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Objectives: Evidence from clinical trials suggests that
antihypertensive treatment is associated with an increased
risk of common electrolyte abnormalities. We aimed to
develop and validate two clinical prediction models to
estimate the risk of hyperkalaemia and hyponatraemia,
respectively, to facilitate targeted treatment and
monitoring strategies for individuals indicated for
antihypertensive therapy.

Design and methods: Participants aged at least 40years,
registered to an English primary care practice within the
Clinical Practice Research Datalink (CPRD), with a systolic
blood pressure reading between 130 and 179mmHg were
included the study. The primary outcomes were first
hyperkalaemia or hyponatraemia event recorded in primary or
secondary care. Model development used a Fine-Gray
approach with death from other causes as competing event.
Model performance was assessed using C-statistic, D-statistic,
and Observed/Expected (O/E) ratio upon external validation.

Results: The development cohort included 1773224
patients (mean age 59 years, median follow-up 6 years).
The hyperkalaemia model contained 23 predictors and the
hyponatraemia model contained 29 predictors, with all
antihypertensive medications associated with the
outcomes. Upon external validation in a cohort of
3 805366 patients, both models calibrated well (O/E ratio:
hyperkalaemia 1.16, 95% CI 1.13–1.19; hyponatraemia
1.00, 95% CI 0.98–1.02) and showed good discrimination
at 10 years (C-statistic: 0.69, 95% CI 0.69–0.69; 0.80,
95% CI 0.80–0.80, respectively).

Conclusion: Current clinical guidelines recommend
monitoring serum electrolytes after initiating
antihypertensive treatment. These clinical prediction
models predicted individuals’ risk of electrolyte
abnormalities associated with antihypertensive treatment
and could be used to target closer monitoring for
individuals at a higher risk, where resources are limited.

Keywords: antihypertensive therapy, clinical decision-
making, drug-related adverse effects, serum electrolytes
monitoring
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INTRODUCTION
H
ypertension is the most prevalent chronic health
condition and the leading risk factor for cardiovas-
cular disease [1]. Although antihypertensive treat-

ment has been shown to reduce the risk of cardiovascular
events and death in all ages up to 85years [2], it is also
associated with potential harms, such as hypotension, synco-
pe, falls, acute kidney injury, and electrolyte abnormalities
[3,4]. Previous studies have been shown that antihypertensive
medication prescription is associated with common electro-
lyte abnormalities, including hyponatraemia, hypokalaemia,
hyperkalaemia, and hypercalcaemia [5–7]. In particular, thia-
zide-type diuretics, beta-blockers, and blockers of the renin-
angiotensin-aldosterone system (RAAS) are thought to be
more likely to cause these complications [5–7].

Although these electrolyte abnormalities are often
asymptomatic, they are relatively common, particularly in
older people and patients with comorbidities such as renal
disease and diabetes [6,8–10]. If left undetected, they can
lead to serious complications. For example, hyperkalaemia,
defined as a serum potassium concentration exceeding
5.5mmol/l [8], is associated with prescription of RAAS
medications [3] and has been shown to increase the risk
of life-threatening cardiac arrhythmias or cardiac arrest
[8,9]. Hyponatraemia, defined as a serum sodium concen-
tration below 135mmol/l [11], is the most frequently ob-
served electrolyte abnormality in clinical practice, affecting
5–35% of the adult population [11–14]. Mild chronic hypo-
natraemia is associated with an increased rate of syncope,
falls, and fractures, while severe acute hyponatraemia is
associated with increased mortality, morbidity, risk of hos-
pitalization, and length of hospital stay [7,12,14]. Certain
medications, especially thiazide and thiazide-like diuretics,
are more likely to cause hyponatraemia [7,15,16].

Strategies to prevent these drug-induced electrolyte ab-
normalities involve careful consideration of risk factors
along with clinical and laboratory evaluation before initia-
tion and during treatment. For individuals at a high risk of
hyperkalaemia or hyponatraemia, it may not be appropriate
to prescribe specific antihypertensive medications. For
those already undergoing treatment, transitioning to an
alternative class may be considered. To enable optimal
treatment choice, clinicians must understand an individual’s
underlying risk of these electrolyte abnormalities.

Therefore, the present study aimed to develop and
externally validate two new prediction models for the risk
of hyperkalaemia and hyponatraemia, taking into account
the competing risk of death from other causes.

MATERIALS AND METHODS

Extended methods for this study are described in detail in
Supplementary appendix 1, http://links.lww.com/HJH/C705.

Design
This study used a retrospective observational cohort design
using routine primary care electronic health records (EHRs)
data from the Clinical Practice Research Datalink (CPRD) in
the UK. Patient-level data were linked to Office for National
Statistics (ONS) Death Registration Data, Hospital Episode
Journal of Hypertension
Statistics (HES), and Index of Multiple Deprivation (IMD)
data. The two prediction models were developed using the
CPRD GOLD data (patient EHR from general practice
surgeries using the Vision software system), with external
validation conducted using the CPRD Aurum data (patient
EHR fromGP surgeries using EMIS software system) [17,18].
These two distinctive primary care databases are represen-
tative of the UK population in terms of age, sex, and
ethnicity [17,18]. CPRD GOLD comprises 11.3 million
patients (4.4 million currently alive) from 674 practices,
while CPRD Aurum comprises 19 million patients (7 million
currently alive) from 738 practices [17,18]. The protocol for
this study was approved by the CPRD Independent Scien-
tific Advisory Committee (ISAC) (protocol number 19_042,
see appendix 5).

