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elusive, its upregulation is linked to the proliferation, migra-
tion, and phagocytic functions of microglia, as well as the 
maintenance of mitochondrial homeostasis and the release 
of inflammatory cytokines [2]. In neurodegenerative dis-
ease, TSPO has been shown to be upregulated in microglia 
[3–5], and to a lesser extent in astrocytes and vasculature. 
For these reasons, TSPO has been considered a marker of 
neuroinflammation. Hence, positron emission tomography 
(PET) radiotracers have been developed that specifically 
target TSPO to measure in vivo tissue neuroinflammatory 
response in patients with dementia and other conditions.

Neuroinflammation is a key pathological feature of all 
neurodegenerative diseases [6], and TSPO-PET has been 

Introduction

The 18 kDa translocator protein (TSPO) is expressed on 
the outer mitochondrial membrane within cells of organs 
including the kidneys, lungs, heart, and brain [1]. While the 
exact role of TSPO in the central nervous system remains 
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Abstract
Purpose  Neuroinflammation is a key pathological driver in neurodegenerative diseases, including Alzheimer’s disease (AD) 
and Progressive Supranuclear Palsy (PSP). Positron emission tomography (PET) with tracers targeting the translocator pro-
tein (TSPO) enables the in vivo quantification of microgliosis. TSPO tracers have shown similar disease-specific patterns 
across cohorts. However, direct quantitative comparisons between commonly used TSPO-PET tracers in tauopathies have 
not been performed. Here, we apply a TSPO-PET standardization pipeline across clinically matched AD cohorts and PSP 
cohorts, to quantify, compare and combine multi-centre TSPO-PET data.
Methods  Patients with PSP were scanned with either [11C]PK11195 or [18F]GE-180 at one of two centres, while patients 
with AD and control participants were scanned with either [11C]PK11195, [18F]GE-180 or [11C]PBR28 at one of three cen-
tres. A standardised pre-processing pipeline was implemented and participant standardised uptake volume ratio (SUVR) 
values were z-scored using tracer-specific control participant values. In a data-driven approach, dissimilarity analyses were 
employed to assess differences between tracers across clinically matched cohorts.
Results  In PSP, dissimilarity analysis suggested that [11C]PK11195 and [18F]GE-180 binding patterns were comparable fol-
lowing standardisation. In AD, comparability across tracers was less robust, with [11C]PK11195 and [18F]GE-180 being most 
comparable, followed by [18F]GE-180 vs. [11C]PBR28, then by [11C]PK11195 vs. [11C]PBR28.
Conclusion  The pipeline was effective at harmonising TSPO-PET tracers and standardising the regional quantification of 
neuroinflammation in clinically matched cohorts of PSP, while the standardisation pipeline results were less robust across 
AD cohorts.

Keywords  Neuroinflammation · Positron emission tomography · Translocator protein · Progressive supranuclear palsy · 
Alzheimer’s disease.
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shown to be a useful marker to quantify neuroinflamma-
tion in vivo across neurodegenerative diseases. Indeed, 
heightened levels of neuroinflammation, as measured by 
TSPO-PET binding, has been associated with a greater rate 
of cognitive decline and disease progression in progressive 
supranuclear palsy (PSP) [7], frontotemporal dementia [8], 
Alzheimer’s disease (AD) dementia, and mild cognitive 
impairment (MCI) [9, 10], while high TSPO-PET binding 
in early stages increases the risk of developing dementia in 
patients with Parkinson’s disease [11]. Moreover, neuro-
inflammation has been associated with brain network dys-
function, as measured with resting state functional magnetic 
resonance imaging (MRI) [12], and the neuroinflammatory 
signal strongly correlates with neuropathological substrates 
topographically, especially tau protein, in both primary and 
secondary tauopathies [13–18]. Across diseases, patients 
with high TSPO-PET binding also exhibit elevated levels of 
inflammatory proteins in cerebrospinal fluid [19] and serum 
[20].

Several TSPO tracers have been developed, includ-
ing the carbon-11 radiolabelled first-generation tracers 
such as PK11195 (1-(2-chlorophenyl)-N-methyl-N-(1-
methylpropyl)−3-isoquinoline carboxamide) and Ro5-
4864 (4′-chlorodiazepam). While [11C]Ro5-4864 binding 
varies due to temperature and species, [11C]PK11195 
has a high affinity and selectivity to TSPO and has been 
widely used to study neuroinflammation [21]. Despite 
the success of [11C]PK11195, its drawbacks, including 
a short half-life, low signal-to-noise ratio, and variable 
kinetics, have encouraged the development of second- 
and third-generation tracers. These tracers include [11C]
PBR28, [11C]ER176, as well as the fluorine-18 radiola-
belled tracers [18F]DPA-714, and [18F]GE-180, which 
have extended half-lives compared to carbon-11 labelled 
tracers. Although the second- and third-generation tracers 
display greater signal-to-noise than their predecessors, a 
common single nucleotide polymorphism (rs6971) in the 
TSPO gene affects their binding affinity, meaning that par-
ticipants can have a high-, mixed-, or low- affinity binding 
and those in the latter group cannot be effectively imaged 
with these more recently developed tracers [22–25]. 
Despite its lower signal-to-noise ratio, [11C]PK11195 is 
minimally affected by this genetic variable.

