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Summary
Background Amyotrophic lateral sclerosis (ALS) is invariably fatal but there are large variations in the rate of pro
gression. The lack of predictability can make it difficult to plan clinical interventions. This includes the requirement 
for gastrostomy where early or late placement can adversely impact quality of life and survival.
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Methods We designed a model to predict the timing of gastrostomy requirement in ALS as indicated by 5% weight 
loss from diagnosis. We considered >5000 different prediction model configurations including spline models and a 
set of deep learning (DL) models designed for time-to-event prediction. The optimal prediction model was chosen 
via a Bayesian framework to avoid overfitting. Model covariates were measurements routinely collected at diagnosis; 
a separate longitudinal model also incorporated weight at six months. We employed a training dataset of 3000 
patients from Europe, and two external validation cohorts spanning distinct populations and clinical contexts 
(United States, n = 299; and Sweden, n = 215). Missing data was imputed using a random forest model.

Findings The optimal model configuration was a logistic hazard DL model. The optimal model achieved a median 
absolute error (MAE) between predicted and measured time of 3.7 months, with AUROC 0.75 for gastrostomy 
requirement at 12 months. To increase accuracy we updated predictions for those who had not received gastrostomy 
at six months after diagnosis: here MAE was 2.6 months (AUROC 0.86). Combining both models achieved MAE of 
1.2 months for the modal group of patients. Prediction performance is stable across both validation cohorts. Missing 
data was imputed without degrading model performance.

Interpretation To enter routine clinical practice a prospective study will be required, but we have demonstrated stable 
performance across multiple populations and clinical contexts suggesting that our prediction model can be used to 
guide individualised gastrostomy decision making for patients with ALS.

Funding Research Ireland (RI) and Biogen have supported the PRECISION ALS programme.

Copyright © 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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Research in context

Evidence before this study
Amyotrophic lateral sclerosis is an incurable and rapidly 
progressive neurodegenerative disease. Significant morbidity 
results from failure of adequate nutrition, typically due to 
weakness of muscles required for feeding and swallowing. 
Current practice is to overcome this barrier via placement of 
gastrostomy for parenteral feeding. Importantly the timing 
of gastrostomy has an impact on prognosis where late 
intervention after excessive weight loss is associated with 
shorter survival. We searched MEDLINE for studies published 
in English between Jan 1 2020 and Jan 1 2025 which included 
“amyotrophic lateral sclerosis”, “gastrostomy” and 
“prediction” in the title or abstract. Each of the studies 
identified applied one or two pre-specified models rather 
than seeking to survey a large number of models for the 
optimal approach. Each of the studies involved training in a 
single population-specific cohort and the majority did not 
feature external validation. Imputation of missing data was 
not performed in the majority of studies. No study included 
individualised quantitative predictions for the precise timing 
of gastrostomy.

Added value of this study
We provide a new model for prediction of time from 
diagnosis to requirement of gastrostomy for patients with 
ALS, with best-in-class performance across a range of metrics 
including sensitivity, specificity and the absolute error in 

prediction accuracy. We provide optimised model selection, 
hyperparameter tuning and imputation of missing data. 
Importantly we have optimised imputation of missing data 
and hyperparameter tuning to maximise utility and to avoid 
overfitting, even for deep learning models. Model 
performance is demonstrated by training and testing in 
multiple cohorts including two different external validation 
cohorts sourced from distinct populations and clinical 
contexts.
Additionally we present ‘predicTTE’, which is a customisable 
‘app’ and accompanying online portal for any time-to-event 
analysis in any disease. Our tool enables a researcher with a 
dataset but no bioinformatics experience to design an 
optimal prediction model and make it available via an online 
portal to end-users within a ‘data-secure’ environment. We 
also provide the capacity for end-users to directly contribute 
additional training data.

Implications of all the available evidence
Our tool can be used to predict the timing of future 
gastrostomy for patients with ALS at the point of diagnosis. 
To enter clinical practice a prospective study will be required, 
but we have demonstrated stable model performance across 
multiple populations and clinical contexts. Our tool and 
online platform could be used to implement a similar 
strategy in other diseases.
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Introduction
Amyotrophic lateral sclerosis (ALS) is an incurable 
neurodegenerative disease where death results from 
motor neuron (MN) loss leading to respiratory failure. 
Relative to other neurodegenerative diseases ALS is 
rapidly progressive with the majority of patients sur
viving <5 years from diagnosis.1 Consequently the 
clinical course of ALS is largely a function of disease 
progression rather than other factors such as frailty and 
co-morbidities; this raises the possibility that, more 
than for other neurodegenerative diseases, ALS could 
be predictable based on measurements made at 
diagnosis.

