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ABSTRACT

Seminal fluid proteins are important modulators of male fertility and reproductive success, yet little is known about how their
abundance responds to early-life developmental stress. Japanese quail Coturnix japonica) males produce a unique seminal foam
that enhances fertilisation success. We characterised the proteome of the seminal foam for the first time and assessed how its
composition is influenced by prenatal and postnatal developmental stress. Proteomic identification using liquid chromatogra-
phy-tandem mass spectrometry and subsequent gene ontology (GO) analysis of chicken (Gallus gallus domesticus) orthologs
suggested roles for the foam proteome in sperm maturation and DNA protection, semen liquefaction, sperm plasma membrane
homeostasis and energy production for sperm motility. Males that experienced prenatal stress exhibited increased abundance
of proteins involved in lipid metabolic processes, inflammation and oxidative stress, including proteolytic enzymes, interleukin
receptors and avidin-like proteins. Similarly, males that exhibited postnatal stress exhibited increased abundance of proteins in-
volved in chromatin organisation, carbon metabolism and oxidative stress. Nine proteins involved in metabolic processes and an-
tioxidant processes were consistently more abundant across developmentally stressed males from both experiments, suggesting
convergent responses to early-life stress. These results demonstrate that early development environments can alter the seminal
foam proteome of adult males, with potential implications for ejaculate quality and fertilisation ability.

1 | Introduction fluid comprised of somatic cells (e.g., immune cells), macromol-

ecules (carbohydrates, fats, vitamins and minerals), hormones

Identifying the causes of variation in male reproductive success
is essential to understanding the process of sexual selection
(Andersson 1994; Birkhead 2010). Variation in sperm and testes
traits influences male fertilisation success under sperm com-
petition (Liipold et al. 2020). However, research into the role of
non-sperm ejaculate components in post-copulatory sexual se-
lection has only gained momentum in recent years. In internally
fertilising species, males transfer sperm along with seminal

and proteins (Hopkins et al. 2017; Poiani 2006).

Seminal fluid proteins (SFPs) are particularly important in
male and female reproduction and include antioxidants, li-
pases, lectins, proteases and protease inhibitors with a diverse
range of functions (Chapman 2001; Avila et al. 2011; Perry
et al. 2013; Ramm 2020; Santiago-Moreno and Blesbois 2020).
The function of SFPs has mainly been studied in mammals,
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insects and to some extent, birds, where they can promote
sperm competition success through mediating sperm func-
tion (den Boer et al. 2008; Labas et al. 2015; Jodar et al. 2017;
Thélie et al. 2019; Santiago-Moreno and Blesbois 2020), stor-
age (den Boer et al. 2009; King et al. 2011) and maturation
(Manjunath and Thérien 2002; Douard et al. 2004), as well as
providing immune protection (Dorus et al. 2012; Atikuzzaman
et al. 2017). SFPs can also act beyond sperm traits by mod-
ifying female reproductive behaviour (Chapman et al. 2003;
Liu and Kubli 2003; Bath et al. 2017), mating plug formation
(Ram and Wolfner 2009; Stockley et al. 2020), promoting ovi-
position (Chapman et al. 2003; Liu and Kubli 2003; Goenaga
et al. 2015), and modulating female immune responses (Short
and Lazzaro 2010; Schjenken and Robertson 2014) and physi-
ology (Sasanami et al. 2015; Schjenken and Robertson 2020).
Furthermore, SFPs exhibit high rates of evolutionary change,
resulting in between-species divergence and within-species
variation (Chapman 2001; Ramm et al. 2009; Goenaga
et al. 2015; Garlovsky et al. 2020).

Across species, there is evidence that seminal fluid production is
affected by the environment. A meta-analysis found investment
in SFP production is highly sensitive to nutrient availability, par-
ticularly dietary protein intake, whilst sperm traits were only
moderately affected (Macartney et al. 2019). However, how envi-
ronmental factors influence the protein composition of seminal
fluid, as opposed to just the amount produced, is less well under-
stood across taxa. In Drosophila, the main genus in which this
work has been carried out, SFP abundances have been shown to
be affected by diet (Zendeer et al. 2023), male-male competition
(Hopkins et al. 2019; Ramm 2020), female-mating status (Sirot
et al. 2011) and male age (Sepil et al. 2020), but whether these
effects are consistent across other taxa remains unclear.

Developmental conditions are likely to have long-term effects
on male reproductive investment, with nutritional conditions
during postnatal development emerging as a particularly im-
portant factor (Edwards et al. 2019; Garcia-Vargas et al. 2019).
In Drosophila for example, males reared on a nutrient-restricted
diet were typically smaller and partially compensated for lower
mating success by investing in increased sperm numbers
per ejaculate under competitive mating situations (De Nardo
et al. 2021). In non-competitive matings, however, males reared
on poor-quality diets transferred fewer sperm across succes-
sive matings compared to high-quality diet males (Macartney
et al. 2021), suggesting resource-limited males are constrained
in their long-term investment in sperm traits. However, less is
known about how dietary stress influences other components of
the ejaculate, such as SFPs (Macartney et al. 2019). Investment
in seminal fluid production is a large energetic expense (Friesen
et al. 2015) and seminal fluid may deplete faster than sperm
(Linklater et al. 2007; Reinhardt et al. 2011). Drosophila males
reared at a higher population density with limited food were
smaller in body size and transferred a greater proportion of SFPs
during mating, possibly reflecting a response to increased risk
of sperm competition (Wigby et al. 2016). Further proteomic
analysis revealed that although larger males produced higher
abundance of SFPs in their accessory glands, smaller males
transferred greater quantities of SFPs during mating, suggesting
that males exposed to postnatal developmental stress may invest
more per mating (von Hellfeld et al. 2025).

Although resource demand is highest during postnatal de-
velopment, the prenatal development environment provided
by the mother can also have significant and long-term effects
on offspring phenotype and fitness (Mousseau and Fox 1998;
Rhind et al. 2001). Prenatal developmental stress, such as mal-
nutrition, can influence embryo growth, organ development,
immune function and adult reproductive behaviour (Clark and
Galef 1995; Desai and Hales 1997; Gorman and Nager 2004;
Giordano et al. 2014). In sheep (Ovis aries), maternal under-
nutrition reduces the lifetime reproductive capacity of female
offspring, while in males, it alters fetal plasma testosterone con-
centrations despite having no detectable effect on testis struc-
ture, potentially affecting later reproductive development (Rae
et al. 2002).

Birds provide an ideal system for investigating the effects of pre-
natal and postnatal conditions on adult reproductive traits, as
embryonic development occurs externally, allowing direct mea-
surement of prenatal factors (Groothuis et al. 2005). Moreover,
egg size and its composition (i.e., the proportion of nutrients,
hormones and immunoglobulins) are known to alter offspring
phenotype (Williams 1994). In zebra finches (Taeniopygia gut-
tata), offspring of females with a poor diet prior to breeding have
lower fecundity (Gorman and Nager 2004), but the effect of pre-
natal conditions on adult male reproductive investment, partic-
ularly the composition of SFPs, remains unexplored.