Despite differences across tracers, previous studies in 
clinically matched cohorts of patients with tauopathies have 
identified regional patterns of increased TSPO-PET signal, 
which parallel known regional patterns of tau aggregates. 
For example, when compared to healthy volunteers, tem-
poral, parietal, and occipital regions demonstrate elevated 
TSPO-PET binding in AD [26–28], while in the primary 

tauopathy PSP, the thalamus, putamen, pallidum, and mid-
brain are the most affected regions [15, 26, 29].

Although head-to-head studies comparing different 
TSPO-PET tracers have been conducted in small groups of 
healthy controls [30, 31], direct and quantitative compari-
sons from distinct patient cohorts with tauopathies imaged 
using various TSPO-PET tracers have not been reported. 
The goal of this study, therefore, is to enhance the utility 
of TSPO-PET imaging in tauopathies by harmonising the 
processing pipelines in order to compare and combine trac-
ers. Should this methodology prove effective, it will allow 
for the creation of multicentre databases larger than those 
achievable with institution-specific cohorts, as well as a har-
monised pipeline and universal scales to estimate microglial 
activation severity irrespective of the TSPO-PET tracer in 
use. Here, we describe the harmonised processing pipeline 
and the dissimilarity analyses that we have undertaken to 
assess the strength and validity of this pipeline. We have 
included patients with primary tauopathy PSP and second-
ary tauopathy AD to test this process across three centres 
and TSPO-PET tracers.

Materials and methods

Participant cohorts

Patients with a clinical diagnosis of PSP Richardson’s syn-
drome (PSP-RS) [32], or of MCI due to AD (MCI-AD) and/
or Alzheimer’s Dementia [33, 34], alongside age- and sex-
matched cognitively unimpaired controls, were recruited 
across three centres: the University of Cambridge and 
Cambridge University Hospitals NHS Foundation Trust, 
Cambridge, UK; LMU Hospital, Ludwig-Maximilians Uni-
versität München, Munich, Germany; and McGill Univer-
sity and Montreal Neurological Institute Hospital, Montreal, 
Canada. All participants provided written informed consent 
according to the Declaration of Helsinki.

Specifically, 18 patients with PSP-RS, 32 patients with 
AD (14 AD and 18 MCI-AD), and 15 control participants 
underwent [11C]PK11195 PET in Cambridge; 17 patients 
with PSP-RS, 40 patients with AD, and 19 control partici-
pants underwent [18F]GE-180 PET in Munich; 25 patients 
with AD (11 AD and 14 MCI-AD) and 25 control partici-
pants underwent [11C]PBR28 PET in Montreal.

All participants undertook a detailed clinical and cogni-
tive assessment. All patients with PSP-RS completed the 
PSP rating scale [35], while patients with AD completed 
either the Mini-mental state examination (MMSE) [36] or 
the Montreal cognitive assessment (MoCA) [37].
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PET acquisition

[11C]PK11195 PET was undertaken at the Wolfson Brain 
Imaging Centre at the University of Cambridge, United 
Kingdom. Scans were performed on GE Advance and GE 
Discovery 690 PET/CT (GE Healthcare) scanners with a 
15-min 68Ge/68Ga transmission computed tomography 
(CT) scan for attenuation correction. 500 MBq of [11C]
PK11195 with a specific activity of around 85 GBq/µmol 
was injected intravenously over 30-seconds at the onset of a 
75-minute dynamic scan.

[18F]GE-180 PET was undertaken at Ludwig Maximil-
ian University of Munich, Germany. These scans were 
completed on a Siemens Biograph True point 64 PET/CT 
or a Siemens mCT PET/CT scanner (Siemens, Erlangen, 
Germany) with CT used in combination for attenuation cor-
rection. 185 MBq of [18F]GE-180 with a specific activity 
of > 1500 GBq/µmol was injected intravenously and PET 
images acquired statically at 60–80 min post-injection.

[11C]PBR28 PET was undertaken at the Brain Imaging 
Centre, Montreal Neurological Institute, McGill University, 
Canada. Scans were performed on a Siemens high-resolu-
tion research tomograph with a 6-min transmission scan 
performed at the end of each PET emission acquisition for 
attenuation correction. A mean dose of 384 MBq of [11C]
PBR28 with a specific activity of around 193 GBq/µmol 
was injected intravenously, and emission PET images were 
acquired from 0 to 90 min and reconstructed from 60 to 90 
min.

All TSPO-PET data was visually checked for scan qual-
ity and artifacts prior to preprocessing.

