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The timing and nature of marine
ecosystem recovery following the
Permian-Triassic mass extinction

Check for updates

Annabel L. Nicholls1, Paul B. Wignall1, Haijun Song2, Jack O. Shaw3, Andrew P. Beckerman4 &

Alexander M. Dunhill1

The Permian-Triassic mass extinction (PTME; c. 252 million years ago) was the most devastating

extinction event of the Phanerozoic, resulting in up to 90%ofmarine animal species becoming extinct

and profound ecological changes from Palaeozoic to Mesozoic faunas. The eruption of the Siberian

Traps Large Igneous Province caused a cascade of environmental effects such as extreme warming,

oceananoxia andacidificationwhich collapsedPermian ecosystemsanddelayed recovery in theEarly

Triassic. However, uncertainty remains regarding the temporal dynamics and nature of ecological

recovery following the PTME. Models attribute a slow stepwise recovery within marine communities,

from primary producers to top predators, reattaining pre-extinction levels of ecological complexity by

the Middle Triassic. However, global empirical data indicates the rapid recovery of multiple trophic

levels albeit in the form of top-heavy, unstable Early Triassic ecosystems. Further research promises

exciting opportunities to apply community ecology models to ever improving databases of fossil

ecosystemsspanningmultiple palaeolatitudes to test fundamental questions regarding thenature and

timing of recovery andwhether it reallywas “recovery”back to pre-extinction states; or “restructuring”

to new baselines of ecosystem complexity more reflective of modern marine ecosystems.

Themost catastrophicmass extinction event inEarthhistory occurredat the
Permian-Triassic boundary, 252 million years ago (Ma), where Palaeozoic
marine faunas were almost completely wiped out with estimated levels of
marine animal species extinction reaching 81–94%1–4. ThePermian-Triassic
mass extinction (PTME) coincided with the emplacement of the Siberian
Traps large igneous province (LIP)5 which triggered a complex cascade of
climatic, environmental, and biological events on land and in the ocean1,6. In
the marine realm, these processes are postulated to have driven extreme
warming of ocean waters7, significant changes in nutrient input and
productivity8, widespread ocean anoxia and euxinia9, and ocean
acidification10.

There has been debate surrounding whether the marine extinction
event occurred in twomainpulses11, with thefirst pulse occurringduring the
latest Permian with great losses of species richness and the second some
60 ± 48 ka later in the earliest Triassic12 with further losses and community
collapse1,13. Alternatively, others hypothesise that the extinction event
played out as single pulse14 or longer “interval” of extinction lasting less than
200,000 years15. Extinction selectivity across the PTME has been explained

by a combination of lethally warm shallow-ocean temperatures and wide-
spread anoxic deeper waters16. Rates of extinction were generally very high
across all latitudes17,18 albeit with evidence for slightly elevated rates of
extinction at lower latitudes19 (particularly amongst pelagic organisms like
ammonoids and conodonts) or higher latitudes20–22 (especially amongst
benthic taxa like brachiopods and bivalves) albeit depending on differing
methods (i.e. extinction vs extirpation) or time binning of data. Groups that
completely disappeared across the PTME included the eurypterids, acan-
thodians, trilobites, rugose and tabulate corals, fusulinid foraminifers, and
blastoid echinoderms1. Other groups suffered catastrophic losses, such as
ammonoids23, brachiopods24, bryozoans, crinoids, and sponges11 whilst
bivalves25, gastropods11, conodonts26, and fishes27 experienced moderate to
severe extinction rates28.

Whilst the causes, magnitude, and apparent selectivity of the PTME
has received an intense level of attention over the past decades, less has been
afforded to the post-extinction interval and a greater deal of uncertainty
remains around the timing and nature of marine ecosystem recovery29.
Despite ongoing debate surrounding this uncertainty, it is widely accepted
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that the recovery from the PTME was unusually long compared to most
other major Phanerozoic extinction events (see Erwin30 for a review of
Phanerozoic mass extinction recovery rates)31,32. This slow, protracted
recovery has been tentatively explained via competing, but not necessarily
mutually exclusive hypotheses29,33. (i) The magnitude of the PTME and
ecological disruption were so great that persistently low levels of alpha and
beta diversity contributed to reduced biotic competition. This “ecosystem
undersaturation” drove a suppression of diversification rates29,34–36. (ii)
Prolongation of the environmental stressors (i.e. extreme heat, ocean
anoxia, and ocean acidification) that caused the PTME continued
throughout the Early Triassic29,31,37–39. (iii) Environmental instability and
episodic occurrences of further strong environmental disturbances
throughout the Early Triassic caused additional extinction events that
suppressed, delayed, or even completely reset recovery7,23,26,29,40.

