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1 Introduction

In the Standard Model (SM), fermions obtain their masses (mf ) via spontaneous symmetry
breaking as described by the Englert-Brout-Higgs mechanism [1–6]. The coupling between
the Higgs-boson and fermion fields is described by a Yukawa coupling gf =

√
2mf /v where

v = 246.22 GeV [7] is the vacuum expectation value of the Higgs field.
Since the top-quark mass is heavier than half the mass of the Higgs boson, the top Yukawa

coupling (gt) is the only fermion Yukawa coupling that cannot be measured directly from Higgs
boson decays. The most model-independent direct measurement uses the tt̄H process [8–10]
where the result depends on the total width of the Higgs boson. Complementary information
can be obtained from other processes, such as gg → H or H → γγ [9, 10] where the top
quarks appear in a loop, or from four-top-quark production [11, 12], where off-shell Higgs
bosons can be produced. In addition, virtual corrections involving Higgs bosons also have a
significant impact on the tt̄ production cross-section [13]. The numerically relevant corrections
include a Higgs boson exchange between any two top-quark lines. In case the Standard
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Figure 1. Example Feynman diagrams for (a) gg and (b) qq̄ tt̄ production with virtual Higgs
boson exchange.

Model holds, all measurements result in a coupling strength Yt (= gt/gSM
t )1 compatible with

unity. However, if physics beyond the SM exists, it could affect each of these measurements
differently, making them complementary.

Examples of Feynman diagrams for virtual Higgs-boson corrections to tt̄ production are
shown in figure 1. The corresponding amplitudes depend on Y 2

t and are sizeable mainly near
the tt̄ production threshold, where the top and anti-top quarks have a small relative velocity.
The largest sensitivity is therefore expected in this kinematic region. Interfering with the
Born level amplitudes, the corrections to the cross-section are also quadratic in Yt. One can
therefore extract Y 2

t from a measurement of the tt̄ production cross-section as a function of
the tt̄ invariant mass, mtt̄. The corrections also depend on the top quark scattering angle
in the tt̄ rest frame, cos θ∗, although this dependence is weak in the kinematic region most
relevant for the measurement. The method is insensitive to the sign of the Yukawa coupling.
Therefore Yt is always assumed to be |Yt| in this paper. While the sensitivity to Yt from
virtual corrections is not expected to match that of direct measurements, such as those from
tt̄H production [8–10], the approach remains highly valuable. As demonstrated in ref. [14],
contributions from new physics, such as a top-philic scalar, can modify the virtual corrections
in a way that mimics a deviation in Yt, potentially affecting indirect and direct extractions
differently. Similar models are tested by searches in four-top final states [15] and by searches
for new Higgs bosons decaying into tt̄ [16].

The CMS Collaboration already performed this analysis in the single lepton channel [17]
and in the dilepton channel [18], obtaining observed 95% confidence level upper limits on
Yt of 1.67 and 1.54, respectively.

In this paper, the first ATLAS measurement of Yt extracted from top-quark pair produc-
tion is presented. The measurement uses the ATLAS data at

√
s = 13 TeV with an integrated

luminosity of 140 fb−1. The single-lepton channel is analysed where the tt̄ invariant mass
can be fully reconstructed and the background is low. Electroweak (EW) corrections for
variable Yt are calculated in [13, 19, 20] and implemented in HATHOR [21], a program
that calculates the tt̄ cross-section at parton level in leading-order QCD. They are used to
reweight fully-simulated Monte Carlo (MC) events. The weighting is done as a function of
the initial-state parton flavour, the generated mtt̄ and cos θ∗. This allows to predict the mtt̄

1Yt is identical to the coupling strength modifier κt as defined e.g. in refs. [9, 10].

– 2 –



J
H
E
P
0
1
(
2
0
2
6
)
1
1
7

spectra as a function of Yt. The measured mtt̄ spectrum is then fitted in a profile likelihood fit,
using these predictions with Y 2

t as the parameter of interest, together with a set of nuisance
parameters representing the systematic uncertainties.

A brief description of the ATLAS detector is provided in section 2, followed by an overview
of the data and MC samples in section 3, with section 3.3 describing the electroweak corrections
applied in the analysis. Section 4 explains the event reconstruction and selection procedures,
including the estimate of the fake-lepton background. The systematic uncertainties are
discussed in section 5, and the fit strategy is outlined in section 6. Finally, the results are
presented in section 7, with conclusions summarised in section 8.

2 ATLAS detector

The ATLAS detector [22] at the Large Hadron Collider (LHC) [23] covers nearly the entire
solid angle around the collision point.2 It consists of an inner tracking detector surrounded
by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon
spectrometer incorporating three large superconducting air-core toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides
charged-particle tracking in the range |η| < 2.5. The high-granularity silicon pixel detector
covers the vertex region and typically provides four measurements per track, the first hit
generally being in the insertable B-layer (IBL) installed before Run 2 [24, 25]. It is followed
by the SemiConductor Tracker (SCT), which usually provides eight measurements per track.
These silicon detectors are complemented by the transition radiation tracker (TRT), which
enables radially extended track reconstruction up to |η| = 2.0. The TRT also provides
electron identification information based on the fraction of hits (typically 30 in total) above a
higher energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |η| < 4.9. Within the region
|η| < 3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity
lead/liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering
|η| < 1.8 to correct for energy loss in material upstream of the calorimeters. Hadronic
calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three barrel
structures within |η| < 1.7, and two copper/LAr hadronic endcap calorimeters. The solid
angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules
optimised for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking
chambers measuring the deflection of muons in a magnetic field generated by the supercon-
ducting air-core toroidal magnets. The field integral of the toroids ranges between 2.0 and
6.0 T m across most of the detector. Three layers of precision chambers, each consisting of
layers of monitored drift tubes, cover the region |η| < 2.7, complemented by cathode-strip

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the

centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of

the LHC ring, and the y-axis points upwards. Polar coordinates (r, ϕ) are used in the transverse plane, ϕ

being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as

η = − ln tan(θ/2) and is equal to the rapidity y = 1

2
ln

(

E+pz

E−pz

)

in the relativistic limit. Angular distance is

measured in units of ∆R ≡

√

(∆y)2 + (∆ϕ)2.
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chambers in the forward region, where the background is highest. The muon trigger system
covers the range |η| < 2.4 with resistive-plate chambers in the barrel, and thin-gap chambers
in the endcap regions.

