipped with an Intel Xeon Gold 6226R,

256 GB RAM, and two NVIDIA GeForce RTX 3090

GPUs (each with 24 GB VRAM), using PyTorch 2.4.1 and

CUDA 12.4.

3.6.1. Offline training cost

During offline training, DiffHGR exhibits a favourable

trade-off between wall-clock time, model size, and arith-

metic complexity. As shown in Table 5, the total training

time of DiffHGR is 55.8 ± 7.1 minutes, which is only

slightly longer than DCGAN, but substantially shorter than

DANN_CRC. In addition, DiffHGR maintains the small-

est model size (1.46 M trainable parameters) among the

three methods, compared with 2.57 M for DANN_CRC and

15.04 M for DCGAN. In terms of computational complex-

ity, DiffHGR requires 42.82 M MACs per sample during

training, which is lower than DANN_CRC and more than

one order of magnitude lower than DCGAN (1891.8 M).

The much higher MACs of DCGAN mainly stem from

the adversarial training pipeline. In each training iteration,

both the generator and the discriminator are executed and

updated, and they are implemented as several deep con-

volutional and transposed-convolution blocks operating on

high-resolution HD-sEMG maps. Even though a lightweight

MobileNet backbone is adopted for classification, the cost of

repeatedly forwarding real and synthetic samples through the

generator–discriminator pair dominates the overall complex-

ity, leading to MACs that are approximately 40-fold higher

than that of DiffHGR. By contrast, the reverse diffusion

process in DiffHGR operates each sample once through the

Diff component in a single-step denoising manner, leading

to much lower training MACs. These results indicate that

the diffusion-based framework introduces only a moderate

increase in offline training time relative to DCGAN, while

achieving a much more compact model and significantly

reduced training MACs compared with GAN-based aug-

mentation.

3.6.2. Calibration cost and inference times

In the cross-day or cross-subject settings, all meth-

ods perform a few-shot calibration before use. For both

DANN_CRC and DCGAN, we follow a conservative cal-

ibration protocol and only fine-tune the final linear clas-

sification layer, while keeping all feature extractors fixed.

This choice keeps the number of trainable parameters during

calibration very small and favors these baselines in terms

of calibration time. As for DiffHGR, we first update the

encoder of the AE component while the Diff component is

frozen and used only to synthesize generated samples for

data augmentation. Then, the classifier is fine-tuned using a

mix of real and generated synthetic data. This enables the

latent representation and the decision boundary to better

align with the target-day distribution under the same few-

shot budget. As summarized in Table 5, on Hyser dataset,

the full DiffHGR model contains 1.46 M parameters, while

only 0.25 M parameters are trainable in calibration, and the

average calibration time is 6.66 ± 0.95 min. On XDHDEMG

dataset, reducing the HD-sEMG channel count from 256

to 64 further lowers the total parameters to 0.09 M, with

only 0.016 M trainable during calibration. Moreover, after

calibration the per-sample inference latency is 0.451 ±

0.023 ms and 0.373 ± 0.034 ms, which is well within the

sliding step of 10 ms. Finally, we further corroborate the

practical deployability of DiffHGR via real-time validation

on XDHDEMG (Section 3.7). Under the same data prepro-

cessing setup as offline, the end-to-end latency from window

acquisition to prediction is approximately 132 ms, and the

online accuracy remains consistent with the corresponding

offline evaluation, supporting the feasibility of DiffHGR in

real-world HGR applications.

3.7. Real-time inference validation
To further evaluate the practical ability of the proposed

DiffHGR framework in real-world deployment, we con-

ducted real-time inference validation on our self-collected

XDHDEMG dataset under both intraday and interday con-

ditions. Twelve healthy subjects were recruited to perform

eight hand gestures, each repeated six times as a session, two

sessions were executed. For each subject, data collected on

session 1 were used to pretrain the DiffHGR model offline. In

the intraday scenario, real-time inference experiments were

conducted approximately 30 minutes later on the same day.