This perspectives piece aims to evaluate the current understanding of
the nature and timing of marine ecosystem recovery following the
Permian–Triassic mass extinction, and to highlight future research direc-
tions that could address ongoing knowledge gaps through innovative
methodologies. In addition to answeringwhy recovery from thePTME took
so long, we also need to examine the progressive nature of ecosystem
recovery following the extinction event and this depends heavily on howwe
define andmeasure recovery itself. Understanding the rebuilding of marine
ecosystems after Earth’s greatest biotic crisis is key to anticipating how
biodiversity and ecosystem function respond to major environmental
perturbations10.

What do we mean by ecosystem recovery and how do
we measure it?
Recovery, in an ecological sense, is considered to be return to pre-
disturbance levels of species diversity, structure and functioning within an
ecosystem41–43. In the fossil record, this can be defined as the reappearance of
highly diverse communities with a complex structure that are stable across
macroevolutionary timescales44. Although seemingly straightforward in
principle, assessing recovery from a mass extinction in terms of the re-
attainment of taxonomic (i.e. generic or family level) diversity to pre-
extinction levels directly from the fossil record has the considerable chal-
lenge of considering the effects of sampling and preservational biases.
Defining when full ecological recovery has been achieved presents even
more challenges on top of those presented by the limitations of the fossil

record as there is no standard defined approach to quantifying ecosystem
structure and function.

Studies that have relied upon the re-attainment of pre-extinction levels
of global species (or generic/familial) richness, identify that recovery from
the PTME took at least 5 million years, with gamma diversity re-attaining
latest Permian levels by the Middle Jurassic45 (if interpreting Sepkoski’s
Compendium46 at face value), or sooner by theMiddle Triassic47,48 (if using
methods that correct for uneven sampling in the fossil record (Fig. 1A)).
However, after major mass extinction events, the species assemblages of
post-extinction ecosystems do not resemble that of pre-extinction ecosys-
tems due to the high extinction magnitude and species turnover (i.e. up to
90% species extinction for the PTME) thus raising the possibility that the
recovery of ecosystem structure and function did not follow the rebound of
taxonomic diversity (i.e. species/generic richness). It has been postulated
that taxonomic diversity could well have recovered significantly prior to the
full recovery of stable and functionally complex ecosystems49,50.

Methods for quantifying functional diversity (i.e. the number and
variety of ecological guilds) have been used in more recent studies of
recovery from mass extinctions in an attempt to capture the timing and
nature of ecosystem recovery47,50. In addition, others have used trace fossil
diversity and abundance to track ecosystem recovery39,51 given that trace
fossils represent an archive of (often soft-bodied) benthic activity and can be
used as a proxy for both ecological diversity and abundance51. Global
functional ecology studies suggest that only a very limited number of broad
ecological modes of life were lost across the PTME47 (Fig. 1A), a pattern
observed across other major extinction events (e.g. the Late Triassic52 and
Cretaceous-Paleogene53). This observation has given rise to the Skeleton
Crew hypothesis47,52 whereby high extinction rates drive species loss within
each mode of life which drives a reduction in functional redundancy54.
Consequently, global post-extinction assemblages are suggested to remain
functionally rich but each mode of life is occupied by a small number of
species (i.e. a “skeleton crew”)47,52. However, the same studies (i.e47,52) also
identify differing patterns of taxonomic and functional diversity loss and
recovery rates across different latitudes and ocean basins, hinting at dif-
ferences in regional disturbances and recovery rates19. Ultimately, global
analyses give estimates of global recovery but will struggle to capture the
community-level variation in that signal and the trait-based methods
commonlyused todefine ecological niches, ormodes of life, are arguably too
broad. However global ecological studies using this trait-based ecospace

Fig. 1 | Schematic showing Lopingian and

Triassic trophic pyramids and ecological

metrics showing ecosystem recovery and

competing hypotheses for ecosystem

rebuilding in the aftermath of the PTME.