The luminosity is measured mainly by the LUCID–2 [26] detector that records Cherenkov
light produced in the quartz windows of photomultipliers located close to the beampipe.

Events are selected by the first-level trigger system implemented in custom hardware,
followed by selections made by algorithms implemented in software in the high-level trigger [27].
The first-level trigger accepts events from the 40 MHz bunch crossings at a rate below 100 kHz,
which the high-level trigger further reduces in order to record complete events to disk at
about 1.25 kHz.

A software suite [28] is used in data simulation, in the reconstruction and analysis of
real and simulated data, in detector operations, and in the trigger and data acquisition
systems of the experiment.

3 Data and simulation samples

Proton-proton (pp) collisions at
√

s = 13 TeV collected in 2015–2018 by the ATLAS experiment
are analysed [29]. Only the events where all components of the ATLAS detector were fully
functional are selected, resulting in a total dataset corresponding to an integrated luminosity of
140 fb−1. Selected events are required to be triggered by one of the unprescaled single-lepton
triggers which are further described in section 4.2.

MC simulated event samples are used to estimate the signal and background contributions
containing prompt leptons. Backgrounds containing misidentified or non-prompt leptons
stemming e.g. from heavy-flavour decays are determined using data-driven approach as
detailed in section 4.4.

The ATLAS simulation infrastructure [30] is used for all the simulation samples, with
the detector response simulated using the GEANT [31] framework. For the estimate of
several signal modelling uncertainties, a fast simulation, which utilises parametrisations of
the hadronic showers in the EM and hadronic calorimeters to speed up the simulation [32],
is used. All simulation samples are processed with the same reconstruction software as
the data samples.

To account for additional pp interactions from the same or close-by bunch crossings
(pile-up), a set of minimum-bias interactions generated with Pythia 8.186 [33] using the
NNPDF2.3lo parton distribution function (PDF) set [34] with the A3 set of tuned parameters
(tune) [35] is superimposed to the hard scattering events. Furthermore, the simulated events
are reweighted according to the number of additional pp interactions per bunch crossing
to match the pile-up conditions of each dataset corresponding to the 2015–2018 years of
data-taking. Corrections are applied to simulated events to improve agreement between the
data and the simulation samples in the object identifications, efficiencies, energy scales, and
energy resolutions, as described in section 4.1.

Heavy-flavour decays are modelled with the EvtGen program [36] in all parton shower
generators, with the exception of the Sherpa [37] generator.

– 4 –
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3.1 Signal modelling

The nominal signal tt̄ MC sample is simulated using Powheg Box-v2 [38–40] which is
based on next-to-leading-order (NLO) QCD matrix element (ME) calculations. The calcu-
lation for the ME uses the NNPDF3.0nlo PDF set [41] with a top-quark mass (mt) of
172.5 GeV. The hdamp parameter that controls the emission of the first gluon is set to 1.5mt.
The renormalisation (µr) and factorisation (µf) scales are defined by the functional form
√

m2
t + p2

T,t, where pT,t is the transverse momentum of the top quark. The ME generator
is interfaced with Pythia 8.230 [42] which simulates parton shower (PS), fragmentation,
hadronisation, and the underlying event. The A14 tune [43] together with NNPDF2.3lo

PDF set is applied for Pythia 8 showering. The phard
T parameter which impacts the matching

of the ME to PS, is set to zero [44].
A number of signal modelling uncertainties are estimated using alternative MC samples.

To compare the effect of different PS and hadronisation modelling, a sample produced with
Powheg Box-v2 interfaced with Herwig 7.2.1 [45, 46] with the MMHT2014lo PDF set [47]
and the default set of tuned parameters, is used. The Powheg settings are the same as in
the nominal sample. For the estimate of the hdamp uncertainty, an alternative sample with
the same generator and settings as the nominal tt̄ sample and the hdamp parameter doubled
to 3mt, is used. Similarly, alternative samples based on the nominal sample with mt varied
to 172 GeV and 173 GeV, respectively, are used to estimate the impact of the assumption on
mt on the analysis. Finally, to estimate the uncertainty in the ME-to-PS matching, a MC
sample produced with the same generator and the same settings as the default tt̄ sample is
used, except for the phard

T parameter setting, which is set to phard
T = 1 [44]. The tt̄ production

threshold is potentially sensitive to the modelling of off-shell effects and top-quark decay.
To estimate the uncertainty in the modelling of these effects, an alternative sample based
on the nominal tt̄ sample, but with the MadSpin generator interfaced to Powheg Box-v2
to simulate the top-quark decay [48, 49], is used.

All tt̄ MC samples are normalised to next-to-next-to-leading-order (NNLO) cross-section
including the resummation of soft gluon emissions at next-to-next-to-leading-logarithmic
(NNLL) accuracy using Top++2.0 [50]. The resulting cross-section for the tt̄ process is
σtt̄ = 834+21

−30(scale) ± 21(PDF + αS) pb for mt = 172.5 GeV [51–56].
Additionally, a dedicated fixed-order NNLO QCD prediction [57, 58] is used to define

an uncertainty due to missing higher-order corrections. It is calculated using the MATRIX

tool [59–64], using the NNPDF3.0nnlo PDF set [41] and assuming mt = 172.5 GeV. The
functional form of the µr and µf scales is set to HT/4, where HT =

√

m2
t + p2

T,t +
√

m2
t + p2

T,t̄
,

based on recommendations in ref. [65]. The prediction is calculated in terms of a two-
dimensional distribution of mtt̄ and the cosine of the angle between the top-quark momentum
boosted to the tt̄ rest-frame and the momentum of the tt̄ system in the laboratory frame.
Subsequently, the nominal tt̄ MC sample is reweighted using this prediction to create a
systematically varied alternative sample.