To ensure accuracy and comparability of TSPO binding 
measurements, all participants that were low affinity binders 
due to the TSPO polymorphism rs6971 and underwent [18F]
GE-180 PET or [11C]PBR28 PET were removed from the 
analysis following genetic testing after PET imaging [24].

Harmonised PET pre-processing pipeline

A 40–70 min time window after injection from the dynamic 
[11C]PK11195 PET scans was considered to calculate 
the standardised uptake value ratio (SUVR), which was 
selected based on the correlation between SUVR and dis-
tribution volume ratio for various SUVR time windows, as 
well as the stability of the SUVR values. The [18F]GE-180 
signal, meanwhile, was recorded 60–80 min after injection 
and [11C]PBR28 was recorded at 60–90 min post-injection 
to calculate SUVR.

Each [11C]PK11195 PET image was co-registered to the 
corresponding T1-weighted MR image and kept in sub-
ject space, while each [18F]GE-180 and [11C]PBR28 PET 
images were transformed to Montreal Neurological Institute 

(MNI) space. Inverse transform parameters were applied to 
a modified version of the Hammers Atlas [38] to bring the 
regions of interest (ROI) to scan-specific space. The modi-
fied version of the atlas allowed for the inclusion of brain-
stem regions into the analysis which are important regions 
to include for the assessment of patients with PSP-RS.

All PET images were intensity normalised to mean 
tracer uptake of a shared reference region of the cerebel-
lar grey matter in order to determine the SUVR. The refer-
ence region was defined from the Hammers cerebellum ROI 
with manual adjustment, excluding the dentate nucleus, and 
superior and posterior layers. While the dentate nucleus and 
cerebellar white matter is affected by pathology in PSP-RS, 
the cerebellar grey matter is often spared until later disease 
stages [39]. Grey matter in the cerebellum is also spared of 
pathology, including inflammation, until late-stage AD [40, 
41]. All participants included in this study were in the mild 
to moderate stages of their disease, therefore we used cer-
ebellar grey matter as optimal reference region across the 
three tracers and the two diseases (PSP and AD) included in 
the study. A similar reference region has been used in previ-
ous dementia studies with TSPO PET tracers [42]. In order 
to maintain harmony between the processing of the tracers, 
vascular binding correction and partial volume correction 
was not applied. Averaged SUVR values across grey and 
white matter from the Hammers atlas ROIs were extracted 
from each participant.

Z-scoring

Corresponding left and right regional SUVR values from 
the Hammers atlas were averaged to obtain bilateralised 
regional SUVR values. To standardise the SUVR scales, 
z-scores for each region were calculated for each patient, 
based on centre-specific control participants. The following 
formula was employed to calculate Z-scores:
[11C

]
PK11195 Participant Z Score

= SUV Rregion−Region Control Mean[11C]P K11195
Region Control SD[11C]P K11195

[18F
]

GE − 180 Participant Z Score

= SUV Rregion−Region Control Mean[18F ]GE−180
Region Control SD[18F ]GE−180

[11C
]

PBR28 Participant Z Score

= SUV Rregion−Region Control Mean[11C]P BR28
Region Control SD[11C]P BR28

Statistical analysis

Due to some regional z-scored SUVR values having a 
non-normal distribution and not meeting assumptions 
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Finally, to observe the pairwise dissimilarities of regional 
z-scores between tracers, representational similarity analy-
sis was implemented using correlation distance (1 minus 
the correlation coefficient) for each brain region. To further 
explore the patterns in the dissimilarity matrices computed 
by the representational similarity analysis, pattern similarity 
using Spearman’s correlation between tracer matrices was 
performed to evaluate the correlation between dissimilari-
ties observed in the matrices. Lastly, permutation testing 
with 5000 simulations was implemented to assess the likeli-
hood that any of the observed correlations between the trac-
ers could have occurred by chance.

All statistical analyses were conducted in R version 4.3.2 
(2023-10-31) [43]. A significance level of p < 0.05 was 
applied throughout.

Results

Participants and demographics

Participant numbers and demographics are listed in Table 
1. For 8 out of 40 patients with AD who underwent [18F]
GE-180 PET, MMSE scores were obtained with score con-
version from MoCA using a pre-established approach [44].

Harmonisation across PSP-RS cohorts: [11C]PK11195 
and [18F]GE-180 results

Several dissimilarity analyses were run to determine 
whether any tracer-specific differences could be identified.

Pairwise comparisons

No differences in z-scores were observed between tracers 
for any brain region in control participants. In PSP-RS, 

for parametric tests, non-parametric statistical tests were 
employed. We applied the same combination of dissimi-
larity analyses separately for PSP-RS and AD cohorts, to 
determine whether any tracer-specific differences could be 
identified within disease groups.

First, to compare [11C]PK11195 and [18F]GE-180 
regional z-scores in the PSP-RS and control groups two-
sided, Mann-Whitney U tests were employed, while Krus-
kal-Wallis and post-hoc Dunn’s tests were used to compare 
regional z-scores of all three tracers in the AD and control 
groups. These analyses were adjusted for multiple compari-
sons using false discovery rate (FDR) correction.