Nutritional status and weight loss are independent 
prognostic factors for survival during the course of 
ALS.2 Dysphagia and limb weakness, combined with 
loss of appetite3 and respiratory effort,4 limit the utility 
of dietary modification to avoid weight loss. Indeed, 
current recommended clinical practice is that gastro
stomy should be considered for all patients with ALS5 

who reach >5% weight loss from diagnosis.6 Gastro
stomy can stabilise weight loss in ∼50% of patients.6 

Late gastrostomy often does not stabilise weight loss, 
and is also associated with higher periprocedural mor
tality.2 The decision to have a gastrostomy is complex 
and multifactorial, but uncertainty about timing means 
that the decision is often made late.7,8 Timing of gas
trostomy is also relevant for clinical trials: Broadly 
predictions regarding the rate of disease progression 
can be used to stratify patients and so improve statis
tical power by reducing heterogeneity between test and 
placebo groups.9 More specifically, investigational me
dicinal products are often given orally and therefore the 
need for gastrostomy can be an exclusion criteria. In 
summary there is a compelling case for the need for 
accurate prediction of the timing for gastrostomy 
requirement.

We provide a clinical tool to predict optimal timing 
for gastrostomy in patients with ALS. We used an 
objective standard measure to indicate gastrostomy 
requirement: 5% weight loss from diagnosis.6 Cox 
regression10 is a popular model for time-to-event tasks 
which assumes a fixed proportional-hazard ratio, 
whereby the relative hazard-rate between patients is 
invariable over time. This is an unrealistic assumption 
for many contexts and has likely led to misinterpreta
tion of the underlying drivers of time-to-event. Instead, 
to predict time until gastrostomy requirement, we 
tested >5000 different prediction model configurations 
including spline models11 and non-linear deep learning 
(DL) models designed for time-to-event prediction.12 We 
show that an optimal non-linear DL model is superior 
in our prediction task, particularly in the accuracy of 
individualised predictions as opposed to purely 
discriminative measures such as concordance. Model 
training used 3000 patient profiles from within the 
PRECISION13 dataset, sourced from eight sites across 

Europe. Model performance is stable in internal cross- 
validation and in two external independent cohorts 
from Sweden and the United States. Effective imputa
tion means that model performance is robust to 
missing data. Our approach to prediction for timing of 
gastrostomy is summarised in Fig. 1a.

To ensure widespread usability we have imple
mented our model within an ‘app’ and accompanying 
online platform. The online platform includes the ca
pacity to provide end-users such as clinicians, with 
secure access to the trained model for prediction, and 
with the option to contribute new data to improve 
model training. Moreover, our app is flexible and can be 
used to find an optimum model to make predictions for 
any longitudinal event in any disease; this functionally is 
automated end-to-end requiring no computational 
‘expertise’. We have named our software ‘predicTTE’ 
(predicting time-to-event). Our tool is summarised in 
Fig. 1b.

Methods
Study cohorts
PRECISION
The patients with ALS included in this study as part of 
the PRECISION cohort were recruited at specialised 
neuromuscular centres in the UK, Belgium, Germany, 
Ireland, Italy, Spain, Turkey, and the Netherlands.13 We 
removed all patients who received gastrostomy within 
30 days of diagnosis on the basis that they were likely to 
meet criteria for requirement of gastrostomy at baseline 
and therefore prediction was not necessary. We also 
removed patients where the first measured weight was 
more than three months distant from the date of 
diagnosis. This left n = 3000 patients which were used 
for model training. An additional PRECISION cohort 
recruited in Sweden became available through the 
course of this project and was added as an external 
validation cohort (n = 215).

PRO-ACE
The patients with ALS included in this study as part of 
the PRO-ACE external validation cohort were recruited 
at sites in the United States (US).14 Removal of patients 
who required gastrostomy at baseline left n = 299 
patients.

Sex and race/ethnicity data were collected by re
searchers at each participating institution.

Longitudinal measurements of weight were used to 
calculate time to requirement for gastrostomy as indi
cated by 5% weight loss from diagnosis.6 To avoid 
confounding by the effect of gastrostomy, all weight 
measurements performed after the placement of gas
trostomy as indicated by the ALSFRS-R score were 
removed. Moreover, to minimise confounding by 
inaccurate measurements of weight we determined the 
distribution of weight change over time and removed all 
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measurements above the 95-percentile indicating an 
implausible rate of change in weight. In particular this 
included incidences where multiple different weight 
measurements were recorded at the same time point. A 
similar process was used to remove implausible outliers 
for all covariates.

Software availability
The predicTTE online portal (https://www.predictte. 
org/) includes instructional material and links to 
download the app for different platforms.

