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This paper introduces a sensor steering methodology

based on deep reinforcement learning (DRL) to

enhance the predictive accuracy and decision

support capabilities of digital twins by optimizing

the data acquisition process. Traditional sensor

placement techniques are often constrained by

one-off optimization strategies, which limit their

applicability for online applications requiring

continuous informative data assimilation. The

proposed approach addresses this limitation

by offering an adaptive framework for sensor

placement within the digital twin paradigm. The

sensor placement problem is formulated as a

Markov decision process (MDP), enabling the

training and deployment of an agent capable of

dynamically repositioning sensors in response to

the evolving conditions of the physical structure as

represented by the digital twin. This ensures that the

digital twin maintains a highly representative and

reliable connection to its physical counterpart. The

proposed framework is validated through a series

of comprehensive case studies involving a cantilever

plate structure subjected to diverse conditions,
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including healthy and damaged conditions. The results demonstrate the capability of the DRL

agent to adaptively reposition sensors, improving the quality of data acquisition and hence

enhancing the overall accuracy of digital twins.

1. Introduction
The increasing complexity and multidisciplinary nature of engineering systems over the years

has continuously motivated the development of new methods for analysis, monitoring and

optimization. This increase has led to the emergence of digital technologies such as digital

twins—a virtual replica of a physical asset that enables a bidirectional coupling between digital

and physical spaces [1]. The digital twin paradigm provides opportunities across different

engineering disciplines, including technical risk reduction and reduced cost of experiments in

digital engineering, enhanced first-time yield and product optimization in manufacturing, and

improved system capability and operational availability in operation engineering [2]. In other

fields like precision medicine, digital twins are utilized for patient-personalized medical care [3]

and in geophysical science for estimation of ice sheet flow model parameters [4]. Digital twin

systems are built from the integration of models and data using sophisticated algorithms, expert

know-how and digital connectivity, presenting significant predictive capability when compared

to current technologies [5]. Within engineering systems, this integration involves the combination

of physics-based and data-driven models for improved reliability of predictive results. Critical

aspects such as continual validation and updating ensure that the virtual twin maintains a

good representation of the physical system. To achieve this representation, digital twin systems

assimilate streams of data from the physical asset in real or near real-time.

While the decreasing cost of sensors and enhanced connectivity has made available a large

amount of data, the quality of data assimilated by the digital twin is a key determinant of

its predictive accuracy. Given this dependence, data used in the digital twin update process

are expected to contain relevant patterns of interest, be characterized by low noise levels and

reproducible under the same circumstances [6]. To ensure the virtual representation is tailored to

the behaviour of its physical counterpart, a critical part of the virtual-to-physical feedback flow of

a digital twin is a dynamic data acquisition process. In scenarios where data are scarce, methods

such as active learning and reinforcement learning can guide the collection of additional data that

is most relevant to the digital twin’s objectives [7].

This work, therefore, presents a novel approach for the dynamic data acquisition process of

digital twins using a sensor steering methodology based on deep reinforcement learning (DRL).

Our proposed framework learns a sensor steering policy that is deployed online within the virtual

space and decides on data acquisition strategies, particularly sensor location, to maximize the

information content of acquired data. This approach extends the adaptability of digital twins to

the changing behaviours of the physical asset [7].

This paper is organized as follows: in §2, we present a review of previous related

methodologies of sensor placement and their respective limitations within the digital twin

paradigm. In §3, the problem definition and mathematical abstractions via DRL are provided.

In §4, we establish how the proposed methodology integrates into the digital twin paradigm. In

§5, we present the results of the proposed strategy when applied to a cantilever plate structure.

Finally, in §6, we summarize our main contributions, including limitations and future directions.

2. Background
The problem of optimal sensor placement (OSP) has been well researched across multiple studies

within structural dynamics [8,9]. The key aspects of OSP research are the evaluation criteria and

optimization algorithms [10]. The evaluation criteria align with specific monitoring objectives

and effectively reflect the quality of the sensor placement solution, and the iterative search for
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Figure 1. The digital twin life cycle that involves continual updating and validation to maintain accuracy in prediction and

decision support.

optimal solutions is largely influenced by the selected criteria’s structure, which significantly

affects computational efficiency [10]. Different evaluation criteria have been extensively explored,

some of which aim to optimize a prespecified objective, such as maximizing a characteristic

vibration signal, typically kinetic energy, which has been found to yield suboptimal results

owing to its independence on the parameters being estimated [11], modal kinetic energy [12,13]

and driving point residues [14,15]. Other criteria are based on maximizing modal identification

metrics, like modal assurance criteria [16] and singular value decomposition ratio [17], as well

as information-based criteria such as information entropy [18] and mutual information [19].