Population
Participants aged at least 40 years registered to a CPRD
practice between 1 January 1998 and 31 December 2018
with at least one systolic blood pressure (SBP) measure-
ment between 130 and 179mmHg were eligible for inclu-
sion. The index date was defined at 12months after cohort
entry (first high blood pressure measure) and the study
follow-up period was up to 10 years. All patient character-
istics and predictors for the models were determined at the
index date. Patients exited the cohort on the study end date
(31 December 2018), or upon transferring out of a regis-
tered CPRD practice, death, or after experiencing the spe-
cific outcome of interest. The same eligibility criteria and
methods were applied to both the development and
validation cohorts.

Outcomes
The primary outcomes were first hyperkalaemia or hypo-
natraemia event within 10 years of index date. Hyperkalae-
mia was defined using a combination of test result (serum
potassium >5.5mmol/l) or diagnosis codes of hyperkalae-
mia in CPRD, HES and ONS within 10 years of the index
date. Similarly, hyponatraemia was also defined using a
combination of test result (serum sodium <135mEq/l) or
diagnosis codes of hyponatraemia in CPRD, HES and ONS
within the same time frame (Clinical codes for outcomes,
see Supplementary appendix three Table S1, http://links.
lww.com/HJH/C705). Prespecified secondary outcomes
were hyperkalaemia or hyponatraemia (defined in the
same way) within 1 and 5 years of the index date. The
definition of outcomes was consistent with consensus clin-
ical practice and guidelines [8,11].

Model covariates
Predictors of hyperkalaemia and hyponatraemia were pre-
specified and defined according to previous literature and
expert clinical opinion (List of predictors, see Supplemen-
tary appendix 3 Table S2, http://links.lww.com/HJH/
C705). A total of 25 predictors were considered for the
hyperkalaemia model and 29 for the hyponatraemia model.
These included patient demographics, clinical character-
istics, comorbidities and prescribed medications including
antihypertensives. Covariates were defined as the most
recent relevant clinical code before the index date, with
www.jhypertension.com 1349
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the exception of blood test results (serum creatinine, po-
tassium and sodium) and a previous history of hyperka-
laemia and hyponatraemia, which were captured in the
2 years prior to the index date. Medication prescriptions,
including antihypertensives, were defined as any prescrip-
tion within 1 year prior to the index date.

Sample size
A sample size of approximately 16 778 patients was esti-
mated to be required for the development of the risk
equations. The sample size calculation was based on an
event rate of between 14.6 and 36 per 1000 patient years of
follow-up [6,9], an expected median follow-up of 7 years
[19], an estimate of Nagelkerke’s R2 statistic of 0.15, a global
shrinkage factor of 0.9 and a maximum number of 40
parameters in the model [20]. For external validation, a
prognostic model requires ideally 200 or more events [21].
The actual sample sizes in both development and validation
cohorts far exceeded these estimates.

Statistical analysis
The study was conducted in accordance with the TRIPOD
(Transparent Reporting of a multivariable prediction model
for Individual Prognosis or Diagnosis) guidelines [22] for
prediction model studies (See Supplementary appendix 2.
TRIPOD Checklist, http://links.lww.com/HJH/C705). Base-
line characteristics were summarised using descriptive sta-
tistics in the development and validation cohorts separately.

Model development
Each model was developed and internally validated by
researchers at the University of Oxford (A.W., C.K., J.P.S.).
Multivariable prediction models were fitted in each imputed
dataset using a Fine-Gray sub-distribution hazard model,
which accounted for the competing risk of death by other
causes [23]. Sub-distribution hazard ratios (SHRs) with 95%
confidence intervals were reported, and the postestimation
baseline cumulative incidence for each event was estimated
using a Breslow-type estimator as defined in the Fine-Gray
paper [23]. Analyses were conducted using the fastcmprsk
package in RStudio [24]. Fractional polynomialswere used to
examine the linearity assumption of all continuous variables
(age, SBP and electronic frailty index [eFI]) and identify the
best fitting transformation [25]. Automated variable selection
methods were not used since all predictors were prespeci-
fied; instead, a post hoc decision was used.

Apparent validation using development data
Apparent validation was assessed using calibration plots
comparing the observed to predicted probabilities at 1, 5
and 10years. Observed outcome probabilities were estimat-
ed using pseudo-values: jack-knife estimators representing
an individual’s contribution to the cumulative incidence
function for each event accounting for the competing risk
of death and calculated by the Aalen–Johansenmethod [26].
Calibration plots were produced using the pseudo-values
and generated using a loess smoother calibration curve with
95% confidence intervals. Where miscalibration was present
upon assessment of apparent performance, recalibration in
the development dataset was considered.
1350 www.jhypertension.com
External validation
The external validation of each prediction model was
conducted by researchers at The University of Birmingham
(LA, KIES, RDR), independent of the model development
team. The prediction model algorithms (Supplementary
appendix 4 equations, http://links.lww.com/HJH/C705)
were applied to each individual in the external validation
cohort to give the predicted probabilities of experiencing a
hyperkalaemia or hyponatraemia event within 1, 5 and
10 years, taking account of the competing risk of death
by other causes. Model calibration was assessed using the
same method as used in the apparent validation. Model
performance was assessed using the Observed to Expected
ratio (O/E), Harrell’s C-statistic and Royston’s D-statistic
with its associated R2 statistic [27], applied to the same
pseudo-values as above, along with calibration plots. Het-
erogeneity in model performance across different GP prac-
tices was assessed.