Second, a full factorial analysis was implemented to sys-
tematically examine the effects of the diagnostic group, TSPO-
PET tracer, and brain region, on the regional z-score. A main 
effects model (z-score ~ diagnostic group + tracer + region + a
ge + sex), as well as a model to examine two-factor interac-
tions (z-score ~ diagnostic group: tracer + region + age + sex) 
and three-factor interactions (z-score ~ diagnostic group: 
tracer: region + age + sex) was applied. For the two- and 
three-factor interaction models, family-wise error corrected 
post-hoc estimated marginal means analyses were employed 
to identify interaction effects. Due to having z-scores closest 
to 0 for both PSP-RS and AD groups, the precentral gyrus 
was used as the reference region for this model to compare 
to all other brain regions.

Then, Euclidean distance was used to calculate the distance 
between each participants z-scores in forty-one-dimensional 
space, based on 41 brain regions of interest, and clustering 
algorithms were run to visualise the distance and any cluster-
ing of participants based on tracer. Hierarchical agglomera-
tive clustering was used as a data exploration tool to assess 
how closely participants cluster, with a dendrogram fitted to 
visualise any clustering based on PET tracer. K-means clus-
tering of Euclidean distances was also applied with two clus-
ters set for the PSP-RS group and three for the AD group.

Table 1  Participant demographics
Tracer [11C]PK11195 [18F]GE-180 [11C]PBR28 Diff.
Diagnostic group PSP-RS AD Control PSP-RS AD Control AD Control
n 18 32 15 17 40 19 25 25 -
Sex (m: f) 11:7 19:13 7:8 10:7 15:25 10:9 14:11 8:17 X2

†p = 0.841
^p = 0.241

Mean age (± SD) 68.6
(± 5.5)

72.8
(± 8.4)

70.0
(± 6.5)

69.6
(± 8.0)

70.9
(± 7.6)

71.2
(± 6.7)

72.0
(± 7.3)

72.0
(± 5.9)

Kruskal- Wallis
†p = 0.581
^p = 0.729

Mean MMSE (± SD) - 25.5
(± 2.7)

- - 23.5
(± 5.2)

- 24.5
(± 6.0)

- Kruskal-Wallis
p = 0.394

Mean PSP rating scale (± SD) 41.7
(± 13.2)

- - 32.7
(± 15.4)

- - - - Mann-Whitney U
p = 0.089

†=differences within and between PSP-RS and control groups, ^=differences within and between AD and control groups. Abbreviations: 
AD Alzheimer’s disease, Diff Difference, f  Female, m Male, MMSE Mini-mental state examination, PSP Progressive supranuclear palsy, PSP-
RS Progressive supranuclear palsy-Richardson syndrome, S Standard deviation
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a significant interaction effect with diagnostic group and 
tracer (est.=−0.312, p = 0.034).

Full output of the full factorial analyses can be found in 
supplementary Table 1.

Euclidean distance with hierarchical clustering

A Euclidean distance matrix was generated to visualise 
the pairwise dissimilarity between participants, based on 
z-scores of all brain regions. Figure 2 details the Euclidean 
distance matrices where hierarchical clustering of patients 
with PSP-RS (Fig. 2a) and controls participants (Fig. 2b) 
was employed. Supplementary Fig. 1 depicts Euclidean 
distance matrices where participants were clustered with 
K-means clustering.

Representational similarity analysis with pattern 
similarity and permutation testing

Representational similarity analysis identified similar 
z-score patterns in patients with PSP-RS regardless of tracer 
(Fig. 3). This was confirmed with pattern similarity between 
matrices (r = 0.42) and permutation testing which demon-
strated that it is highly unlikely this was a chance finding 
(Supplementary Fig. 2). Although the relationship between 
z-score patterns in control participants was also significant 
(r = 0.24) permutation testing highlighted that this finding 
could be due to chance (Supplementary Fig. 1).

there were no differences in z-scores between tracers for any 
region except the subcallosal area (p = 0.04) (Fig. 1).

Full factorial analysis

The main effects model (z-score ~ diagnostic group + trace
r + region + age + sex) was significant (F(44, 2784) = 3.881, 
p < 0.001). There was a significant main effect of tracer 
on predicting z-score ([11C]PK11195 - [18F]GE-180, 
est.=0.089, p = 0.041), suggesting a difference between the 
two tracers. Main effects of diagnostic group (est.=0.136, 
p = 0.002), age (est.=0.033, p < 0.001), and sex (est.=−0.245, 
p < 0.001) to predict z-score were also observed. Of the 40 
brain regions considered, the anterior superior temporal 
gyrus (est.=−0.435, p = 0.027) and the pallidum (est.=0.428, 
p = 0.014) showed a significant predictive effect of z-score 
in relation to the precentral gyrus.