A Generic richness (blue line)47 and functional

richness (pink line)47 and functional evenness

(orange line)49.B Functional pyramids showing

the diversity of broad ecological guilds at the

global scale at epoch level from Lopingian to

Late Triassic50: Dark Blue =Non-motile benthic

guilds; Green =motile benthic guilds; Orange =

pelagic guilds. C Occurrences of lagerstatten

that reflect seemingly complex communities of

several trophic levels through the Early-Late

Triassic73. D Conceptual model of stepwise

trophic community rebuilding through the

Early-Middle Triassic69.
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approach also suggest that ecological recovery can takemuch longer beyond
the return to pre-extinction levels of taxonomic diversity50.

Whilstmost studies have focused on ‘recovery’ofmarine ecosystems to
levels of complexity seenbefore thePTME, it has alsobeenhypothesised that
the aftermath of the PTME resulted in wholesale ‘restructuring’ of marine
ecosystems55,56. This idea can be traced back to earlier attempts to char-
acterise macroevolutionary patterns through the Phanerozoic with the
switch from the Palaeozoic to Mesozoic faunas45 occurring across the
Permian-Triassic (aka Palaeozoic-Mesozoic) boundary. Recent research
supports this by showing that so-called ‘recovered’marine communities in
theMiddleTriassic displayedmuchhigher functional evenness than those of
the latest Permian prior to the PTME49 (Fig. 1A). Ultimately, community
structure is hard to measure in the fossil record as population sizes are hard
toquantify, biotic interactions areuncertain amongst extinct organisms, and
time averaging presents issues of uncertain community composition and
thus the plausibility of faunal interactions. Some palaeobiologists have
attempted to quantify changes in trophic structure across the PTME13,
showing that taxonomic and ecological changes during the extinction phase
weredecoupled.Thishasnot been testedduring the longer recovery interval,
however, the recovery of taxonomic richness and trophic structure have be
shown to occur at different rates in the aftermath of the early Toarcian
extinction event57, an event of much lower magnitude than the PTME that
occurred in the Early Jurassic. In summary, evaluating and characterising
change in biodiversity through time in fossil data requires integrating
multiple metrics that describe the structure of the community, the number
and identity of species and ultimately, where possible, relative abundances.

A timeline of ecosystem recovery
In the immediate aftermathof thePTME, super greenhouse conditions7 and
shallow shelf ocean anoxia58 suppressed initial recovery in the benthic realm
resulting in very low beta diversity caused by turnover whereby widespread
high abundance, low diversity communities of cosmopolitan ‘disaster taxa’,
such as the foraminifera Earlandia and Postcladella59, bivalve Claraia, and
brachiopod Lingula39,60,61, replace the incumbent Palaeozoic faunas. Con-
versely, nektonic diversity, amongst ammonoids, conodonts and fishes,
seemingly recovered quickly in theGriesbachian (i.e. thefirst substage of the
Induan stage). This recovery within the water column was short-lived with
suggestions of a further extinction amongst nektonic groups occurring by
the end of the Griesbachian23,40.

The subsequent Dienerian substage brought slightly cooler tempera-
tures and less widespread anoxia and thus correspondedwith some recovery
which peaked simultaneously with lower oceanic temperatures at the
Dienerian-Smithian (i.e. Induan-Olenekian) boundary7,62. This interval also
coincides with a large positive carbon isotope excursion suggesting elevated
levels of primary productivity38, possibly stimulating high diversification
rates amongst planktotrophic nektonic groups such as ammonoids and
conodonts23. Habitable area and resources in the marine environment
increased with falling temperatures, increased oxygenation and nutrient
fluxes23,40. However, other research suggests an “Induan-Olenekian bound-
ary” or “Dienerian” crisis which supposedly corresponded with increased
dysoxia63 and/or a negative carbon isotope excursion driven by a period of
renewed volcanic activity, which preferentially affected benthic taxa64.
However, quantitative evidence of this biotic event is currently lacking and
the negative carbon isotope excursion appears to be regional, not global65.

The late Smithian witnessed a major environmental and biotic crisis
which put an immediate stop to marine ecosystem recovery following the
weak recovery in the Dienerian-early Smithian66,67. This Late Smithian
Thermal Maximum event saw temperatures return to extreme greenhouse
levels, with tropical sea surface temperatures (SSTs) reaching in excess of
38 °C7,68. In addition, a major negative carbon isotope excursion was
observed 38 aswell as an increase in ocean stratification and anoxia29,65. These
perturbations drove heightened levels of extinction, particularly in nektonic
groups such as conodonts and ammonoids23,40.