In this study, we experimentally investigate if pre- and postna-
tal developmental stress influences the proteomic composition
of a unique seminal foam produced by male Japanese quail
(Coturnix japonica). Species of the Coturnix (quail) genus pro-
duce a foam-like substance upon ejaculation, secreted from a
specialised gland known as the ‘proctodeal gland’ or ‘cloacal
gland’ (Klemm et al. 1973). The foam is a viscous glycomuco-
protein aerated by male cloacal muscle contractions (Seiwert
and Adkins-Regan 1998), as well as interactions with carbon
dioxide and hydrogen produced by cloacal bacteria (Mohan
et al. 2004). In Japanese quail, seminal foam constitutes a novel
component of the quail ejaculate that is stored separately from
sperm and is not mixed with semen until inside the female re-
productive tract (Fujihara 1992; Klemm et al. 1973). SFPs may
also be found in semen produced in the testes, epididymis and
ductus deferens, as in other Galliformes (chicken Gallus gallus
domesticus and turkey Meleagris gallopavo) (Fujihara 1992), but
these are not considered here. Male proctodeal gland size is a
predictor of fertilisation success, and natural copulations with
foam have higher fertilisation success compared to copulations
without foam or with artificially placed foam (Ogawa et al. 1974;
Cheng et al. 1989; Abuoghaba et al. 2024). Foam may extend
the female's fertile period, increasing the likelihood of success-
ful fertilisation (Singh et al. 2012; Abuoghaba et al. 2024), or
improve sperm motility. Foam significantly prolongs sperm
motility and increases sperm velocity in vitro, suggesting its
components supply energy to sperm (Singh et al. 2011; Farooq
et al. 2015). Lactate dehydrogenase is a protein found at high
levels in quail seminal plasma (Buxton and Orcutt 1975), and
lactate in foam may act as an energy source for sperm transport
(Singh et al. 2011) as it does in the seminal fluid of mammals
(Odet et al. 2011; Saeed et al. 2021). Foam also disaggregates
sperm clumps, leading to more vigorous motility, possibly due
to non-protein components (Singh et al. 2011). Most studies
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investigating the effect of foam on male fertilisation success
employ a foam removal technique which requires invasive sur-
gery and is likely to interfere with copulation. However, Finseth
et al. (2013) showed that non-invasive foam removal in natural
mating scenarios reduces male fertilisation success under sperm
competition. The function of foam during sperm competition,
possibly mediated through positive effects on the male's own
sperm at a cost to a rival's fertility, suggests it evolved under
sexual selection (Finseth et al. 2013). Although Japanese quail
mating behaviour is difficult to observe in the wild, due to their
cryptic nature, the species is most likely polyandrous, with high
levels of sperm competition, evidenced by their frequent mate
switching and forced copulations under semi-natural conditions
(Nichols 1991) and laboratory settings (Adkins-Regan 1995),
prolonged female sperm storage (Birkhead and Fletcher 1994;
Beccardi, Tschirren, and Vedder 2025), and large testes relative
to body size (Clulow and Jones 1982; Moller 1991).

The broader protein composition and function of quail foam
have not yet been studied but could offer an interesting compar-
ison to SFPs that are differentially produced but play a similar
role in other Galliformes (Labas et al. 2015; Borziak et al. 2016;
Stowinska et al. 2017). In this study, we used high-throughput
proteomics using liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) to characterise the protein composition
of the unique seminal foam of the Japanese quail for the first
time, offering new insights as to its evolution and function. We
then assess whether developmental stress affects the proteomic
composition of seminal foam that males produce as adults, using
males from two experiments that were aimed at manipulating
resources available during pre- vs. postnatal development. We
hypothesised that male investment in seminal foam would be
more constrained if they developed in an environment with lim-
ited resources, and this would impact adult SFP production, with
developmentally stressed males exhibiting lower abundances
of SFPs, particularly those that modulate fertilisation success,
than those that were not resource-limited during development.
Together, these experiments provide the first assessment of how
early developmental stress affects the seminal fluid proteome
in any vertebrate species, advancing our understanding of the
function of this unique reproductive fluid and early-life effects
on ejaculate investment more broadly.

2 | Materials and Methods

2.1 | Study Population and Experimental
Manipulation of Early Life Stress

2.1.1 | Experiment 1—Prenatal Developmental Stress

We used artificial selection for increased and reduced maternal
egg investment to manipulate prenatal developmental stress
(Pick, Hutter, and Tschirren 2016). Briefly, from a founder pop-
ulation of Japanese quail housed in a breeding facility at the
University of Zurich, Switzerland, the 10 females producing the
largest and smallest eggs (relative to their body size) were as-
signed to the high and low maternal reproductive investment
lines, respectively, in two independent biological replicates.
Two sons and 2 daughters of each of the 10 females producing
the largest eggs (20 sons and 20 daughters total) and 10 females

producing the smallest eggs (20 sons and 20 daughters total)
within their respective lines and replicates were selected for the
next generation of breeding (20 breeding pairs per line). Breeding
pairs consisted of unrelated males and females (not sharing any
grandparents) and individuals were paired once only. See Pick,
Hutter, and Tschirren (2016) for a full description of the breed-
ing conditions. By generation four, there was a strong divergence
in egg size and dried egg components (i.e., resource availability
for the developing embryo) between lines (mean + SDs: high ma-
ternal investment line =12.46 + 0.94 g, low maternal investment
line=11.12+0.91g; difference in absolute egg size =1.06 stan-
dard deviations), but no difference in laying rate (Pick, Hutter,
and Tschirren 2016). In 2017, individuals were transferred to the
Institute of Avian Research, Wilhelmshaven, Germany, and in
2018, we sampled foam from 1-year-old non-sib male offspring
from the 5th and 6th generations of the selection experiment
(8 males from the high maternal investment lines and 9 males
from the low maternal investment lines; Figure 1A). We col-
lected foam via cloacal and proctodeal gland massage, remov-
ing it before semen was ejaculated to avoid contamination, and
stored aliquots of pure foam at —80°C until analysis.

2.1.2 | Experiment 2—Postnatal Developmental Stress

We used a post-hatching food quality experiment to manipulate
postnatal developmental stress (Vedder et al. 2023). In 2019,
1-year-old birds from the 6th and 7th generation of the selection
experiment (see above) were mated with a partner from the op-
posite maternal investment selection line within each replicate
to produce hybrid offspring. See Vedder et al. (2023) for a full de-
scription of the breeding conditions. Hatchlings were randomly
distributed over rearing cages with one of two rearing diets that
differed in protein content: a standard protein diet (21.0% pro-
tein, 4.0% fat and 1.1% calcium; calorific value 11.4MJ/kg) or a
protein-restricted diet (14.5% protein, 4.0% fat and 1.0% calcium;
calorific value 11.4MJ/kg), both of which are commercially
available (GoldDott, DERBY Spezialfutter GmbH, Miinster,
Germany). There was no difference in the size of the eggs
that the hatchlings originated from between treatment groups
(overall mean+SE: 12.04g+0.19; standard-protein diet group:
12.18 g+ 0.27; protein-restricted diet group: 11.92g+0.27). The
protein-restricted diet substantially reduced growth rate without
compromising chick survival, whilst the standard diet increased
growth rate without leading to impairments associated with too
rapid growth (Vedder et al. 2023; Vedder and Beccardi 2025).
From 5weeks onwards, birds were individually checked for clo-
acal foam production every 2-3 days, indicating sexual maturity
(Sachs 1969). The average age for onset of sexual maturity for
males was 45days with the standard diet, and 69 days with the
protein-restricted diet. After sexual maturity, all males received
a standard adult diet (19.0% protein, 4.6% fat and 4.8% calcium;
calorific value 9.8MIJ/kg) (GoldDott, DERBY Spezialfutter
GmbH, Miinster, Germany). In 2019, we collected 1-2 foam
samples per male from 21 standard rearing diet and 24 protein-
restricted rearing diet non-sib males (Table S1; Figure 1B) while
they were housed in individual cages, with the standard adult
diet. The average age of males when foam was collected was
117days +10. Foam samples were collected and stored as de-
scribed above. In both experiments, birds were maintained on a
16:8 light: dark cycle at ~20°C and had constant access to water,
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A)