Clinical utility analysis
Further analyses compared the 10-year risk of hyperkalae-
mia or hyponatraemia event against the risk of cardiovas-
cular disease, calculated using the QRisk2 algorithm using a
10% threshold [28]. Clinical utility was assessed using net
benefit analysis to examine the benefits of using the STRAT-
IFY prediction models for clinical decision making on
regular serum electrolytes monitoring [29]. The STRATIFY
prediction models were compared with model blind meth-
ods of no regular monitoring (which may involve remove
current guidelines on regular serum electrolytes checking)
for all patients, or regular monitoring (starting or continu-
ing) for all patients, regardless of risk. Venn diagrams were
used to visualised the overlap of patients at high-risk
(�10%) hyperkalaemia, hyponatraemia and cardiovascular
disease in the CPRD Gold cohort.

Missing data
Multiple imputation with chained equations was used to
impute missing data in both the derivation and validation
dataset. Ten imputations were generated for each cohort
and imputation models included all covariates within each
dataset, along with the Nelson-Aalen estimator, and out-
comes of interest (hyperkalaemia or hyponatraemia, and
the competing event of death in each model) [30,31].
Predictor variables requiring imputation were ethnicity,
BMI groups, deprivation score (validation cohort only),
smoking status, alcohol consumption and estimate glomer-
ular filtration rate (eGFR) categories (calculated using The
2021 CKD-EPI creatinine equation) [32].

RESULTS

Population characteristics
A total of 1 773 224 patients were included in the model
development cohort (CPRD GOLD) with a mean age of
59 years (SD 13.2), and median follow up of 6 years (IQR
2.6–10) (Table 1). The mean blood pressure at study entry
was 144/84mmHg (SD 12/10mmHg). The 10-year preva-
lence of hyperkalaemia was 6.9% (n¼ 122 775), with 14.7%
(n¼ 261 264) of patients experiencing the competing event
Volume 43 � Number 8 � August 2025
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TABLE 1. Baseline characteristics of patients in the development dataset (CPRD Gold)

Variable
Total
(N¼1773224)

Hyperkalaemia
(n¼122775)

Competing risk -
hyperkalaemia
(n¼261264)

Hyponatraemia
(n¼190116)

Competing risk -
hyponatraemia
(n¼223575)

Age, years – mean (SD) 59.4 (13.2) 65 (125) 75 (12.2) 67.9 (12.8) 74.9 (12.3)

SBP, mmHg – mean (SD) 143.5 (12.0) 145.9 (12 6) 146.7 (12.7) 147.1 (12.9) 146.5 (12.7)

DBP, mmHg – mean (SD) 83.8 (9.6) 83 (10) 81.6 (10.1) 83 (10) 81.5 (10.1)

Follow-up, years – median (IQR) 6.2 (2.6–10) 4.0 (1.8–6.5) 4.3 (2–7) 3.5 (1.4–6.2) 4.1 (1.9–6.8)

Electronic frailty indexa – mean (SD) 0.06 (0.08) 0.08 (0.08) 0.1 (0.08) 0.09 (0.11) 0.1 (0.08)

Sex

Male 851 058 (48%) 63069 (51.4%) 122 322 (46.8%) 83 630 (44%) 107 409 (48%)

Female 922 166 (52%) 59706 (48.6%) 138 942 (53.2%) 106 486 (56%) 116166 (52%)

Ethnicity

White 734 401 (41.4%) 79 770 (65%) 167832 (64.2%) 138 154 (72.7%) 140 483 (62.8%)

Black 10 802 (0.6%) 1073 (0.9%) 1242 (0.5%) 1101 (0.6%) 1,173 (0.5%)

South Asian 14 805 (0.8%) 2555 (2.1%) 1359 (0.5%) 2913 (1.5%) 1,184 (0.5%)

Other 15 737 (0.9%) 1761 (1.4%) 1961 (0.8%) 2110 (1.1%) 1,760 (0.8%)

Missing 997 479 (56.3%) 37 616 (30.6%) 88 870 (34%) 45838 (24.1%) 78,975 (35.3%)

Deprivation Score

IMD 1 419468 (23.7%) 27 019 (22%) 51353 (19.7%) 40 455 (21.3%) 43,374 (19.4%)

IMD 2 406916 (22.9%) 27 973 (22.8%) 57 398 (22%) 42346 (22.3%) 48,917 (21.9%)

IMD 3 376903 (21.3%) 25 703 (20.9%) 56 578 (21.7%) 40 497 (21.3%) 48,571 (21.7%)

IMD 4 313707 (17.7%) 22 874 (18.6%) 50 150 (19.2%) 35 662 (18.8%) 43,238 (19.3%)

IMD 5 254800 (14.4%) 19 128 (15.6%) 45 494 (17.4%) 30 986 (16.3%) 39,227 (17.5%)

Missing 1430 (0.1%) 78 (0.06%) 291 (0.1%) 170 (0.09%) 248 (0.1%)

BMI

Underweight 20 635 (1.2%) 1479 (1.2%) 7924 (3%) 3798 (2%) 6,471 (2.9%)

Normal 519 524 (29.3%) 32 952 (26.8%) 80 161 (30.7%) 60 535 (31.8%) 66,072 (29.6%)

Overweight 586 531 (33.1%) 40 996 (33.4%) 69 964 (26.8%) 58 256 (30.6%) 60,169 (26.9%)