A summary of these criteria is presented in [10] with their respective merits and demerits.

The optimization algorithm, on the other hand, is the computational strategy adopted to either

minimize or maximize the selected evaluation criteria, which is usually iterative. A number of

optimization algorithms have also been explored. Some of these are evolutionary algorithms,

notably genetic algorithms, particle swarm optimization and simulated annealing [9]. Other

heuristic algorithms such as the forward and backward sequential sensor placement have also

been successfully applied to obtain optimal locations [20]. Recent research has also explored data-

driven approaches based on DRL within an optimization formulation to search the placement

space for optimal location. DRL was applied in [21] to find the optimal location of two sensors in

a base-isolated system with five degrees of freedom (DOFs) using a value-based deep Q-Network

agent.

Within the digital twin paradigm, where data assimilation and continuous updating are

required, acquiring high-quality data is essential to ensure the digital twin maintains an

accurate representation of the physical asset [5]. An essential stage of the digital twin life

cycle is continuous validation against operational data, which ensures accuracy in prediction

and decision support. This process is highly dependent on the data acquired at every stage

of the operational lifespan of the physical asset (figure 1). While existing sensor placement

strategies are suitable for traditional structural monitoring operations and focus on finding a

single optimal solution that remains fixed throughout the entire lifespan of the structure, the

digital twin framework typically requires an adaptive approach. This approach must consider

the changing dynamic behaviour of the physical structure and align sensor locations to guarantee

the continuous acquisition of high-quality data. This adaptive sensing strategy was researched in

[22], which presented an interpretable approach based on an optimal decision tree. The authors

proposed a sensor scheduling methodology that was applied on a mathematical abstraction of an

unmanned aerial vehicle digital twin based on a model library of damages [23]. However, this

strategy assumes that the damage states of the structure are known ab initio and, therefore, has

a distribution of sensors across the wing of the unmanned aerial vehicle, which results in the

deployment of a significant number of sensors.

In this study, we shift from a sensor scheduling approach to a sensor steering approach as

shown in figure 2 for the example of a rectangular plate. Sensor steering involves a virtual-

to-physical change [2], which offers significant benefits for monitoring structures and further

enhancing control. Unlike sensor scheduling, which relies on pre-mounted sensors, sensor

steering dynamically adjusts sensor positions based on real-time or near real-time data and

evolving conditions of the physical asset. This approach ensures that the digital twin continuously

receives the most relevant data. The enhanced methodology provides a robust framework for
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Figure2. Evolutionof sensor placement strategies for theexampleof a rectangular plate showing (a) agrid of all possible sensor

candidate locations, (b) fixed sensing strategy—sensor locations are predefined and remain fixed throughout the structure’s

lifespan, (c) sensor scheduling strategy—sensor locations are predefined and queried at different times and (d) sensor steering

strategy—sensors are adapted to new locations of interest across the lifecycle of the structure.

adaptive sensor placement within the digital twin paradigm, ensuring that the digital twin

remains an accurate and reliable representation of the physical asset throughout its operational

lifespan.

Our contribution, therefore, differs from previous work in three aspects:

— While previous work presented above is either fixed or scheduling strategies, ours is an

adaptive steering strategy that does not involve computing the model’s time response for

training data.

— Although reinforcement learning (RL) has been explored previously within an

optimization setting, we follow a policy-based approach that is suitable for online

decision processes such as digital twins and other data-driven models.

— Our strategy employs a distributional RL framework, presenting opportunities for

placement decisions based not only on the expected return but also on alternative metrics

such as variance and conditional value at risk of the return distribution.

3. Problem formulation
The primary objective of this study is to develop a sensor steering strategy that dynamically

adapts the location of sensors on a structure in response to changing conditions. For this, we

adopt an agent-based approach where we learn how to act (change the sensor position) given

the current state of the physical asset as represented by the digital twin. This section presents

a mathematical formulation of the problem using the Markov decision process (MDP) and its

implementation with DRL.
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Figure 3. Graphical model of dynamic decision interaction between physical and digital space showing sensor steering

information exchange.

(a) Markov decision process formulation

The sensor steering problem can be formulated as a sequential decision-making process, where

the goal is to determine the optimal sensor configuration at each time step. This involves deciding

which sensors to move and in which direction, based on the current state of the digital twin. At

each step, the sensor configuration is dependent only on the selected sensor and the steering

direction, which can be modelled with the MDP formulation defined by the tuple 〈S,A,P ,R, γ 〉,
where

— s ∈ S is the set of states representing the possible sensor configurations;

— a ∈A is the set of actions containing all possible sensor motion;

— P : p(s′|s, a) := Pr{St+1 = s′|St = s, At = a} is the state transition probability matrix,

representing the dynamics of the virtual environment;

— R : R(s, a) is the reward function, which quantifies the quality of the sensor configuration;

and

— γ ∈ [0, 1] is the discount factor, which determines the importance of the final sensor

location rewards.