The Spathian substage heralded a sustained interval of ecosystem
recovery and increased beta diversity which persisted through to theMiddle

Triassic, which is when some consider full marine ecosystem recovery to
have been achieved (both globally and regionally)69. This interval saw SSTs
reducing significantly (to 30–32°C in the tropics)7 and a decline in the extent
of ocean anoxia. This led to rediversification of benthic clades, trace makers
and pelagic organisms – some of which were new groups occupying high
trophic levels (e.g. marine reptiles)51,58,69. The more sustained levels of
recovery seen in the Spathian-Anisian relative to the earlier Triassic have
been linked to the longer periodof environmental stability once this eruptive
phase of the Siberian Traps LIP had ceased70. It is widely considered that the
final stage of the recovery of ecosystem complexity took place on the con-
tinental shelf by the mid-late Anisian, some 8–10 million years after the
PTME69,71with the recovery of metazoan reef systems72 and introduction of
new predators occupying previously vacated higher trophic levels repre-
sented by a diverse marine reptile fauna that had no analogue in the
Permian.

Hypotheses for ecosystem recovery
The recovery of the marine biosphere after the PTME has always been
considered to be prolonged37. Initial attempts to quantify recovery via the re-
attainment of alpha diversity within communities and global generic rich-
ness (i.e. gamma diversity) place full recovery, at the earliest, in the Middle
Triassic – some 5 million years post PTME47,48. However, taxonomic and
ecological recovery can be decoupled, and full recovery of functioning
marine communitiesmayhave taken longer, stretching the recovery interval
from the PTME further into the Mesozoic49,50,69.

Chen and Benton69 hypothesised that ecological recovery occurred in a
step-wise, bottom-up fashion from lower to higher trophic levels (Fig. 1D)
with communities in the immediate aftermath of the mass extinction
consisting of just the basal tiers of the trophic pyramid (i.e. primary pro-
ducers and primary consumers – the classic disaster taxa assemblages).
Ecosystem recovery then occurred with re-establishment of higher trophic
levels (i.e. secondary and tertiary consumers) through the rest of the Early
Triassic andMiddle Triassic, re-building the trophic pyramid step-by-step,
with the full recovery of communities happening by the mid-late Anisian,
corresponding to the filling of apex predator niches (i.e. trophic level 5) by
marine reptiles and large fishes69,71. This hypothesis relies on scenarios
represented in Fig. 2A andB,whereby biotic recovery occurred slowly but in
a stepwise manner due to delayed and then gradually ameliorating envir-
onmental conditions and ecosystem undersaturation brought about by the
sheer magnitude of the mass extinction losses.

In contrast to the stepwise ecosystem rebuilding hypothesis of Chen
and Benton69, there is sporadic evidence for complex, multi-trophic level
communities in every substage of the Early Triassic73,74, albeit punctuated by
periods of environmental perturbation that might have caused further
ecosystem collapse or at least temporary slowing or cessation of ecological
recovery58 (Fig. 1C).Onone hand, such evidence casts doubt on scenarios of
delayed diversification due to ecosystem undersaturation34 and prolonged
abiotic stresses37. This suggests rapid recovery of communities and wider
ecosystems during geologically short periods of favourable conditions
between perturbation events58. On the other hand, these supposed highly
complex communities appear to show low levels of alpha diversity, parti-
cularly in lower trophic levels. This suggests that, whilst certainly not being
restricted to only primary producers and primary consumers, these early
post-extinction ecosystems were not yet fully recovered as they show low
levels of functional redundancy which could result in lower levels of inter-
specific competition thus aligning with the ecosystem undersaturation
hypothesis of slow recovery rates34.

Observing marine ecological structure across broader temporal scales
reveals further interesting patterns that suggest that the ecological recovery
interval across all marine habitats might have extended into the Late
Triassic50. Analyses of the balance between the diversity of benthic/pelagic
and motile/non-motile taxa showed that the Early Triassic displays an
inverted functional pyramid compared to the Late Permian and
Middle–Late Triassic intervals, with highly diverse motile pelagic commu-
nities anddepauperate benthic communities50dominating theEarlyTriassic
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(Fig. 1B)73,74. This can be attributed to widespread harsh benthic conditions
(i.e. anoxia) and the rapidboom-bust diversificationof pelagic clades such as
ammonoids and conodonts in the Early Triassic and shows that ecological
recovery can manifest in different ways, at different spatial and temporal
scales. A closer inspection of the more complex ecosystems of the earliest
Triassic73 reveals that, although they are functionally diverse, they appear to
have low levels of functional redundancy, particularly at lower trophic levels.
This suggests that although communities were not rebuilt step-by-step
throughout the Early–Middle Triassic, as suggested by Chen and Benton69,
theymay not have attained levels of advanced ecological recovery and were
insteadmannedby so-called skeleton crews47,52. This canbe seen throughout
the Early Triassic and could be a result of repeated abiotic perturbations or
the prolonged stress of anoxia and high temperatures on benthic
communities50,75. This may have prevented the recovery of functional
redundancy and thus ecosystem saturation and stability34,50. Whilst the
Middle Triassic functional pyramid appears to be returning to similar levels
to pre-extinction times (i.e. greater diversity of benthic taxa), it was not until
the Late Triassic where the balance between different modes of life in the
ocean returned to levels seen in the Permian50 (Fig. 2B), a pattern that is
seemingly reproduced in the aftermath of the subsequent Late Triassicmass
extinction in the earliest Jurassic52.

