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Simple Summary: Artificial intelligence (Al) is contributing to healthcare, including
histopathology, by providing tools for diagnosis, molecular typing and prognostication.
Gynaecological tumours are a relatively under-researched area in this setting. This review
focuses on how Al could be potentially applied to the histopathological imaging of cancers
of the reproductive tract, mainly ovarian, endometrial, cervical and vulval /vaginal tumours.
It also explores whether Al in other cancers can be incorporated to improve outcomes of
gynaecological cancers. It emphasises the need for a multidisciplinary approach required
for the effective implantation and functioning of these tools.

Abstract: Background: The advent of artificial intelligence (Al) has revolutionised many
fields in healthcare. More recently, it has garnered interest in terms of its potential appli-
cations in histopathology, where algorithms are increasingly being explored as adjunct
technologies that can support pathologists in diagnosis, molecular typing and prognosti-
cation. While many research endeavours have focused on solid tumours, gynaecological
malignancies have nevertheless been relatively overlooked. The aim of this review was
therefore to provide a summary of the status quo in the field of Al in gynaecological pathol-
ogy by encompassing malignancies throughout the entirety of the female reproductive
tract rather than focusing on individual cancers. Methods: This narrative/scoping review
explores the potential application of Al in whole slide image analysis in gynaecological
histopathology, drawing on both findings from the research setting (where such technolo-
gies largely remain confined), and highlights any findings and/or applications identified
and developed in other cancers that could be translated to this arena. Results: A particular
focus is given to ovarian, endometrial, cervical and vulval/vaginal tumours. This review
discusses different algorithms, their performance and potential applications. Conclusions:
The effective application of Al tools is only possible through multidisciplinary co-operation
and training.

Keywords: artificial intelligence; gynaecological malignancies; pathology; ovarian cancer;
endometrial cancer; cervical cancer; vulval cancer

1. Introduction

The use of digital pathology in routine diagnostic histopathology has greatly increased
over the past decade, wherein pathologists increasingly have the opportunity to review
whole slide images (WSIs) on high-resolution computer screens in digitised clinical cen-
tres [1]. There is a growing body of evidence to suggest that reporting from WSIs has
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made case reviews faster, more efficient and more focused [2,3]. The corollary of the digi-
tisation of histopathology services has been the creation of large clinical and academic
WH6I repositories with the potential to form the developmental backbone for new adjunct
artificial intelligence (Al) platforms that aim to improve diagnostics and prognostication as
well as molecular subtyping and genomic profiling [4]. In turn, these solutions promise
to lay the foundations for research and drug discovery programmes and the emergence
of personalised medicine. Access to analytical platforms should also prove invaluable in
light of the increasing global shortage of pathologists [5], which has been partly driven by
the rising diagnostic service demand and the parallel increasing complexity of diagnostic
modalities (e.g., immunohistochemistry and next-generation sequencing).

This vulnerability in histopathology diagnostic services is particularly pronounced in
developing economies, where the lack of pathologists is compounded by the limited avail-
ability and accessibility of ancillary testing, which commonly results in delayed diagnoses,
incomplete diagnostic profiling and difficulties in accessing both targeted and timely cancer
management. Given that the clinical utility of such solutions depends in part on healthcare
diagnostic service digital infrastructures, the provision of such resources could enable Al
platforms to help overcome the scarcity of pathologists and affiliated resources in these
environments [6]. In this regard, the adoption and integration of diagnostic Al into digital
pathology workflows has been purported to offer several potential benefits, including
accelerating diagnoses (by decreasing case turnaround times), improving patient safety (by
providing an objective second opinion), streamlining workflows (by incorporating flexible
and remote working), overcoming workforce constraints (by decreasing workload) and
improving service quality [7].