The pretrained AE encoder and classifier was directly used

for online gesture prediction. In the interday scenario, each

subject returned after a delay of 3-7 days to participate in

the interday validation session. Given the distributional drift

typically induced by factors such as electrode repositioning,

skin impedance changes, and muscle fatigue, a lightweight

calibration procedure was applied before online inference.

Specifically, two calibration trials per gesture were collected

on the new day. During calibration, we first update the
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Table 5

Summary of offline training and calibration efficiency for DiffHGR on the Hyser PR and XDHDEMG datasets.

Dataset Phase Method Time (min) Params (M) MACs / sample (M) Inference time / sample (ms)

Hyser

Offline training
DANN_CRC 398.9 ± 96.1 2.57 59.03 ś
DCGAN 48.1 ± 4.6 15.04 1891.8 ś
DiffHGR 55.8 ± 7.1 1.46 42.82 ś

Calibration
DANN_CRC 1.23 ± 0.23 1.12 59.03 0.016 ± 0.002

DCGAN 5.03 ± 0.98 0.17 16.11 0.065 ± 0.001

DiffHGR 6.66 ± 0.95 0.25 0.115 0.451 ± 0.023

XDHDEMG
Offline training DiffHGR 20.59 ± 2.58 0.09 2.75 ś

Calibration DiffHGR 4.00 ± 0.13 0.016 0.019 0.373 ± 0.034

encoder of the AE component while the Diff component is

frozen and used only to synthesize generated samples for

data augmentation. Then, the classifier is fine-tuned using

a mix of real and generated synthetic data. After calibration,

real-time prediction was performed using only the fine-

tuned AE encoder and classifier, whereas the diffusion-based

Diff component remained inactive in the online inference

path. The deployed model is lightweight, with only 0.016 M

trainable parameters involved in calibration, which supports

low-latency deployment. During the online experiments, we

adopted the same post-processing strategy as our previous

work [37] to ensure consistent decision smoothing.

(a)

(b)

Figure 15: Real-time inference performance of the proposed
system evaluated during intraday conditions. (a) Aggregated
confusion matrix of gesture classiőcation in the real-time
setting. (b) Distribution of average end-to-end latency across
all subjectśgesture pairs.

The real-time prediction performance of the proposed

DiffHGR framework was evaluated under both intraday and

interday conditions, as shown in Figure 15 and Figure. 16,

(a)

(b)

Figure 16: Real-time inference performance of the proposed
system evaluated during interday conditions. (a) Aggregated
confusion matrix of gesture classiőcation in the real-time
setting. (b) Distribution of average end-to-end latency across
all subjectśgesture pairs.

respectively. The confusion matrices (top) illustrate the per-

class classification performance, while the gesture-subject

heatmaps (bottom) visualize the distribution of end-to-end

(E2E) latency across different gestures and subjects. Under

the intraday condition (Figure 15), the DiffHGR model

demonstrated consistently high gesture recognition accuracy

of 96.36% ± 9.78% and maintained a low average E2E la-

tency of 132.83 ms ± 0.34 ms, indicating stable and efficient

real-time inference without the need for recalibration. In the

interday setting (Figure 16), although slight distributional

shifts emerged due to electrode repositioning and physiolog-

ical variability, the model maintained strong performance,

with 96.48% ± 14.42% classification accuracy, after rapid
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adaptation without retraining the entire model. This mini-

mal supervision proved sufficient to compensate for cross-

day signal drift. The average E2E latency increased only

marginally to 132.97 ms, with a slightly higher standard de-

viation (± 1.19 ms), reflecting increased temporal variability

across different days. These results collectively demonstrate

the suitability of DiffHGR for real-time applications.

4. Discussion

4.1. Challenges in practical applications
For EMG-based hand gesture interfaces to be clinically

and practically usable, robustness to distribution shift is

often more critical than peak performance under a single

controlled session. In real-world deployment, performance

degradation is mainly driven by two related but distinct

sources of shift: interday drift and intersubject variability.