To explore the interaction between main effects, a 
two-factor interaction model (z-score ~ diagnostic group: 
tracer + region + age + sex) was performed. The model was 
significant (F(45, 2783) = 3.85, p < 0.001), however, no 
interaction effect between diagnostic group and tracer was 
found (est.=0.130,p = 0.136).

A three-factor interaction model (z-score ~ diagnos-
tic group: tracer: region + age + sex) was run to assess the 
interaction between diagnostic group and tracer for each 
region to predict z-score. This model was significant (F(165, 
2663) = 1.82, p < 0.001), with the subcallosal area showing 

Fig. 1  z-score brain plots of patients with PSP-RS. In patients with PSP-RS, heightened TSPO-PET z-scores were observed across the brain com-
pared to controls. Differences between the two tracers was seen in the subcallosal area only. *=p<0.05
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p < 0.001), with a significant main effect seen when compar-
ing [11C]PK11195 and [11C]PBR28 (est.=0.135, p = 0.003) 
but not when comparing [11C]PK11195 and [18F]GE-180 or 
[18F]GE-180 and [11C]PBR28. While no main effect of age 
or sex was found, the amygdala (est.=0.301, p = 0.037), cau-
date nucleus (est.=−0.381, p = 0.008), and superior temporal 
gyrus anterior part (est.=−0.316, p = 0.028) showed signifi-
cant effects on the model.

To explore the interaction between main effects, a 
two-factor interaction model (z-score ~ diagnostic group: 
tracer + region + age + sex) was performed and was sig-
nificant (F(47, 6348) = 1.91, p < 0.001). Post-hoc analysis 
revealed that the difference between [11C]PK11195 and 
[11C]PBR28 in patients with AD (est.=0.222, p < 0.001) was 
the main driver of the significance of this model.

A three-factor interaction model (z-score ~ diagnostic 
group: tracer: region + age + sex) was run to assess the 
interaction between diagnostic group and tracer for each 
region to predict z-score. Overall, this model was not 
significant (F(247, 6148) = 1.11, p = 0.12), with the only 
significant interaction effect again being between [11C]
PK11195 and [11C]PBR28 in the amygdala (est = 1.50, 
p = 0.048).

Full output of the full factorial analysis can be found in 
supplementary Table 2.

Harmonisation across AD cohorts: [11C]PK11195, 
[18F]GE-180 and [11C]PBR28 results

Several dissimilarity analyses were run to determine 
whether any tracer-specific differences could be identified 
across the AD-specific cohorts.

Pairwise comparisons

No differences in z-scores were observed between trac-
ers for any brain region in control participants. In patients 
with AD, [11C]PK11195 had significantly greater bind-
ing than [18F]GE-180 in the pons (p = 0.010) and palli-
dum (p = 0.02), and significantly greater binding than [11C]
PBR28 in the amygdala (p = 0.002), medial anterior tem-
poral lobe (p = 0.04), and thalamus (p = 0.03). [18F]GE-180 
showed higher binding than [11C]PBR28 in the hippocam-
pus (p = 0.04) and amygdala (p = 0.004), and higher binding 
than [11C]PK11195 in the subcallosal area (p = 0.03). In the 
anterior cingulate, [11C]PBR28 demonstrated greater bind-
ing than [18F]GE-180 (p = 0.03) (Fig. 4).

Full factorial analysis

The main effects model (z-score ~ diagnostic group + trace
r + region + age + sex) was significant F(45, 6350) = 1.847, 

Fig. 2  Clustering of Euclidean distance values based on z-scores of all 
brain regions. Each column of the heatmaps represent a participant, 
with the Euclidean distance value between each participant calculated 
based on all 41 brain regions. (a) An agglomerative hierarchical clus-
tering algorithm found that patients with PSP-RS spread evenly across 

the dendrogram despite tracer, suggesting homogeneity between trac-
ers following harmonisation. (b) An agglomerative hierarchical clus-
tering algorithm also demonstrated an even spread of participants 
across the dendrogram in controls
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Euclidean distance matrices with participants clustered 
using K-means clustering.

Representational similarity analysis with pattern 
similarity and permutation testing

In the AD group, representational similarity analy-
sis and pattern similarity of matrices identified similar 

Euclidean distance with hierarchical clustering

A Euclidean distance matrix was generated to demonstrate 
the pairwise dissimilarity between AD and control par-
ticipants, based on z-scores of all brain regions. Figure 5 
details the Euclidean distance matrices where hierarchical 
clustering of patients with AD (Fig. 5a) and control partici-
pants (Fig. 5b) was employed. Supplementary Fig. 3 depicts 

Fig. 3  Representational similarity analysis. In patients with PSP-RS representational similarity matrices were visually similar, while matrices were 
less similar in controls. Pattern similarity between matrices and permutation testing are described in supplementary figure 2
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chance finding (Supplementary Fig. 4). Robust, however 
weak, correlations between tracers were seen in the con-
trol group; [11C]PK11195 and [18F]GE-180 (r = 0.24), [18F]
GE-180 and [11C]PBR28 (r = 0.33), [11C]PK11195 and 
[11C]PBR28 (r = 0.24) (Fig. 6).