Japanese qualil

B)

H-line female x
L-line male

L-line female x
H-line male

founder population

H-line L-line
(large eggs) (small eggs)

>4 gen.
of selection

8 males 9 males

1 foam sample per 1 foam sample per
male male

- Hybrid offspring ™~

Standard rearing Protein-restricted
diet rearing diet

21 males 24 males

1-2 foam samples
per male

1-2 foam samples
per male

FIGURE1 | Experimental design and sample collection: (A) prenatal developmental stress (Experiment 1) and (B) postnatal developmental stress

(Experiment 2).

grit and food. All animals were kept under licences provided by
the Veterindramt JadeWeser (permit number 42508_03122020).

2.2 | Sample Preparation

We defrosted foam samples at room temperature for 12h, then
pooled smaller samples from the same selection lines/diet treat-
ments within each replicate to ensure sufficient material for
mass spectrometry (MS) analysis. Overall, this gave us 4 pooled
replicate samples per selection line (high maternal investment
line and low maternal investment line) from Experiment 1, and
12 pooled replicate samples per dietary treatment (standard-diet
and protein-restricted diet) from Experiment 2. In Experiment
1, 4 high line samples and 3 low line samples contained foam
from 2 males (1 foam sample per male), and 1 low line sam-
ple contained foam from 3 males (1 foam sample per male). In
Experiment 2, we had 6 replicates from each hybrid cross type
(high line mother xlow line father, and low line mother x high
line father). Twelve standard-diet samples contained foam from
3 males (1 foam sample per male), and 12 protein-restricted sam-
ples contained foam from 4 males (1 foam sample per male).

We added four times the sample volume of ice-cold acetone
(—=20°C) to each sample, then vortexed and incubated them for
4h at 20°C before centrifuging for 10min at 13,000rpm at 4°C
to isolate foam proteins. The remaining supernatant was dis-
carded, and we left the protein pellet at room temperature until
the acetone evaporated completely.

We resuspended the protein pellet in 25 uL of protein lysis buffer
(5% SDS (Sigma-Aldrich) and 100mM TEAB (ThermoFisher),
pH 8.5). We quantified the total protein concentration using a
BCA assay (ThermoFisher) and normalised to 25ug of protein
per replicate for proteomic analysis. We reduced the protein

by 20mM DTT (ThermoFisher) using a thermoshaker at 95°C,
800rpm for 10min, and after cooling for 5min at room tem-
perature, we alkylated proteins using 40 Mm 2-iodoacetamide
(Sigma-Aldrich) using a thermoshaker at room temperature,
800rpm for 30min in the dark. We then digested proteins using
a suspension trapping technique (S-Trap) according to the
manufacturer's protocol (ProtiFi). Briefly, alkylated proteins
were acidified by adding 2.5uL 12% phosphoric acid, followed
by 365uL S-trap binding buffer (90% aqueous methanol, 0.1 M
TEAB, pH 7.1). We transferred samples to S-Trap columns gen-
tly and centrifuged for 60s at 4000x g to trap the denatured
proteins.

We washed trapped proteins 5 times with 150 uL binding buffer,
centrifuging between each addition, before transferring proteins
to clean 1.5mL Eppendorf tubes for protein digestion. We added
25uL of MS grade Trypsin (ThermoFisher) in 50mM TEAB
buffer (concentration 0.1 ug/uL) to each S-Trap and incubated
at 47°C for 1.5h without shaking to digest the proteins into pep-
tides. Peptides were then eluted using a series of solvents: 40 uL
50mM TEAB, 40 L 0.2% aqueous formic acid (ThermoFisher),
40uL 50% ACN in 0.2% formic acid and 40 uL 80% ACN in 0.2%
formic acid. Samples were centrifuged at 4000x g for 60s be-
tween solvent additions. We collected eluted peptides and dried
them in a vacuum concentrator (Eppendorf) for 2h before re-
constituting them in 60uL 0.5% formic acid and withdrawing
4 uL for MS analysis.

2.3 | Liquid Chromatography-Tandem MS Analysis

We performed sample processing separately for each experi-
ment. All MS proteomics analyses were performed at the bioM-
ICS Mass Spectrometry Facility, University of Sheffield (https://
www.sheffield.ac.uk/mass-spectrometry) on an Orbitrap
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Exploris E480 mass spectrometer (ThermoFisher) equipped
with a nanospray source, coupled to a Vanquish HPLC System
(ThermoFisher). Peptides were desalted online using a Nano-
Trap Column (75 um I.D.X 20 mm; ThermoFisher) and then sepa-
rated using an EASY-Spray column (50cm X 50 um I.D., PepMap
C18, 2um particles, 10 A pore size; ThermoFisher). We used a
100-min gradient, starting from 3% to 20% buffer B (0.5% formic
acid in 80% ACN) for 68 min, followed by a ramp-up to 35% buf-
fer B for 23 min, then to 99% buffer B for 1 min, and maintained
at 99% buffer B for 9min. MS was operated in positive mode
with a cycle of 1 MS acquired at a resolution of 120,000, at m/z
of 400. We subjected the top 20 most abundant multiply charged
(2* and higher) ions in a given chromatographic window to MS/
MS fragmentation in the linear ion trap, with a scan range (m/z)
of 375-1200, normalised AGC target of 300%, microscan 1, an
FTMS target value of 1e4 and a resolution of 15,000.

2.4 | Protein Identification and Bioinformatic
Analysis

We compared protein abundances between the selection lines
and rearing diet groups described above, as well as producing
an overall characterisation of the Japanese quail foam proteome
using data from all samples combined. We analysed all MS
data with MaxQuant (v.1.6.10.43) and searched data against the
Coturnix japonica protein database consisting of 27,875 proteins
(Uniprot proteome ID: UP000694412) with the following search
parameters: trypsin/P (2 missed cleavages) as the enzyme, me-
thionine oxidation and N-terminal protein acetylation as vari-
able modifications and cysteine carbamidomethylation as a
fixed modification. We set FDR for both peptides and proteins
to 1% using target-decoy approaches. Since using a two unique
peptide requirement can reduce proteome coverage without
substantially improving identification confidence when a robust
FDR control is used, we used a > 1 unique peptide cutoff.