The problem also naturally satisfies the Markov assumption, denoted as

Pr{St+1 = s′|St = s, At = a} = Pr{St+1 = s′|St = st,t−1,...,0, At = a}, (3.1)

where st,t−1,...,0 is the state trajectory history. A graphical model of the process similar to that

developed by Tezzele et al. [24] is shown in figure 3. The graphical model shows the physical-to-

virtual and virtual-to-physical data and information interaction.

(i) Action space

A multidiscrete action space [25] is used in the form of a vector of discrete numbers with length

equal to two actions: (i) selected sensor p ∈ P bounded by the maximum number of sensors

specified in the environment set-up; (ii) steering direction g ∈ G bounded by the motion directions

(g0 = left, g1 = right, g2 = up and g3 = down). Actions are sampled from a space of R
P×G and

executed in the environment. A third action which encoded the number of steps to take in a

specific direction was originally considered, but this significantly increased the dimension of the
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action space, which reduced the efficiency of learning and hence was not used in this study. The

action space is further reduced to a discrete action to enable the use of a value-based learning

algorithm. Therefore, a typical action a = 1 is interpreted within the environment as [0, 1] which

means move sensor p0 one step in the right direction g1.

(ii) State space

The state is defined by a multi-binary space [25] of dimension B
n∗

where B = {0, 1} and n∗ is the

number of mesh nodes in the pre-specified placement region of the discretized model. The space

is represented by a vector with length n∗. Nodes represent possible sensor candidate positions

and are encoded with ones when instrumented with a sensor and zeros otherwise. Each sensor

position combination represents a state of the environment.

(b) Reward function

The sensor steering problem is fundamentally built on an OSP formulation, which is in itself

a combinatorial problem that involves the search for u candidate positions that maximize a

specified objective function given v possible positions, where u < v. The space of possible sensor

combinations is then given as vCu, which scales up significantly with the size and complexity of

the structure. Unlike OSP, which involves running the underlying optimization once to produce

an optimal combination result, the sensor steering process is a learning problem that results

in a policy and therefore is more computationally intensive, ideally requiring a fast, easy-to-

compute objective function. Given the nature of the learning problem, an information-theoretic

objective function satisfies our learning requirement, particularly the Fisher information matrix

(FIM) metric.

(i) Information theoretic reward

The learning goal, by extension, is to acquire highly informative data, which makes an

information entropy reward function suitable. Information entropy serves as a quantitative

measure of probabilistic uncertainty in the estimated model parameter given a data stream and

provides a basis for determining sensor layouts that minimize this uncertainty [18].

Following the formulation presented in [20], consider a structural model M(θ ) ∈M

parameterized by a vector θ ∈ R
Nθ , where θ characterizes either the dynamic structural behaviour

or response and M is the set of models that constitute the digital twin and, consequently, the RL

environment. The structural response measured at Nst DOFs on the structure is given as y ∈ R
Nst

and model (M(θ )) response predicted at Nmod DOFs is given as x(θ) ∈ R
Nmod . The relation between

y and x(θ ) satisfies

y = Lx(θ) + e(θ ), (3.2)

where x(θ ) represents the displacement, velocity or acceleration response of the model and e(θ )

accounts for prediction errors, including both model and measurement errors. The matrix L is a

binary observation matrix that specifies the DOFs monitored by the sensors. In this context, L is

considered a one-hot encoding of the state vector s, which defines the monitored DOFs associated

with the response x(θ ). Based on Bayesian statistics, under a Gaussian likelihood assumption

the probability density function of θ , given a set of measured data D ⊃ {yk ∈ y | k = 1, . . . , n}, is

expressed as

p(θ | Σ, D) = c
1

(
√

2π )n
√

det(Σ)
exp

[

−
nNst

2
J(θ ; Σ, D)

]

p(θ ), (3.3)

where p(θ ) is the prior distribution of θ , c is the marginal proportionality constant and J(θ ; D, Σ)

quantifies the distance between measured and model-predicted response and is given as

J(θ ; Σ, D) =
1

nNst

n
∑

k=1

[yk − Lxk(θ )]⊤Σ
−1[yk − Lxk(θ )], (3.4)
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and Σ ∈ R
Nmod×Nmod is the covariance matrix of the prediction error e(θ ) modelled as a Gaussian

random vector with zero mean.