Ethics
The study was approved by the South Sheffield 
Research Ethics Committee (REC reference: 21/YH/ 
0093; Project ID: SMNDD-020). Similarly this study 
followed study protocols approved by Medical Ethical 

Committees for each of the participating institutions: 
For PRECISION ALS this encompasses specialised 
neuromuscular centres in the UK, Belgium, Germany, 
Ireland, Italy, Spain, Turkey, and the Netherlands.13 

PRO-ACE patients were recruited at sites in the 
United States (US).14 Written informed consent was 
obtained from all participating individuals. Details of 
procedures for handling of participant data within 
PRECISION ALS are found on the relevant web page 
(https://www.precisionals.ie/about/participant-privacy- 
information/). All PRO-ACE data is sourced from ERB/ 
IRB approved observational studies, retrospective clin
ical assessments, and population registries. All 
methods were performed in accordance with relevant 
national and international research ethics guidelines 
and regulations, including the CIOMS 2016 guidelines. 
Data protection complied with the EU General Data 

median error of < 4 months
AUROC ~0.75

Improved follow-up prediction

Individualised predictionVALIDATION

TRAINING
Optimised DL model
trained to predict

requirement
for gastrostomy

Imputation of missing data

Prediction
of time-to-event

Model
training

Hyperparameter
tuning

USER FRIENDLY APP ONLINE PORTAL

a

b

Fig. 1: Accessible and optimal time-to-event prediction of gastrostomy in ALS is achieved through implementation of state-of-the-art 
machine learning models within an app and online platform. (a) We have developed an optimal deep learning (DL) model for prediction of 
time from diagnosis to requirement of gastrostomy which achieves a clinically actionable performance that is stable across multiple external 
validation cohorts from different populations and clinical contexts. (b) To develop our model we implemented a set of DL and spline models 
for time-to-event modelling. Our pipeline includes model selection, hyperparameter tuning, model training and imputation of missing data. 
This functionality is provided within a fully customisable ‘app’ (left panel). An accompanying online portal includes capacity for end-users 
including clinicians and researchers, to access and perform predictions using a trained model, and to contribute new data for model 
improvement, all within a data-secure environment (right panel).
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Protection Regulation (GDPR) and, where applicable, 
the US Health Insurance Portability and Accountability 
Act (HIPAA).

Statistics
Hyperparameter tuning and model choice
Model choice depends on the specific outcome mea
sure; popular outcome measures used in prediction 
models include concordance, area under the cure of the 
receiver operating characteristic curve (AUROC) for a 
binary outcome, negative log-likelihood which is a 
measure of goodness-of-fit for model predictions based 
upon a probability distribution, and the related Brier 
score which applies a similar principle specifically to 
binary outcomes. However, while these measures may 
perform well in a discrimination between individuals 
with different risk of event, they do not necessarily 
achieve adequate calibration, which is a measure of how 
well the predicted risk of hazard matches the observed 
risk. Calibration is essential for a clinical prognosis 
where relative risk is not informative, although relative 
risk may be more important in the context of clinical 
trial stratification. Neither concordance or AUROC 
consider calibration. The Brier score theoretically con
siders both discrimination and calibration but fails to 
achieve good sensitivity at the cost of specificity if 
prevalence is low.15 We considered the median absolute 
error between observed and predicted time to event 
(MAE), but this has similar pitfalls to the Brier score; 
we have observed that models which optimise MAE 
tend to introduce a systematic bias which can 
compromise sensitivity. Our solution to this problem is 
to enable model choice and hyperparameter tuning 
with differential weighting of multiple outcome mea
sures and in doing so we optimise both discrimination 
and calibration (Supplementary Figs. S2 and S3). 
Exhaustive hyperparameter tuning testing all possible 
model configurations is computationally intensive and 
liable to overfitting; to avoid this we implemented a 
Bayesian framework for model tuning16 

(Supplementary Fig. S2).
Model choice and hyperparameter tuning were 

guided by comparative testing of model configurations 
encompassing the full range of parameters within the 
pycox12 implementation of MTLR,17 PC-Hazard,18 

PMF,18 logistic hazard,19 DeepSurv,20 CoxTime,12 

CoxCC,12 and DeepHit21 DL models. Model scheme 
and layer structure were prioritised based upon an 
initial grid search followed by a Bayesian optimisation 
of all other parameters16 (Supplementary Fig. S2). A 
Bayesian approach reduces the number of iterations 
and the potential for overfitting, particularly the use of 
an including an AdamWR optimiser with decoupled 
weight decay in the final stage (Supplementary Fig. S2). 
Hyperparameter tuning was performed via nested 
cross-validation: We separated the data into 80% for 
training and 20%, which we designate the testing 

dataset, for the final assessment of model performance. 
We then performed 10-fold cross validation within the 
80% of data designated for training; here the data was 
further divided, on 10 separate occasions, into 80% for 
training and 20% for validation. The final prediction is 
output as the median of the 10 different predictions and 
compared with the testing dataset. We selected a 
random starting seed for each of the 10 rounds of cross- 
validation.