z-score patterns between [11C]PK11195 and [18F]GE-180 
(r = 0.36), and between [18F]GE-180 and [11C]PBR28 
(r = 0.26) (Fig. 6). Permutation testing of the weak corre-
lation of patterns seen between [11C]PK11195 and [11C]
PBR28 (r = 0.15) (Fig. 6) found that this was likely a 

Fig. 5  Clustering of Euclidean distance values based on z-scores of all 
brain regions. Each column of the heatmaps represent a participant, 
with the Euclidean distance value between each participant calculated 
based on all 41 brain regions. a) An agglomerative hierarchical cluster-
ing algorithm found a relatively even dispersion of patients with AD 

across the dendrogram, except for a small seperating cluster containing 
5 [11C]PBR28 scanned patients and 1 [11C]PK11195 scanned patient. 
b) An agglomerative hierarchical clustering algorithm demonstrated 
an even spread of participants across the dendrogram in controls when 
all three tracers were included

 

Fig. 4  z-score brain plots of patients with AD. In patients with AD, elevated TSPO-PET z-scores were found across the brain compared to controls. 
8 brain regions showed significant differences between tracers. *=p<0.05,**=p<0.001
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quantification across tracers. When applied to cohorts of 
patients with AD across three distinct tracers, the standardi-
sation pipeline was less robust, with dissimilarity analy-
ses highlighting that [18F]GE-180 and [11C]PK11195 were 
the most comparable, followed by [18F]GE-180 and [11C]
PBR28, and lastly by [11C]PK11195 and [11C]PBR28.

With the emergence of novel, clinically meaningful, 
disease-modifying therapies for neurodegenerative diseases 
[45], efforts have been directed to harmonise methods that 
quantify the magnitude of neuropathological changes. For 
example, the Centiloid project [46] has revolutionised how 
amyloid-β pathology is evaluated based on a scale appli-
cable to different amyloid-PET tracers, which allows for 
comparable amyloid measurements across tracers, cohorts 
and centres. This method has been particularly useful in tri-
als of anti-amyloid therapies [47, 48]. Other efforts, such 
as the CenTauR [49] or Uni-Tau from HEAD studies [50] 
aim to standardise the quantification of tau pathology across 

Discussion

With the aim of harmonising and comparing TSPO-PET 
tracers across clinically matched cohorts of patients with 
primary and secondary tauopathies, we developed and 
applied a standardised pre-processing pipeline across three 
cohorts. We included patients with PSP-RS scanned with 
either [11C]PK11195 or [18F]GE-180, patients with AD 
scanned with either [11C]PK11195, [18F]GE-180, or [11C]
PBR28, as well as control participants scanned with either 
of the three tracers. Overall, our multivariate approach and 
dissimilarity analyses converged to suggest that our new 
pipeline to harmonise TSPO-PET tracers and standardise 
the regional quantification of neuroinflammation is effective 
for [11C]PK11195 and [18F]GE-180 in PSP-RS. Due to its 
homogeneous and symmetrical neuropathological profile, 
PSP-RS is an excellent model disease to develop harmoni-
sation and standardisation methodologies for TSPO-PET 

Fig. 6  Representational similarity analysis. a) In patients with AD, the 
cohorts scanned with [11C]PK11195 and [11C]PBR28 demonstrated 
lower dissimilarity within groups compared to those scanned with 
[18F]GE-180. In control participants, no obvious pattern could be visu-

alised from the dissimilarity matrices for any tracer. Supplementary 
Figure 4 depicts the pattern similarity analyses between matrices and 
permutation testing
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of pathology seen in PSP-RS may be reflected in the simi-
larities seen between tracers here, and highlight that the two 
tracers examined here can be compared in this disease group 
following harmonisation. In AD, although tau pathology 
usually follows Braak stages [56], the widespread presence 
of amyloid makes the neuroinflammatory profile much more 
heterogeneous in these patients compared to in PSP-RS 
[13, 26]. The heterogeneous nature of neuroinflammation 
in AD may be the reason why fewer regions were compa-
rable between the three tracers, as patients with AD have 
more variable brain inflammation profiles. Furthermore, the 
AD cohort consisted of patients with either AD or MCI-
AD, which may have resulted in the variability observed 
due to the greater range of disease severity in comparison 
to the PSP-RS group, which all had established disease and 
diagnoses.