3.2 Background modelling

In the tt̄ threshold region, the formation of a colour-singlet tt̄ quasi-bound state, commonly
referred to as the toponium, is expected, consistent with the recent CMS [66] observation

– 5 –
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indicating an excess in the tt̄ threshold region. The toponium contribution is described
using a simplified model [67, 68], as a pseudo-scalar s-channel resonance, since the dominant
contribution to the gg → tt̄ colour-singlet quasi-bound state comes from pseudo-scalar J = 0

states [69]. The width of the resonance is set to 2.8 GeV and the mass of the resonance
to 343 GeV, assuming that the toponium quasi-bound state has twice the mass of the top
quark minus the binding energy of approximately 2 GeV [69, 70]. The toponium events
are simulated using MadGraph 3.5.5 with the NNPDF3.0nlo PDF set, interfaced to
Pythia 8.3 [71] for PS and hadronisation modelling. At present, the impact of electroweak
corrections on the toponium is unknown and thus neglected. Therefore, the toponium
contribution is considered as a background process. It is normalised to a non-relativistic
perturbative QCD prediction of 6.43 pb [67, 70].

Single-top quark processes are split into s-channel, t-channel and tW -channel contri-
butions. They are simulated using the same setup as the nominal tt̄ sample, using the
five-flavour scheme in the PDF set, with the exception of the t-channel process, which is
generated using the four-flavour scheme. The overlap between tt̄ and single-top Wt final states
is removed using the diagram removal (DR) technique [72] and an additional sample using
diagram subtraction (DS) [72, 73] is used for the estimate of the corresponding modelling
uncertainty. The single-top samples are normalised to NNLO QCD predictions for the s- and
t-channels [74, 75] and to approximate N3LO QCD prediction for the tW channel [76]

Several background processes are simulated using different versions of the Sherpa [77]
generator, with the details outlined below. Sherpa includes both the ME, PS and hadronisa-
tion modelling. The matrix elements are computed using Comix [78] and OpenLoops [61].
The NNPDF3.0nlo PDF set is used with a dedicated tune provided by the Sherpa authors.
The ME is merged with the Sherpa PS using the MEPS@NLO prescription [79].

Events with a Z or W boson in association with additional jets are simulated with the
Sherpa 2.2.11 generator. The matrix elements for up to two additional partons are calculated
at NLO QCD precision, and at LO QCD for up to four additional partons. The samples
are normalised to the NNLO QCD prediction [80, 81].

Diboson (WW /WZ/ZZ) samples are simulated using Sherpa 2.2.1. The matrix elements
for up to one additional parton are calculated at NLO QCD precision, and at LO QCD
accuracy for up to three additional partons. The samples are normalised to the NLO QCD
theoretical cross-sections [82].

A minor contribution to the total background originates from boson-associated tt̄ produc-
tion. The production of tt̄Z events is modelled using the MadGraph5_aMC@NLO 2.3.3 [83]
generator at NLO with the NNPDF3.0nlo PDF set. The events are interfaced to
Pythia 8.210 using the A14 tune and the NNPDF2.3lo PDF set. The tt̄W process
is simulated using Sherpa 2.2.10 [77]. The matrix element is calculated at NLO QCD for up
to one additional parton and up to two additional partons at LO QCD. The production of tt̄H

events is modelled using the Powheg Box v2 [84] generator at NLO with the NNPDF3.0nlo

PDF set, interfaced to Pythia 8.230 using the A14 tune and the NNPDF2.3lo PDF set.
The samples corresponding to all three processes are normalised to the NLO QCD+EW
predictions [85].

– 6 –
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3.3 Electroweak corrections

To obtain the signal samples for different Yt values, a reweighting technique is used on the
nominal tt̄ sample, which is based on a leading-order calculation for the full electroweak
corrections where Yt is a free parameter.

The electroweak corrections with variable Yt as calculated in [13, 19, 20] and implemented
in HATHOR 2.1-b3 [21] are used. The program evaluates the leading-order electroweak
corrections to the Born level qq → tt̄ and gg → tt̄ cross-sections as a function of mtt̄ and
cos θ∗ assuming stable top quarks. More recent predictions for the electroweak corrections
exist, including additional amplitudes with the s-channel Higgs boson exchange diagrams [14],
which are not considered in the predictions obtained from HATHOR. These amplitudes
have a sizeable impact on CP-odd extensions of the Yukawa interaction. However, for the
measurement presented here, which assumes a CP-even Yt, their impact is negligible [14]. The
impact of a modified Yt on the tt̄ production cross-section is evaluated in two steps. HATHOR

predictions as functions of mtt̄ and cos θ∗ are first parameterised with smooth functions. These
are then used to compute event weights, defined as the ratio of predictions for a given Yt to
those without EW corrections applied. These weights are applied to the events generated
with the nominal Powheg+Pythia setup. The weights depend on the parton-level mtt̄

and cos θ∗, and initial-state parton flavour. This corresponds to the multiplicative approach
combining electroweak and QCD corrections. At

√
s = 13 TeV, about 2% of the Powheg

events originate from a qg or q̄g initial state. For them the EW corrections corresponding
to the gg initial state are used for reweighting. This is a valid approach as in the region
near the threshold, where the sensitivity is the largest, the correction depends very little on
the initial state. The top-quark mass is set to mt = 172.5 GeV, consistent with the signal
Monte Carlo samples used in the analysis. The weights are calculated as a function of Yt.
For gg initial states, in all Feynman diagrams containing virtual Higgs boson corrections,
the Higgs boson is connected to two top-quark lines. For qq̄ initial states, the same is true
for the numerically dominant diagrams. For this reason, the corrections are proportional
to Y 2

t . The Yt-dependent electroweak correction as a function of mtt̄ are shown in figure 2
for the quark-induced as well as for the gluon-induced processes.