Recovery or restructuring?
The PTME represented the biggest ecological upheaval in the oceans in
Earth’s history55 and witnessed the switch of dominance from Palaeo-
zoic to modern ocean faunas45. Therefore, it can be suggested that the
rebuilding of marine ecosystems in the Triassic can be referred to as
“restructured” rather than “recovered” because the tiered, benthic

epifaunal communities of the Palaeozoic were replaced by communities
of increasingly motile and infaunal animals76. It has been suggested that
this change is referred to as a rebound rather than a recovery, whereby
ecological regime shifts play out as ecosystems return to stable states but
with new clades attaining ecological dominance whilst others are rele-
gated to more marginal roles43. It has thus been hypothesised that the
PTMEwas the main trigger for the origins of modernmarine ecosystem
structure4, whereby Meso-Cenozoic marine ecosystems exhibit greater
complexity driven by changes in functional structure77. In fact, the
PTME may have been the initial catalyst of the Mesozoic Marine
Revolution (MMR)25, the diversification of predatory clades which
caused an escalation event of predator-prey arms races through the
Mesozoic and Cenozoic78. Restructuring rather than recovery is also
supported by ecological metrics49 and clear ecological regime shifts such
as the shift in dominance in benthic communities from brachiopods to
molluscs79 and the Triassic origination of new groups such as marine
reptiles69. All this evidence points to major structural differences
between Palaeozoic and Mesozoic marine communities given that
ecological structure is defined by the composition (i.e. origination of
new Mesozoic taxa), and evenness (i.e. shift in balance between major
clades from Palaeozoic to Mesozoic faunas) of organisms within a
community and the interactions (i.e. escalation associated with the
MMR) between them.

Differentmetrics formeasuring rebound/restructuringhint at different
rates of ecosystem rebuilding after the PTME and different models hypo-
thesise different scenarios in how the reestablishment of ecosystem com-
plexity tookplace42,47,49,50,69. Direct fossil evidence and environmental proxies
from the Early–Middle Triassic cast doubt on extinction magnitude and
prolonged environmental stress being solely responsible for suppressing
global recovery rates. The occurrence of sporadic Lägerstatten provides
evidence of complex communities ofmultiple trophic levels appearing in the
fossil record just 1million years after thePTME73. This evidence suggests the
possibility that initial recovery of marine ecosystems happened quickly in
the aftermath the PTME, at least in some parts of the world73,74. However,
these post-extinction communities appear dominated by pelagic animals50,
and this interval of early recovery was likely delayed, suppressed, and pos-
sibly stopped by repeated environmental perturbations throughout the
Early Triassic40,58,73,80. Later recovery in the Middle Triassic hints at
restructured Mesozoic marine ecosystems49,76 and heralds the onset of the
MMR and possibly the origins of modern marine ecosystem structure81.

To further our understandingof how thebiosphere bouncedback from
the PTME in the ocean, we need a more comprehensive sample of
community-level data sets from the fossil record, spanning different lati-
tudes and ocean basins. In addition, methods used for quantifying ecosys-
tem recovery/restructuring from the PTME have been inadequate for
capturing community-level processes (e.g. biotic interactions/population
sizes) that influence ecosystem structure, function, and stability. Sophisti-
cated approaches13,57,82,83 that encompass biotic interactions and how they
mediate community collapse and recovery will prove pivotal in our
understanding of extinction and recovery dynamics in the distant past and
how they can be used to help us predict biotic response to disturbance in our
present day and future oceans.

Data availability
No datasets were generated or analysed during the current study.
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