We loaded the MaxQuant output into Perseus (v1.5.6.0) for
downstream data analysis, including filtering, normalisation
and statistics (Cox and Mann 2008; Cox et al. 2014). We set all
label-free quantification (LFQ) intensities as main columns, fil-
tered the matrix to remove potential contaminant proteins and
reverse sequences, then transformed LFQ intensities using the
log,(x) function. For the selection treatment, we categorically
annotated rows with either H (high maternal investment) or
L (low maternal investment), and filtered proteins to identify
those present in at least 3 replicates in at least one of the selec-
tion lines. For the diet treatment, we categorically annotated
rows with either SD (standard diet) or PR (protein-restricted
diet), and filtered proteins to identify those present in at least
3 replicates in at least one of the diet groups. We examined the
quality of replicates using Pearson's correlations and performed
Principal Component Analysis (PCA) on the log,-transfromed
LFQ intensities to assess sample clustering.

We normalised each protein’s (log,) intensity in each sample to
its median value and missing values were imputed from a nor-
mal distribution (Experiment 1: 472 values imputed, 30% and
Experiment 2: 1521 values imputed, 56%). We calculated log,
fold-changes to describe differences between maternal invest-
ment selection lines or diet groups within each experiment.

We then evaluated differences in protein abundance between
selection lines or treatment groups for statistical significance
(p<0.05) using unpaired two-sided Student's t-tests with
Benjamini-Hochberg correction for multiple testing (FDR) on
normally distributed data.

2.5 | Gene Ontology (GO) Analysis

As the C. japonica genome has not been fully annotated, we
identified chicken (Gallus gallus domesticus) orthologs using
OrthoFinder v.3.0 (Emms and Kelly 2019) and the chicken ref-
erence proteome (UniProt Proteome ID: UP000000539). We
assessed the overlap between the quail foam proteome, the sem-
inal fluid proteome of the red junglefowl (Gallus gallus; Borziak
et al. 2016) and domestic chicken (Labas et al. 2015), and the
chicken spermatozoa proteome (Labas et al. 2015). We used the
list of orthologs that were differentially abundant in a selection
line or diet group for GO analysis to identify functional differ-
ences in the foam's proteome between treatments.

We performed GO enrichment analyses using the website
version of DAVID v.2023g4 (Huang et al. 2009; Sherman
et al. 2022). We uploaded the list of proteins that were differen-
tially abundant within a selection line or diet group to DAVID
(https://david.ncifcrf.gov/tools.jsp) and used the total seminal
foam proteome as the background. In instances where a quail
protein had multiple orthologs in chicken, we selected one rep-
resentative ortholog for GO analysis. We downloaded the out-
puts for all three GO categories (biological processes, cellular
components and molecular functions) including their associated
statistical values, as well as the output table from the Functional
Annotation Clustering Tool that clusters redundant annotation
terms to identify biological themes associated with proteomes.
Figures were created in R v.4.4.2 (R Core Team 2024).

3 | Results

3.1 | Effect of Prenatal Developmental Stress on
the Seminal Foam Proteome

In the prenatal stress experiment, we identified 425 proteins
across 17 Japanese quail foam samples (pooled into 4 replicates
per treatment; Table S2). Of these, 196 (46.2%) were identified in
at least 3 replicates within a selection line and included in the
final dataset (Table S3). The relative protein abundances were
strongly correlated between replicates (mean Pearson's correla-
tion coefficient r=0.86, range =0.69-0.96). A principal compo-
nent analysis showed PC1 explained 41.1% and PC2 explained
21% of the variation in the data and revealed a clear separation
between males from the high and low maternal investment lines
(Figure 2A,B).

We found 48 proteins that were significantly more abundant in
foam of males from the low maternal investment lines compared
to males from the high maternal investment lines (for each pro-
tein log, fold change > 1.5, p <0.05; Table S3; Figure 3A) and 148
proteins that were present in similar quantities in both the high
and low maternal investment lines (p>0.05). No proteins were
significantly more abundant in the high maternal investment
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FIGURE 2 | Proteomic profiles of foam samples from both experiments. Experiment 1: (A) principal component analysis (PCA) plot of protein

abundance of samples from high (blue) and low (orange) maternal investment lines along PC1 (41.4%) and PC2 (21%), and (B) heat map showing
the abundance of 196 detected seminal foam proteins. Rows represent individual proteins and columns represent replicate samples from high (H)
and low (L) maternal investment lines. Experiment 2: (C) principal component analysis (PCA) plot of protein abundance of samples from standard
(blue) and protein-restricted (orange) rearing diet groups along PC1 (67.2%) and PC2 (9.6%) and (D) heat map showing the abundance of 103 detected
seminal foam proteins. Rows represent individual proteins and columns represent replicate samples from standard rearing diet (SD) and protein-

restricted rearing diet (PRD) groups.

line compared to the low maternal investment line (log, fold
change < 1.5, p<0.05). See Table S3 for results of the two-sided
Student's t-tests.

The 48 proteins that were more abundant in foam samples from
the low maternal investment line 47 had chicken orthologs, and
17 had more than one (106 orthologs in total; see Table S3 for a
complete list). Of these proteins, 46 (96%) had GO annotations.
Our GO analysis showed that proteins that were more abundant
in the low maternal investment lines were associated with lipid
metabolic processes (see Table S4 for a complete list of GO terms
associated with proteins that were more abundant in the low
maternal investment line and associated p-values). No annota-
tion clusters were enriched in proteins that were more abundant
in the low maternal investment line. See Table S5 for all annota-
tion clusters, associated terms and p-values.

3.2 | Effect of Postnatal Developmental Stress on
the Seminal Foam Proteome

In the postnatal stress experiment, we identified 401 proteins
across 79 Japanese quail foam samples (pooled into 12 replicates

per treatment; Table S2). Of these, 103 (25.7%) were identified in
at least 3 replicates within a treatment group and included in the
final dataset (Table S6). The relative protein abundances were
strongly correlated between replicates (mean Pearson's correla-
tion coefficient=0.83, range=0.55-0.99). A principal compo-
nent analysis showed PC1 explained 67.2% and PC2 explained
9.6% of the variation in the data (Figure 2C,D).

We found 72 proteins that were significantly more abundant
in foam samples from males raised on a protein-restricted diet
compared to a standard diet (for each protein log, fold change
> 1.5, p<0.05; Table S6; Figure 3B) and 31 proteins that were
present in similar quantities in foam from the standard and
protein-restricted diet males (p > 0.05). No proteins were signifi-
cantly more abundant in foam from males fed the standard diet
compared to the protein-restricted diet (log, fold change <1.5,
p<0.05). See Table S6 for results of the two-sided Student's
t-tests.

