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ABSTRACT

Gesture recognition using high-density surface electromyography (HD-sEMG) signals has attracted
significant attention in myoelectric control. While recent studies report high intraday performance,
interday accuracy often drops due to poor generalizability, limiting real-world deployment. To
improve robustness, we propose a Diffusion-based Hand Gesture Recognition framework (DiffHGR)
that integrates diffusion-based data augmentation with autoencoder representation learning. During
training, a Diffusion (Diff) component corrupts HD-sEMG signals through a forward Gaussian
diffusion process and employs a U-Net-based denoiser to reconstruct high-fidelity signals, which are
used to augment the training set with diverse samples. Meanwhile, an Autoencoder (AE) component
learns discriminative latent representations for gesture classification, enhanced via skip connections
from the Diff encoder to reuse multi-scale denoising features. To address cross-day distribution shifts,
we further introduce a lightweight few-shot calibration protocol. During calibration, the Diff is kept
frozen and is used only as a generator to synthesize additional samples that augment the limited
target-day data, while the AE encoder and classifier are updated for fast adaptation. During online
inference, prediction is performed solely by the calibrated AE encoder and classifier, with the Diff
generator inactive in the inference path, enabling low-latency deployment. Extensive experiments
demonstrate that DiffHGR consistently outperforms other benchmark models. Real-time validation
further confirms its robustness and practical applicability. These results highlight the effectiveness of
combining diffusion-driven data augmentation and autoencoder-regularized representation learning
for robust HD-sEMG-based gesture recognition.

1. Introduction

Hand gesture recognition (HGR) provides an intuitive,
convenient, and natural human-computer interaction way. It
has been applied in a wide range of applications, such as
prosthesis control [1], interaction systems [2; 3] and virtual
reality game [4]. The common HGR technologies mainly
involve three types of sensors, i.e., data gloves [5], vision-
based sensors [6] and surface electromyography (sSEMG) [7].
Among these, high-density surface electromyography data
(HD-sEMG) can capture detailed muscle activities, it thus
has been widely used for HGR in the past decades [8—10].

The most common approaches to decode HD-sEMG
signals into hand gestures are machine learning-based clas-
sifiers, such as linear discriminant analysis (LDA) [11],
support vector machine (SVM) [12], random forest (RF)
[13], and artificial neural network (ANN) [14]. However,
these methods are hindered by cumbersome hand-crafted
feature extraction [15], and the optimal combinations of
hand-crafted features varied with different conditions [16].
Deep learning (DL) methods have recently proven to be a
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powerful model to extract complex hidden features auto-
matically, thus they can learn the more robust and invari-
ant representations of EMG signals than machine learning
methods. For example, Yang et al. proposed a multi-stream
residual network (MResLSTM) for dynamic hand movement
recognition [17]. Karnam et al. introduced a hybrid CNN
and Bi-LSTM architecture for hand activity classification
[18]. Zhang et al. proposed a convolutional neural network
with multi-attention for hand gesture recognition [19]. Mon-
tazerin et al. introduced a Vision Transformer (ViT) based
method to recognize hand gestures [20]. However, these
methods are generally trained and evaluated using SEMG
signals collected on the same day. The performance of
these methods may be seriously degraded when a trained
model is tested with data collected on a different day. This
degradation arises from the neglect of factors such as sensor
misplacement, sensor displacement, and variations in human
neurophysiology and skin conductivity across different days
[8]. Thus, it is essential to improve the generalizability of
these HGR methods by ensuring high reliability on different
days [21].

To address the issue of cross-day variation and im-
prove model generalization, transfer learning and adver-
sarial learning have been widely adopted [4; 22; 23]. The
fine-tuning technique is mainly one of the transfer learning
methods. For instance, Coté-Allard et al. proposed three
ConvNet architectures combined with a transfer learning
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strategy for SEMG-based hand gesture recognition, demon-
strating improved performance after transfer learning [22].
Chen et al. introduced an effective CNN+LSTM network
and a finetuning framework for gesture recognition tasks
[24]. Wang et al. proposed a CNN-AM model using an
attention mechanism and transfer learning for SEMG-based
hand gesture estimation [25]. Although these existing ap-
proaches have achieved high classification accuracy by using
transfer learning, several challenges remain, which can be
summarized as follows: (1) reliance on a large amount of
labeled data, (2) limited generalization to new gestures, and
(3) dependence on larger window sizes ranging from 150
ms to 300 ms. In response to these challenges, Hu et al.
proposed the ViT-MDHGR method, which demonstrates
the effectiveness of using short time windows and minimal
calibration for multi-day hand gesture recognition [8]. While
their work proves the feasibility of using small window sizes
and few calibration trials to address cross-day variability, it
does not explore the generalization to a larger set of gestures,
which is critical for practical applications that require a
broader gesture repertoire. Adversarial learning is another
promising method to improve model generalization by gen-
erating diverse training data, addressing the requirement
of a large amount of labeled data. For example, Chen et
al. introduced a deep convolutional generative adversarial
network (DCGAN) to enhance multiple-channel EMG data,
with results showing that the synthetic data could increase
the diversity of the original dataset [26]. Shi et al. developed
a low-shot adversarial network incorporating physics-based
information to estimate muscle and joint kinematics from
SsEMG signals [27]. Lee et al. proposed a recursive domain
adversarial neural network with data synthesis, which up-
dates the EMG classifier to a target day in a semi-supervised
manner for robust cross-day HGR [28]. Lin et al. developed a
robust framework named RoHDE based on GAN, and their
findings indicated that the proposed RoHDE can generate
synthetic HD-sEMG signals to simulate recording condi-
tions affected by disturbances [29]. Despite their promising
results, GAN-based methods face challenges in terms of
training stability and sample diversity.

To overcome these limitations, diffusion models, an
emerging class of deep generative models, have gained at-
tention due to their stable training processes and ability to
generate high-quality synthetic data [30; 31]. In this study,
we propose a Diffusion-based Hand Gesture Recognition
(DiffHGR) framework DiffHGR consists of two key compo-
nents: the Diff component, which performs diffusion-based
signal reconstruction and is used to generate high-fidelity
synthetic HD-sEMG samples for data augmentation, and the
AE component, which learns discriminative latent represen-
tations for gesture classification. The key contributions are
summarized as follows:

1. Diff Component: Utilizes a U-Net architecture to perform
the forward and reverse diffusion processes, capturing
both low-level and high-level features from HD-sEMG
signals. The model is trained to minimize the reconstruc-
tion loss between the generated synthetic signals and the

original data, effectively enhancing signal reconstruction
and augmenting training data.

2. AE Component: Extracts rich latent representations of
HD-sEMG signals essential for accurate gesture classi-
fication. The AE benefits from skip connections from
the Diff component, allowing it to correct for loss of
information incurred during the denoising process and
refine feature extraction.

3. Joint training between Diff and AE Components: The
two components are trained in a unified framework un-
der a composite objective, where the Diff component is
optimized by its diffusion reconstruction loss, while the
AE is optimized by the reconstruction-gap and classi-
fication losses. The denoising-aware features from the
Diff encoder are skip-connected to assist AE decod-
ing, thereby combining diffusion-driven augmentation
with discriminative representation learning and improv-
ing cross-day/cross-subject generalization.

4. Few-Shot Calibration: DiffHGR achieves robust cross-
day performance with minimal calibration. The frame-
work demonstrates excellent performance with few-shot
augmented data from a new day, achieving an aver-
age accuracy of 90.27% across 20 subjects, surpassing
benchmark methods such as CNNAM (83.38%), ViT-
MDHGR (58.15%), DANN_CRC (84.87%), and DC-
GAN (84.33%).

The remainder of this paper is organized as follows:
Section 2 describes the proposed method Diff HGR in detail.
Section 3 provides the experimental results and findings.
Section 4 discusses the results and outlines potential di-
rections for future work. Lastly, Section 5 concludes the
findings of this work.

2. Methodology

This section first presents three public HD-sEMG datasets
selected in our experiments and introduces preprocessing
methods applied in each dataset. Secondly, we introduce
the main framework of the proposed DiffHGR method,
which includes a Diff component and an AE component.
Finally, we describe the hyperparameter setting, benchmark
methods, and evaluation metrics.