Obese 340 357 (19.2%) 25 972 (21.2%) 33 883 (13%) 32442 (17.1%) 30,334 (13.6%)

Morbidly obese 39 853 (2.2%) 3553 (2.9%) 3599 (1.4%) 4012 (2.1%) 3,400 (1.5%)

Missing 266 324 (15%) 17823 (14.5%) 65 733 (25.2%) 31 073 (16.3%) 57,129 (25.6%)

Smoking status

Non smoker 847 473 (47.8%) 12 107 (42.6%) 79 576 (41.5%) 18 843 (47.2%) 78,886 (41.2%)

Ex-smoker 471 193 (26.6%) 8907 (31.3%) 53 345 (27.8%) 10 817 (27.1%) 53,716 (28.1%)

Smoker 363 579 (20.5%) 5537 (19.5%) 39 653 (20.7%) 7236 (18.1%) 39,852 (20.8%)

Missing 90,979 (5.1%) 1,899 (6.7%) 19,191 (10.0%) 3,002 (7.5%) 18,980 (9.9%)

Alcohol

Non drinker 289,581 (16.3%) 24,706 (20.1%) 56,299 (21.5%) 37,729 (19.8%) 48,713 (21.8%)

Trivial drinker 488,448 (27.5%) 32,918 (26.8%) 59,723 (22.9%) 49,249 (25.9%) 50,909 (22.8%)

Light drinker 239,799 (13.5%) 14,709 (12%) 26,483 (10.1%) 22,618 (11.9%) 22,400 (10%)

Moderate drinker 179,162 (10.1%) 10,781 (8.8%) 17,657 (6.8%) 16,598 (8.7%) 14,544 (6.5%)

Heavy drinker 22,772 (1.3%) 1,536 (1.3%) 3,489 (1.3%) 3,348 (1.8%) 2,613 (1.2%)

Unknown amount 291,767 (16.5%) 19,418 (15.8%) 38,923 (14.9%) 29,819 (15.7%) 33,275 (14.9%)

Missing 261,695 (14.8%) 18,707 (15.2%) 58,690 (22.5%) 30,755 (16.2%) 51,121 (22.9%)

Frailty index groupsa

Fit 1,551,140 (87.5%) 93,603 (76.2%) 171,732 (65.7%) 140,219 (73.8%) 146,834 (65.7%)

Mildly frail 192,855 (10.9%) 24,986 (20.4%) 72,154 (27.6%) 42,619 (22.4%) 61,697 (27.6%)

Moderately frail 26,437 (1.5%) 3,766 (3.1%) 15,459 (5.9%) 6,518 (3.4%) 13,414 (6%)

Severely frail 2,792 (0.2%) 420 (0.3%) 1,919 (0.7%) 760 (0.4%) 1,630 (0.7%)

eGFR (CKD stages)

Stage 1 (G1) – normal 283,294 (16%) 14,723 (12%) 18,634 (7.1%) 24,912 (13.1%) 14,696 (6.6%)

Stage 2 (G2) – mild reduction,
normal if young

433,111 (24.4%) 35,084 (28.6%) 65,239 (25%) 55,416 (29.1%) 53,589 (24%)

Stage 3a (G3a) – mild-moderate
reduction

87,522 (4.9%) 13,271 (10.8%) 32,966 (12.6%) 19,054 (10%) 28,614 (12.8%)

Stage 3b (G3b) – moderate-severe
reduction

28,303 (1.6%) 6,357 (5.2%) 15,437 (5.9%) 7,068 (3.7%) 14,376 (6.4%)

Stage 4 (G4) – severe reduction 6,620 (0.4%) 2,086 (1.7%) 3,660 (1.4%) 1,515 (0.8%) 3,929 (1.8%)

Stage 5 (G5) – kidney failure 1,229 (0.1%) 395 (0.3%) 610 (0.2%) 296 (0.2%) 656 (0.3%)

No test 933,145 (52.6%) 50,859 (41.4%) 124,718 (47.7%) 81,855 (43.1%) 107,715 (48.2%)

Previous Hyperkalaemia
within 2 years

13,918 (0.8%) 4,502 (3.7%) 2,842 (1.1%) �� ��

Previous Hyponatraemia
within 2 years

30,301 (1.7%) �� �� 17,268 (9.1%) 6,083 (2.7%)

Chronic diseases

Heart Failure 31,338 (1.8%) 5,359 (4.4%) 18,402 (7%) 7,611 (4%) 16,387 (7.3%)

Diabetes 137,781 (7.8%) 26,475 (21.6%) 31,480 (12%) 35,040 (18.4%) 27,705 (12.4%)

Cerebrovascular disease 64,469 (3.6%) 7,515 (6.1%) 31,203 (11.9%) 13,250 (7%) 27,282 (12.2%)

Coronary artery disease 143,286 (8.1%) 21,053 (17.1%) 50,789 (19.4%) �� ��
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TABLE 1 (Continued)

Variable
Total
(N¼1773224)

Hyperkalaemia
(n¼122775)

Competing risk -
hyperkalaemia
(n¼261264)

Hyponatraemia
(n¼190116)

Competing risk -
hyponatraemia
(n¼223575)

Peripheral vascular disease 30,120 (1.7%) 4,863 (4%) 13,795 (5.3%) �� ��
Chronic liver disease 6,546 (0.4%) �� �� 1,482 (0.8%) 1,388 (0.6%)