Similarly we tested 20 flexible parametric models 
including the Royston-Parmar spline model, by 
extending the CoxPHFitter python package to allow 
prediction using the odds scale or the hazard scale, 
analogous to the flexsurv R package.22 The optimum 
spline model, which was implemented for comparison 
of prediction performance with the optimum DL 
model, was using the odds scale with two nodes, anal
ogous to.11

Hyperparameter tuning of the DL model used a 
composite objective combining median absolute error 
(MAE, 3 × weight) and AUROC (1 × weight) via a 
Weighted Normalised Sum (Supplementary Fig. S1). 
This prioritised MAE while retaining classification 
performance signal. Final model selection was based on 
a balanced compromise across MAE, AUROC at 12 
months, and concordance, using the TOPSIS algo
rithm,23 with equal weighting. Hyperparameter tuning 
focused on concordance only does not significantly 
improve concordance or AUROC, but does degrade 
MAE performance (Supplementary Fig. S3). The pre
dicTTE app provides capacity to select alternative 
outcome measures and/or weighting in future use- 
cases.

Training and testing optimal models
After model choice and hyperparameter tuning, the 
optimal model (determined by hyperparameter tuning) 
was trained using 10-fold cross validation similar to in 
model selection and hyperparameter tuning. In each 
fold 80% of training samples were selected at random 
for model training and 20% of training samples are 
used for evaluation. After 10 folds, the final prediction 
is output as the median of the 10 different predictions. 
The C-index (concordance) was calculated based on24 

and in case of ties in predictions and event times 
adjusted according to.12 Model evaluation was ulti
mately carried out in the two external validation 
cohorts.

The baseline model for prediction of time from 
diagnosis to requirement for gastrostomy was trained 
using age of disease onset, presence/absence of an ALS- 
associated C9orf72 mutation,25 weight at diagnosis and 
presymptomatic/premorbid weight, site of disease 
onset, diagnostic delay, ALSFRS-R slope, forced vital 
capacity (FVC, percentage of predicted based on 
normative values for age, sex, body height), cohort or 
geographical location of clinical care, and sex. For the 
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longitudinal model which was retrained for patients 
who did not require a gastrostomy at 6 months after 
diagnosis, additional covariates included were the slope 
of the change in the weight and the timing of a weight 
measurement at approximately 6 months (range 4 and 
8 months) after diagnosis.

Training and testing the MissForest model for imputation of 
missing data
A key aspect of our platform is the capability to impute 
missing data using a model called “MissForest”, which 
has shown superior performance in real-world testing26 

and an ability to simultaneously handle continuous and 
categorical data.27 MissForest imputes data iteratively, 
starting with the variable with the least missing obser
vations and progressing to the variable with the most 
missing observations. A random forest model is fit on 
the observed values. Each imputed value in this study 
relied on the mean result from 10 rounds of imputation 
because this represented the best compromise between 
computational time and independence of initial 
random seeds. For testing predictions within the 
external validation dataset, the imputation model was fit 
to the training dataset with pre-imputed data, plus an 
individual test patient from the validation dataset. In 
this way we avoid data leakage from the external vali
dation dataset. As an extra test we randomly selected 
and omitted 150 data points from each covariate in the 
training dataset although we avoided removing more 
than two data points from any single patient; to avoid 
bias from incorrect information this analysis only 
included uncensored patients (Supplementary Fig. S4).

Role of funders
Funders specified in the Acknowledgements section, 
had no role in the study design, data collection, data 
analyses, interpretation, or writing of reports.

Results
Choice of clinical measurements for prediction of 
time between diagnosis and gastrostomy 
requirement
To train a model for prediction of the timing of future 
gastrostomy requirement, as indicated by 5% weight 
loss from diagnosis,6 we chose a set of baseline clinical 
variables that have previously been associated with the 
rate of ALS progression11: age of disease onset, pres
ence/absence of an ALS-associated C9orf72 mutation,25 

site of disease onset, diagnostic delay, ALSFRS-R slope, 
forced vital capacity (FVC, percentage of predicted 
based on normative values for age, sex, body height), 
and cohort or geographical location of clinical care. 
Diagnostic delay is the time from symptom onset to 
diagnosis with ALS and has been consistently linked to 
ALS survival,28 probably because it represents the speed 

of progression to the point where the disease is both 
clinically manifest and the patient has sufficient func
tional impairment to seek medical assistance. The 
ALSFRS-R is a commonly used functional rating scale 
for ALS29; to infer the rate of change or ‘slope’ we 
assumed a linear decline between the time of symptom 
onset and the time of diagnosis i.e. over the period 
which constitutes the diagnostic delay. Importantly all 
of these data are frequently collected at ALS diagnosis. 
We also added sex because there is evidence that sex 
impacts ALS biology,30 weight at diagnosis, and pre
symptomatic/premorbid weight. Site of onset explicitly 
includes bulbar onset including symptomatic dysphagia 
which is associated with requirement for gastrostomy. 
However, we removed patients who required gastro
stomy at baseline i.e. where prediction was not 
necessary.