Interday drift arises from electrode repositioning and attach-

ment inconsistencies, fluctuations at the skin-electrode inter-

face (e.g., impedance changes due to perspiration and tem-

perature), and changes in muscle state and recruitment pat-

terns across days. Intersubject variability is caused by phys-

iological and anatomical differences (e.g., muscle morphol-

ogy and activation strategies) as well as individual-specific

execution styles, which lead to notable changes in both

signal statistics and discriminative patterns. These factors

are further compounded by wearability constraints (comfort,

attachment stability, and long-term usability), making it

difficult to maintain consistent acquisition conditions outside

laboratory settings. Consequently, EMG interfaces face an

inherent requirement that models must remain reliable under

non-stationary and population-dependent conditions rather

than assuming stationary signal statistics.

4.2. Validity of synthetic augmentation
To address the above shifts, DiffHGR adopts a unified

deployment-oriented strategy consisting of offline genera-

tive augmentation training and fast calibration adaptation,

which together improve robustness under both cross-day

and cross-user conditions. A key concern is that synthetic

augmentation is helpful only if it preserves task-relevant

EMG structure and does not drift toward artifact-dominated

or task-irrelevant modes. For this reason, the diffusion gener-

ator (Diff component) is not trained in isolation. Instead, it is

jointly optimized with an auxiliary autoencoder (AE compo-

nent) under explicit reconstruction supervision, and multi-

scale structural cues learned during diffusion encoding are

reused via skip-connected feature transfer to the reconstruc-

tion pathway. This joint optimization constrains the synthetic

distribution while encouraging the model to retain gesture-

discriminative patterns, thereby reducing reliance on day-

specific or subject-specific nuisance factors. The efficiency

of this design is supported by our evaluation of the quality

and diversity of the generated data (Section 3.4) as well as

component-wise ablations (Section 3.5), which together in-

dicate that performance gains are attributable to trustworthy

augmentation rather than uncontrolled distribution drift.

4.3. Cross-day and cross-subject generalization
Building upon the offline-trained model, DiffHGR fur-

ther introduces a lightweight few-shot calibration procedure

to efficiently align the model to the actual target condition

(a new day or a new user). This design explicitly frames

calibration as a controllable trade-off between reliability

and user burden. While fully calibration-free transfer across

different users and long-term use conditions remains chal-

lenging in myoelectric recognition, a small amount of target

data can substantially improve robustness when the adap-

tation is designed to be efficient. In our evaluation, the

calibration overhead is modest (6.66 ± 0.95 min on Hyser

in Table 5) yet yields consistent improvements under cross-

day protocols compared with the real-only Baseline model

under the same calibration trials (Section 3.5.2, Figure 13).

Moreover, the reduced performance dispersion across sub-

jects suggests that the proposed method improves not only

mean accuracy but also stability across individuals, which is

particularly relevant for reliable assistive and rehabilitative

use. Collectively, a series of experiments including cross-

day and cross-subject evaluations, minimal calibration trials

analyses, ablation studies, and evaluation of quality and di-

versity collectively demonstrate that the proposed DiffHGR

effectively mitigates practical distribution shift.

4.4. Practical deployability and real-time

feasibility
Beyond accuracy under offline benchmarks, a deployable

EMG-based interface must satisfy the practical requirements

of low computational and calibration overhead to support

real-time interaction. The proposed offline generative aug-

mentation training and fast calibration adaptation strategy

could keep the user burden and runtime cost manageable.

The diffusion model is exploited offline to learn a robust

recognition model via generative augmentation, and it is

jointly trained with an auxiliary autoencoder (AE) under

reconstruction supervision. In particular, the AE leverages

multi-scale structural cues transferred from the Diff encoder

(via skip connections) to preserve gesture-discriminative

structures and constrain the synthetic distribution, thus pro-

moting a more stable feature representation for recognition.