4 Event reconstruction and selection

4.1 Object definitions

Events are required to have at least one reconstructed pp interaction vertex with a minimum of
two associated tracks with transverse momenta pT > 0.5 GeV. The primary vertex is defined
as the vertex with the highest sum of squared transverse momenta of associated tracks [86].

Electron candidates are reconstructed from energy deposits in the electromagnetic
calorimeter matched to a track in the ID [87]. The track is required to be matched to the
primary vertex, where the track longitudinal impact parameter z0, must satisfy |z0 sin θ| <

0.5 mm and the transverse impact parameter d0 and its uncertainty σ(d0) must satisfy
|d0/σ(d0)| < 5. Electron candidates are required to be within |η| < 2.47, excluding the
transition region between the barrel and the end-cap calorimeters, 1.37 < |η| < 1.52. They

– 7 –
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Figure 2. Ratio of the electroweak corrections (δσEW = σQCD+EW − σQCD) over the leading-order
QCD cross-section (σQCD) at parton level, as a function of mgen

tt̄
, the tt̄ mass calculated directly

from the top quark and top antiquark four-momenta at generator level, for different Yt values from
(a) quark-antiquark annihilation and (b) gluon-gluon fusion processes, calculated with HATHOR

2.1-b3 [21].

must satisfy pT > 25 GeV and the Tight likelihood identification criteria and Tight isolation
criteria [87].

Muon candidates are reconstructed by associating tracks in the ID with tracks or
track segments in the MS [88], refined through a global fit that uses hits from both sub-
detectors [89]. The track longitudinal and transverse impact parameters must satisfy the
requirements |z0 sin θ| < 0.5 mm and |d0/σ(d0)| < 3, respectively. Muon candidates must
satisfy pT > 25 GeV, |η| < 2.5 and the Medium identification and Tight isolation criteria [88].

Jets are reconstructed from particle-flow objects [90, 91] using the anti-kt algorithm [92, 93]
with a jet radius parameter R = 0.4. The jet energy scale (JES) is calibrated using both data
and simulation, as detailed in Reference [91]. Additionally, the jet energy resolution (JER) in
simulation is corrected to match the resolution observed in data [91]. Jets are required to
satisfy pT > 25 GeV and |η| < 2.5. To suppress jets originating from pile-up interactions, the
jet vertex tagger (JVT) multivariate likelihood [94] discriminant, using track-based variables,
is applied to jets satisfying pT < 60 GeV and |η| < 2.4, ensuring that the selected jets are
matched to the primary vertex. Jets originating from B-hadrons (b-jets) are identified using
the DL1r deep neural network algorithm [95], using a working point corresponding to a 77%
efficiency to correctly tag a b-jet in tt̄ events, providing rejection factors of approximately
6 and 134 for charm and light-flavoured jets, respectively. Correction factors are applied
to the simulated events to compensate for differences between data and simulation in the
b-tagging efficiency for b-, c- and light-flavoured jets.

The missing transverse energy, Emiss
T , is defined as the magnitude of the negative vectorial

sum of the transverse momenta of all calibrated electrons, muons and jets in the event. Tracks
that are not associated with any of the physics objects but originate from the primary vertex
are taken into account as a soft term [96].

– 8 –
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To avoid the double-counting of the same energy deposits in multiple objects due to
reconstruction ambiguities, an overlap removal procedure is applied. First, jets within
∆R < 0.2 of an electron are removed. Electrons within ∆R < 0.4 of a jet are removed. Jets
with less than three ID tracks within ∆R < 0.2 of a muon are removed to avoid rejecting
high-energy muons affected by calorimeter energy loss. Finally, muons within ∆R < 0.4

of remaining jets are removed.

4.2 Event selection

A number of event selection criteria are imposed to select events with a topology expected
for tt̄ production with a single prompt lepton in the final state.

The candidate events are required to have fired one of the single-electron or single-muon
triggers [97, 98] and to have at least one trigger-matched electron or muon with pT > 27 GeV,
ensuring that the employed triggers are fully efficient. For the 2015 data-taking period,
a leading-lepton cut of pT > 25 GeV is applied due to lower trigger thresholds. Events
with additional electrons or muons with pT > 25 GeV are rejected. At least four jets with
pT > 25 GeV are required, out of which at least two of the jets are required to be b-tagged.

The candidate events are further categorised based on the lepton flavour into two signal
regions (SRs): e+jets SR and µ+jets SR. To suppress background events containing a non-
prompt or a misidentified lepton, the following selection criteria are applied. Events in the
e+jets SR are required to satisfy Emiss

T > 30 GeV and the reconstructed W boson transverse
mass3 mT

W > 30 GeV. Events in the µ+jets SR are required to satisfy Emiss
T + mT

W > 60 GeV.
The split of events into separate e+jets and µ+jets SRs is performed to accurately capture
the impact and the correlations of systematic uncertainties impacting leptons, jets and signal
modelling. Due to the different event selections, these sources of uncertainty can impact
the two SRs differently.

Additionally, for the non-prompt and misidentified leptons background estimate, two
control regions (CRs), named fake-e CR and fake-µ CR, are defined by inverting the Emiss

T

and mT
W requirements of the e+jets SR and µ+jets SR, respectively.

Finally, to suppress contribution from poorly reconstructed tt̄ events in SRs, additional
selection criteria on event kinematics are imposed in the tt̄ reconstruction, described in
the next section.