Cohorts used for model training and evaluation were 
broadly similar in the proportion requiring gastrostomy 
(Supplementary Fig. S1a), the rate of disease progres
sion (Supplementary Fig. S1b), the proportion of 
missing data (Supplementary Fig. S1c) and the distri
bution of model covariates (Supplementary Fig. S1d). 
The exception was slightly more rapid progression in 
the Swedish validation cohort (Supplementary Fig. S1b) 
and the fact that presymptomatic/premorbid weight 
was missing from both of the external validation co
horts (Supplementary Fig. S1d). Heterogeneity in co
horts is a useful test of the generalisability of model 
performance. We note that there is a non-linear corre
lation between rate of change in weight for patients who 
required gastrostomy during the observed period, but 
no correlation at all for patients with censored data 
(Supplementary Fig. S1e and f). Therefore censored 
patients were not used for assessment of absolute time 
to gastrostomy requirement, although it is possible to 
use these patients to assess relative measures such as 
concordance.

Optimised model choice and hyperparameter 
tuning
Next we sought to choose an optimal model for prediction 
of the timing of future gastrostomy requirement using 
our chosen baseline clinical measurements. We imple
mented >5000 different model configurations including 
spline models11 and a set of non-linear DL models 
designed for time-to-event prediction.12 To avoid over
fitting we implemented a Bayesian framework for model 
tuning16 (Methods). We applied our optimised hyper
parameter tuning to our training data including 3000 
patient profiles from within the PRECISION13 dataset, 
taken from eight sites across Europe. For prediction of 
time from diagnosis to requirement of gastrostomy a lo
gistic hazard DL model19 produced the optimal perfor
mance in 20% held-out test data (Supplementary 
Table S1, Supplementary Fig. S2b and c).
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Prediction performance is stable in internal cross- 
validation and external validation cohorts
Next we evaluated performance of the optimal logistic 
hazard DL model for the timing of future gastrostomy 
requirement, via internal cross validation and then in 
two external cohorts which were not utilised in hyper
parameter tuning. We compared the performance of 
the optimal logistic hazard DL model to an optimal 
spline model because a Royston-Parmar spline model 
has previously been used successfully to predict ALS 
survival time.11 First we trained both models and per
formed internal cross validation using held-out cohorts 
from the PRECISION dataset (n = 3000) (Fig. 2a, left 
and middle panels); before then testing in two external 

validation cohorts from the US (PRO-ACE, n = 299) and 
Sweden (Karolinska, n = 215) (Fig. 2a, right panels). For 
the optimal logistic hazard DL model, AUROC for the 
presence/absence of gastrostomy requirement at 12 
months after diagnosis was 0.75 (Fig. 2a, upper panels 
and Fig. 2d) and concordance was 0.67 (Fig. 2a, middle 
panels) for all cohorts; and performance of the optimal 
spline model was not significantly different to the DL 
model (Fig. 2a, upper and middle panels). For the 
optimal logistic hazard DL model, in internal cross 
validation the MAE was 3.7 months with some vari
ability between cohorts (Fig. 2a, lower panels); here the 
optimal logistic hazard DL model was clearly superior 
to the optimal spline model (Fig. 2a, lower panels) and 
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Fig. 2: Prediction of time to gastrostomy is stable in internal and external validation. (a) Prediction performance for time from diagnosis 
to requirement for gastrostomy is evaluated in the PRECISION training dataset (n = 3000) via leave-100-out cross validation (left panel) and 
leave-one-cohort out cross validation (middle panel); and in two separate external validation cohorts (United States, n = 299; and Sweden, 
n = 215, right panel). Model performance is shown for AUROC at 12 months from diagnosis (upper panels), concordance (central panels), and 
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SWE = Sweden. In all panels, colour indicates cohort.
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this difference was statistically significant (rank sum 
test, p = 8e-3). In the external validation the DL model 
achieved a MAE of 2.2 months in the US cohort, and 
3.4 months in the Swedish cohort (Fig. 2a). Perfor
mance in the Swedish cohort is in-line with other co
horts despite a distinct clinical profile (Supplementary 
Fig. S1b). Performance metrics are provided in 
Supplementary Table S2.