In contrast, real-time deployment relies only on the AE

encoder and classifier, i.e., the Diff module is not involved

during online inference. As a result, the deployed model

remains compact and computation-efficient, with a small

parameters and low MACs (Table 5), and the measured

inference latency per sample is correspondingly low, meet-

ing the timing constraints of interactive applications. In

addition, the calibration procedure is lightweight and can be

completed within a modest time budget (Table 5), enabling

quick adaptation to a new day or a new user without ex-

tensive re-collection or long retraining cycles. To this end,

we explicitly evaluated DiffHGR in real-time settings under

both intraday and interday conditions, demonstrating that the

proposed framework maintains reliable online recognition

ability (Section 3.7).
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4.5. Limitations and future works
Several limitations should be acknowledged. First, al-

though DiffHGR has been evaluated on multiple HD-sEMG

datasets with different subject counts, gesture sets, chan-

nel configurations, and recording protocols (Section 3.1-

Section 3.3 and Section 3.7), and we provide various evalua-

tions of the quality and diversity of the generated data (Sec-

tion 3.4), the generalization across arbitrary datasets remain

bounded by the diversity of available training data. Future

work will focus on validating the proposed framework on

more diverse cross-day datasets, which are collected under

broader participant demographics and recording conditions,

to better characterize generalization under real-world day-

to-day shifts and to further assess robustness across more di-

verse participants. Second, our current formulation primar-

ily captures variability at a statistical level, explicitly mod-

eling richer physiological priors (e.g., muscle synergy con-

straints) may further improve robustness in unconstrained

usage. Third, beyond the cross-day setting, we also evaluate

the performance in a cross-subject setting (Section 3.2). In

this protocol, the model is trained on all source subjects

and then adapted to an unseen target subject using only

two labeled calibration trials, after which it achieves ac-

ceptable recognition performance. While this few-shot per-

sonalization is practical for myoelectric interfaces, further

reducing the calibration burden remains important. Future

work will investigate more efficient inter-subject adapta-

tion, e.g., by integrating DiffHGR with domain adaptation

or meta-learning to improve transfer to unseen users with

fewer (or even no) labeled calibration samples. In addi-

tion, we will investigate online/continual learning strate-

gies that can update the model under long-term drift us-

ing lightweight incremental optimization, confidence-aware

pseudo-labeling, and drift-triggered calibration, while mit-

igating catastrophic forgetting through regularization or re-

play mechanisms. Finally, practical wearable control often

benefits from complementary sensing. We will extend the

framework toward multimodal control by fusing HD-sEMG

with other biosignals such as EEG (for capturing cortical

intent under weak EMG conditions), using modality-aware

fusion or reliability-weighted decision schemes. Such mul-

timodal extensions may support more stable, user-friendly

control in real-world assistive applications.

5. Conclusion

This paper proposes DiffHGR, a diffusion-based frame-

work for robust EMG-based hand gesture recognition. DiffHGR

comprises a diffusion-based generator (Diff) and an auxil-

iary autoencoder (AE). Diff is used to synthesize diverse

samples for data augmentation, while the AE helps preserve

task-relevant structure and prevents uncontrolled drift. To

address cross-day shifts issue, we employ a lightweight few-

shot calibration. Specifically, Diff is kept frozen and used

only to generate augmentation samples, and the AE encoder

and classifier are updated for fast adaptation. Comprehensive

experiments validate the effectiveness, demonstrating that

DiffHGR achieves a cross-day average accuracy of 90.27%

for recognizing 34 gestures across 20 subjects, using cal-

ibration on only two trials per gesture, significantly sur-

passing other benchmark methods. In addition, we reported

offline training, calibration, and inference efficiency metrics,

and validated DiffHGR in real-time intraday and interday

settings. During real-time prediction, only the calibrated

AE encoder and classifier are executed, with Diff remain-

ing inactive. Experimental results show that the DiffHGR

demonstrated consistently high gesture recognition accuracy

of around 96% and maintained a low average end-to-end

latency of around 132 ms for recognizing 8 gestures across

12 subjects.

Despite the above results, inter-day or inter-subject eval-

uation still relies on few-shot labeled calibration for fast

personalization, and further reducing or eliminating this

labeling requirement (e.g., via domain adaptation or meta-

learning) remains an important direction. Moreover, while

real-time feasibility is validated under intraday and interday

experiments with reported efficiency indicators, real-time

evaluation under unseen users (inter-subject) remains to be

further investigated.
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