4.3 tt̄ reconstruction

As mentioned in section 1, the sensitivity to Yt is enhanced in the mtt̄ distribution close to the
tt̄ production threshold. Hence, in order to measure the tt̄ invariant mass, the four-momenta
of the top and the anti-top quarks are reconstructed from the event information using a
dedicated algorithm which aims to find the correct assignment of reconstructed objects to
the decay products of the two top quarks. If the event contains more than two b-jets, the
two leading-pT b-jets are considered in the reconstruction. The hadronically decaying top
quark is reconstructed first. If the event contains only two jets in addition to the two b-jets,
they are used to reconstruct the hadronic W boson candidate. If there are three or more
additional jets, the three with the highest pT are selected, and the pair with an invariant mass

3mT
W =

√

(Emiss
T + ET,ℓ)2

− (p⃗miss
T + p⃗T,ℓ)2.
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Figure 3. Reconstructed mtt̄ resolution and the correlation of the reconstructed mtt̄ with the generator
level mtt̄ distribution. (a) The mtt̄ resolution distributions after the mt and mhad

W requirements,
compared with the case without these selections. (b) The reconstructed mtt̄ after applying the
selection of mhad

W ∈ [40, 120] GeV and mt ∈ [100, 250] GeV, plotted against the generated mtt̄.

closest to the W boson mass is used for the hadronic W boson reconstruction. The hadronic
W candidate is combined with the b-jet yielding the mass closest to the top-quark mass
to reconstruct the hadronically decaying top-quark candidate. Thereafter, the leptonically
decaying top quark is reconstructed from the kinematics of the lepton, the leftover b-jet and
the missing transverse energy, which represents the only available information about the
neutrino kinematics. To obtain the z-component of the neutrino momentum, a constraint
on the W boson mass is exploited. Assuming energy-momentum conservation, a quadratic
equation is obtained as a function of the neutrino pz. If two real solutions are obtained, the
one yielding an invariant mass of the leptonically decaying top quark closest to the top-quark
mass is considered. If no real solutions are obtained, the magnitude and ϕ of Emiss

T are
altered in small steps until a solution is obtained.

The resolution of the reconstructed mass, defined as the ratio of the difference between
the reconstructed (mreco

tt̄
) and the generated (mgen

tt̄
) tt̄ masses,4 over the generated tt̄ mass

value, is shown by a dashed line in figure 3(a). The distribution is centred around zero but
exhibits a positive tail, making the average reconstructed mtt̄ larger than the generated value.
The presence of this tail may be partially attributed to incorrect jet assignments. A detailed
jet-to-parton association study is performed to mitigate the selection of such events, resulting
in requirements on the hadronic W boson mass (mhad

W ) and on the hadronic and leptonic top
quark masses. After selecting the events with mhad

W ∈ [40, 120] GeV and mt ∈ [100, 250] GeV,
an improvement in the resolution can be seen, as shown by the distribution with a solid line
in figure 3(a). The selection does not bias the mtt̄ distribution in the threshold region and
consequently does not cause a bias in the Yt extraction. Figure 3(b) shows the correlation

4mgen

tt̄
represents the tt̄ mass calculated directly from the top quark and top antiquark four-momenta at

generator level.
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of the resultant reconstructed mtt̄ with the generated mtt̄ for events satisfying the specified
requirements on mhad

W and mt.

4.4 Non-prompt and fake leptons background

The background originating from events resembling the signal topology with either a non-
prompt or misidentified lepton (referred to as fake lepton) is poorly modelled in the simulation.
Therefore, the fake-lepton contribution is estimated with the data-driven matrix method [99],
using events with relaxed (loose) lepton selection criteria and utilising measurements of
efficiencies of the loose leptons to satisfy baseline (tight) selection criteria. The efficiencies are
binned in lepton pT, where the prompt lepton efficiencies are determined from the nominal
tt̄ simulation in the SRs. The fake-lepton efficiencies are determined from data in the fake
CRs, where the contribution of prompt leptons, estimated from simulation, is subtracted
from data. For both loose electrons [87] and loose muons [88], the isolation criterion is
dropped. Additionally, loose electrons are required to satisfy a relaxed LooseAndBLayerLH

identification [87], while loose muons have a relaxed |d0/σ(d0)| < 7 criterion.
Due to the ≥ 2b-jet requirement, which leads to a very high signal purity, the fake-lepton

background is very small and thus there is a substantial contribution of prompt leptons in
the fake CRs. Therefore, any mis-modelling of the prompt lepton contribution can have a
significant impact on the fake-lepton efficiency. In particular, the tt̄ simulation is known
to mis-model the lepton pT distribution. This is mitigated, only for the purpose of the
fake-lepton estimate, by reweighting the tt̄ lepton pT based on the background-subtracted
data in the SRs, ignoring the fake-lepton contribution, and applying the reweighting to the
lepton pT distribution in the fake CRs. A closure test is performed, where the tt̄ lepton pT

reweighting is repeated after including the final fake-lepton estimate. No significant change
in the prompt lepton contribution in the fake lepton CRs is observed.

Furthermore, a free correction factor (CF) to the prompt lepton efficiency is introduced in
the fake CRs to account for differences between the modelling of loose and tight prompt leptons.
The value of the CF is determined such that the estimated fake-lepton mT

W distribution is flat
around the W boson mass in the SRs, indicating that the prompt background was subtracted
correctly. The central value of the CF is close to unity and a systematic variation on the CF
is considered, resulting in a variation of up to 20% on the fake-lepton mtt̄ distribution.

The resulting fake-lepton background constitutes a very small fraction of approximately
0.7% ± 0.3% of the total expected signal and background contribution in the SRs.