2.1. Datasets
2.1.1. Hyser PR dataset

The Hyser PR dataset [32], consisting of HD-sEMG
data from twenty subjects (12 male, 8 female, 21-34 years
old). The goal and the experimental protocol were explained
to each participant. This dataset includes 34 gestures. HD-
sEMG signals were acquired with a sampling rate of 2048
Hz, using four 8 X 8 array electrodes (256 channels in total).
Two were placed on each of the extensor and flexor muscles.
Each gesture is executed with 6 trials, each lasting one-
second duration. Data was collected from two distinct days,
with intervals ranging from 3 to 25 days, and are referred
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Figure 1: Detailed illustration of Stage A in DiffHGR. The Diff component reconstructs high-fidelity signals from corrupted inputs
via a reverse diffusion process, while the AE component extracts discriminative features and enhances classification with skip
connections from the Diff encoder. Both components are jointly optimized using reconstruction and classification losses.

to as session 1 and session 2, respectively. The acquired
HD-sEMG signals are filtered by applying an eight-order,
high-pass with a cutoff frequency of 10 Hz and an eight-
order, low-pass with a cutoff frequency of 500 Hz Butter-
worth filters. A notch filter combination is then applied to
reduce power line interference at 50 Hz and its harmonic
components up to 400 Hz. Finally, we split the data using a
62.5 ms sliding window with a 10 ms sliding step.

2.1.2. CapgMyo DB-a dataset

The CapgMyo DB-a dataset [33], consisting of HD-
SEMG data from 18 subjects. This dataset includes 8 dis-
tinct finger gestures, with each gesture being performed
for a duration ranging from 3 to 10 seconds, followed by
a 7-second rest period. HD-sEMG signals were acquired
with a sampling rate of 1000 Hz, using 8 X 16 electrodes
(128 channels in total). Each subject executed each gesture
10 repetitions. The power-line interference is removed and
the acquired HD-sEMG signals are filtered by applying a
second-order Butterworth band-stop filter (44-55 HZ). For
each gesture and trial, the middle one-second window of data
is used (1000 sample points). Finally, we split the data using
a 128 ms sliding window with a 50 ms sliding step.

2.1.3. CSL-HDEMG dataset

The CSL-HDEMG dataset [34], consisting of HD-sEMG
data from 5 subjects. This dataset includes 27 gestures. HD-
sEMG signals were collected with a sampling rate of 2048
Hz, using 192 electrodes. Data of each subject was collected
over 5 sessions and each gesture was performed 10 trials in
each session. The powerline noise and cable motion artifacts
are removed, and the acquired HD-sEMG signals are filtered
by applying a fourth-order Butterworth band-pass filter (20-
400 HZ). For each gesture and trial, the middle one-second
window of data is used. Additionally, [34] points out that
every eighth channel does not contain meaningful data. This
paper ignored these channels, and a total of 168 channels of
usable data were used.

2.2. Framework Overview

The main framework of the DiffHGR consists of three
training stages. 1) Stage A: Joint training of Diff and AE
components. As shown in Figure 1, Stage A jointly trains
two core components: the Diff component for signal gener-
ation and the AE component for feature extraction and clas-
sification. The Diff component adopts a denoising diffusion
probabilistic model (DDPM), where the original HD-sEMG
signal x from the training set D,,;, is progressively noised
into X, and then reconstructed to X using a U-Net-based
reverse diffusion process. The reconstruction loss Lp;er is
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computed between X and x to update the Diff component.
Simultaneously, the AE component, consisting of encoder
E, decoder D, and classifier C, processes the original input
X to extract latent features z and reconstruct X. Skip connec-
tions from the Diff encoder enhance feature representations.
The AE loss L g comprises a reconstruction gap loss L,
and an auxiliary classification loss L, computed using the
classifier’s output. Both Lp;;; and L, guide the end-to-
end optimization of the full network. 2) Stage B: Synthetic
sample generation and mixing. Once the Diff component
is trained, we apply it to generate synthetic HD-sEMG
samples X for each input x from the training set D,,;,. These
samples, denoted as (X, y), preserve the original gesture
labels and are collected into a synthetic set S,,. A random
subset of S, is selected with ratio p, and mixed with the
original training set to build a hybrid dataset D, ;, used
for training the final classifier. This strategy enhances data
diversity while maintaining class consistency. 3) Stage C:
Discriminative classifier training. As shown in Figure 2,
the mixed dataset is fed into the frozen AE encoder, and the
extracted latent embeddings z are input to the final classifier
C*. The classifier is trained from scratch using the cross-
entropy loss L between predictions y* and ground-truth
labels y*. This stage ensures that the classifier generalizes
well to both original and generated samples. The detailed
three-stage training pipeline is shown in Algorithm 1.

For an interday or intersubject scenario, we perform a
lightweight few-shot calibration using a small number of la-
beled trials from the target condition. During calibration, the
Diftf component is kept frozen and used only to synthesize
augmentation samples. We then adapt the DiffHGR in two
steps: 1) we first update the encoder E of the AE component
while others are frozen, so that the latent representation z
aligns to the target condition while preserving task-relevant
structure, 2) we subsequently update the classifier C* using
the combination of real and synthetic samples to refine the
decision boundary. After calibration, inference prediction is
performed by executing only the updated AE encoder and
classifier, while the diffusion generator remains inactive in
the inference path.

2.3. The Diff component based on DDPM

As illustrated in Figure 3, DDPM corrupts training data
by gradually adding Gaussian noise in the forward diffusion
process. It then learns to recover the corrupted data during
the reverse process [30]. Consequently, a trained DDPM
model can generate fake data from arbitrary Gaussian noise.
Specifically, both the forward and reverse processes are
defined as parameterized Markov chains. In the forward
diffusion process, the original HD-sEMG data x can be
denoted as Xx(, and the corrupted data after t steps can be
defined as:

p(Xt I X[—]) = N(Xt; V 1 - ﬁtxt—l’ﬁtl) (1)

T
sxplx) =[]px Ixop @

t=1

P(Xq,Xg, o+, X,

X

Forward

Diffusion

*

X, — — X

@ Diff component

a
X*__. \ [1_>—>DDD 57* > y*

E“C"de‘ %
(b) Backpropagation

Figure 2: lllustration of Stage B and Stage C in DiffHGR. (a)
The Diff component generates synthetic HD-sEMG samples
X from original signals. We augment training data with the
generated HD-sEMG data. (b) We train a final classifier with
the augmented HD-sEMG data.

Algorithm 1 DiffHGR Three-stage Training

Require: Training loader Dy, test loader D, ; epochs
E; mix ratio p; weight
Ensure: Trained Diff,, AE¢={E¢, D¢,C¢}, final classi-
fier C*
1: Initialize Diff (DDPM) Diff,, AE (Ey, Dy, Cy), final
classifier C*
Stage A: Joint training of Diff and AE

2: forepoch=1... Edo

3: for (x,y) € Dtraln do

4: (X, skips, _, €,1) « Diffy(x)

5: Lpies < IX=Xx]|l;; update 6 on Ly

6: i « Dy(x,%,sKips, 1); z « Ey(x); § « Cy(z)

T gdp ”X — stopgrad(Lp;ee) [l

8: Lo < ly = ¥ll2

9: Lap < Logp +a Ly,

10: update ¢ on L,

11: end for

12: end for
Stage B: Synthesis and mixing (via Diff)

13: Sgyp < 0

14: for (x,y) € Dy, do

15: X, _,_,_,_) < Diff,y(x) > reconstruction

16: Seyn < Seyn UK, Y}

17: end for

18: Sy < RandomSubset(Syy,, p); Build mixed loader
Z)mix from Dtrain and Ssyn

Stage C: Classifier training on encoder features of
AE

19: forepoch =1... E do

20: for (x*,y" ) € DmlX do

21: 2z« E4(x¥); J* < C;*(z)

22: L < CE(y*,y*); updatey on L
23: end for

24: Evaluate on D,

25: end for
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Table 1

The structure of the Diff component, which adopts a U-Net-inspired structure with three downsampling and three upsampling
blocks, followed by a final convolutional layer. GroupNorm and PReLU are used throughout to stabilize training and enhance

non-linearity.