We ran full factorial analyses to evaluate the main, two-, 
and three-factor interaction effects of tracer, diagnosis, brain 
region, age, and sex to predict TSPO-PET z-scores. This 
analysis demonstrated the presence of a main effect of trac-
ers on the model in the PSP-RS cohort suggesting a differ-
ence between [11C]PK11195 and [18F]GE-180 in this group, 
however this effect was marginal (p = 0.041) and may have 
been explained by other variables, such as diagnostic group, 
age, and sex. As expected, the diagnostic group variable, 
defined as PSP-RS vs. control cohorts, showed a main effect 
on z-score prediction, as patients with PSP-RS generally have 
greater levels of neuroinflammation. Also reassuringly due to 
its impact in PSP-RS, the pallidum showed a significant pre-
dictive effect of z-score in the model. Significant interaction 
effects were identified when age and/or sex, and PSP-RS-
effected regions, such as the subcallosal area, were included 
in interaction terms with the tracer variable. In the AD group, 
post-hoc analysis of the main effects model suggested that a 
significant effect was found when comparing between [11C]
PK11195 and [11C]PBR28, further highlighting that either 
tracer or patient-specific differences may be present in this 
group. Several interaction effects involving the tracer were 
also found. Sex and age consistently demonstrated significant 
main and interaction effects in these models, both in PSP-
RS and AD. Sex differences in TSPO-PET binding have been 
identified in AD, with females showing greater binding than 
males [57]. AppNL−G−F Amyloidosis mouse models of AD 
replicate this finding but this is not seen in P301S mice exhib-
iting tau pathology [58]. It is now also largely proven that 
inflammation increases with age, with inflammaging being 
a risk factor for developing neurodegenerative disease [59]. 
However, further studies are needed to fully understand age- 
and sex-specific differences related to the TSPO signal and 
microglia-mediated cascades in tauopathies.

To further test our standardisation pipeline, Euclidean 
distances were calculated for each participant, based on all 

tau-PET tracers and centres. While the interpretation of the 
TSPO-PET signal in humans remains a controversial topic, 
a recent study validated the signal using post-mortem tissue 
from patients with PSP who underwent TSPO-PET during 
life. Microglial levels of TSPO positively correlated with 
the ante-mortem TSPO-PET signal [4], reinforcing that this 
imaging tool provides a useful window to shed light on the 
levels of neuroinflammation that may be occurring within 
the brain. Despite notable limitations - including its short 
half-life, lower molar activity relative to [18F]-labelled trac-
ers, high non-specific binding, and a relatively low signal-
to-noise ratio - [11C]PK11195 has been extensively used as 
a TSPO-PET imaging probe for several decades. Crucially, 
its insensitivity to the rs6971 polymorphism in the TSPO 
gene enables more straightforward comparison across past 
and future datasets. Among the second-generation tracers, 
[11C]PBR28 provides a markedly improved signal-to-noise 
ratio and has been widely applied in studies of neurodegen-
erative disease. However, its binding affinity is influenced 
by the TSPO polymorphism, with the highest incidence 
of low-affinity binders reported in Caucasian populations 
[51], making subject genotyping necessary. More recently, 
third-generation tracers such as [18F]GE-180 have reduced 
dependence on genotype, as they show comparable bind-
ing in high- and mixed-affinity binders, though binding 
remains low in low-affinity binders [52]. Additionally, the 
longer half-life of [18F]-labelled tracers extends clinical 
applicability, including at sites without on-site cyclotron 
or radiochemistry facilities. Nonetheless, [18F]GE-180 is 
limited by its relatively low blood–brain barrier penetra-
tion. With increasing evidence on the key role of microg-
lia-mediated inflammation in neurodegenerative diseases 
[53], and inflammation-targeting drugs under evaluation 
in several clinical trials [54], as well as the practical chal-
lenges of adopting a gold standard TSPO-PET tracer glob-
ally, methods that enable harmonisation and combination 
of TSPO-PET tracers across centres are urgently needed to 
improve target-engagement evaluation, patient stratification 
and monitoring.

Using z-scores against centre- and tracer-specific con-
trols, comparisons across brain regions demonstrated that 
tracers were comparable for 100% (41/41) of regions in 
control participants, 98% (40/41) of regions in patients with 
PSP-RS (Fig. 1), and 80% (33/41) of regions in patients with 
AD (Fig. 4). As z-scoring forced the mean of the control 
groups to zero, it was expected that no difference would be 
seen between tracers in this group. In patients with PSP-RS, 
tau deposition is usually predominant in subcortical regions 
with symmetrical patterns, before spreading throughout the 
cortex in later stages of the disease [39, 55]. Neuroinflam-
mation has been shown to colocalise with and parallel the 
progression of tau pathology [15]. The high homogeneity 
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in the brain to alleviate everyday insults, as well as con-
firming the absence of any specific neuropathology in these 
participants.