Of the 72 proteins that were more abundant in foam samples
from males fed the protein-restricted diet, 71 had chicken
orthologs and 11 had more than one (128 orthologs in total;
see Table S6 for a complete list). Of these proteins, 69 (96%)
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FIGURE 3 | Effect of developmental stress on the quail seminal foam proteome: (A) Volcano plot of protein abundance comparing low vs. high

maternal investment lines (two-sample ¢-test, n =4 biological replicates per selection line). Orange indicates 48 of 196 proteins were more abundant in

the low maternal investment lines. No proteins were more abundant in the high maternal investment lines. Blue proteins had no significant change

in abundance between the high and low maternal investment lines. (B) Volcano plot of protein abundance comparing protein-restricted vs. standard

rearing diet groups (two-sample t-test, n=12 biological replicates per diet treatment). Orange indicates 72 of 103 proteins were more abundant in

the protein-restricted diet group. No proteins were more abundant in the standard diet group. Blue proteins had no significant change in abundance

between the standard diet and protein-restricted diet group.
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FIGURE 4 | GO analysis of the proteins with increased abundance
in the protein-restricted diet group: (A) 2 molecular functions, and (B)
2 cellular components all enriched in proteins that were significantly
more abundant in Japanese quail seminal foam of males fed a protein-
restricted diet compared to a standard diet. Only functional enrichment
groups with p-values <0.05 are shown.

had GO annotations. Our GO analysis found that proteins
that were more abundant in the protein-restricted diet group
were associated with nucleosome assembly, the molecular
functions: protein heterodimerisation activity and structural
constituent of chromatin (Figure 4A); and the cellular compo-
nents: nucleoplasm and nucleosome (Figure 4B; see Table S7
for a complete list of GO terms associated with proteins that
were more abundant in the protein-restricted diet group and
associated p-values).

Using the Functional Annotation Clustering Tool in DAVID
(Huang et al. 2009; Sherman et al. 2022), we identified that the
annotation cluster histone modification and chromatin struc-
ture was enriched in proteins that were more abundant in the
protein-restricted diet group. See Table S8 for all annotation
clusters, associated terms and p-values.

3.3 | Overall Characterisation of the Japanese
Quail Seminal Foam Proteome

Finally, we combined data across both experiments to provide
an overall characterisation of the seminal foam proteome. We
identified 608 foam proteins across the two cohorts, of which
224 were identified in at least 3 replicates in a single cohort
(36.8%) (Table S2). Relative protein abundances were strongly
correlated between replicates (mean Pearson's correlation coef-
ficient=0.85, range =0.55-0.99). See Table S9 for the 20 most
abundant proteins in the foam.

Genes encoding foam proteins were highly conserved, with
96.4% of proteins (216/224) having chicken orthologs (Table S2)
compared to 82.0% of all Japanese quail proteins (22,858/27,875;
x?=31.17, df=1, p<0.001). We found more than one chicken
ortholog for 27.7% (62/224) of quail proteins (Figure S1), and
449 chicken protein orthologs in total, which are encoded by
266 distinct chicken genes. See Table S10 for full ortholog pro-
tein list.

Eight foam proteins (4%) did not have chicken orthologs
(Table S11) and we inferred their functions in UniProt (The
UniProt Consortium 2025). Four were predicted to be isoforms
of neuroblast differentiation-associated protein AHNAK-like
and associated with the nucleus and regulation of RNA splicing.
Two predicted Ig-like domain-containing proteins may be asso-
ciated with an immunoglobulin-mediated immune response.
We found aldo-keto reductase family 1 member B1 (aldose re-
ductase) in foam, inferred from homology, and finally, we found
a predicted secreted protein associated with the transmembrane
helix with no known function.

Comparing proteomes, we found that 7.6% (34/449) and 14.7%
(66/449) of chicken orthologs identified in quail foam were also
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in domestic chicken and red junglefowl seminal fluid, respec-
tively, and 34.1% (153/449) and 39.6% (178/449) of foam proteins
had isoforms found in chicken and red junglefowl seminal
fluid, respectively (Figure 5; Table S10). Comparing genomes,
we found 31.6% (84/266) and 40.2% (107/266) of genes encoding
quail foam proteins encoded SFPs in chicken and red junglefowl
seminal fluid, respectively (Table S10). There was evidence that
proteins found in chicken sperm were also present in quail foam,
with 29.2% (131/449) of foam protein having isoforms identified
in chicken spermatozoa (Table S10). Of these, 48 were not found
in chicken seminal fluid. The remaining 231 quail foam pro-
teins were not found in either chicken or red junglefowl seminal
fluid. GO analysis of proteins unique to quail foam revealed a
significant association with proteolysis (Benjamini-Hochberg
corrected p=4.5E-6, FDR =4.5E-6).

GO analysis of chicken orthologs using the G. gallus gene list as
the background identified 3 biological process terms (Figure 6A),
16 molecular functions (Figure 6B) and 16 cellular components
(Figure 6C) significantly enriched in quail foam (see Table S12
for all GO terms and associated p-values), together suggesting
the foam plays a role in sperm maturation and motility, proteol-
ysis, protein binding and immune regulation. The Functional
Annotation Clustering tool in DAVID (Huang et al. 2009; Sherman
et al. 2022) identified 35 clusters (Table S13), 17 of which were sig-
nificantly enriched in the foam proteome (Table S14). As a rela-
tively high number of proteins were associated with proteolysis,
these proteins were identified individually and assigned to their
appropriate protease class (Table S15).

3.4 | Overlaps in Proteomes

Nine proteins that were more abundant in foam samples from
the low maternal investment line in Experiment 1 were also

Japanese quail

Red junglefowl Domestic chicken

FIGURE 5 | Venn diagram indicating the size and overlap between
the seminal foam proteomes of the Japanese quail (Coturnix japoni-
ca), red junglefowl (Gallus gallus) and domestic chicken (Gallus gallus
domesticus).

more abundant in foam of the protein-restricted diet group in
Experiment 2 (Figure 7). Of these, 6 were associated with meta-
bolic pathways (Table 1). Their functions were inferred using the
UniProt database: alpha-amylase is an enzyme involved in glucose
production (Zakowski and Bruns 1985). Transketolase catalyses
the reversible conversion of sugar phosphates into glycolytic in-
termediates, providing a link between the non-oxidative pentose
phosphate shunt and glycolysis (Zhao and Zhong 2009). Malate
dehydrogenase plays a central role in aerobic cellular respiration,
facilitating ATP generation from glucose (Wolyniak et al. 2024),
whilst ATP synthase drives ATP production from ADP during oxi-
dative phosphorylation (Neupane et al. 2019). Aldo-keto reductase
family 1 member B10 detoxifies reactive carbonyl compounds in
cells, and aldehyde dehydrogenase 1 family member A1 detoxifies
aldehydes, both protecting cells from oxidative stress and cellular
death (Shortall et al. 2021; Wang et al. 2009). Although many of
these proteins are involved in metabolic pathways, no biological
process, molecular function or cellular component GO terms were
significantly enriched after multiple testing correction, as expected
with a small number of proteins.

4 | Discussion

Here, we characterised the proteome of a unique reproductive
foam produced by male Japanese quail and tested how it is in-
fluenced by developmental stress. We identified a total of 224
proteins in the foam, of which over 96% have orthologs in the
closely related chicken, and at least 48% have been identified in
chicken seminal fluid. Our interrogation of the foam proteome
suggests roles in sperm maturation and DNA protection, semen
liquefaction, sperm plasma membrane homeostasis and energy
production for sperm motility.