Layer Type Input Shape Output Shape

1 Convld + GroupNorm + PReLU + MaxPoolld [batchsize, 256, 128] [batchsize, 128, 64]
2 Convld + GroupNorm + PReLU + MaxPoolld [batchsize, 128, 64] [batchsize, 256, 32]
3 Convld + GroupNorm + PReLU + MaxPoolld [batchsize, 256, 32] [batchsize, 384, 16]
4 Upsample + Convld + GroupNorm + PReLU [batchsize, 384, 16] [batchsize, 128, 32]
5 Upsample + Convld + GroupNorm + PRelLU [batchsize, 128, 32] [batchsize, 128, 64]
6 Upsample + Convld + GroupNorm + PRelLU [batchsize, 128, 64] [batchsize, 256, 128]
7 Convld [batchsize, 256, 128] [batchsize, 256, 128]

Reverse process: q(x,_, ‘x,) In contrast, given the corrupted HD-sEMG data of each

window x,, this study trains a Diff component to predict the

uncorrupted signal, instead of estimating the added noise.

X, X, X, , X, X,

Forward diffusion process: P (X, IX,_1 )

Figure 3: Denoising diffusion probabilistic model is shown. x,
represents the original HD-sEMG signals, and x; represents the
corrupted data after T steps transformation.

where T is the total number of diffusion steps, f; is from a
fixed variance schedule, and x, = \/1 — f,x,_; + \/F,et, € ~
N'(0,1) is latent variable of DDPM. According to the rule
of the sum of normally distributed random variables, we can
directly sample x, from the original data x; for arbitrary t
with :

P, | X0) = N (X5 v/@xo, (1 — a)l) A3)
Here, x, = \/@,xo+1/1 -6, ~ N0,D),a, =1 -5,

and @, = H:zl. Finally, the data x; can be transformed into
xr ~ p(xr), where p(xp) ~ N'(x7;0,1).

The reverse diffusion process learns the reversal of the
forward process, thereby recovering the original data distri-
bution. Ho et al. [30] proposed training a neural network
to predict the noise added during the forward process. It
starts with standard Gaussian noise sampled from g(xy) ~
N (x7;0,1). The reverse process is described as follows:

aX—y 1 %) = N (X_15 Hp(Xp, 1), Zp (X, 1)) 4

T
(%0 X1, %, -+, xp) = q0xp) [ [ ek 1%) - (9)
t=1

where py(X,,t) and X,(x,,t) represent the mean and the
covariance obtained by training a network €,(x,,?). The
training objective of this network is to ensure the predicted
noise is consistent with the actual added one as follows:

L= [Exo,e,t [”€ - 60(Xp t)llz] ©6)

During training, the forward diffusion step ¢ is randomly
sampled for each sample to expose the model to different
noise levels, whereas the reverse process uses a single-step
denoising without iterative reverse diffusion. As shown in
Figure 1, the Diff component mainly comprises three down-
sampling convolution layers, three upsampling convolution
layers, and an additional one-dimensional convolution layer.
The detailed structure of the Diff component network is
shown in Table 1. After forward propagation, the output of
the Diff component X is obtained. We employ L1 loss as the
loss function to measure the absolute differences between
the Diff component output and the original signal:

Lpig = 1% = x|l @)

The objective function encourages the Diff component to
produce output similar to the uncorrupted data. The param-
eters of this component can be updated as follows.

0 < 0 — 1 VoLp(0) @
where 7 is the learning rate.

2.4. The AE component

The forward process may introduce information loss,
which the AE component aims to mitigate by identifying and
rectifying these losses to extract meaningful representations
for gesture classification tasks. The AE component is com-
posed of an encoder E, a decoder D, and an auxiliary classi-
fier C. The encoder processes the original HD-sEMG data x
and maps it into a compressed latent space, while the decoder
network reconstructs the signal from the latent representa-
tion. They are the same structure as the Diff component,
excluding the last one-dimensional convolution (Conv1D)
layer. The classifier is composed of three linear layers. The
detailed structure is shown in Table 2. The encoder-decoder
pair is trained jointly with the Diff component. Specifically,
during joint training, the decoder D receives multi-scale skip
connections from corresponding layers of the Diff encoder,
allowing it to reuse denoising-aware intermediate features

First Author et al.: Preprint submitted to Elsevier
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Table 2

The structure of the AE component. The encoder reduces temporal dimensions to extract compact features, the decoder
reconstructs signals from latent space, and the classifier predicts gesture labels from the latent embedding.

Layer Type Input Shape Output Shape
1 Convld + GroupNorm + PReLU + MaxPoolld [batchsize, 256, 128] | [batchsize, 256, 64]
Encoder 2 Convld + GroupNorm + PReLU + MaxPoolld [batchsize, 256, 64] [batchsize, 256, 32]
3 Convld + GroupNorm + PReLU + MaxPoolld [batchsize, 256, 32] [batchsize, 256, 16]
1 Upsample + Convld + GroupNorm + PReLU [batchsize, 256, 16] [batchsize, 128, 32]
Decoder 2 Upsample + Convld + GroupNorm + PReLU [batchsize, 128, 32] [batchsize, 128, 64]
3 Upsample + Convld [batchsize, 128, 64] | [batchsize, 256, 128]
1 Linear+ GroupNorm + PRelLU [batchsize, 256] [batchsize, 512]
Classifier | 2 Linear+ GroupNorm + PRelLU [batchsize, 512] [batchsize, 512]
3 Linear [batchsize, 512] [batchsize, 34]

and compensate for potential information loss introduced by
the forward diffusion. In addition, both the original signal
x and the denoised output of the Diff component X are
concatenated to the last decoding stage via skip connections,
which further encourages structurally consistent reconstruc-
tion. Meanwhile, the classification objective imposed on C
regularizes the AE to learn discriminative representations
for robust gesture recognition. By integrating these connec-
tions, the decoder can leverage the structural information of
the original signal along with the details reconstructed by the
Diff component, learning more meaningful representations.

To improve the feature representation, the output of the
encoder is passed through an adaptive average pooling layer,
which aggregates the features into a fixed-size representation
z. This compressed representation z serves as the input
to the classifier C, which is responsible for predicting the
gesture class label. C is jointly trained with the encoder and
decoder networks. The objective function for training the AE
component is defined as:

L g = [IX — stopgrad(Lp;p)ll; + ally — §1l» )

where y is the true labels, § is the predicted labels, stopgrad(-)
denotes the stop-gradient operation, and « is a hyperparam-
eter. The parameters of this component can be updated as
follows.

¢ — ¢ —mVyLrp(d) (10)

where 7, is the learning rate.

The Diff and AE components are trained jointly in a
multi-objective optimization framework. The Diff compo-
nent generates diverse synthetic data that captures the essen-
tial features of the original HD-sEMG signals. At the same
time, the AE component extracts discriminative representa-
tions for gesture classification, strengthened by denoising-
aware multi-scale features delivered through skip connec-
tions from the Diff encoder.

2.5. Data augmentation and gesture classification
After training Diff and AE, the trained Diff component
can be used to generate high-quality synthetic HD-sEMG

data. As shown in Figure 2, the original HD-sEMG data
is augmented by adding an equal amount of synthetic HD-
sEMG data, resulting in the augmented dataset denoted
as x*, increasing the diversity of the training data. The
augmented data x* is then fed into the trained AE encoder
network E, which maps the data into a latent representation
by collapsing the time dimension into a single feature vector.
This latent representation, which captures the underlying
patterns in the HD-sEMG data, serves as the input to a clas-
sification network C*. The classification network consists of
three linear blocks. Each of the first two blocks contains a
linear layer followed by group normalization and a PReLU
activation function, which helps the network learn nonlin-
ear representations. The final linear layer in C* performs
the gesture classification, outputting the predicted gesture
labels. Finally, we calculate cross-entropy loss between the
true labels and the predicted labels and backpropagate to
update C*.

2.6. Hyperparameter Setting

The training of the proposed DiffHGR framework in-
volves three consecutive stages (as illustrated in Algo-
rithm 1). In Stage A, we jointly train the Diff component
and the AE component using two RMSProp optimizers and
two cyclic learning rate schedulers. The base learning rate of
the RMSProp optimizer is set to 9 x 1073, and the maximum
learning rate is set to 1 X 1073, A batch size of 64 is used,
and the training runs for 200 epochs. An adaptive learning
rate reduction strategy is applied: the learning rate is reduced
by a factor of 10 if the validation loss does not improve for
10 consecutive epochs, and training is terminated early after
three such reductions. The loss weight a that balances the
AE reconstruction and classification terms is empirically set
to 0.1. In Stage B, we use the trained Diff component to
generate synthetic samples and randomly select a portion
(p is set to 0%, 25%, 50%, 75%, or 100%) to augment the
original training set. In Stage C, the final classifier C* is
trained using the Adam optimizer with a learning rate of
1 x 107>. During this stage, only the classifier parameters
are updated while the encoder is frozen. Each training stage
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is evaluated on the held-out test set to monitor generalization
performance and ensure reproducibility.