We hypothesised that model performance might be 
improved by incorporating longitudinal data. We 
repeated model choice and hyperparameter tuning for a 
new model, using the same training data but with the 
addition of weight measurement at ∼6 months (range 
4–8 months based upon available data, Supplementary 
Fig. S1e and f). Again the optimal model was a logis
tic hazard DL model (Supplementary Table S1). For 
patients who did not require gastrostomy before six 
months, this longitudinal DL model significantly 
improved prediction performance (MAE 2.6 months, 
AUROC at 12 months 0.86, concordance 0.79) 
(Fig. 2b–e, Supplementary Table S2); again there was a 
significant difference in prediction performance for 
MAE between the optimal logistic hazard DL model 
and an optimal spline model (rank sum test, p = 0.02). 
Comparison of performance of the optimal logistic 
hazard DL model with training and testing within in
dividual cohorts demonstrates that MAE improves 
linearly as a function of the number of training sam
ples (Fig. 2c) which supports efforts to add additional 
training data.

The distribution of time to gastrostomy is not uni
form (Fig. 2f, upper panel). In the training cohort 32% 
of patients required a gastrostomy between 5 and 10 
months after diagnosis and in the external validation 
cohorts this proportion was 48%. If we consider both 
the baseline and the longitudinal model predictions 
together, the optimal DL model achieves MAE of 1.2 
months for these patients (Fig. 2f, lower panel, 
Supplementary Table S2).

Prediction performance was relatively stable across 
clinical subgroups. We divided patients by sex, site of 
onset and rate of change in the ALSFRS-R and exam
ined the difference between predicted and actual time 
to requirement for gastrostomy (Supplementary 
Fig. S6). Prediction performance was degraded for pa
tients with a slower (<1 point per month) rate of change 
in the ALSFRS-R, which reflects the sparsity of training 
data. However, the critical event we want to avoid is late 
identification of requirement for gastrostomy and the 
model performs particularly well with <6 months error 
for all patients with a faster (>1 point per month) rate of 
change in the ALSFRS-R.

We conclude that an optimally trained logistic haz
ard DL model is potentially able to achieve a level of 
performance which is accurate and stable enough to 
guide clinical decision making for individual patients 
with ALS.

Data missingness is frequent and can be imputed 
using MissForest
Reported results above include imputation of missing 
covariates via a random-forest model called ‘Mis
sForest’.27 Missing data is a common real-world phe
nomenon, which necessitates the adoption of 
imputation methods that can yield highly accurate re
sults. Moreover the clinical progression profile of pa
tients with ALS with missing data is not equivalent to 
those without missing data31 and thereby, a model that 
neglects patients with missing data does not capture the 
full range of ALS phenotypic variation. Numbers and 
proportions of missing data used in training are 
detailed in Supplementary Fig. S1.

MissForest was trained using the relationships be
tween observed covariates in the training dataset 
(PRECISION, n = 3000 of whom n = 626 had no 
missing data). In both internal cross validation in the 
training cohort (Fig. 3a, left panel), and in the external 
validation cohort (Fig. 3a, right panel), imputation of 
missing data improves model prediction performance 
as measured by MAE. Heterogeneity in missing data 
between cohorts prohibited evaluation using individual 
cohorts (Fig. 3b), and therefore we pooled cohorts in 
evaluation of model performance (Fig. 3a–c). We noted 
that presymptomatic/premorbid weight was missing 
almost entirely from both external validation cohorts 
(Supplementary Fig. S1). We wondered if a covariate 
could be entirely imputed and how this would impact 
model performance. Strikingly, in external validation, a 
model with imputed presymptomatic/premorbid 
weight significantly outperforms a model not trained 
with presymptomatic/premorbid weight, or one where 
missing presymptomatic/premorbid values have been 
replaced with the cohort mean (Fig. 3c). This suggests 
that the optimal DL model is able to learn relationships 
between covariates, and that imputation adds useful 
information for prediction performance.

An important decision in imputation of missing 
data is whether to include the outcome variable in 
imputation. Inclusion can increase the risk of over
fitting to the training set whereas omission can artifi
cially depress the importance of imputed data points.32 

However, if the missingness of the covariate is a 
determinant of the relationship between the covariate 
and the outcome variable (e.g. if those with rapid dis
ease progression are less likely to perform all tests) then 
imputing including the outcome variable relies on an 
incorrect assumption.33 To evaluate these alternatives 
we performed imputation, training and prediction un
der both scenarios: with and without the use of the 
outcome variable in the imputation of missing data
points; here the outcome variable is the uncensored 
timing of gastrostomy requirement. In both internal 
cross validation in the training cohort (Fig. 3a, left 
panel) and in the external validation cohorts (Fig. 3a, 
right panel), imputation of missing data without the 
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outcome variable improves model prediction 
performance.