Antihypertensive drugs

ACE inhibitors 219,588 (12.4%) 30,754 (25%) 50,604 (19.4%) 43,687 (23%) 43,592 (19.5%)

Angiotensin II receptor antagonists 59,103 (3.3%) 7,435 (6.1%) 11,256 (4.3%) 11,476 (6%) 9,384 (4.2%)

Alpha blockers 34,349 (1.9%) 4,652 (3.8%) 9,095 (3.5%) 7,329 (3.9%) 7,783 (3.5%)

Beta blockers 216,202 (12.2%) 24,190 (19.7%) 43,685 (16.7%) 37,681 (19.8%) 36,873 (16.5%)

Calcium channel blockers 193,221 (10.9%) 21,740 (17.7%) 50,191 (19.2%) 35,614 (18.7%) 42,681 (19.1%)

Loop diuretics 107,018 (6%) 15,688 (12.8%) 54,589 (20.9%) 23,721 (12.5%) 48,249 (21.6%)

Potassium sparing diuretics 41,993 (2.4%) 5,733 (4.7%) 19,711 (7.5%) 10,934 (5.8%) 16,315 (7.3%)

Thiazides and thiazide-like diuretics 180,115 (10.2%) 15,433 (12.6%) 43,526 (16.7%) 40,269 (21.2%) 33,651 (15.1%)

Other antihypertensives 10,884 (0.6%) 2,794 (2.3%) 5,775 (2.2%) 4,211 (2.2%) 4,797 (2.1%)

Antidepressant 189,758 (10.7%) �� �� 25,485 (13.4%) 32,205 (14.4%)

Antipsychotic 36,333 (2%) �� �� 5,671 (3%) 12,707 (5.7%)

Anticonvulsants 34,367 (1.9%) �� �� 7,690 (4%) 7,562 (3.4%)

Proton pump inhibitors 259,410 (14.6%) �� �� 36,969 (19.4%) 43,034 (19.2%)

NSAIDs 343,941 (19.4%) �� �� 41,387 (21.8%) 41,116 (18.4%)

ACE, Angiotensin converting enzyme; BMI, Body mass index; CKD, Chronic kidney disease; eGFR, estimated glomerular filtration rate; IMD, Indicies of multiple deprivation; NSAIDS,
Nonsteroidal anti-inflammatory drugs.
aThe electronic frailty index (eFI) includes 36 items and is estimated from electronic health records. The index ranges from 0 to 1 (“fit” 0� eFI�0.12; “mild” 0.12<eFI�0.24;
“moderate” 0.24< eFI� 0.36; “severe” 0.36< eFI�1.0).
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of death from other causes. The 10-year prevalence of
hyponatraemia was 10.7% (n¼ 190 116), with 12.6%
(n¼ 223 575) of patients experiencing the competing event
of death from other causes.

A total of 3 805 366 patients were included in the valida-
tion cohort (CPRD Aurum), with a mean age of 59 years (SD
13.3), and median follow up of 7 years (IQR 2.9–10) (Sup-
plementary appendix 3 Table S3, http://links.lww.com/
HJH/C705). The 10-year prevalence of hyperkalaemia
was 7.3% (n¼ 277 982), with 9.4% (n¼ 356 193) of patients
experiencing the competing event of death from other
causes. The 10-year prevalence of hyponatraemia was
11.1% (n¼ 424 126), with 7.9% (n¼ 298 889) of patients
experiencing the competing event of death from other
causes. Ethnicity data were more complete in the validation
cohort compared to the development cohort (81 vs. 44%
complete data).

Model development

STRATIFY-Hyperkalaemia model
A total of 23 predictors were included in the final STRATI-
FY-Hyperkalaemia model, after the exclusion of covariates
with no association with hyperkalaemia (alcohol consump-
tion and IMD). Previous hyperkalaemia (sub-hazard ratio
[SHR] 3.64, 95% confidence interval [CI] 3.50–3.78), diabe-
tes (SHR 2.37, 95% CI 2.33–2.42) and low eGFR (Reference
eGFR� 90, eGFR 45–59: SHR 2.05, 95% CI 2.00–2.10) were
the strongest predictors of hyperkalaemia. High BMI, South
Asian ethnic group and smoking were also associated with
an increased risk of hyperkalaemia, while female sex was
associated with a reduced risk (Table 2).

Prescription of RAAS medications was associated with an
increased risk of hyperkalaemia: ACE inhibitors (SHR 1.45,
95% CI 1.42–1.48) and ARBs (SHR 1.27, 95% CI 1.13–1.32).
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Conversely, thiazides and thiazide-like diuretics (SHR 0.75,
95%CI0.73–0.77) and loopdiuretics (SHR0.91, 95%CI0.88–
0.94) were all associated with a reduced risk of hyperkalae-
mia. Internal validation suggested minor miscalibration,
however, recalibration was not necessary (Supplementary
appendix 3 Figure S2, http://links.lww.com/HJH/C705).

STRATIFY-Hyponatraemia model
All 29 predictors considered in the model development
were included in the final STRATIFY-Hyponatraemia mod-
el. Previous hyponatraemia (SHR 4.95, 95% CI 4.84–5.05),
diabetes (SHR 2.08, 95% CI 2.05–2.12) and chronic liver
disease (SHR 1.81, 95% CI 1.71–1.92) were the strongest
predictors of hyponatraemia. High deprivation, South Asian
ethnic group, drinking and smoking were associated with
an increased risk of hyponatraemia. On the contrary, low
eGFR, high BMI and black ethnic group were associated
with a reduced risk of hyponatraemia (Table 2).