2.7. Benchmark Methods

To evaluate the advantages of the proposed Diff HGR in
cross-day hand gesture recognition, we compare our method
with four state-of-the-art benchmark methods. These bench-
marks were chosen based on their ability to handle cross-
day variability and their effectiveness in gesture recognition
tasks. CNNAM with transfer learning (CNNAM_TL) [25]
comprises a CNN-based feature extractor composed of three
two-dimensional convolution layers integrated with atten-
tion modules and a label classifier containing three fully
connected layers. ViT-MDHGR [8] is a compact ViT-based
network for multi-day dynamic hand gesture prediction,
which captures crossday features by learning the relation-
ships between HD-sEMG signals at any two timestamps
within a window. DANN_CRC [28] is a recursive DANN
structure with CRC data synthesis to augment the unlabeled
EMG signals of the target day for robust cross-day HGR.
DCGAN [26] consists of a generator and a discriminator.
The generator and discriminator are adversarially trained. To
further evaluate the ability to generate data, the training data
is augmented with synthetic data generated by the trained
generator. Then, the augmented data is fed into a MobileNet
classifier for training.

2.8. Evaluation Metrics

To comprehensively evaluate the effectiveness of the
proposed DiffHGR framework, we employ both classifica-
tion metrics and generative quality metrics. For classification
performance, we report standard metrics including classi-
fication accuracy, precision, recall, and F1 score. They are
calculated by:

Accuracy = TP + TN (11D
TP + TN + FP + FN
Precision = _TP (12)
TP + FP
Recall = _TP (13)
TP + FN
F1 Score = 2 X precision X recall (14)

precision + recall

where TP represents the number of true positives, FP rep-
resents the number of false positives, TN and FN represent
the number of the true negatives and false negatives, respec-
tively.

To further assess the quality and diversity of the syn-
thetic HD-sEMG data generated by the Diff component,
we adopt two widely used generative evaluation metrics:
Inception Score (IS) and Fréchet Inception Distance (FID).
The IS evaluates the diversity and semantic clarity of the

generated data by measuring the KL divergence between the
conditional label distribution and the marginal distribution.
A higher IS score indicates that the generated samples are
both diverse and confidently classifiable:

() = exp (Eoep, [Dre GO Ip0Y])  (15)

where p(y|x) denotes the predicted label distribution for a
generated sample x, and p(y) is the marginal distribution
across all generated data.

The FID score evaluates the similarity between the real
and generated data distributions in feature space. A lower
FID indicates that the generated data is more similar to the
real data:

FID:‘

2 1
- ,ugH2 +Tr <2, +3,-2(%,%,) 2> (16)

where y,., 2, and p,, Z, represent the means and covariances
of features extracted from real and generated data, respec-
tively.

These metrics, originally designed for image data, are
adapted to our HD-sEMG classification scenario by replac-
ing the standard Inception network with task-specific models
trained on our datasets. Specifically, first, the trained Diff
component is used to generate synthetic HD-sEMG signals.
The generated data, along with an equal number of real
data, is passed through the pretrained encoder of the AE
component, which transforms each input into a compressed
latent representation. These feature embeddings are used for
downstream IS and FID calculations. The extracted features
are input to the trained gesture classifier, producing softmax
outputs p(y|x) over gesture classes. These probabilities are
used to compute the IS score.

3. Results

3.1. Evaluation on Hyser Dataset

This study primarily evaluates the proposed method on
the Hyser dataset, which consists of two sessions collected
on different days, providing a real-world cross-day evalua-
tion. Specifically, we conduct leave-one-out cross-validation
in intrasession experiments for selecting test and validation
trials needed in intersession experiments. Furthermore, the
intrasession performance serves as a baseline for comparison
with intersession performance to assess the tolerable de-
crease in performance in cross-day hand gesture recognition
tasks.

3.1.1. Results of intrasession

We evaluate the performance of the proposed DiffHGR
method in session 1 (Day 1) and session 2 (Day 2), respec-
tively. These results are intended to serve as a baseline for
comparison with intersession performance. The intrasession
experimental results assess the ability of DiffHGR to recog-
nize gestures when trained and tested under consistent con-
ditions. We evaluate intrasession performance using leave-
one-trial-out cross-validation, with each subject conducting
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Figure 4: Intrasession classification performance across 20 subjects. Bar plots indicate the classification accuracy for each subject,

while the overlaid lines show the corresponding F1 scores.

6 training and testing experiments. The results are shown
in Figure 4 across 20 subjects. For each subject, we report
the best classification accuracy among 6 experiments, along
with the corresponding F1 score. The results demonstrate
that the proposed DiffHGR method achieves high classifica-
tion accuracies across all subjects. In session 1, the Diff HGR
achieves the highest accuracy of 97.03% (S1) and the lowest
of 87.19% (S16). Similarly, in session 2, the accuracy ranges
from 87.6% (S5) to 97% (S20). The consistent performance
across different subjects illustrates the stability and reliabil-
ity of the DiffHGR method when applied within a single-day
scenario.
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Figure 5: Intrasession performance comparison between the
proposed DiffHGR and other benchmark methods, illustrated
through box plots. Statistical significance was assessed via
paired t-tests between DiffHGR and each baseline method
(xp < 0.05, #xp < 0.01, #xxp < 0.001, "ns" indicates no
significant difference).

Additionally, a comparative analysis of the DiffHGR
method with four benchmark methods is presented in Fig-
ure 5. These comparisons underline the effectiveness of the
proposed approach relative to other methods in terms of
classification accuracy and robustness within a session. As
shown in Figure 5, Diff HGR significantly outperforms all
benchmark methods in both sessions. It achieves the highest
average accuracies of 93.6% for session 1 and 93.31% for
session 2 across 20 subjects. We also note that the proposed
method has the lowest variances among 20 subjects of 2.3%

IS
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Figure 6: Comparison results of intersession performance
between the proposed DiffHGR and other benchmark methods.
Green triangles denote the mean values, while the black
boxes within the violin plots represent the interquartile range,
spanning from the 25th percentile to the 75th percentile.

for session 1 and 2.48% for session 2. The low standard
deviations indicate that the performance of DiffHGR is
stable across different subjects within the same session. This
stability is crucial for practical applications, as it suggests
the proposed model can reliably recognize gestures without
significant performance fluctuations. For example, the max-
imum accuracy difference between subjects in session 1 is
9.84%, compared to larger variations seen in CNNAM, ViT-
MDHGR, DANN_CRC, and DCGAN, where the differences
are 13.34%, 22.31%, 11.8%, and 14.85% between subjects.
Additionally, the maximum accuracy difference between
subjects in session 2 for CNNAM is above 20%, while the
DiffHGR achieves consistency between different sessions.
We also performed paired t-tests between Diff HGR and the
other methods across all subjects, and the results show that
DiffHGR achieves statistically significant improvements in
accuracy over other baseline methods.

3.1.2. Results of intersession (cross-day)

This study aims to achieve high and stable hand gesture
recognition performance with a few-shot data for calibration.
To investigate the minimum needed trials for calibration,
we conduct intersession experiments by introducing transfer
learning. The HD-sEMG data from session 1 is utilized for
training and validation, while the data from session 2 is
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Figure 7: Confusion matrix comparison across five methods after two-trial calibration on the Hyser dataset. The horizontal axis
indicates the predicted gesture label, and the vertical axis indicates the true label (34 gesture classes in total). Each heatmap cell
shows the classification accuracy for a given (true, predicted) label pair.

used for calibration and testing. Specifically, the intersession
experiments consist of pre-training and calibration stages.
The intrasession experiments in session 1 are regarded as the
pre-training stage. Empirically, we observe diminishing re-
turns after two calibration trials, and 2-trial calibration yields
performance close to the intrasession (see Section 3.1.3).
Thus, the calibration phase involves three types of calibra-
tion experiments for each subject: O-trial, 1-trial, and 2-trial
calibration. In O-trial calibration, the pre-trained model is
directly tested with session 2 data. For 1-trial calibration,
the model is first calibrated with one calibration trial and
then tested on session 2 data. Similarly, 2-trial calibration
uses two calibration trials before testing on session 2 data.
All calibration experiments are implemented on individuals.