The posterior distribution provides an estimate of the uncertainty in the model parameters, θ

given the information content in the acquired data; therefore, its information entropy provides a

unique scalar measure of this uncertainty and is defined by

h(L; Σ, D) = Eθ [− ln p(θ | Σ, D)] = −
∫

ln p(θ | Σ, D)p(θ | Σ, D) dθ . (3.5)

Given a sufficiently large amount of data, (n → ∞) [26] equation (3.5) can be replaced by an

asymptotic approximation. The approximate information entropy is defined as

h(L; Σ, D) ≃ H(L; θ , Σ) =
1

2
Nθ ln(2π ) −

1

2
ln[det Q(L; θ , Σ)], (3.6)

where Q(L; θ , Σ) is a Nst × Nst semi-positive definite matrix known as the FIM which contains

information about the uncertainty in the estimate of parameters θ given the measured data from

all monitored positions specified in L and is asymptotically approximated by

Q(L; θ , Σ) =
n

∑

t=1

(L∇θ xt(θ ))T(LΣLT)−1(L∇θ xt(θ)), (3.7)

in which ∇θ xt(θ ) is the gradient of the model response with respect to its parameters θ .

In modal analysis, the response vector x(θ ) can be expressed as a linear combination of the

mode shape, x(θ ) = Φθ , where θ = ζ ∈ R
m(m ≦ Nmod) is the modal coordinate vector and Φ ∈

R
Nmod×m is the mode shape matrix. Therefore, steering sensors to positions where the covariance

of the estimated ζ is minimal maximizes the information content of the measured responses. The

gradient in equation (3.7) is then given as ∇θ xt(θ) = Φ, and substituting back yields

Q(L; θ , Σ) ≡ Q(L, Σ) = (LΦ)T(LΣLT)−1(LΦ), (3.8)

as presented in [20]. Equation (3.8) shows, therefore, that the FIM is only dependent on the

observation matrix L, the mode shape Φ and the covariance matrix Σ. Note that L is a non-square

matrix, which prevents the trivial simplification of equation (3.8).

(ii) Spatial correlation of prediction error

The spatial correlation of the prediction error is essential for the formulation of the sensor

configuration reward at each learning step, as it enforces a minimum distance between sensors

within the three-dimensional space. As previously established, the prediction error e(θ ) is

evaluated as the sum of the model and measurement error, and if independence is assumed,

Σ takes the form

Σ = Σmea + Σmod, (3.9)

where Σmea represents the measurement error covariance and Σmod accounts for the model

error covariance. It is reasonable to assume measurement [20] errors are location-independent,

resulting in a diagonal covariance matrix Σmea = c2I, where c is a variance constant and I is an

identity matrix. In contrast, model errors often exhibit spatial correlation between neighbouring

locations owing to underlying model dynamics, requiring a non-diagonal covariance matrix to

capture these dependencies. The model error covariance can then be expressed as an exponential

function given as

Σmod,ij =
√

ΣiiΣjj exp

(

−
δij

δ

)

, (3.10)

where the spatial distance between DOFs i and j, denoted as δij, is used to characterize the spatial

correlation of signals, the parameter δ, known as the correlation length, quantifies the extent of

spatial correlation and the auto-correlation terms Σii and Σjj are assumed to be equal to one,

representing perfect correlation at similar locations. The cross-correlation term Σij spans from zero

to one, where Σij = 1, indicates perfect spatial correlation between sensors, and when Σij → 0, the
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Figure 4. Sensor configurations score for the second torsional mode shape of a clamped cantilever structure showing (a)

four sensors with an efficient spatial distribution given a high score, (b) reduced sensor configuration score owing to two

close sensors, (c) further reduction in sensor configuration score resulting from two pairs of close sensors and (d) poor spatial

distribution of sensors with low configuration score. The reward function takes into consideration the distance between sensors

and penalizes configurations with low spatial distribution.

correlation decreases as the distance δij between sensors increases. This relationship reflects the

diminishing spatial correlation with increasing sensor separation.

However, equation (3.10) has been reported to result in suboptimal reward owing to boundary

case placement preference [27]. To address this, we rely on a correlation function [28], such that

for the same DOFs i, j, the model error covariance is expressed as

Σij = exp

(

−
δij

δ

)

ψ⊤
i ψ j

NM
, (3.11)

where ψ i = ψk,i | k = 1, . . . , K and ψ j = ψk,j | k = 1, . . . , K are evaluated as

ψk,i =
|φk,i|

max(|φk,i|, |φk,j|)
and ψk,j =

|φk,j|
max(|φk,i|, |φk,j|)

, (3.12)

and δ is defined as the ratio of the greatest distance across all DOFs to the total number of sensors.