All types of antihypertensive medications, with the ex-
ception of loop diuretics, were associated with an increased
the risk of hyponatraemia, with thiazides and thiazide-like
diuretics (SHR 1.47, 95% CI 1.45–1.49), ACE inhibitors (SHR
1.35, 95% CI 1.34–1.37) and ARBs (SHR: 1.30, 95% CI 1.27–
1.33) conferring the highest risks (Table 2). Anticonvulsants
was also a strong predictor of hyponatraemia that associat-
ed with an increased risk (SHR 1.87, 95% CI 1.82–1.92).
Internal validation also suggested minor miscalibration,
again, recalibration was not necessary.

External model validation

Predictive performance
The STRATIFY-Hyperkalaemia model exhibited very good
calibration at all timepoints, with minor miscalibration in
very few patients (O/E ratio at 1 year 1.04, 95% CI 1.01–
Volume 43 � Number 8 � August 2025
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TABLE 2. STRATIFY prediction models for Hyperkalaemia and Hyponatraemia. Values are sub-distribution hazard ratios and 95%
confidence intervals (CPRD Gold)

STRATIFY-Hyperkalaemia model STRATIFY-Hyponatraemia model

SHR 95% CI Associationb SHR 95% CI Association

Age (transformed)a 1�005 1�004 to 1�005 " 1�022 1�022 to 1�023 "
Sex (Female) 0�859 0�849 to 0�870 # 1�078 1�065 to 1�092 "
BMI (ref. Normal)

Underweight 0�975 0�923 to 1�030 � 1�062 1�025 to 1�101 "
Overweight 1�051 1�034 to 1�068 " 0�864 0�852 to 0�876 #
Obese 1�129 1�109 to 1�150 " 0�806 0�793 to 0�819 #
Morbidly obese 1�354 1�304 to 1�407 " 0�851 0�821 to 0�881 #

Deprivation (ref. IMD¼1, least deprived)

IMD ¼ 2 �� �� �� 1�025 1�009 to 1�042 "
IMD ¼ 3 �� �� �� 1�033 1�017 to 1�048 "
IMD ¼ 4 �� �� �� 1�078 1�061 to 1�095 "
IMD ¼ 5 �� �� �� 1�116 1�098 to 1�134 "

Ethnicity (ref. White)

Black 0�936 0�790 to 1�108 � 0�556 0�444 to 0�696 #
South Asian 1�752 1�612 to 1�904 "" 1�220 1�078 to 1�380 "

Smoking status (ref. Nonsmoker)

Ex-smoker 1�191 1�173 to 1�210 " 1�073 1�059 to 1�087 "
Smoker 1�392 1�370 to 1�414 " 1�348 1�327 to 1�369 "

Alcohol (ref. Nondrinker)

Light drinker �� �� �� 1�042 1�023 to 1�061 "
Moderate drinker �� �� �� 1�124 1�098 to 1�150 "
Heavy drinker �� �� �� 1�639 1�580 to 1�700 ""
Drinker, units not reported �� �� �� 1�025 1�005 to 1�041 "

eGFR (ref. Normal, CKD stage 1)

eGFR 60–89 (CKD stage 2) 1�428 1�401 to 1�456 " 0�989 0�974 to 1�003 �
eGFR 45–59 (CKD stage 3a) 2 051 2�000 to 2�103 """ 0�937 0�915 to 0�960 #
eGFR 30–44 (CKD stage 3b) 2 513 2�419 to 2�610 """ 0�799 0�776 to 0�823 #
eGFR 15–29 (CKD stage 4) 3�088 2�906 to 3�282 """" 0�685 0�646 to 0�727 #
eGFR <15 (CKD stage 5) 2�662 2�369 to 2�990 """ 0�809 0�712 to 0�919 #

Systolic BP 1�004 1�004 to 1�005 " 1�009 1�009 to 1�009 "
eFI (transformed)a 1�129 1�115 to 1�143 " 1�176 1�167 to 1�186 "
Previous hyperkalaemia 3�638 3�501 to 3�781 """" �� �� ��
Previous hyponatraemia �� �� �� 4�945 4�844 to 5�049 """""
Heart failure 0�912 0�881 to 0�944 # 0�900 0�872 to 0�929 #
Diabetes 2�373 2�329 to 2�418 """ 2�084 2�048 to 2�120 """
Cerebrovascular disease 0�891 0�868 to 0�916 # 0�846 0�828 to 0�864 #
Coronary artery disease 1�124 1�104 to 1�144 " �� �� ��
Peripheral vascular disease 1�106 1�072 to 1�141 " �� �� ��
Chronic liver disease �� �� �� 1�813 1�711 to 1�921 ""
Antihypertensive drugs

ACE inhibitors 1�450 1�419 to 1�482 " 1�354 1�337 to 1�372 "
Beta blockers 1�106 1�080 to 1�133 " 1�210 1�195 to 1�226 "
Calcium channel blockers 1�005 0�981 to 1�029 � 1�057 1�042 to 1�072 "
Thiazides and thiazide-like diuretics 0�751 0�730 to 0�773 # 1�470 1�449 to 1�492 "
Angiotensin II receptor antagonists 1�272 1�131 to 1�315 " 1�301 1�271 to 1�332 "
Alpha blockers 1�025 0�984 to 1�067 � 1�079 1�051 to 1�109 "
Other antihypertensives 1�153 1�084 to 1�227 " 1�140 1�097 to 1�184 "
Loop diuretics 0�913 0�884 to 0�944 # 0�893 0�876 to 0�911 #
Potassium sparing diuretics 1�061 1�016 to 1�107 " 1�264 1�233 to 1�296 "