During O trial calibration experiments, pre-trained mod-
els achieve an average accuracy of 39.15% + 16.82% across
all subjects. As presented in Figure 6, though there are
noticeable declines in performance compared to the intrases-
sion results, the proposed method outperforms almost all
the benchmark models. When calibrating the pre-trained
models on 1 trial or 2 trials data of session 2, the pro-
posed method achieves the average accuracies of 84.87%
+ 3.53% and 90.27% = 2.75% across 20 subjects, respec-
tively, while CNNAM achieves 76.31% + 6.03% and 83.38%
+ 4.94%, ViT-MDHGR achieves 56.09% + 15.13% and
58.15% + 14.08%, DANN_CRC achieves 78.74% + 4.96%
and 84.87% + 4.64%, and DCGAN achieves 80.22% +
3.72% and 84.33% = 4.03%.

Calibration with just one trial from session 2 leads to
a significant improvement in accuracy, increasing by ap-
proximately 15.98% (S9) to 74.07% (S20) across subjects
compared to the pre-trained model. The 2-trial calibration
further enhances performance, which can almost match the
intrasession performance, only with an average 3.04% ac-
curacy gap. The results demonstrate that the model effec-
tively adapts to session variability with few-shot additional
data. Additionally, Figure 7 presents the confusion matrices
for five different methods after two calibration trials. The
confusion matrix provides a detailed view of how well
each method distinguishes between the various gestures.
As observed from Figure 7, the proposed Diff HGR method
demonstrates a superior ability to accurately distinguish 34
gestures compared to the benchmark methods. The diagonal
values, representing correct classifications, are consistently
higher for Diff HGR, indicated by more intense blue blocks
along the diagonal. In contrast, the off-diagonal areas, which
indicate misclassifications, are notably lighter and contain
fewer orange blocks in our method compared to the other
methods. This reduction in orange blocks highlights a lower
rate of misclassifications, meaning that our method is more
effective in minimizing confusion between gestures.

3.1.3. Minimum calibration trials for cross-day
adaptation
We further investigate the minimum calibration effort
required for reliable cross-day performance by varying the
number of labeled calibration trials collected from the target
session (session 2) from O to 4 trials per gesture. As shown in
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Figure 8, introducing only one calibration trial already yields
a substantial improvement over the zero-shot setting, and
increasing the budget to two trials further brings a significant
performance gain (p < 0.001). Notably, the performance
shows diminishing returns beyond two trials, as no statis-
tically significant improvement is observed when increasing
the calibration budget from two to three or four trials ("ns
These results indicate diminishing returns beyond two trials
and suggest that two short calibration trials are sufficient to
effectively compensate for cross-day distribution drift while
keeping the annotation burden low. Therefore, unless other-
wise specified, we adopt the 2-trial calibration protocol in all
subsequent experiments that involve target-day adaptation.

100
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Figure 8: Cross-day accuracy under different calibration trials
(from O to 4 trials per gesture). Statistical significance is
assessed using paired t-tests across subjects (#p < 0.05, *xp <
0.01, ##xp < 0.001, "ns" indicates no significant difference).

3.2. Cross-subject evaluation on Hyser dataset

We further investigate the generalization ability of our
proposed DiffHGR framework in a cross-subject setting.
Cross-subject evaluation presents a greater degree of vari-
ability due to individual differences in physiological struc-
tures, skin impedance, and electrode placement. Although
our method is not explicitly optimized for inter-subject trans-
fer, it is still important to examine whether the learned repre-
sentations can adapt to unseen individuals with minimal cal-
ibration efforts. We conducted target evaluation experiments
on six unseen subjects using a calibration setting of O-trial, 1-
trial, and 2-trial. As shown in Figure 9, in the O-trial setting,
the average classification accuracy across unseen subjects
was significantly limited (e.g., only 15.19% for Subject 17).
This highlights the considerable intersubject variability in
sEMG signals. However, after incorporating just one labeled
calibration trial, performance improved dramatically across
all subjects, with accuracy exceeding 96% in all cases. A
further gain was observed in the 2-trial scenario, achieving
over 99% accuracy for most subjects. These results suggest
that the proposed DiffHGR method enables the model to
facilitate rapid adaptation to new subjects with limited su-
pervision.
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Figure 9: Radar charts of classification performance across six
target subjects in the cross-subject experiments, evaluated with
0, 1, and 2 calibration trials (k = 0, 1, 2). Each radar chart
summarizes five metrics: accuracy, Fl-score, recall, precision,
and AUC.

3.3. Evaluation on CapgMyo and CSL-HDEMG
Datasets

In addition to the Hyser dataset, we further validate the
proposed DiffHGR method on two other publicly available
datasets, CapgMyo and CSL-HDEMG. Although they are
not collected across different days, they still exhibit cross-
trial variability. These datasets allow us to assess the per-
formance of DiffHGR in various environments. CapgMyo
dataset includes data from 18 subjects. For the evaluation,
we use 7 trials for training and 3 trials for testing. As
shown in Figure 10, DiffHGR consistently outperforms all
other benchmark methods, achieving the highest average
accuracy of approximately 96.13%. The data points in the
plot represent the performance across different subjects,
with DiffHGR showing the least variation, as evidenced
by its narrow interquartile range (IQR). This indicates that
DiffHGR is robust to trial-to-trial variability and performs
stably across different subjects. The CSL-HDEMG dataset
consists of data from 5 subjects, each with 5 sessions. For
session 5 as an example, 7 trials are used for training and 3
trials for testing. As illustrated in Figure 10, DiffHGR again
leads with an accuracy above 92%, outperforming the other
methods in terms of both accuracy and consistency across
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Table 3

Quantitative comparison of the IS and FID among different generative methods. Higher IS indicates better diversity and quality
of the generated samples, while lower FID reflects closer alignment between the distribution of generated and real data.

DANN_CRC | DCGAN | DiffHGR(0%) | DiffHGR(25%) | DiffHGR(50%) | DiffHGR(75%) | DiffHGR(100%)
ISt 3.880 1.028 7.872 9.650 10.369 10.561 10.974
FID] 95.796 3271.117 3.037 3.792 3.875 3.803 3.982

different subjects. DiffHGR’s lower variation and tighter
IQR suggest that it effectively handles cross-trial variability.

In both datasets, Diff HGR demonstrates superior per-
formance, with a consistent accuracy range across subjects.
Notably, the box plots show that DiffHGR yields fewer
outliers and exhibits less variation in its performance com-
pared to methods like DCGAN and ViT-MDHGR, which
show more significant performance fluctuations. In addi-
tion, we conducted paired t-tests to statistically evaluate
the differences between DiffHGR and the baseline methods.
The results, annotated in Figure 10, indicate that DiffHGR
significantly outperforms all other methods on the CapgMyo
dataset and the CSL-HDEMG dataset. These results validate
the robustness and effectiveness of the proposed DiffHGR
method, not only in true cross-day scenarios (using the Hyser
dataset) but also in other situations, such as those presented
by CapgMyo and CSL-HDEMG. The ability of DiffHGR to
achieve high and stable performance across these different
datasets highlights its potential for generalizing to a wide
range of hand gesture recognition tasks.
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Figure 10: The evaluation comparison between DiffHGR and
other benchmark methods on CapgMyo and CSL-HDEMG
dataset. Statistical significance was assessed via paired t-
tests between DiffHGR and each baseline method(#p < 0.05,
wxp < 0.01, ##xp < 0.001).