The terms φk,i and φk,j are the mode shapes at positions i and j for mode k, respectively.

The terms ψk,i, ψk,j : R → [0, 1] are set to unity when the mode shape component for i and j is

zero, indicating full correlation. The product ψ⊤
i ψ j : R → [0, K] provides a mode-shape-dependent

weighting on equation (3.10) and Σii is assumed to be unity (self-correlation). The robustness of

this spatial correlation function is shown graphically in figure 4.

Equation (3.6) shows that minimizing the information entropy is equivalent to minimizing the

det(Q(L, Σ)); here, we exploit the semi-positive-definite structure of Q(L, Σ) and instead compute

the product of the squares of singular values of the Cholesky factorized Q(L, Σ) equation [28]. The

immediate reward R is evaluated as the difference between consecutive sensor configurations,

which we refer to as the score in subsequent sections of this paper:

R := det(Q(L’, Σ))current − det(Q(L, Σ))previous

=

⎡

⎣

Nmod
∏

i=1

σ 2
i

⎤

⎦

current

−

⎡

⎣

Nmod
∏

i=1

σ 2
i

⎤

⎦

previous

,

where σi is the singular value. The agent receives a positive reward if a change in the position of a

sensor within the current configuration results in an increase in the determinant of FIM compared

to the previous configuration. The spatial correlation component of the reward function penalizes

configurations in which sensors are positioned in close proximity. In cases where two or more

sensors occupy the same node, a reward of negative one is assigned, which is substantial relative

to the maximum achievable reward within an episode. This mechanism encourages spatially

distributed sensor placements and effectively prevents sensor collisions during operation.
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(iii) Model dynamics and discounting factor

The model dynamics, also known as the transition probability, defines the likelihood of

transitioning from one state to another given a specific action. In the context of the sensor steering

problem, the model dynamics is deterministic. This means that given an action a and a state s, the

probability of transitioning to a new state s′ is 1. For example, if a sensor is moved in a specific

direction, the new configuration of the sensors is determined with certainty. At the boundaries of

the placement region, the probability of taking an action that moves a sensor outside the region is

0, and the state s remains unchanged.

The discounting factor γ determines the importance of future rewards relative to immediate

rewards. A discount factor close to 1 implies that future rewards are nearly as important as

immediate rewards, encouraging the agent to consider long-term benefits. Conversely, a discount

factor close to 0 places more emphasis on immediate rewards, potentially leading to shortsighted

decisions. In the context of the sensor steering problem, the discounting factor helps balance

the trade-off between immediate improvements in a single sensor placement and the long-term

goal of optimizing the overall sensor configuration. By appropriately tuning the discount factor,

whether through optimization or heuristics, the agent can be directed to make decisions that

achieve the optimal final configuration.

(c) Reinforcement learning

Reinforcement learning is based on an MDP formulation and involves having an agent interact

with an environment to learn a policy which maximizes a specified reward [29]. The sensor

steering problem can be viewed as a sequential decision process that involves decisions made

by an agent πt(a, s) : Pr{At = a|St = s} about where to move the sensors given the current state of

the digital twin. For a robust digital twin framework, it is valuable to make these decisions with

a consideration of uncertainty or some measure of risk rather than just expectations. A natural

algorithm choice that presents these features is a value-based distributional RL [30]. Here the

aleatoric (intrinsic) uncertainty owing to the stochasticity of the policy and environment is

modelled by the return distribution. More precisely, we utilize the deep Q-network algorithm

called Rainbow [31] which combines significant algorithmic improvements of the original deep

Q-network. Rainbow is formulated based on an equivalent distributional Bellman equation

given as

Z(s, a)
D= R(s, a) + γ Z(S′, A′), (3.13)

where Z(s, a) is the return distribution whose expectation is the value function Q(s, a) which is not

related to equation (3.8) and is given as

Q(s, a) := EZ(s, a) = E

[

T
∑

t=0

γ tR(s, a)

]

, (3.14)

where R is a random variable representing the reward. The learning involves minimizing the

Kullback–Leibler divergence between the online distribution Zt and the target distribution Z
(q)
t ,

given as

DKL(ΨzZ
(q)
t ||Zt), (3.15)

where Ψz is the projection onto Z since the online and target distributions have disjointed support.

The return distribution is parameterized by a categorical distribution over a fixed number of

points called atoms, which are equidistant and bound by [Vmin, Vmax] representing the canonical

returns.