Other drugs

Antidepressant �� �� �� 1�066 1�048 to 1�084 "
Anticonvulsants �� �� �� 1�868 1�818 to 1�920 ""
Antipsychotics �� �� �� 0�951 0�918 to 0�985 #
Proton pump inhibitors �� �� �� 1�170 1�155 to 1�185 "
NSAIDS �� �� �� 1�118 1�104 to 1�131 "

CE, Angiotensin converting enzyme; BMI, Body mass index; BP, blood pressure; CKD, Chronic kidney disease; eFI, electronic frailty index; eGFR, estimated glomerular filtration rate;
D, Indicies of multiple deprivation; NSAIDS, Nonsteroidal anti-inflammatory drugs.
ariable transformed to account for nonlinear association with the outcome: age_transformed ¼ (age/10) ^2– 37�03; eFI_transformed ¼ eFI/0�1.
rrows to visualise the strength and direction of the association: ": 1<SHR<1�5 or 0�5<SHR<1; "": 1�5<SHR<2 or 0<SHR<0�5; """: 2<SHR<3; """": 3<SHR<4; """"": SHR>4.

Developing prediction models for electrolyte abnormalities
A
IM
aV
bA
1.08; 5 years 1.10, 95% CI 1.07–1.13; 10 years 1.16, 95% CI
1.13–1.19; Table 3, Fig. 1). Discrimination was also good at
all timepoints (C-statistic at 1 year 0.73, 95% CI 0.73–0.74;
5 years 0.70, 95% CI 0.70–0.70; 10 years 0.69, 95% CI 0.69–
Journal of Hypertension
0.69; Table 3). The STRATIFY-Hyponatraemia model also
showed very good calibration at all timepoints, with minor
over-prediction in very few patients at the highest risk (O/E
ratio at 1 year 0.86, 95% CI 0.84–0.88; 5 years 0.93, 95% CI
www.jhypertension.com 1353
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0.91–0.95; 10 years 1.00, 95% CI 0.98–1.02 Table 3, Fig. 1).
Overall, the STRATIFY-Hyponatraemia model showed very
good discrimination (C-statistic at 1 year 0.85, 95% CI 0.84–
0.85; 5 years 0.81, 95% CI 0.81–0.81; 10 years 0.80, 95% CI
0�80–0.80; Table 3). The performance of each model varied
more among smaller practices, with more consistent per-
formance seen as practice size increased (Supplementary
appendix 3 Figures S3-S5, http://links.lww.com/HJH/
C705).

Clinical utility
Decision curve analysis indicated that both models had
clinical utility across all three time points (Fig. 2). Using
both models to guide serum electrolytes monitoring strate-
gies would result in a higher net benefit compared to a
“regular monitoring for all” approach. When compared to a
“no regular monitoring” approach, both models are pref-
erable for a wide range of risk thresholds.

Comparing the risks of electrolyte abnormalities with the
risk of cardiovascular disease in CPRD GOLD using a 10%
risk threshold for both (Supplementary appendix 3 Figure
S6, http://links.lww.com/HJH/C705), the majority of
patients with a low risk of cardiovascular disease also
had a low risk of hyperkalaemia (46%) or hyponatraemia
(40.2%). A small percentage of patients with a low risk of
cardiovascular disease exhibited a high risk of adverse
events (hyperkalaemia: 2%; hyponatraemia: 7.8%). In ad-
dition, most patients with a high risk of cardiovascular
disease also had a high risk of hyponatraemia (44.1%),
while a relative smaller proportion (24.2%) for hyperkalae-
mia. There was notable overlap across models, with nearly
a quarter of patients being at high risk of hyperkalaemia,
hyponatraemia and cardiovascular disease. Nonetheless,
almost 40% of patients were not at a high risk for any of
these three risks (Supplementary appendix 3 Figure S7,
http://links.lww.com/HJH/C705).

DISCUSSION

Summary of main findings
This study developed two clinical prediction models for the
risk of hyperkalaemia and hyponatraemia, in patients indi-
cated for antihypertensive treatment. Bothmodels calibrated
well, showed good discrimination upon external validation,
and exhibited clinical utility at almost any chosen risk thresh-
old. Over 44 and 24% of patients were found to be at a high
risk of both cardiovascular disease and hyponatraemia or
hyperkalaemia, respectively, while 40% of patients were not
at a high risk of either electrolyte abnormalities or CVD.
Therefore, these models may be most useful in assisting
clinicians when prescribing antihypertensive medications,
helping to either avoid starting/continuing medications that
are known to cause specific electrolyte abnormalities, ensure
closer regular monitoring after initiating medications for
those at a higher risk and reduce unnecessary testing in
those with low predicted risks.

Strengths and limitations
In this study, the modelling approach took into account
the competing risk of death from other causes not
related to the outcomes of interest. This consideration is
Volume 43 � Number 8 � August 2025
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FIGURE 1 Calibration curves for the STRATIFY models upon external validation in CPRD Aurum. Groups represent tenths of the linear predictor, as created between
deciles. Histograms show the distribution of predicted probabilities.