5 Systematic uncertainties

The measurement is impacted by systematic uncertainties, ranging from experimental un-
certainties, signal and background modelling uncertainties and uncertainties due to the
finite amount of MC events. For systematic uncertainties defined by both “up” and “down”
variations, a symmetrised uncertainty is obtained by taking the arithmetic average of the
magnitudes of the two variations, unless otherwise specified. For one-sided systematic uncer-
tainties, the “up” uncertainty is mirrored to obtain the “down” variation. The systematic
variations are smoothed to reduce the impact of statistical fluctuations due to finite amount
of generated Monte Carlo sample events.
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5.1 Experimental uncertainties

A number of experimental uncertainties are considered which are related to object recon-
struction, pile-up modelling and luminosity. They are applied to all the processes other than
the non-prompt and fake-lepton background.

The uncertainty in the integrated luminosity is 0.83% [100]. Additionally, to match the
pile-up distribution of simulation to data, a rescaling of the average number of interaction
per bunch crossing is applied to the simulation. An uncertainty in the rescaling is propagated
by varying the corresponding pile-up reweighting factors.

For electrons and muons, the uncertainties in the trigger, identification, isolation and
reconstruction efficiencies are included, which are derived from studies using Z → ee [87,
97] and Z → µµ events [88, 98], respectively. Additionally, uncertainties in the electron
energy scale and muon momentum scale and their resolutions are evaluated using dedicated
measurements in data [87, 101].

Systematic uncertainties in JES and JER are evaluated using a series of simulation-based
techniques and in situ measurements [91, 102]. These include uncertainty components related
to the jet flavour composition, η-intercalibration, punch-through, single-particle response,
calorimeter response to different jet flavours and pile-up effects. They are comprised of
30 uncorrelated JES components and 13 uncorrelated JER components. Additionally, an
uncertainty in the calibration of the efficiency of the JVT is evaluated by varying the associated
correction factor [94]. The “up” and “down” JER variations are not symmetrised due to a
significantly asymmetrical impact on the fitted mtt̄ distribution.

Uncertainties in the calibrations of the b-tagging algorithm in data are propagated by
varying the tagging efficiency correction factors [103–105]. These include nine, four and four
components for the b, c and light-flavoured jet calibrations, respectively, and two components
related to the extrapolation to high-pT jets.

The uncertainties related to the energy scale and resolution of leptons and jets are
propagated to Emiss

T . Additional uncertainties in Emiss
T arise from momentum scale and

resolution uncertainties of the track-based soft term [96].

5.2 Signal modelling uncertainties

A number of signal modelling uncertainties are considered. A normalisation uncertainty of
+3.6
−4.5% on the tt̄ process is assigned based on the theory uncertainty of the NNLO+NNLL
QCD prediction described in section 3.1. Uncertainties related to the QCD scale variations
in the ME are estimated by varying the µr and µf scales in the ME calculation independently
by factors 2 and 0.5. For the uncertainty in the amount of initial-state radiation (ISR),
the first component is estimated by changing αISR

S via the Var3c variation of the Pythia

A14 tune. The second component of the ISR uncertainty is estimated by varying the hdamp

parameter from 1.5 × mt to 3 × mt. The uncertainty related to the amount of final-state
radiation (FSR) is estimated by varying the µr scale of αFSR

S in the parton shower by factors
2 and 0.5, respectively. The uncertainty associated with the matching of the matrix element
to the parton shower is estimated by varying the phard

T parameter in Pythia [44]. The
uncertainties in the parton shower and hadronisation model are estimated by comparing
the sample generated with Powheg+Herwig 7.2.1 [46] with the nominal tt̄ sample. The
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corresponding variation is further decomposed into a variation for events with exactly four
jets and a variation for events with five or more jets, to reduce strong constraints observed
otherwise. A set of 30 eigenvariations in the PDF4LHC15 prescription [106] are considered to
estimate the uncertainties in the choice of the PDF set. The mtt̄ threshold region is potentially
sensitive to uncertainties related to the top-quark mass and decay modelling. The uncertainty
in the top-quark mass is propagated by varying its value in the MC simulation by ±0.5 GeV.
The uncertainty in the modelling of the top-quark decay and off-shell effects is estimated by
comparing the nominal Powheg+Pythia tt̄ sample with a tt̄ sample reweighted at parton-
level to the Powheg+MadSpin+Pythia sample in top-quark and top-antiquark mass
observables. The uncertainty due to missing higher-order corrections in the ME is estimated
by comparing a sample reweighted by a dedicated NNLO QCD prediction, described in
section 3.1, with the nominal tt̄ sample.

Finally, the application of the EW corrections to the tt̄ sample has an associated ambiguity,
whether the correction is applied in a multiplicative or additive approach on top of the NLO
QCD corrections. Since the QCD corrections are dominantly collinear while the electroweak
corrections occur at a much higher scale, the multiplicative approach is considered more
accurate. This is particularly true for tt̄ production where, due to the large top-quark mass,
QCD radiation mostly originates from the initial state, while electroweak corrections almost
entirely affect the final state [13]. Therefore, the multiplicative approach is used consistently
and the additive approach is evaluated in a simplified way. In the additive approach, the
electroweak corrections should only be applied to the Born-level QCD diagrams. This is
technically not possible in Powheg, due to the additional radiation in the ME and because
of the interplay between the ME and PS matching. Instead, an approximation is made,
rescaling the EW corrections by the ratio of the NLO QCD to the Born cross-section, taken
from [70], which corresponds to a factor 0.75 almost independent of mtt̄. The difference
between the EW corrections in the multiplicative and the additive approach depends on
the Yt value. A complete treatment of this uncertainty would require the introduction of a
nuisance parameter that is dependent on the observable of interest. Instead, the uncertainty
is defined assuming the SM prediction of Yt = 1. This assumption is deemed reasonable and
the resulting uncertainty conservative, given that for this analysis the multiplicative approach
is better motivated than the additive approach. For Yt = 1, this uncertainty is smaller than
1%, and the impact on the final result is sub-dominant.