3.4. Evaluation of the quality and diversity of the
generated data

To further assess the quality and diversity of the gener-
ated data, we evaluate the Inception Score (IS) and Fréchet
Inception Distance (FID). These metrics are used to eval-
uate how well the generated synthetic data represents the
real HD-sEMG data in terms of its diversity and similarity
to the true data distribution. We compare the DiffHGR
method with two benchmark data augmentation methods:

DANN_CRC and DCGAN. These methods use synthetic
data generation as part of their training process to enhance
model performance on gesture recognition tasks. In partic-
ular, DANN_CRC uses a domain-adversarial approach to
augment training data for hand gesture recognition, while
DCGAN generates synthetic data through adversarial train-
ing to enhance the variety. For a fair comparison, we evalu-
ated different DiffHGR models using different ratios of syn-
thetic data incorporation (0%, 25%, 50%, 75%, and 100%)
for training classifiers. As shown in Table 3, DiffHGR con-
sistently outperforms the benchmark methods in terms of
IS. As the proportion of synthetic data used for training
increases from 0% to 100%, the IS score improves from
7.872 to 10.974, which suggests that DiffHGR can pro-
gressively enrich the diversity of the training distribution
without sacrificing sample quality. Regarding FID, DiffHGR
attains consistently low values across all settings, which
are orders of magnitude lower than those of DANN_CRC
and DCGAN. In our setting, the same Diff component of
DiffHGR is used to produce synthetic samples for all ratios.
Consequently, the small numerical differences in FID across
the 0-100% settings mainly reflect sampling randomness.
The key observation is that Diff HGR maintains a FID of
around 3.9 in all settings, indicating that the synthesized HD-
sEMG signals remain very close and stably aligned to the
real data distribution.

To further validate these quantitative metrics, we addi-
tionally visualize representative pairs of original and syn-
thetic HD-sEMG samples generated by DiffHGR (see Fig-
ure 11). First, in the time domain, the synthetic waveform
closely follows the envelope and fluctuation patterns of the
original EMG for the same subject and gesture, while still
exhibiting sample-wise variability rather than a simple copy.
Second, the power spectral density (PSD) curves of real and
synthetic signals almost overlap within the main 20-300 Hz
band, yielding a high Pearson correlation coefficient (e.g.,
CC = 0.988 in the illustrated case), which indicates that
the generator preserves the characteristic frequency content
of muscle activity. Third, the channel-wise RMS activation
maps show highly similar spatial activation patterns across
the electrode grid (e.g., CC = 0.986 between real and
synthetic maps), demonstrating that Diff HGR can reproduce
the multi-channel spatial synergy structure of HD-sEMG
signals. These time-domain, spectral, and spatial visualiza-
tions support that the synthesized signals are not artificial
artifacts, but realistic variations that faithfully reflect the
underlying real-data distribution.
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Figure 11: Qualitative comparison between original and syn-
thetic HD-sEMG signals generated by DiffHGR for Subject 5
and Gesture 24.

Furthermore, we perform qualitative visualization of
the real and synthetic features using three popular dimen-
sionality reduction techniques: Principal Component Analy-
sis (PCA), t-distributed Stochastic Neighbor Embedding (t-
SNE), and Uniform Manifold Approximation and Projection
(UMAP). As shown in Figure 12, we present comparisons
for two representative subjects from the Hyser dataset: Sub-
ject 1 (left column) and Subject 17 (right column). Across
all three visualization methods, we observe a high degree
of overlap between real and generated features. PCA cap-
tures global variance structures and reveals that the syn-
thetic features are distributed in a manner similar to the
real data, without mode collapse or excessive concentra-
tion. The t-SNE and UMAP projections, which emphasize
local neighborhood structures and nonlinear manifold rela-
tionships, further demonstrate that the generated data are
well interleaved with the real data in feature space. These
results suggest that the proposed diffusion-based generative
module successfully preserves both global structure and
local similarity patterns of HD-sEMG signals. Such visual
consistency provides qualitative support for the effectiveness
of our generation process.

3.5. Ablation and sensitivity studies
3.5.1. Component-wise ablation of Diff and AE

To disentangle the contribution of each component in
DiffHGR, we conducted a comprehensive ablation study
under the intrasession experimental setting. Specifically, we
evaluated four model configurations:

« Baseline: Both Diff and AE components are removed. A
simple encoder followed by a linear classifier is trained on
raw HD-sEMG data without any augmentation or recon-
struction.

PCA Projection PCA Projection

Component 2

0 2
Component 1 Component 1

Component 2

Component 2

°

Figure 12: Feature visualizations of real and generated signals
from the Hyser dataset using PCA, t-SNE, and UMAP. The
left column corresponds to Subject 1, and the right column
corresponds to Subject 17.

« Diff-only: The diffusion module is used to generate syn-
thetic training data, but the AE component is excluded.
Classification is performed by the same baseline encoder
and classifier.

o AE-only: The model is trained only on real data, but the
AE encoder—decoder structure is retained, including skip
connections from the diffusion encoder.

» DiffHGR: Both Diff and AE components are used. The
model is trained on a mixture of real and synthetic data,
and the AE decoder benefits from skip connections of the
Diff encoder to enhance representation learning.

The results, presented in Table 4, demonstrate that
both components independently contribute to performance
improvements. As shown, the AE component enhances the
learning of discriminative representation through recon-
struction and skip-connected features, leading to a sub-
stantial accuracy gain from 77.60% to 91.37% over the
baseline. Meanwhile, the Diff component alone improves
the generalization of the model by enhancing synthetic data,
achieving 89.42% accuracy. When both modules are jointly
integrated, the full DiffHGR model yields the best accuracy
of 93.6%, confirming their complementary roles. In addition
to the overall accuracy improvements, we also observe a
clear reduction in performance variance when both com-
ponents are enabled. Specifically, the standard deviation of
accuracy drops from 21.92% in the Diff-only configuration
and 6.95% in the AE-only configuration to only 2.3% in the
full DiffHGR model. This suggests that Diff HGR not only
improves accuracy but also enhances model stability across
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Ablation study evaluating the individual contributions of the Diff component and AE component in the intrasession experiments.
We report the mean and standard deviation of four evaluation metrics (Accuracy, Fl-score, Recall, and Precision) across all

subjects.
Methods | Diff component | AE component Accuracy F1-score Recall Precision
Baseline X X 77.60% +7.38% | 7525% +8.23% | 75.42% +7.52% 77.68% +7.63%
Diff-only v X 89.42% +21.92% | 87.97% +24.99% | 88.11% +24.45% | 89.49% + 16.47%
AE-only X v 91.37% +6.95% | 90.20% + 12.19% | 90.00% + 11.40% | 90.40% =+ 10.13%
DiffHGR v v 93.6% +2.3% 91.41% + 3.45% 91.52% +3.4% 91.95% + 3.26%

subjects. The higher variance in the Diff-only setting reflects
that although synthetic data enhances generalization, the
lack of reconstruction guidance from the AE module may
lead to inconsistent representations. Conversely, the AE-
only configuration offers more stable yet slightly less robust
performance due to the absence of data augmentation. Their
combination allows the model to benefit from both stable
encoding and diverse training distributions, leading to the
best trade-off between performance and consistency.

3.5.2. Effect of diffusion-based data generation on
cross-day robustness

To further clarify the role of diffusion-based data aug-
mentation, we perform an additional comparison between
DiffHGR and the Baseline model defined in Section 3.5.1.
The Baseline model is obtained by removing the Diff and
AE components from DiffHGR, and retaining only the AE
encoder together with the classifier used in Stage C. In other
words, while DiffHGR trains an encoder—classifier using
both real and synthetic HD-sEMG signals after jointly train-
ing the Diff and AE components, the Baseline employs the
same encoder-classifier backbone but is trained on session 1
with real HD-sEMG data only, without any diffusion-based
data generation and augmentation. We evaluate both models
in a cross-day setting, where session 1 and session 2 are
recorded on different days.

Figure 13 summarizes the cross-day accuracies of Base-
line and DiffHGR under O-trial, 1-trial, and 2-trial cal-
ibration, where the calibration trials are from session 2
recordings acquired on a different day than session 1. Bars
indicate the mean and standard deviation across 20 subjects,
and individual points show subject-wise results. Under the
O-trial condition, DiffHGR already achieves higher cross-
day accuracy than Baseline, indicating that diffusion-based
augmentation in session 1 improves the robustness of the
learned representations rather than degrading them. With
1-trial and 2-trial calibration, both methods benefit from a
small amount of labeled session 2 data. DiffHGR consis-
tently outperforms Baseline under the same annotation cost
(all p < 0.001). Moreover, the subject-wise data points and
error bars in Figure 13 clearly show that DiffHGR not only
improves the mean accuracy but also reduces inter-subject
variability, leading to more stable cross-day performance.
These findings suggest that diffusion-based generation is not

intended to exhaustively model every future daily variation,
but to regularize the source domain training, while a few-
shot calibration phase efficiently aligns the model to the
actual target-day distribution.