We found that both pre- and postnatal developmental stress can
affect reproductive traits in adult male Japanese quail by altering
the protein composition of seminal foam. First, using lines selected
for divergent maternal investment (measured as egg size relative
to female body size), we found that males from the low mater-
nal investment lines, which developed in relatively small, less-
provisioned eggs, exhibited increased abundance of 48 proteins in
their seminal foam. These proteins were primarily associated with
lipid metabolic processes. Second, to measure an alternative axis
of early developmental stress, we compared males that received
different quality diets post-hatching and found that males that re-
ceived a protein-restricted rearing diet exhibited increased abun-
dance of 72 proteins. These proteins were primarily associated
with nucleosome assembly and chromatin structure. Notably, nine
proteins were consistently more abundant in foam samples from
both the low maternal investment line and the protein-restricted
males. These proteins were primarily associated with metabolic
pathways, suggesting a convergent molecular response to early de-
velopmental stress across pre- and post-hatching stages.

4.1 | Prenatal Developmental Stress and Impaired
Reproductive Function

Several proteins that were more abundant in foam of males
from the low maternal investment lines (Experiment 1) suggest
physiological dysregulation associated with oxidative stress,
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FIGURE 6 | GO analysis of the Japanese quail (Coturnix japonica) seminal foam proteome: (A) 7 biological processes, (B) 18 molecular functions
and (C) 15 cellular components significantly enriched in the Japanese quail foam proteome, as identified by DAVID. Only functional enrichment
groups with Benjamini-Hochberg corrected p-values <0.01 and passing a 1% false discovery rate threshold are shown.

inflammation and impaired reproductive function. The low ma-
ternal investment lines used in this study have previously been
shown to have lower fertilisation success compared to males of
the high maternal investment lines (Pick et al. 2017), however,
few differences in sperm form or function have been detected
between the lines (Mason et al. 2024). Differences in foam com-
position may therefore go some way to explaining their different
fertilising potential between investment lines.

Several proteins identified in the foam were associated with
lipid metabolic processes, indicating that lipid regulation may be

an important component of seminal fluid composition in males
with reduced fertilisation success. Lipid-modifying enzymes
and lipid binding proteins, including pancreatic lipase-related
proteins, can influence membrane stability, energy availabil-
ity and the biochemical conditions encountered by sperm (Sias
et al. 2005; Furse et al. 2022; Tao et al. 2023). Differences in the
lipid metabolic activity between males from high and low mater-
nal investment lines may reflect altered physiological pathways
associated with reduced fertilisation success. Abnormal lipid
homeostasis can cause spermatogenic dysfunction and con-
sequential infertility (Davis 1980; Lu et al. 2016; Thankamoni

Molecular Ecology, 2026

90f19

d T '9T0T Xr6TS9E]

:sdpy wouy p

D PuE SWId L, 241 22§ *[970T/20/€0] U0 Areiqr dutjuQ AIA ‘A THIAHIHS 40 ALISYHAINN £q LSTOL W/ 1T 1°(1/10p/wiod Ko[im 4.

SuLIa)/ W0 KM’ KIeIqaur csdny)

p

ASULDI] Suowo)) aAneal) a[qearjdde ayy £q pautaros are sa[onIe () (asn Jo sa[nl 10J AIRIqI duIuQ K3[IAL UO (S



et al. 2024), with elevated lipid levels further promoting reactive
oxygen species production (Agarwal et al. 2014). In low mater-
nal investment line males, the increased abundance of lipid met-
abolic enzymes may impair sperm function during fertilisation.
These differences in lipid metabolic activity provide useful con-
text for interpreting other molecular differences between selec-
tion lines, including those linked to oxidative stress.

Several proteins that were more abundant in foam from low ma-
ternal investment line males are biomarkers of oxidative stress.
For example, fructose-bisphosphate aldolase is an enzyme that
catalyses a key step in glycolysis (Bhagavan and Ha 2015) and is
overexpressed in human seminal ejaculates with high levels of
oxidative stress (Sharma et al. 2013). Additionally, alpha-enolase
isused as a biomarker of reduced semen quality in several species
including humans (Force et al. 2002; He et al. 2014) and mallards
(Anas platyrhynchos) (Tang et al. 2022), and increased expres-
sion may over-activate the apoptosis signal pathway, resulting

Prenatal developmental
stress experiment

Postnatal developmental
stress experiment

/ 89

More abundant in low maternal
investment lines

More abundant in protein-
restricted rearing diet groups

FIGURE 7 | The number of proteins differentially expressed be-
tween the prenatal and postnatal developmental stress experiments,
and proteins that were significantly more abundant within treatments
in both experiments. The number of the same overlapping proteins be-
tween experiments and treatments are shown.

in disturbances during spermatogenesis (Xiong et al. 2022).
These enzymes, when present in high concentrations, could sig-
nal increased oxidative stress and impaired sperm maturation
in adult males that experienced prenatal developmental stress,
with potential consequences for fertilisation. While oxidative
stress in females does not differ between the lines (measured
as reactive oxygen species production in blood plasma) (Pick,
Hutter, Ebneter, et al. 2016), females from the low maternal
investment lines (but not high maternal investment lines) ex-
hibited a marked increase in oxidative stress under breeding
conditions (Pick, Hutter, Ebneter, et al. 2016). It is therefore pos-
sible that both males and females from the low maternal invest-
ment lines are susceptible to oxidative stress, and this may be
a consequence of prenatal developmental stress or a correlated
response to relaxed selection on maternal investment.

Increased abundance of avidin and interleukin receptors in
the foam from low maternal investment line males provides
evidence of inflammation in reproductive tissue. Interleukins
are cytokines involved in immune cell regulation and inflam-
mation modulation (Verkhratskii 2023). White blood cells,
which produce interleukins, are often in higher abundance in
semen of humans with genital tract inflammation and fertil-
ity issues (Barratt et al. 1990; Sharma et al. 2013). Interleukins
are activated by binding to interleukin receptors (Martin and
Falk 1997) and interleukin receptor accessory proteins (Martin
and Falk 1997; Casadio et al. 2001). Specifically, interleukin 1
receptor accessory protein (ILIRAP) induces multiple physi-
ological responses to inflammation, infection and tissue dam-
age (Dinarello 1996). Additionally, avidin-related proteins are
known to increase in response to infection, tissue injury and in-
flammatory stress (Board and Fuller 1974; Kunnas et al. 1993)
and bind to biotin in bacteria to prevent bacterial growth as
part of the immune defence (Dillon 2014). Avidin is linked to
promoting sperm activation and longevity in the female repro-
ductive tract of turkeys (Meleagris gallopavo domesticus) (Foye-
Jackson et al. 2011) as well as protecting developing embryos

TABLE 1 | Quail proteins and their chicken orthologs that were significantly more abundant in males exposed to stressful pre- and postnatal
developmental conditions, along with their annotations from the Functional Annotation Chart in DAVID (Huang et al. 2009; Sherman et al. 2022).