To further test the performance of the MissForest 
model we randomly selected and omitted one covariate 
value from each of 150 patients (10% of non-censored 
patients) within the training dataset, in addition to 
existing missing data. These data were then imputed 
using the MissForest model and used to train the 
optimal DL model to predict time from diagnosis to 
requirement for gastrostomy. This procedure was 
repeated with three different random selections of 
covariates, but we avoided omitting two covariates from 
any single patient in each instance. For all covariates 
there was a significant correlation between predicted 
time to gastrostomy requirement with actual values and 
with imputed values (Fig. 3d). Moreover, imputed 
values are strongly correlated with the values they 
replaced (Supplementary Fig. S4) supporting the effi
cacy of our imputation strategy.

The full set of clinical covariates contribute to 
prediction model performance
We wanted to determine which covariates are important 
for prediction model performance. A theoretical 
advantage of a DL model is that it is capable of 

extracting knowledge from non-linear combinations of 
covariates. This contrasts with an additive linear model 
where each covariate contributes a fixed value to pre
diction performance. For example, applying a linear 
Cox proportional hazards model to prediction of time 
from diagnosis to requirement for gastrostomy dem
onstrates that performance is dictated by site of disease 
onset, ALSFRS-R slope and sex (Fig. 4a). To investigate 
the relationship between covariates and model perfor
mance for the optimal DL prediction model we created 
a simulated dataset derived from our original training 
data. Each of the ten covariates was permutated 
randomly in a replica of the original 3000 patients, and 
this was repeated five times for each covariate (total of 
150,000 simulated patients). We could then determine 
the effect on performance of the trained model of per
mutating each covariate: For all outcome measures and 
in both the optimum spline model and the optimal lo
gistic hazard DL model, almost all covariates impact 
model performance (Fig. 4b). For MAE and the optimal 
logistic hazard DL model then all covariates are 
important (Fig. 4b, right upper panel).

Next, we examined the relationship between pre
dicted time from diagnosis to gastrostomy requirement 
as it depends upon combinations of any two other 
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covariates. The idea was to look for evidence of non- 
linear interactions between covariates. To do this we 
simulated a new dataset including 187,500 instances; 
simulated patients were given all possible combinations 
of quintiles for each of the six numerical covariates, and 
both possible values for binary covariates. We used our 
trained models to generate a predicted time to gastro
stomy requirement for each simulated patient and 
examined how systematically altering each covariate 
impacted the value of the model prediction. We find 
evidence that both the optimal spline model and the 
optimal logistic hazard DL model capture interactions 
between covariates (Fig. 4c). Notably, C9orf72 genetic 
status has an opposite effect on prediction of time to 

event in the DL model compared to the spline model 
(Fig. 4d). Using the interaction between ALSFRS-R 
slope or presymptomatic/premorbid weight and 
weight at diagnosis as an example, for the DL model 
there is evidence that covariate interactions are non- 
linear (Fig. 4c, upper panels) but for the spline model 
the interactions are linear (Fig. 4c, lower panels). The 
same is true for all combinations of covariates (Fig. 4e– 
g, Supplementary Fig. S5).

Webpage implementation of predicTTE
predicTTE is a self-contained software package 
designed to facilitate the design and training of time-to- 
event prediction models. We have provided access to 
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our trained model for prediction of time to gastrostomy 
requirement through an accompanying online portal 
(www.predictte.org) designed to be used by researchers 
and clinicians without any requirement for computa
tional expertise. Users of the portal, including clini
cians, can also contribute their own data for model 
training (Fig. 1) and access our app to design and train 
their own models. Data submitted within the portal is 
anonymised and securely stored.

Discussion
Accurate prediction to enable timely gastrostomy for 
patients with ALS has the potential to significantly 
improve clinical care, optimise healthcare resource 
planning and improve eligibility criteria in clinical trials 
of oral drugs. We provide a new optimal deep learning 
(DL) model for prediction of time from ALS diagnosis 
until requirement of gastrostomy. Model covariates are 
measurements routinely collected at diagnosis 
including age, sex, site of disease onset, the length of 
time required for diagnosis and geographical location; 
plus weight measured at 6 months. We employed a 
training dataset of 3000 patients from Europe, and two 
external validation cohorts spanning distinct pop
ulations and clinical contexts (United States, n = 299; 
and Sweden, n = 215). Missing data was imputed using 
a random forest model. Our model achieves a new 
benchmark for accuracy, with stable performance in 
external validation cohorts sourced from distinct pop
ulations and clinical contexts; the median error between 
actual and predicted time to requirement for gastro
stomy is just 1.2 months in the largest group of pa
tients. Using synthetic data we conclude that model 
performance is contributed by all covariates and non- 
linear combinations of covariates.