Developing prediction models for electrolyte abnormalities
particularly important when using the model in older
patients with multiple health conditions or risk factors, as
failure to account for competing risks can lead to over-
estimating an individual’s benefit from antihypertensive
treatment [33].
Journal of Hypertension
The prevalence of hyperkalaemia and hyponatraemia
varies significantly depending on the definition of event
and the healthcare setting [13]. We defined the outcomes of
interest as a combination of diagnostic codes and blood test
results within 2 years of the index date, using the diagnostic
www.jhypertension.com 1355



FIGURE 1 Continued.
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criteria set out in NICE guidelines; potassium threshold of
more than 5.5mmol/l for hyperkalaemia and sodium
threshold of less than 135mEq/l for hyponatraemia
[8,11]. However, laboratories analysing these samples adopt
different reference standards such as normal potassium
between 3.5–5 and 3.5–5.3mmol/l, reflecting changes in
guidelines over the years. Using these reference ranges
would have been advantageous, as they were used by
clinicians to interpret the test results, but would have also
resulted in a much less consistent definition.

We encountered a large amount of missing data for some
predictor variables, especially ethnicity and eGFR, but this
was addressed through the use of multiple imputation [26].
In addition, this study included predefined variables based
on the literature and expert opinion, but it is possible that
some important predictors were not included, which could
impact the model performance. In our study, serum electro-
lytes were measured in over 95% of individuals in CPRD
GOLD and 80% in CPRD Aurum during a 10-year follow-up.
A minor limitation is the potential impact of missed meas-
urements over time, and more frequent testing (i.e. every
3–6months for all, if available) would have on the results.

Comparison with previous literature
There are very few existing prediction models developed
for estimating the risks of electrolyte abnormalities. We
found no prediction model for hyponatraemia for use in
a primary care setting. Of the few prediction models devel-
oped for hyperkalaemia, almost all were designed specifi-
cally for haemodialysis patients and patients with advanced
chronic kidney disease. Only one relevant model for hyper-
kalaemia was identified. This study was designed for new
1356 www.jhypertension.com
users of ACE inhibitors/angiotensin II receptor blockers,
and used logistic regression to predict hyperkalaemia
events within the first year, and demonstrated a c-index
of 0.818 (95% CI 0.794–0.841) in external validation [34].
However, this study only included patients with potassium
tested at baseline and excluded patients (24%) who died or
who did not have their potassium checked in the first year.
This sample selection and attrition bias may have led to
overfitting the prediction model.

In the present study, we developed clinical prediction
models for hyperkalaemia and hyponatraemia events with-
in 1, 5 and 10 years, accounting for the competing risk of
death from other causes. Notably, these are the first survival
prediction models we are aware of to examine an individ-
ual’s overall risk of these two electrolyte abnormalities
within both short and long periods using time-to-event
analysis and competing risks modelling. Previously, we
have developed clinical prediction models for other ad-
verse events associated with antihypertensive treatment,
including hypotension, syncope, falls, fracture and acute
kidney injury [35–38]. The present models showed similar
predictive performance, with better calibration, particularly
in those with higher predicted risks.

Implications for clinical practice
Various classes of antihypertensive medications are used
for blood pressure management, with ACE inhibitors and
angiotensin II receptor blockers, thiazide and thiazide-like
diuretics, and calcium channel blockers being the most
commonly recommended options [39–41]. Our risk predic-
tion models provide individualized estimates of the risk of
developing hyperkalaemia and hyponatraemia, adverse
Volume 43 � Number 8 � August 2025



FIGURE 2 Decision curves, showing the standardized net benefit of using STRAFIFY prediction models across different threshold probabilities for assigning regular serum
electrolytes monitoring.

Developing prediction models for electrolyte abnormalities
events which are commonly associated with specific anti-
hypertensive drug classes. Thesemodels could therefore be
useful in clinical decision making regarding which antihy-
pertensive medication class to prescribe. For example, for
patients at a high risk of hyperkalaemia but low-average
risk of hyponatremia initiating or switching to a thiazide-
type diuretic rather than ACE inhibitors/angiotensin II
receptor blockers is recommended. Moreover, clinical
guidelines for the management of hypertension often rec-
ommend combination therapy where monotherapy and
lifestyle modifications fail to achieve adequate blood pres-
sure control [40]. In such cases, to reduce potential harm,
Journal of Hypertension
prescribing combination therapy, such as adding loop
diuretics to current prescription in patients with advanced
chronic kidney disease (avoiding RAAS medications) may
also be effective [42,43].

Current clinical guidelines recommendmonitoring serum
electrolytes 1–2weeks after initiating an RAAS medication,
after each increase in dose, and regularly throughout treat-
ment. Similarly, it is advised to measure serum electrolytes
before starting a thiazide-typediuretics treatment and regular
throughout treatment [44]. In our study, over 44 and 24% of
patients with a high risk of CVD also had a high risk of
hyponatraemia or hyperkalaemia, respectively. Nearly 40%
www.jhypertension.com 1357
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of patients were not at a high risk of CVD or electrolyte
abnormalities. The present clinical prediction models could
help target closer monitoring of serum electrolytes for indi-
viduals at a higher risk of electrolyte abnormalities after
initiating treatment, where resources are limited.

CONCLUSION

The present study used two large datasets of electronic
health records from the UK to derive and externally validate
two clinical prediction models for common electrolyte
abnormalities associated with antihypertensive therapy.
These models demonstrated good performance upon ex-
ternal validation and could be used to support decision
making to identify individuals for whom closer monitoring
is recommended and which antihypertensive drug class
to avoid.
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