Quail protein Chicken ortholog Chicken ortholog Chicken ortholog Functional
Uniprot AC Uniprot AC protein name gene symbol annotation
AO0A8C2T207 AO0A8V0Z6F8 Mesothelin-like protein MSLNL
AO0A8C2U7G7 AOA8VOYKA1 Aldo-keto reductase AKR1B10 Metabolic

family 1 member B10 pathway, cytosol
AO0A8C2SWDO AOA1D5PFB8 Dynactin subunit 2 DCTN2 Cytosol
AO0A8C2UFC7 Q98942 Alpha-amylase amy Metabolic pathway
AOA8C2TLF1 F1P1A5 Transketolase TKTL1 Metabolic

pathway, cytosol

AO0A8C2TH69 E1BVT3 Malate dehydrogenase MDH2 Metabolic pathway
AO0A8C2TV59 AO0A1DS5PE96 Plastin-3 PLS3 Cytosol
AOA8C2T9A2 FINJC7 Aldehyde dehydrogenase ALDH1A1 Metabolic

1 family member A1l pathway, cytosol
A0A8C2SZ10 AOA1D5PN54 ATP synthase subunit alpha ATP5F1AZ Metabolic pathway
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against microbial infections in the female oviduct (Korenman
and O'Malley 1968; Board and Fuller 1974). The increased abun-
dance of the immune proteins suggests that males that undergo
prenatal developmental stress may face inflammation as adults.

Males from the low maternal investment line exhibited increased
abundance of proteases, including higher levels of trypsin and pan-
creatic elastase II, without corresponding increased abundance of
protease inhibitors. Numerous proteases found in seminal fluid
across taxa regulate multiple downstream activities involved in
immunity, cell cycle regulation and tissue morphogenesis via the
hydrolysation of peptide bonds (Ram and Wolfner 2009; Laflamme
et al. 2014). However, these proteases require tight control by pro-
tease inhibitors to prevent premature activation of pathways or
tissue damage (Laflamme and Wolfner 2013). In human semi-
nal fluid, pancreatic elastase II plays a role in elastin hydrolysis,
and increased elastase levels are associated with increased white
blood cells, bacterial infection and inflammation in infertile males
(Zorn et al. 2003). Whilst increased elastase levels are negatively
correlated with semen volume, they have limited effects on sperm
characteristics. Instead, elastase may damage the female reproduc-
tive tract, preventing fertilisation (Zorn et al. 2000). Furthermore,
trypsin-like proteases have diverse roles, including induction of
egg-laying in insects (Marshall et al. 2009) and mediation of sperm
function and fertility across taxa (Green and Summers 1980; Inaba
et al. 1993; Friedldnder et al. 2001; Kodama et al. 2002; Miyata
et al. 2012; Stephens et al. 2018). In mammals, increased trypsin
concentrations lead to more rapid liquefaction of viscous semen
and increased motility, which is a possible function of the quail
foam (Singh et al. 2011), but at too high a concentration can lead to
sperm fragmentation and compromised sperm function (Marson
et al. 1988; Flores-Herrera et al. 2012). The elevated abundance of
these proteases, without corresponding regulatory proteins, sup-
ports the hypothesis that low maternal investment line males are
susceptible to inflammation and impaired reproductive function,
either through sperm fragmentation or by altering the environ-
ment of the female reproductive tract.

Given the limited evidence for reproductive costs of oxidative
stress in birds (Speakman and Garratt 2014; Beccardi, Salmon,
and Vedder 2025), defining reliable markers of oxidative stress and
inflammation is essential for clarifying how early developmental
stress influences adult male ejaculate quality. Individuals that ex-
perience prenatal developmental stress may exhibit hidden costs in
their ejaculate composition, with metabolic and immune protein
expression reflecting stress responses rather than enhanced func-
tional investment. Increased SFP abundance may indicate con-
strained or dysregulated reproductive physiology, consistent with
the reduced fertilisation success reported for the low maternal in-
vestment selection lines in this system (Pick et al. 2017). Previous
work demonstrated that high investment line males caused greater
oxidative damage in females following mating (Romero-Haro
et al. 2023), highlighting that male oxidative condition and female-
post mating oxidative costs are decoupled.

4.2 | Postnatal Dietary Protein Restriction and Its
Impact on Seminal Fluid Function

Similar to males that experienced pre-natal developmental
stress, our proteomic analyses identified several proteins that

were more abundant in males raised on a post-hatching protein-
restricted diet (Experiment 2), which may indicate oxidative
stress and reduced semen quality. For example, glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) abundance increases in
response to heat shock and oxidative stress in human sperm
(Sharma et al. 2013) and is higher in abundance in chicken
(G. gallus domesticus) semen with reduced sperm motility (Li
et al. 2020). Additionally, triosephosphate isomerase is involved
in the sperm acrosome reaction and binding of sperm to the
egg's zona-pellucida (Auer et al. 2004), and its increased abun-
dance indicates reduced sperm quality in boar (Sus domesticus)
and human seminal fluid (Siva et al. 2010; Vilagran et al. 2016),
and reduced fertility in bulls (Bos taurus) (Soggiu et al. 2013).

Males that were protein-restricted during development showed
an increased abundance of histones involved in protein heterod-
imerisation activity and chromatin organisation in the nucleus,
potentially indicating inflammation (Singh et al. 2025). Elevated
extracellular histone levels in biofluids are also associated with
inflammation, infection and tissue damage (Singh et al. 2022,
2025). Specifically, histone H4 can affect sperm morphology and
motility (Schon et al. 2019) and impaired histone-protamine ex-
change during spermatogenesis can reduce fertilisation (Carrell
et al. 2007). The function of extra-nuclear histones, particularly
in seminal fluids, and their effect on reproduction is an ongo-
ing area of research. Additionally, immunoglobulin lambda-
like polypeptide 1 (IGLL1) is a type of immunoglobulin free
light chain which has been associated with inflammation and
reduced sperm quality in humans (Basile et al. 2022; Bruno
et al. 2022). In other biofluids, lambda light chains are responsi-
ble for activating inflammatory responses in autoimmune disor-
ders (Napodano et al. 2019). Our data provide the first evidence
that IGLL1 originates from a reproductive accessory gland and
is modulated by diet early in life. Overall, this provides evidence
that post-natal developmental stress can have long term effects
on reproductive accessory gland inflammation status in adults,
with potential negative consequences for sperm quality.