However, Al has other potential benefits to offer in the diagnostic arena. Consistency
in histopathological evaluation is recognised to be affected by occasionally poor intra-
pathologist consensus owing to differences in visual assessment and in interpretation
of clinical data [8]. This could be improved with the help of Al tools, which, when
appropriately deployed, can be both objective and consistent in their provision of an
independent diagnostic opinion. This has been suggested to be of particular value in less
specialised environments, such as outwith tertiary referral centres [9].

One of the major challenges with the adoption of digital pathology and allied Al
platforms is its acceptance among clinical histopathologists. Whilst the concept of using
diagnostic adjunct solutions may have initially been met with scepticism [10], a recent
study reported an overall positive response of pathologists in accepting the use of Al in
diagnostic pathology on the basis that its implementation could increase reporting efficiency
and decrease errors [11]. Nevertheless, a substantial proportion of pathologists believe that
a degree of training is necessary to underpin its fruitful application.

The use of Al in the wider oncology context has expanded over the past few years,
ranging from its possible use in cancer genomics (such as identifying genomic alterations
that may not be recognised by molecular panels) [12] through to radiological imaging and
diagnostics [13]. From a research standpoint, the use of Al has made significant strides in
multiple solid malignancies, including lung (chest radiography interpretation) [14] and
gastric cancers (WSI evaluation) [15] in terms of both diagnostics and prognostication. Fur-
thermore, Paige Prostate, an automated prostate cancer detection system using WSIs, has
shown significant clinical effectiveness and achieved Food and Drug Administration (FDA)
approval [16]. However, a detailed exploration of the potential applications and relative
merits of Al in the gynaecological malignancy setting remains wanting. Therein, ovarian
cancers account for the lion’s share of studies, which have focussed primarily on the use of
deep learning (DL) in diagnostics [17,18]. The next most investigated area is claimed by
endometrial cancer [19,20] and cervical screening, with other less common gynaecological
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malignancies largely remaining overlooked. This narrative/scoping review, therefore, aims
to provide a timely update on the potential role of Al in the histopathological assessment
of gynaecological cancers by encompassing malignancies throughout the entirety of the
female reproductive tract and highlight any findings and/or applications identified and
developed in other cancers that could be translated to this setting.

2. Methods

The literature supporting this review was based on extensive searches of PubMed
and Embase using search strings encompassing the malignancies of interest (“endome-
trial cancer”, “ovarian cancer”, “cervical cancer”, “vulval cancer” and “vaginal cancer”)
in association with “artificial intelligence”. The specific search strings used were (((“Ar-
tificial Intelligence” [Mesh]) AND “Ovarian Neoplasms” [Majr])) AND (pathology [Ti-
tle/ Abstract]), (endometrial cancer [Title/Abstract]) AND (“artificial intelligence” [Mesh]),
(cervical cancer [Title/Abstract]) AND (“artificial intelligence” [Mesh]), (vulval cancer [Ti-
tle/ Abstract]) AND (“artificial intelligence” [Mesh]). Further refinements thereafter were
introduced to exclude studies that focused on solely radiology, clinical metadata and/or
genomic/transcriptomic profiling to maintain a stronger focus on digital histopathology.
Further targeted searches were then applied using terminology to address lacunae in
research studies in the gynaecological setting by applying searches to related (from a his-
tomorphological perspective) clinical entities (“malignant melanoma”, “squamous cell
carcinoma” and “squamous cell cancer”) in which Al has been applied to inform areas of

possible future development.

3. Ovarian Cancer

Over 300,000 new cases of ovarian cancer were diagnosed globally in 2022 [21], with
an associated mortality rate of just over 200,000. A significant contributor to the poor
outcomes which characterise this disease is its propensity for late detection and diagnosis
and the commonplace development of resistance to platinum-based chemotherapy [22].
Epithelial ovarian cancers account for most of the malignant ovarian tumours [23], with
germ cell tumours and sex-cord tumours combined comprising the remaining 10% [24].