The differences observed between tracers here could be 
due to several factors: first, the differences may be tracer-
specific, and our standardisation pipeline may need to be 
optimised for each tracer, as suggest by Maccioni and col-
leagues for their models [62]. For example, tracer-specific 
optimisation may need to account for the proportion of mixed 
and high affinity binders as well as the brain regions consid-
ered in the analyses, for which the signal may vary based on 
the tracer and the disease cohort of interest. Furthermore, 
analyses may require an optimised SUVR time window 
and reference region that are tracer-specific to account for 
differences in their delivery and kinetics. The optimisation 
for one tracer may not directly translate to others, and it is 
important to test these variations. Second, differences may 
also occur as a result of hardware discrepancies. As well as 
using different tracers, different PET scanners were used in 
Cambridge, Munich, and Montreal, which is an unavoid-
able difference that must be considered and appreciated in 
multi-centre imaging studies. Moving forward, a collabora-
tive effort must address how best to account for differences 
in scanner outputs. Third, although clinically matched, the 
AD cohorts consisted of both patients with AD and patients 
with MCI-AD which may have increased the variation in 
neuroinflammation in these groups and affected their com-
parability. Lastly, neuroinflammation is a dynamic process, 
both in healthy and diseased brain states [6, 63, 64], there-
fore it is more difficult than for other pathological hallmark 
to fully match cohorts of people without scanning the same 
individuals with different tracers within a short timeframe. 
Indeed, head-to-head studies of TSPO-PET radiotracers 
have been completed, however these are limited to healthy 
volunteers only [30, 31]. It is therefore also likely that, espe-
cially in a heterogeneous disease like AD, individual patient 
differences could affect the performance of the standardisa-
tion pipeline. In addition to the increased variability pos-
sibly added by including patients with MCI-AD in the AD 
cohort, differences in PET scanners used at each centre may 
have introduced variation in the PET outputs and may have 
an inflated variability seen between tracers.

Together, our work suggests that harmonisation pipelines 
for TSPO-PET tracers can be applied for PSP-RS, likely 
due to the homogeneous and symmetrical neuropathological 
profile of PSP-RS rendering it an excellent model disease 
to develop harmonisation and standardisation methodolo-
gies for TSPO-PET quantification across tracers. We found, 
however, that when applied to patients with AD across three 
distinct tracers, our standardisation pipeline was less robust, 
with dissimilarity analyses highlighting that [18F]GE-180 
and [11C]PK11195 were the most comparable, followed by 

forty-one brain regions and clustered using two separate 
methods to visualise any tracer-specific clustering. Firstly, 
for patients with PSP-RS and controls, the hierarchical clus-
tering algorithm demonstrated that individual inflammation 
patterns (i.e. single participants) were evenly distributed 
across the dendrogram, regardless of whether their TSPO 
levels were quantified with [11C]PK11195 or [18F]GE-180 
(Fig. 2). Next, K-means clustering with two clusters was 
used, and each data-driven cluster included participants 
from both tracer cohorts in both PSP-RS and control groups 
(Supplementary Fig. 1), suggesting that the standardisa-
tion pipeline was effective. In patients with AD and con-
trols scanned with [11C]PK11195, [18F]GE-180, or [11C]
PBR28, again the control participants were evenly spread 
across the dendrogram when hierarchical clustering was 
used, and all three of the K-means clusters contained a mix-
ture of all three tracers (Supplementary Fig. 3). In the AD 
cohort, however, one small cluster containing five patients 
scanned with [11C]PBR28 and one with [11C]PK11195 
clustered separately from all other participants, who were 
instead evenly spread across the rest of the matrix (Fig. 5). 
These 6 patients had consistently low TSPO-PET z-scores 
compared to other participants throughout the brain; four of 
them were male and relatively unimpaired cognitively, with 
MMSE scores ≥ 24. As studies have demonstrated discrep-
ancies in TSPO-PET binding as a result of factors such as 
sex (as well as age and body mass index) in both mice and 
humans [58, 60, 61], further work is needed to understand 
individual differences in TSPO-PET binding in both healthy 
and diseased brains.

Lastly, a representational similarity analysis was run 
to visualise any regional z-score patterns between tracers. 
This was followed by a pattern similarity analysis of the 
representational similarity matrices to quantify the correla-
tion between the tracers. As with previous analyses in the 
PSP-RS cohorts, [11C]PK11195 and [18F]GE-180 showed 
comparable z-score patterns across the brain, a result that 
permutation testing confirmed was robust (Supplementary 
Fig. 2), which coincides with tau deposition [15], and fur-
ther supports the comparability of these two tracers follow-
ing implementation of the standardisation pipeline. In AD, 
a similarly strong and robust z-score pattern was seen for 
both [11C]PK11195 and [18F]GE-180, while [18F]GE-180 
and [11C]PBR28 patterns were also statistically similar (Fig. 
6). Corroborating the results of the full factorial analysis, 
[11C]PK11195 and [11C]PBR28 regional z-scores patterns 
were not statistically similar in this AD cohort following 
standardisation, emphasising either tracer or cohort differ-
ences between these two groups. For control participants, 
weak but robust correlations in z-score patterns were seen 
between the three tracers, possibly highlighting a gener-
alised pattern of background neuroinflammation ongoing 
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