4. Proposed framework
This section describes how the proposed strategy fits into the digital twin paradigm. The

learning environment is considered an abstraction of the virtual environment defined by the
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Figure 5. Graphical representation of interaction between physical and digital space. The red cycle indicates the virtual-to-

physical and physical-to-virtual interaction; the black cycle shows the interaction between the virtual and RL environments

and the blue cycle is the agent–environment interaction.

current structural condition, mesh information, sensor details and mode shape as shown in

figure 5. With these data, a custom RL environment is set up using the OpenAI Gymnasium

environment framework [25]. An optimal policy is learnt by steering all available sensors within

the environment to explore various sensor placement configurations and thereby find the shortest

path to the optimal positions. At each environment initialization (reset), all available sensors

are evenly distributed along the longitudinal line of symmetry of the structure, representing

an heuristic configuration upon which the agent improves (see figure 5). The trained agent is

deployed to the virtual space, where it adapts the position of the sensors given a known virtual

environment state, and finally, this information is made available to the physical space.

In the physical space, a typical sensor steering step involves sensors that are capable of moving

along tracks, such as rails. Given information from the digital twin, these sensors are dynamically

repositioned along the rails to new positions of interest. One notable possible application of this

approach is in the monitoring of large linear structures such as bridges. By installing rails along

the length of the bridge, sensors could be systematically steered to various locations as needed.

This strategy not only optimizes data collection but also results in a significant reduction in the

number of installed sensors. Instead of deploying a large number of fixed sensors across the entire

structure, a smaller set of mobile sensors could cover multiple points of interest, thereby reducing

costs and simplifying maintenance.

(a) Implementation details

This paper focuses on the sensor steering strategy, assuming that an instance of the digital twin

with a good representation of the physical asset is available. Therefore, we do not include a

continuous validation and updating process. The physical structure is a steel cantilever plate

with the following dimensions: 447 mm in length, 76.2 mm in width and 3 mm in thickness. The

plate is clamped at one end at a depth of 24 mm from the end. A finite element model of the

physical structure with an element size of 5 mm and similar boundary conditions is constructed,

and the computed modal assurance criterion (MAC) is shown in figure 5 (top left). The MAC
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demonstrates a high correlation in the mode shape, which is crucial for computing the learning

reward. The MAC values also validate that our simulation model accurately represents the

physical structure. To build the virtual environment, the simulation model is scripted into a

sequence of commands using the Ansys Pythonic API (PyMechanical). Data from the virtual

space are extracted and used to define the custom RL environment. Figure 2 shows the RL

environment search region defined by the candidate sensor location. Different options were

considered for handling edge location actions. Initially, we defined agent actions outside the

search region as episode termination actions, which resulted in resetting the environment.

However, this set-up proved to be inefficient and led to short learning episodes. Subsequently, we

defined actions outside the search region as null actions, meaning the next state is the same as the

previous state. This approach proved to be effective for the learning process. Finally, the Rainbow

agent is implemented using the Tianshou Python package [32]. The environment configuration

scores are normalized to a maximum of 1 and δ = 0.429 81, which is the longest length across the

cantilever plate placement region. The DRL agent hyperparameters are similar to values in Hessel

et al. [31] with the exception of γ = 0.9 and target network period = 3200, while the learning

rate, priority exponent, and multi-step are case specific. For the exploration strategy, we adopt

an ǫ−greedy strategy but anneal ǫ to 0.01 in the first 250 000 steps.

5. Results
In this section, we demonstrate the effectiveness of our proposed framework, described in §3,

when applied to a cantilever plate structure. We present two case studies: the first focuses on

sensor steering in a structural damage severity setting (severity of the number and locations of

damage), and the second on damage localization. Considering the complexity of the placement

region as indicated by 1462 candidate sensor locations and their combinations given the number

of deployed sensors, we focus on the first three vibration modes, a maximum of four deployed

sensors and a library of three damage conditions similar to the model library presented in [33] in

both case studies to guarantee the tractability of the problem. Damage is simulated by the addition

of point masses, which result in minimal changes in the first mode shape and corresponding

significant changes in higher mode shapes. These case studies illustrate the practical application

of our framework and its potential to enhance the accuracy and reliability of digital twins in

dynamic environments.

(a) Adapting based on damage severities

Our first consideration is a damage severity problem. The goal, therefore, is to learn a policy

capable of adapting sensor positions with increasing degrees of damage. We consider two

different damage severities, in addition to the healthy condition. The healthy condition represents

the baseline state of the cantilever plate without any structural issues. The two damage conditions

simulate different scenarios where the plate experiences structural damage. These conditions are

illustrated in figure 6.

Set-up:

— Healthy condition. The cantilever plate is in its original, undamaged state (figure 6a).