Accuracy (%)

| DiffHGR
0-trial

| DiffHGR

1-trial

| DiffHGR
2-trial

Bascline Baseline Baseline

Figure 13: Comparison of cross-day recognition accuracies
between the real-only baseline and the proposed DiffHGR
under O-trial, 1-trial, and 2-trial calibration settings. Statistical
significance is assessed by paired r-tests (xp < 0.05, *#p < 0.01,
sxxp < 0.001).

3.5.3. Performance comparison under different
window size

Recent studies confirmed that larger windows capture
more detailed information. However, they introduce longer
latency in myoelectric control. Given the requirement for
myoelectric pattern recognition systems to operate with a
response time of less than 300 ms for real-time application
[35; 36], we aim to determine the shortest window size
that can maintain high intersession HGR performance. This
paper investigates the effect of window sizes on intersession
performance. As shown in Figure 14, the 62.5 ms window
consistently outperforms the 31.25 ms window across all
calibration settings (O-trial, 1-trial, and 2-trial), with statis-
tically significant differences (p < 0.05). Compared to the
125 ms window, the performance difference of 62.5 ms is not
statistically significant, indicating comparable effectiveness.
Although the 250 ms window achieves significantly better
results than the 125 ms window in some settings, the latter
incurs a much higher latency, which limits its suitability for
real-time applications. Overall, the 62.5 ms window achieves
a favorable trade-off between performance and latency, mak-
ing it the most practical choice for our experiments.
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Figure 14: The impact of varying window sizes on intersession
performance evaluated across 20 subjects. Statistical signifi-
cance was assessed via paired t-tests between different window
settings (#p < 0.05, ##p < 0.01, *xxp < 0.001, "ns" indicates
no significant difference).

3.6. Computational efficiency analysis

To quantitatively assess the computational cost of the
proposed DiffHGR framework, we compare its training
and calibration efficiency with two generative baselines,
DANN_CRC and DCGAN. The results are summarized in
Table 5. All experiments in this study were conducted on
a workstation equipped with an Intel Xeon Gold 6226R,
256 GB RAM, and two NVIDIA GeForce RTX 3090
GPUs (each with 24 GB VRAM), using PyTorch 2.4.1 and
CUDA 12.4.

3.6.1. Offline training cost

During offline training, DiffHGR exhibits a favourable
trade-off between wall-clock time, model size, and arith-
metic complexity. As shown in Table 5, the total training
time of DiffHGR is 55.8 + 7.1 minutes, which is only
slightly longer than DCGAN, but substantially shorter than
DANN_CRC. In addition, DiffHGR maintains the small-
est model size (1.46 M trainable parameters) among the
three methods, compared with 2.57 M for DANN_CRC and
15.04 M for DCGAN. In terms of computational complex-
ity, DiffHGR requires 42.82 M MACs per sample during
training, which is lower than DANN_CRC and more than
one order of magnitude lower than DCGAN (1891.8 M).
The much higher MACs of DCGAN mainly stem from
the adversarial training pipeline. In each training iteration,
both the generator and the discriminator are executed and
updated, and they are implemented as several deep con-
volutional and transposed-convolution blocks operating on
high-resolution HD-sEMG maps. Even though a lightweight
MobileNet backbone is adopted for classification, the cost of
repeatedly forwarding real and synthetic samples through the
generator—discriminator pair dominates the overall complex-
ity, leading to MACs that are approximately 40-fold higher
than that of DiffHGR. By contrast, the reverse diffusion
process in DiffHGR operates each sample once through the
Diff component in a single-step denoising manner, leading
to much lower training MACs. These results indicate that
the diffusion-based framework introduces only a moderate

increase in offline training time relative to DCGAN, while
achieving a much more compact model and significantly
reduced training MACs compared with GAN-based aug-
mentation.

3.6.2. Calibration cost and inference times

In the cross-day or cross-subject settings, all meth-
ods perform a few-shot calibration before use. For both
DANN_CRC and DCGAN, we follow a conservative cal-
ibration protocol and only fine-tune the final linear clas-
sification layer, while keeping all feature extractors fixed.
This choice keeps the number of trainable parameters during
calibration very small and favors these baselines in terms
of calibration time. As for DiffHGR, we first update the
encoder of the AE component while the Diff component is
frozen and used only to synthesize generated samples for
data augmentation. Then, the classifier is fine-tuned using a
mix of real and generated synthetic data. This enables the
latent representation and the decision boundary to better
align with the target-day distribution under the same few-
shot budget. As summarized in Table 5, on Hyser dataset,
the full DiffHGR model contains 1.46 M parameters, while
only 0.25 M parameters are trainable in calibration, and the
average calibration time is 6.66 + 0.95 min. On XDHDEMG
dataset, reducing the HD-sEMG channel count from 256
to 64 further lowers the total parameters to 0.09 M, with
only 0.016 M trainable during calibration. Moreover, after
calibration the per-sample inference latency is 0.451 +
0.023 ms and 0.373 + 0.034 ms, which is well within the
sliding step of 10 ms. Finally, we further corroborate the
practical deployability of DiffHGR via real-time validation
on XDHDEMG (Section 3.7). Under the same data prepro-
cessing setup as offline, the end-to-end latency from window
acquisition to prediction is approximately 132 ms, and the
online accuracy remains consistent with the corresponding
offline evaluation, supporting the feasibility of DiffHGR in
real-world HGR applications.

3.7. Real-time inference validation

To further evaluate the practical ability of the proposed
DiffHGR framework in real-world deployment, we con-
ducted real-time inference validation on our self-collected
XDHDEMG dataset under both intraday and interday con-
ditions. Twelve healthy subjects were recruited to perform
eight hand gestures, each repeated six times as a session, two
sessions were executed. For each subject, data collected on
session 1 were used to pretrain the DiffHGR model offline. In
the intraday scenario, real-time inference experiments were
conducted approximately 30 minutes later on the same day.
The pretrained AE encoder and classifier was directly used
for online gesture prediction. In the interday scenario, each
subject returned after a delay of 3-7 days to participate in
the interday validation session. Given the distributional drift
typically induced by factors such as electrode repositioning,
skin impedance changes, and muscle fatigue, a lightweight
calibration procedure was applied before online inference.
Specifically, two calibration trials per gesture were collected
on the new day. During calibration, we first update the
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Table 5

Summary of offline training and calibration efficiency for DiffHGR on the Hyser PR and XDHDEMG datasets.

Dataset Phase Method Time (min)  Params (M) MACs / sample (M) Inference time / sample (ms)
DANN_ CRC  398.9+96.1 2.57 59.03 -
Offline training DCGAN 48.1 +4.6 15.04 1891.8 -
DiffHGR 55.8+7.1 1.46 42.82 -
Hyser
DANN_ CRC 123+0.23 1.12 59.03 0.016 + 0.002
Calibration DCGAN 5.03+0.98 0.17 16.11 0.065 + 0.001
DiffHGR 6.66 +0.95 0.25 0.115 0.451 £0.023
XDHDEMG Offline training  DiffHGR 20.59 +2.58 0.09 2.75 -
Calibration DiffHGR 4.00+0.13 0.016 0.019 0.373 +0.034
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(b) demonstrated consistently high gesture recognition accuracy

Figure 15: Real-time inference performance of the proposed
system evaluated during intraday conditions. (a) Aggregated
confusion matrix of gesture classification in the real-time
setting. (b) Distribution of average end-to-end latency across
all subject—gesture pairs.

The real-time prediction performance of the proposed
DiffHGR framework was evaluated under both intraday and
interday conditions, as shown in Figure 15 and Figure. 16,

of 96.36% =+ 9.78% and maintained a low average E2E la-
tency of 132.83 ms =+ 0.34 ms, indicating stable and efficient
real-time inference without the need for recalibration. In the
interday setting (Figure 16), although slight distributional
shifts emerged due to electrode repositioning and physiolog-
ical variability, the model maintained strong performance,
with 96.48% + 14.42% classification accuracy, after rapid
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adaptation without retraining the entire model. This mini-
mal supervision proved sufficient to compensate for cross-
day signal drift. The average E2E latency increased only
marginally to 132.97 ms, with a slightly higher standard de-
viation (+ 1.19 ms), reflecting increased temporal variability
across different days. These results collectively demonstrate
the suitability of DiffHGR for real-time applications.