5.3 Background modelling uncertainties

The event selection in the analysis ensures a very low background contamination, with
an expected signal purity of 93.5%. Therefore, background modelling uncertainties play
a sub-dominant role.

The single-top quark background is the largest background in the analysis, with the
tW -channel contributing approximately 2% to the total expected signal and background yield.
The normalisation uncertainties considered correspond to the approximate NNLO inclusive
cross-section uncertainties of 1.9% for the t-channel [74] and 3.8% for the s-channel [75]
production. A 3.6% normalisation uncertainty is assigned to the tW process, corresponding
to the approximate N3LO inclusive cross-section [76]. The uncertainties in the amount of ISR
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and FSR in the single-top quark processes are taken into account using the same variations as
for the tt̄ process, but treated as uncorrelated with respect to it. These include independent
variations of the µr and µf scales in the ME by a factor 0.5 and 2. Another component
includes changing the Pythia A14 tune settings to the Var3c eigentune [43]. The uncertainty
in the amount of final-state radiation is estimated by varying the µr scale of the parton-
shower emissions by factors 2 and 0.5. Additionally, the uncertainty in the treatment of the
interference and overlap between tW production and tt̄ production is estimated by comparing
the tW MC sample using DR scheme with MC sample using the DS scheme instead [72, 73].

For the W+jets production, a normalisation uncertainty of 5% is considered, based on
the NNLO QCD cross-section predictions from MATRIX [80]. An additional uncertainty
is evaluated by simultaneously varying the µr and µf scales in the ME by a factor of 0.5
and 2, respectively [107]. The factor 0.5 and 2 variations are not symmetrised due to a
significantly asymmetrical impact on the mtt̄ distribution.

The uncertainties in the toponium process modelling include a conservative 100% nor-
malisation uncertainty and uncertainties arising from the independent variations of factor
2 and 0.5 of µr and µf scales in the ME. However, since no information about the angular
correlations of decay products is used to exploit the expected pseudo-scalar nature of the
toponium, no significant sensitivity to this process is expected.

For the fake-lepton background, a normalisation uncertainty of 50% is considered. Ad-
ditional uncertainties include a variation of the prompt lepton efficiency CF introduced in
section 4.4 and per-bin statistical uncertainties.

Finally, a normalisation uncertainty of 50% is considered for each process of the additional
sub-dominant backgrounds including Z+jets, dibosons and tt̄X (X = Z, W, H).

6 Fit strategy

Weights derived from HATHOR are used to produce mtt̄ templates for various values of
Yt. A profile likelihood template fit using the TRExFitter tool is performed, taking these
templates into account using a morphing method [108, 109]. Systematic uncertainties are
included in the likelihood as nuisance parameters (NPs) with Gaussian constraints. The
statistical uncertainty in the signal and background predictions is accounted for by adding
a NP for each bin, assuming a Poisson constraint [108].

As explained in section 3.3, the dependence of the EW corrections on Yt is exactly
quadratic. Hence, Y 2

t is used as the parameter of interest (POI) in the fit, instead of Yt. The
resulting linear dependence of the templates on the POI simplifies the fit and avoids issues with
highly non-parabolic likelihood. In the morphing approach used, a normalisation parameter
is added to the nominal (Y 2

t = 1) template for each bin, which is parametrised by a linear
function of Y 2

t . The per-bin linear function parametrisations are determined from the mtt̄

histograms for multiple points in Y 2
t space, obtaining a continuous linear interpolation in Y 2

t .
The analysis is performed separately in the electron and muon channels, using their

respective histogram templates for different Y 2
t values. A split into regions with exactly 4

jets and ≥ 5 jets was investigated; however, due to strong constraints of signal modelling
uncertainties with anti-correlations across the two regions, this approach was rejected. Figure 4
shows the corresponding tt̄ signal templates used in the fit. In addition to the templates
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Figure 4. Reconstructed mtt̄ distributions corresponding to the various Y 2

t templates used in the fit
for (a) the electron and (b) the muon channel. The lower panel displays the ratio of the yields for
each Y 2

t template relative to the Y 2

t = 1 template. The negative Y 2

t templates are unphysical and are
used only to improve the fit stability.

corresponding to Y 2
t = 0, 1, 4, 9, histograms corresponding to negative Y 2

t values are also
considered. These non-physical negative Y 2

t templates are obtained by extrapolating the
linear dependence of the electroweak corrections on Y 2

t to negative values. These templates
are introduced in the fit in order to produce a stable fit minimisation with a continuous
likelihood function for the situation where the −1σ uncertainty in the fitted Y 2

t result goes
further below zero.

To carefully consider the Yt-sensitive region, the fit employs an optimised binning strategy.
The fitted mtt̄ distribution consists of 14 bins in total per channel. Two bins cover the area
below the tt̄ production threshold. The binning is made finer for mtt̄ near the tt̄ threshold to
preserve Y 2

t sensitivity. As no steep shape dependence on Y 2
t is observed in the tail of the

mtt̄ distribution, and to avoid artificial nuisance parameter constraints in the fit due to a
large number of bins, away from the threshold, a wider binning scheme is adopted, with the
mtt̄ restricted to be below 1050 GeV. Cross-checks are performed to test the fit dependence
on the mtt̄ range by reducing the maximum mtt̄ to 700 GeV and to 500 GeV. No dependence
on the extracted central value of Y 2

t is observed. The sensitivity to Y 2
t is slightly reduced

with the decreased mtt̄ range. Extending the fit range up to 1050 GeV leads to a reduction
of post-fit correlations of Y 2

t with signal modelling uncertainties, by providing additional
information about their shape and acceptance effects.