— Damage severity 1. A point mass of 0.7 kg simulates a moderate level of damage at the

edge of the plate (figure 6b).

— Damage severity 2. Two point masses of 0.7 kg each, which simulate an increased level of

damage on the same edge side of the plate (figure 6c).

For this case study, the environment is initialized with three sensors as described in §4. The

agent is trained using the DRL agent with case-specific hyperparameters of learning rate =
6.25 × 10−5, priority exponent = 0.5, multi-step = 3 and a fully connected multi-layer perceptron

(MLP) with two layers consisting of 256 units and 128 units. To demonstrate the condition-specific
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Figure 6. The first three mode shapes of different structural conditions of a cantilever plate showing (a) the healthy condition,

(b) damage condition 1 simulated by a point mass of 0.7 kg and (c) damage condition 2 simulated by two point masses of 0.7 Kg

on the same edge.

Figure 7. Agent condition-specific evaluation showing scores for healthy (top), damage severity 1 (middle) and damage

severity 2 (bottom). The agent takes 0.004 s to execute each step within the environment.

performance, figure 7 presents a comparative analysis of the trained agent against an effective

independence methodology [27] with the same error covariance matrix and a random agent as

baselines. The results indicate that the trained agent significantly outperforms both baselines

within each condition. The trained agent achieves a score above 0.85 in both the healthy and

damage severity 2 conditions within 120 and 105 steps, respectively. In the case of damage severity

1, it reaches a score of approximately 0.79, still exceeding the performance of the baselines.

To achieve this performance, we further describe the agent training approach. Figure 8 shows

the agent’s mean episode reward performance averaged over three test episodes per epoch.
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Figure 8. Mean episode reward averaged over three test episodes for healthy and damage severity 1 and 2 with standard

deviation (shaded region). Curve is smoothed with a moving average of 10 points.

This indicates the agent’s capacity to learn an optimal sensor steering policy across all three

structural conditions. The shaded region represents the agent–environment interaction standard

deviation. Each training epoch consists of 10 000 steps, and each environment episode terminates

after 1000 steps. After each environment termination, a random structural condition is sampled

for the next episode to enable the policy to generalize effectively to all structural conditions.

This approach is similar to domain randomization technique for sim-to-real problems within

the robotic community [34]. The final score performance, which is the final score at the end of

each episode averaged over test episodes, is shown in figure 9. The final score started with a low

value at the early stages of training and increased to a maximum of 0.8039, demonstrating its

effectiveness in accurately repositioning sensors.

Finally, we also show that the agent learns the optimum path to the position that maximizes the

configuration score, as described in §3b. Within a test episode, the agent first steers the sensors

to their optimal positions and then maintains this final configuration for the remaining steps.

Consequently, a typical episode score trajectory is dominated by the final score, making the plot

of the sum of a test trajectory score approximately similar to the final score but scaled by the

length of the test episode. This proximity is desirable and indicates that in each episode, only a

few initial steps are taken by the agent to reach the optimal positions. This similarity property is

shown in figure 9.

(b) Adapting to different damage locations

In this case study, we demonstrate the efficacy of the proposed framework in adapting sensors

to damage at different locations of a structure. Similar to the previous case, we consider two

different damage conditions, in addition to the healthy condition. The goal, therefore, is to learn

a policy capable of adapting sensor positions given that damage at specific locations have altered

the structure’s dynamic behaviour (see figure 10).

To provide a comprehensive analysis, we established the following conditions for the

cantilever plate structure:

— Healthy condition (figure 10a).

— Damage conditions 1 and 2. A point mass of 0.2 kg simulates damage at the two vertices

locations of the plate, respectively (figure 10b,c).
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Figure 9. Score metric averaged over three test episodes per epoch for healthy and damage severity 1 and 2: episode score

sum (red) and episode final score (blue). Similarity of plots shows the agent’s performance in following the optimal path to the

optimal location. Curve is smoothed with a moving average of 10 points.

Figure 10. The first threemode shapes of different structural conditions of a cantilever plate showing (a) the healthy condition,

(b) damage condition 1 simulated by a point mass of 0.2 kg at the right-hand vertex and (c) damage condition 2 simulated by a

point mass of 0.2 kg at the left-hand vertex.