The increased abundance of glycolytic enzymes (such as pyru-
vatekinase and malate dehydrogenase), S100 calcium ion binding
proteins and cytoskeletal proteins (such as tropomyosin, myosin,
actin, spectrin and desmoplakin) in the foam of males raised on
a protein-restricted diet may reflect compensatory mechanisms
to preserve reproductive function (Donato et al. 2013). In birds,
glycolysis is an important energy-generating pathway for sperm
motility (Froman and Kirby 2005). Protein-restricted males
may rely more greatly on glycolysis to compensate for impaired
sperm mitochondrial function (Ford 2006). Furthermore, S100
proteins are known to regulate calcium-dependent cellular pro-
cesses including energy metabolism, cytoskeletal organisation
and cell survival, and may serve a protective role by supporting
sperm function in the female reproductive tract (Donato 2001;
Sakaguchi et al. 2008; Le$niak et al. 2009; Donato et al. 2009).
S100 proteins may also promote immune tolerance in the female
reproductive tract, preventing the female's immune system at-
tacking foreign sperm cells (Sorci et al. 2011; Schjenken and
Robertson 2020), but see Stomnicki et al. (2009). These findings
suggest developmentally stressed males invest in the mainte-
nance and survival of sperm, and in the literature, quail show
preservation of sperm quality under dietary-protein restriction
(Arscott and Parker 1963; Retes et al. 2019; Tyler et al. 2021).
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However, developmental stress may elicit physiological trade-
offs, balancing immediate reproductive performance against
potential long-term fitness costs. For example, in Drosophila,
males have been shown to buffer ejaculates against adverse con-
ditions by transferring higher abundances of SFPs and investing
more in each mating opportunity, potentially as a response to
fewer mating opportunities overall (von Hellfeld et al. 2025).

Dietary-protein availability is a major determinant of oxidative
balance, as amino acids underpin the synthesis of antioxidants
(Egbujor et al. 2024). In birds specifically, protein restriction
during development can increase oxidative stress by disrupt-
ing the production and function of antioxidants, leading to
an increase in reactive oxygen species (Faraguna et al. 2025).
Whilst some reactive oxygen species are required for reproduc-
tion, an imbalance between reactive oxygen species and the
capacity of antioxidant mechanisms results in oxidative stress
(Costantini 2008). Oxidative stress may lead to alterations in
protein expression in sperm and seminal fluid, accelerating
functional decline by promoting lipid membrane peroxidation,
alkylation of proteins associated with mitochondrial function
and flagellar movement, and loss of motility and membrane
integrity (Aitken et al. 2012; Moazamian et al. 2015). Damage
to sperm morphology and DNA integrity impairs fertilisation
(Azenabor et al. 2015; Dada 2017; Agarwal et al. 2018; Barati
et al. 2020; Candela et al. 2021). Rather than reflecting increased
reproductive investment, an increased abundance of metabolic
enzymes and oxidative stress biomarkers in protein-restricted
males may represent compensatory mechanisms that sustain
sperm performance under oxidative stress. We show that pro-
tein intake during early-life development can have long-term ef-
fects on the proteome with potential consequences for oxidative
balance.

4.3 | Metabolic Adaptations to Early
Developmental Stress

Adult males exposed to early developmental stress, either pre-
or postnatally, exhibited increased abundance of seminal foam
proteins associated with metabolic pathways, particularly gly-
colysis, suggesting a conserved response. Malate dehydrogenase
and alpha-amylase, both involved in glycolysis, may support
energy production and thereby sperm function. In mammalian
seminal fluid, alpha-amylase reduces sperm viscosity (Bunge
and Sherman 1954; Mendeluk et al. 2000). In red junglefowl
(G. gallus) seminal fluid, alpha-amylase is present at low abun-
dance and does not contribute to sperm performance (Borziak
et al. 2016), but it may play a more important role in quail semen
(Buxton and Orcutt 1975). ATP synthase may also contribute
to energy homeostasis by producing extracellular ATP (Guo
et al. 2019). Since both treatment groups also exhibited bio-
markers of oxidative stress, it is possible developmental stress
can have generalised long-term physiological consequences
on male fertility, even when no longer exposed to stress as an
adult (Breitbart et al. 2005; Xiao and Yang 2007), and the in-
creased abundance of glycolytic enzymes may be an adaptive
response to maintain sperm function and fertility. Alternatively,
increased metabolic activity could contribute to oxidative stress,
suggesting a trade-off between compensatory metabolism and
redox imbalance (Speakman and Garratt 2014).

Several proteins that were more abundant in developmentally
stressed males are involved in oxidative stress responses and
may mitigate sperm against oxidative damage. Transketolase
contributes to the production of NADPH which balances reac-
tive oxygen species and maintains mitochondrial membrane
potential (Perl et al. 2006) and is critical for ATP synthesis and
sperm cell survival. Impaired function of transketolase may
lead to oxidative damage and male infertility (Li et al. 2013;
Perl 2007). Aldo-keto reductase B10 (AKR1B10) and aldehyde
dehydrogenase Al detoxify reactive carbonyl and aldehyde
compounds that are produced under oxidative stress (Wang
et al. 2009; Shortall et al. 2021). Whilst AKR enzymes are found
in male mammalian reproductive tissue (Kobayashi et al. 2002;
Tuchi et al. 2004), the physiological function of other AKR
enzymes other than AKR1B1 remains poorly characterised.
Detoxification of reactive oxygen species may help preserve fer-
tility under developmental stress (Gibb et al. 2016), consistent
with adaptive increases in antioxidant activity seen across taxa
during oxidative stress (Faraguna et al. 2025). Future research
into trade-offs between reproductive investment and other
physiological functions, such as immune regulation (Knowles
et al. 2009) and brain size (Kotrschal et al. 2013), in develop-
mentally stressed males will be a fruitful area for further
investigation.

Differences in the number of proteins identified between
Experiment 1 and Experiment 2, as well as the relatively low
overlap in proteins detected (33%), may be due to sampling lim-
itations. Pooled samples were used to ensure sufficient material
for MS analysis; however, pooling limits the ability to detect
proteins that vary among individuals. In Experiment 2, some
pooled replicates contained more males, increasing the risk that
low-abundance peptides were diluted below the MS detection
threshold. We reduced potential individual-level bias by using
only 1 sample per male per replicate, ensuring no individuals
disproportionately influenced the proteomic profile. This limits
treatment comparisons to the level of the pooled sample rather
than the individual, and observed differences in proteomic
profiles should be interpreted as population-level trends rather
than individual-level effects. In addition, males differed in age
between the two experiments, which may also contribute to
the small proportion of overlapping proteins. Older males may
produce different relative abundances of specific proteins. Such
biological variation as well as the constraints of pooled sam-
pling likely reduced the consistency of protein detection across
experiments.

5 | Conclusion

In conclusion, we provide the first experimental evidence that
pre- and postnatal developmental stress alters the proteome of
a unique seminal foam produced by male Japanese quail, using
an approach that is portable for work on seminal fluids across
vertebrates. Our findings show that different types of early de-
velopmental stress exert a similar influence on the molecular
composition of this seminal fluid, with potential long-term im-
pacts on ejaculate function and fertility. Contrary to our origi-
nal hypothesis, developmentally stressed males do not reduce
investment in SFP production, but instead we find evidence of
oxidative stress and inflammation in their reproductive tissue
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with potential long-term consequences for sperm function, fu-
ture matings and other physiological functions. The elevated
abundance of metabolic proteins that support sperm function in
developmentally stressed males may reflect adaptive plasticity
to safeguard fertilisation despite physiological constraints im-
posed by early-life stress, potentially at the expense of future
reproductive performance. Our findings provide new insights
into mechanisms by which early-life environmental conditions
can influence reproductive fluids and the consequences of this
for fertility in adulthood. Furthermore, they highlight the im-
portance of developmental plasticity in modulating reproductive
investment and function, potentially as an adaptive response to
mitigate oxidative and inflammatory damage.
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