4. Discussion

4.1. Challenges in practical applications

For EMG-based hand gesture interfaces to be clinically
and practically usable, robustness to distribution shift is
often more critical than peak performance under a single
controlled session. In real-world deployment, performance
degradation is mainly driven by two related but distinct
sources of shift: interday drift and intersubject variability.
Interday drift arises from electrode repositioning and attach-
ment inconsistencies, fluctuations at the skin-electrode inter-
face (e.g., impedance changes due to perspiration and tem-
perature), and changes in muscle state and recruitment pat-
terns across days. Intersubject variability is caused by phys-
iological and anatomical differences (e.g., muscle morphol-
ogy and activation strategies) as well as individual-specific
execution styles, which lead to notable changes in both
signal statistics and discriminative patterns. These factors
are further compounded by wearability constraints (comfort,
attachment stability, and long-term usability), making it
difficult to maintain consistent acquisition conditions outside
laboratory settings. Consequently, EMG interfaces face an
inherent requirement that models must remain reliable under
non-stationary and population-dependent conditions rather
than assuming stationary signal statistics.

4.2. Validity of synthetic augmentation

To address the above shifts, Diff HGR adopts a unified
deployment-oriented strategy consisting of offline genera-
tive augmentation training and fast calibration adaptation,
which together improve robustness under both cross-day
and cross-user conditions. A key concern is that synthetic
augmentation is helpful only if it preserves task-relevant
EMG structure and does not drift toward artifact-dominated
or task-irrelevant modes. For this reason, the diffusion gener-
ator (Diff component) is not trained in isolation. Instead, it is
jointly optimized with an auxiliary autoencoder (AE compo-
nent) under explicit reconstruction supervision, and multi-
scale structural cues learned during diffusion encoding are
reused via skip-connected feature transfer to the reconstruc-
tion pathway. This joint optimization constrains the synthetic
distribution while encouraging the model to retain gesture-
discriminative patterns, thereby reducing reliance on day-
specific or subject-specific nuisance factors. The efficiency
of this design is supported by our evaluation of the quality
and diversity of the generated data (Section 3.4) as well as
component-wise ablations (Section 3.5), which together in-
dicate that performance gains are attributable to trustworthy
augmentation rather than uncontrolled distribution drift.

4.3. Cross-day and cross-subject generalization

Building upon the offline-trained model, DiffHGR fur-
ther introduces a lightweight few-shot calibration procedure
to efficiently align the model to the actual target condition
(a new day or a new user). This design explicitly frames
calibration as a controllable trade-off between reliability
and user burden. While fully calibration-free transfer across
different users and long-term use conditions remains chal-
lenging in myoelectric recognition, a small amount of target
data can substantially improve robustness when the adap-
tation is designed to be efficient. In our evaluation, the
calibration overhead is modest (6.66 + 0.95 min on Hyser
in Table 5) yet yields consistent improvements under cross-
day protocols compared with the real-only Baseline model
under the same calibration trials (Section 3.5.2, Figure 13).
Moreover, the reduced performance dispersion across sub-
jects suggests that the proposed method improves not only
mean accuracy but also stability across individuals, which is
particularly relevant for reliable assistive and rehabilitative
use. Collectively, a series of experiments including cross-
day and cross-subject evaluations, minimal calibration trials
analyses, ablation studies, and evaluation of quality and di-
versity collectively demonstrate that the proposed DiffHGR
effectively mitigates practical distribution shift.

4.4. Practical deployability and real-time
feasibility

Beyond accuracy under offline benchmarks, a deployable
EMG-based interface must satisfy the practical requirements
of low computational and calibration overhead to support
real-time interaction. The proposed offline generative aug-
mentation training and fast calibration adaptation strategy
could keep the user burden and runtime cost manageable.
The diffusion model is exploited offline to learn a robust
recognition model via generative augmentation, and it is
jointly trained with an auxiliary autoencoder (AE) under
reconstruction supervision. In particular, the AE leverages
multi-scale structural cues transferred from the Diff encoder
(via skip connections) to preserve gesture-discriminative
structures and constrain the synthetic distribution, thus pro-
moting a more stable feature representation for recognition.
In contrast, real-time deployment relies only on the AE
encoder and classifier, i.e., the Diff module is not involved
during online inference. As a result, the deployed model
remains compact and computation-efficient, with a small
parameters and low MACs (Table 5), and the measured
inference latency per sample is correspondingly low, meet-
ing the timing constraints of interactive applications. In
addition, the calibration procedure is lightweight and can be
completed within a modest time budget (Table 5), enabling
quick adaptation to a new day or a new user without ex-
tensive re-collection or long retraining cycles. To this end,
we explicitly evaluated DiffHGR in real-time settings under
both intraday and interday conditions, demonstrating that the
proposed framework maintains reliable online recognition
ability (Section 3.7).
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4.5. Limitations and future works

Several limitations should be acknowledged. First, al-
though DiffHGR has been evaluated on multiple HD-sEMG
datasets with different subject counts, gesture sets, chan-
nel configurations, and recording protocols (Section 3.1-
Section 3.3 and Section 3.7), and we provide various evalua-
tions of the quality and diversity of the generated data (Sec-
tion 3.4), the generalization across arbitrary datasets remain
bounded by the diversity of available training data. Future
work will focus on validating the proposed framework on
more diverse cross-day datasets, which are collected under
broader participant demographics and recording conditions,
to better characterize generalization under real-world day-
to-day shifts and to further assess robustness across more di-
verse participants. Second, our current formulation primar-
ily captures variability at a statistical level, explicitly mod-
eling richer physiological priors (e.g., muscle synergy con-
straints) may further improve robustness in unconstrained
usage. Third, beyond the cross-day setting, we also evaluate
the performance in a cross-subject setting (Section 3.2). In
this protocol, the model is trained on all source subjects
and then adapted to an unseen target subject using only
two labeled calibration trials, after which it achieves ac-
ceptable recognition performance. While this few-shot per-
sonalization is practical for myoelectric interfaces, further
reducing the calibration burden remains important. Future
work will investigate more efficient inter-subject adapta-
tion, e.g., by integrating DiffHGR with domain adaptation
or meta-learning to improve transfer to unseen users with
fewer (or even no) labeled calibration samples. In addi-
tion, we will investigate online/continual learning strate-
gies that can update the model under long-term drift us-
ing lightweight incremental optimization, confidence-aware
pseudo-labeling, and drift-triggered calibration, while mit-
igating catastrophic forgetting through regularization or re-
play mechanisms. Finally, practical wearable control often
benefits from complementary sensing. We will extend the
framework toward multimodal control by fusing HD-sEMG
with other biosignals such as EEG (for capturing cortical
intent under weak EMG conditions), using modality-aware
fusion or reliability-weighted decision schemes. Such mul-
timodal extensions may support more stable, user-friendly
control in real-world assistive applications.

5. Conclusion
This paper proposes DiffHGR, a diffusion-based frame-

work for robust EMG-based hand gesture recognition. Diff HGR

comprises a diffusion-based generator (Diff) and an auxil-
iary autoencoder (AE). Diff is used to synthesize diverse
samples for data augmentation, while the AE helps preserve
task-relevant structure and prevents uncontrolled drift. To
address cross-day shifts issue, we employ a lightweight few-
shot calibration. Specifically, Diff is kept frozen and used
only to generate augmentation samples, and the AE encoder
and classifier are updated for fast adaptation. Comprehensive
experiments validate the effectiveness, demonstrating that

DiffHGR achieves a cross-day average accuracy of 90.27%
for recognizing 34 gestures across 20 subjects, using cal-
ibration on only two trials per gesture, significantly sur-
passing other benchmark methods. In addition, we reported
offline training, calibration, and inference efficiency metrics,
and validated DiffHGR in real-time intraday and interday
settings. During real-time prediction, only the calibrated
AE encoder and classifier are executed, with Diff remain-
ing inactive. Experimental results show that the DiffHGR
demonstrated consistently high gesture recognition accuracy
of around 96% and maintained a low average end-to-end
latency of around 132 ms for recognizing 8 gestures across
12 subjects.

Despite the above results, inter-day or inter-subject eval-
uation still relies on few-shot labeled calibration for fast
personalization, and further reducing or eliminating this
labeling requirement (e.g., via domain adaptation or meta-
learning) remains an important direction. Moreover, while
real-time feasibility is validated under intraday and interday
experiments with reported efficiency indicators, real-time
evaluation under unseen users (inter-subject) remains to be
further investigated.
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