In this case, we use four sensors, and the agent is hyperparameterized with a learning rate of

1.25 × 10−4, a priority exponent of 0.7, multi-step parameter of 5 and MLP with two layers of 128

units each. The agent is then trained using a similar approach as the previous case but for 200

epochs to ensure comprehensive learning and generalization. We now evaluate the condition-

specific performance of the agent. Figure 11 shows the performance compared to baselines

described in §5b. The trained agent outperforms the baselines and finds the optimal location

after fewer than 150 steps in the healthy condition and damages location 1 condition. In the final

condition (damage location 2), the agent achieves suboptimal results of 0.4, although still better

than the baselines. The agent’s action trajectory in this condition is visualized in figure 12, and
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Figure 11. Agent condition-specific evaluation showing scores for healthy (top), damage location 1 (middle) and damage

location 2 (bottom). The agent takes 0.004 s to execute each step within the environment.

Figure 12. Trained agent adapts sensor configuration for damage location 2 condition showing agents action path from (a)

initialization and after (b) 35 steps, (c) 70 steps and (d) 105 steps. The agent performance in this condition is attributed to the

first sensor being fixed throughout the agent training process, as depicted by the final sensor positions (red marker).

it can be seen that the first sensor remains unchanged, indicating that the agent during training

learned nothing about it. This can be attributed to the increase in learning complexity introduced

by one extra sensor.

During the training process, the agent’s performance was also evaluated based on several

metrics. The primary performance metric (mean episode reward), illustrated in figure 13, shows

that the agent achieved a maximum mean reward of 0.9982 which was reached at the final training

epoch, indicating consistent learning outcomes. In addition to the reward performance, we also

assessed the agent’s performance score and the trajectory towards optimal sensor positioning. As

shown in figure 14, the agent achieved a maximum score of 0.9839, demonstrating its effectiveness

in accurately repositioning sensors. Figure 14 also shows a degradation in the performance of the

agent between epochs 100 and 125; from our observation, this is due to increased sampling of

the damage severity 2 condition during environmental initialization, which results in suboptimal

performance. The path to optimal sensor position performance is detailed in figure 14, which, as

explained previously, is similar to the final score plot and whose similarity indicates optimal path

identification performance.
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Figure 13. Mean episode reward averaged over three test episodes for healthy and damage locations 1 and 2 with standard

deviation (shaded region). Curve is smoothed with a moving average of 10 points.

Figure 14. Score metric averaged over three test episodes per epoch for healthy and damage locations 1 and 2: episode score

sum (red) and episode final score (blue). Similarity of plot shows the agent’s performance in following the optimal path to the

optimal location. Curve is smoothed with a moving average of 10 points.

These cases demonstrate the practical application of the proposed framework in adapting

the sensor locations to structural damage. The results serve as a benchmark for evaluating

strategies aimed at dynamically adjusting sensor positions based on real-time feedback for timely

identification and assessment of potential issues.

6. Conclusion
In this study, we have presented a novel approach for dynamic data acquisition in digital twins

by employing adaptive sensor steering strategies based on DRL. This work is a first step towards

adaptive sensing for improved structural monitoring. The proposed framework is motivated

by the need for continuous assimilation of informative data relevant to the digital twin at
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various stages of its operational lifespan, a requirement for which existing OSP techniques are

not designed. The problem is formulated as an MDP and implemented with a value-based

distributional RL agent. We present a new custom reinforcement environment architecture with

different damage scenarios extracted from the digital twin, and an agent is trained to act optimally

by adapting the sensor positions when an observed damage condition is encountered. The trained

agent is deployed in the digital twin to guide data acquisition. The proposed framework was

validated through two cases on a cantilever plate structure under various conditions, including

healthy and damaged conditions. Our results demonstrate the capability of the DRL-based policy

to adaptively reposition sensors, hence improving the accuracy and reliability of the digital twin’s

representations. Both cases assume that an updated digital twin of the physical asset is available

and therefore ignore the continuous updating process, which is essential in practice and should

be integrated. The proposed framework can also be used for acquiring relevant data at the design

stage of a digital twin (see figure 1).

The proposed approach faces two key limitations: (i) the performance of the agent degrades

significantly with the increasing number of modes considered, sensors available, and damage

cases integrated. This is the curse of dimensionality. (ii) Similar to [22], we assume the damage

states are known and fixed, which is impractical in many applications. However, the proposed

methodology presents an opportunity to learn and interpolate between conditions seen during

training.

A key observation during this study is the sensitivity of agent performance to the exploration

strategy. Consequently, future work will focus on developing an exploration strategy specific to

the problem, which allows for expedited learning and improved performance at higher levels of

difficulty. Moreover, the decision-making process in the current study is based on the expectation

of the value distribution. Exploring the decision-making process using other metrics is an area of

future interest. In addition, future research will examine the kinematic effects of sensor mobility

on host structures, with the goal of developing optimized steering strategies that maximize

sensing capability while minimizing any adverse influence on the structural dynamics.
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