Our optimal prediction model provides individu
alised predictions of the timing of future gastrostomy 
requirement which are potentially accurate enough to 
guide clinical decision making. In the majority, training 
and validation cohorts reflect ‘real-world’ clinical data, 
and prediction performance is stable across multiple 
cohorts, populations and clinical contexts suggesting 
that it is generalisable. Absolute prediction time could 
be used to provide an individualised target for gastro
stomy preparation; or the binary prediction as to 
whether gastrostomy will be required at 12 months af
ter diagnosis could be used to prioritise immediate 
versus delayed gastrostomy planning.

We chose to use 5% weight loss from diagnosis as 
an objective measure of the time when gastrostomy 
should be considered, although we accept that the de
cision to actually perform a gastrostomy will include 
additional considerations, notably patient preference. 
Here we are following the recommendations of a pro
spective cohort study.6 This study noted that more than 
10% weight loss from diagnosis at the time of 

gastrostomy was associated with reduced survival, and 
that refractory cachexia is likely to occur after 5% 
weight loss from diagnosis, based upon research in 
oncology.34 The idea of our work is to provide prediction 
to facilitate early intervention and therefore we focused 
on the 5% cut off. This will also increase the probability 
that the 10% threshold is not reached within the error 
inherent in our prediction times. Weight loss in pa
tients with ALS can occur without significant bulbar 
weakness, for example due to disease-associated hy
permetabolism,35,36 reduced appetite or impaired phys
ical capacity to access nutrition. In this scenario extra 
calorie intake could be provided orally but, in the 
context of an ALS diagnosis, significant disability is 
likely to be present and as a result there is still a clinical 
indication for gastrostomy. We accept that the weight 
loss criteria we propose will not encompass every 
possible scenario and patient-specific decision making 
is essential.

We provide an implementation of a random forest 
model—MissForest—for imputation of missing data. 
In testing this method, we considered whether the 
outcome variable should be used in imputation. We 
show that inclusion of the outcome variable can 
degrade model performance in a validation dataset. 
This is in opposition to previous findings37 but notably 
the contradictory study predates the development of the 
set of spline and DL time-to-event prediction tools we 
have applied. In particular, DL models may be more 
vulnerable to overfitting when missing values within 
the training data carry an artificial signature of the 
outcome variable. Our imputation of missing data is 
sufficiently effective that imputation of presymptom
atic/premorbid weight improves model performance, 
even when this variable is not recorded in the external 
validation cohort. We also provide a new approach for 
hyperparameter tuning and model selection based on a 
weighted combination of outcome variables and 
Bayesian optimisation.

Our optimal DL prediction model is superior to an 
optimal spline model in discrimination but particularly 
in calibration, as demonstrated by the accuracy of ab
solute prediction values measured by the MAE. We 
provide evidence that this is because of non-linear de
pendencies captured by the DL model which are not 
captured by an optimal spline model. In the context of 
ALS, provision of an exact prediction time value aligns 
with expressed patient preference.11 A practical advan
tage of an exact prediction value is that results are 
optimally portable to other applications such as a study 
of genetic drivers of ALS rate of progression.

Our predicTTE framework, including our app and 
online portal, are designed to widen accessibility to 
optimal time to event prediction models. The aim is to 
provide cutting-edge computational tools to non-expert 
users who hold the appropriate clinical data. Rapid 
development in the statistical tools for time-to-event 
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prediction has had limited impact because of the 
requirement for advanced statistical knowledge and 
computational expertise. Improvements in prediction 
will likely provide accurate prognoses, guide personal
ised medicine and facilitate timely clinical in
terventions. Moreover, our secure online portal enables 
sharing of data and distribution of individualised pre
diction to researchers and clinicians, who can then 
contribute their own data via the online portal. We 
envision a positive feedback loop leading to exponential 
improvements in training data size and prediction 
model performance.

Caveats and limitations
A limitation of our work is that we were not able to test 
our predictions in cohorts from outside of Europe and 
the US. Conclusive demonstration of clinical utility, 
which is related but distinct from accurate prediction of 
gastrostomy requirement, will require a prospective 
study. We have shown that our predictions are valid 
across the clinical spectrum of ALS (Supplementary 
Fig. S6) but we acknowledge that certain subgroups, 
such as ‘flail limb’ presentations, are under-represented 
in our data and we cannot yet be certain that they will be 
well served by our model.
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