7 Results

A comparison of the reconstructed mtt̄ distribution for the data to the total prediction
before and after the combined fit is shown in figure 5 for the e+jets and µ+jets SRs. The
value of Y 2

t is extracted by performing a profile-likelihood fit to the data as explained in
section 6. The expected and observed negative log-likelihood distributions are shown in
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Figure 5. The mtt̄ distributions (a), (c) before the fit and (b), (d) after the combined fit, for e+jets
and µ+jets SRs, respectively. The tt̄ signal in the plots corresponds to Yt = 1. The shaded bands
represent the contribution of statistical and systematic uncertainties. The bottom panel in the figures
show the ratio of the data over the total prediction.

figure 6. The Y 2
t values at −∆ ln L = 0.5 obtained from the likelihood scans give the

associated ±1σ uncertainties.

A summary of the Y 2
t obtained from a fit to e+jets SR only, µ+jets SR only and the

simultaneous fit to both SRs (combined fit) is shown in table 1. The observed value of Y 2
t

is 1.3 ± 1.7, which is consistent with the Standard Model expectation of Y 2
t = 1. A 95%

confidence level (CL) upper limit on Y 2
t using a modified frequentist CLs procedure [110]

is also obtained, considering only the physical region of Y 2
t > 0. Subsequently, the upper

limits on Yt for the individual SR fits as well as the combined fit are obtained, which are
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t scans for the combined fit. The
scan minimum shows the best-fit Y 2

t . The horizontal line corresponds to the ±1σ uncertainty in Y 2

t .
The shaded region corresponds to the negative Y 2

t values, which are unphysical and are only used to
improve the fit stability.

Region Expected Y 2
t Observed Y 2

t

95% CLs upper limit on Yt

Expected Observed

e+jets 1.0+2.1
−2.0 1.3+2.2

−2.1 < 2.3 < 2.4

µ+jets 1.0+1.8
−1.8 1.1+1.9

−1.9 < 2.1 < 2.2

Combined 1.0+1.6
−1.6 1.3+1.7

−1.7 < 2.1 < 2.1

Table 1. Summary of the results for the individual SR and the combined fit. The expected and
observed best fit values for Y 2

t with uncertainty and their corresponding 95% CL upper limits on Yt

are shown.

also summarised in table 1. This results in observed (expected) limits of Yt < 2.4 (2.3) for
electrons, Yt < 2.2 (2.1) for muons, and Yt < 2.1 (2.1) for the combined result, at 95% CL.

Figure 7 shows the shifts relative to pre-fit values, the constraints and the impact on Y 2
t

of the nuisance parameters (NPs) with the largest contribution to the total uncertainty in
the combined fit. The impacts of individual NPs on the measurement are extracted from
the covariance matrix [111]. The measurement is dominated by systematic uncertainties,
where the largest impact comes from the tt̄ modelling, specifically from the µf scale variation,
followed by the JES modelling. The top quark mass and the hdamp variation show an impact
of a similar order. The strongest constraints are observed from the NPs associated with
tt̄ modelling. The NNLO reweighting uncertainty is the most constrained, followed by the
parton shower and hadronisation uncertainty for ≥ 5 jets. Table 2 summarises the impact
from different categories of uncertainty sources. The NPs associated with tt̄ modelling, JES,
and background modelling constitute the dominant contributions to the total systematic
uncertainty. Among the background modelling uncertainties, the largest contribution arises
from the uncertainty in the fake-lepton background estimate. The impact of the toponium
normalisation uncertainty is negligible, at the level of ±0.1 on Y 2

t .
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Uncertainty category Impact on Y 2
t

tt̄ modelling ±1.2

Jet energy scale ±0.8

Background modelling ±0.6

Jet energy resolution ±0.4

b-tagging scale factor ±0.3

Others ±0.3

Statistical uncertainty ±0.4

Total systematic uncertainty ±1.7

Table 2. Impact of the different categories of systematic uncertainties. The impacts of the NPs
on Y 2

t in a given category are summed in quadrature. The category “Others” includes uncertainties
in luminosity, pileup modelling, jet vertex tagger efficiency, Emiss

T , leptons and the MC statistical
uncertainty. The statistical uncertainty in Y 2

t is obtained by subtracting the total systematic
uncertainty from the total uncertainty in quadrature.
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As discussed in section 5.2, this paper adopts a multiplicative approach to incorporate
electroweak corrections, while the additive approach is considered as a systematic uncertainty.
This uncertainty depends upon the value of Yt, and has been evaluated for Yt = 1 in the
fit. A test performed assuming this uncertainty at Yt = 2 results in a 6% increase in the
upper limit on Yt.

This result represents the first ATLAS measurement of Yt from the tt̄ production
threshold region, consistent with the prediction of the Standard Model and with corresponding
measurements by CMS [17, 18]. It is also consistent with all other direct and indirect
measurements of Yt.

8 Conclusion

The top-quark Yukawa coupling strength Yt is extracted from the differential tt̄ cross-section
in events with a single lepton in the final state. This paper presents the first ATLAS
measurement of Yt in the tt̄ production threshold region. The analysis uses a

√
s = 13 TeV

pp collision dataset collected at the LHC and corresponding to an integrated luminosity of
140 fb−1. The parameter of interest, Y 2

t , is extracted from a template-based profile likelihood
fit to the invariant mass of the tt̄ pair, where the tt̄ production threshold is particularly
sensitive to virtual electroweak corrections, including the Higgs boson exchange between two
top quarks. The electroweak corrections, including the free Yt parameter, are applied using
HATHOR on top of NLO QCD predictions using Powheg Box-v2. The fitted Y 2

t = 1.3±1.7

is in good agreement with the Standard Model prediction of Y 2
t = 1 as well as with the

CMS measurements in the single-lepton [17] and dilepton channels [18]. Normalising over
the physical region, Y 2

t > 0, yields a 95% CL limit of Yt < 2.1. The presented measurement
provides a complementary approach compared to other indirect measurements with a similar
sensitivity to constrain the Yt coupling strength.
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