While ovarian masses are evaluated based on risk factors, clinical findings, imaging
and tumour markers, the diagnosis is finalised histologically. Increasingly, cases are being
reported digitally from WSIs, wherein the potential benefits of adjunct Al platforms could
be brought to bear. In this regard, the possibility of automated histological classification
of ovarian cancer with the help of a computer-aided diagnosis system has been explored
by several research groups and shows great promise [25,26]. In earlier iterations, WSIs
were used with a contextual model for the histological classification of ovarian cancer [27],
and demonstrated good concordance with histopathologist-based diagnoses. In a 2022
study, four different DL models for ovarian cancer classification were developed using
948 WSIs. Of these, a one-stage transfer learning algorithm, which classified WSIs to
one out of five morphological carcinoma subtypes, was found to be most efficient [28].
Furthermore, the possibility of integrating DL algorithms with multiphoton microscopy
to analyse images of unstained tissue have also been explored in mouse models from
ovarian and upper reproductive tract tissue [29]. By training neural networks on these
images, researchers have been able to distinguish healthy tissue from serous carcinoma,
highlighting the potential merit of such adjunct diagnostic platforms.

BRCA 1/2 genes—whose proteins orchestrate homologous recombination-dependent
DNA repair—can be mutated in ovarian cancer, typically with a frequency of 25.7% in
high-grade serous carcinoma [30]. Other instances of homologous recombination defi-
ciency (HRD) phenotype are, to a lesser degree, also attributable to mutations in RAD51.
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Assessment of HRD is a keystone for informing treatment given that tumours displaying
HRD exhibit heightened sensitivity to platinum-based chemotherapy and poly-ADP-ribose
polymerase inhibitor (PARPi) combination therapy [31]. In this regard, Bourgade and
colleagues described a novel approach for identifying BRCA mutations with the help of
Convolutional Neural Networks (CNNs) and tumour segmentation from WSI of high-grade
serous ovarian cancers [32], an approach which greatly reduced manual annotation times.
This underscores the significant potential for improving diagnostic accuracy and person-
alised treatment strategies for patients with high-grade ovarian cancer harbouring BRCA
mutations. Following its approval by the FDA and the European Medicines Agency (EMA),
PARP4i therapy has gained significant traction in clinical practice. However, its effectiveness
has been constrained by challenges in accurately identifying HRD status. Although several
genetic tests to detect HRD are available [33-35], no universal gold standard exists. In this
regard, a single blinded study reported the use of an Al model to predict HRD status from
H&E-stained WSIs alone, with a remarkable 99.3% accuracy [36], underscoring the fact
that Al models could offer a promising alternative to determining HRD status and patient
stratification, and overcoming the limitations of current testing modalities, including the
relatively high failure rates and prolonged time required to obtain results.

Given the high cost and variable long-term efficacy of ovarian cancer treatment,
predicting treatment response is an unattended requirement which has been investigated
with the help of AL For example, Wang and colleagues were able to predict the efficacy
of bevacizumab therapy by analysing WSIs using a DL-based approach [37]. Similarly,
a CNN-based model used WSIs to predict the impact of platinum-based chemotherapy
on patients with high-grade ovarian cancer with a specificity of 91% and a sensitivity of
73% [38]. This was performed by associating tumour morphology to patient outcomes and
digital biomarkers and quantified in terms of progression-free survival. This demonstrates
the use of DL in targeted treatment by means of patient stratification and a possible
prevention of resource wastage in both potentially ineffective therapy as well as over-
treatment. Furthermore, a more recent study used such a model to identify morphological
tumour regions with distinct transcriptional profiles by using spatial transcriptomics. This
approach confirmed that these discrete regions had unique transcriptional signatures, which
were more predictive of outcome than other background tumour regions [39]. Interestingly,
the authors reported that the proto-oncogene JUN (which encodes the transcription factor
c-Jun and is a central hub in the protein—protein interactions of tumours that recur rapidly
after platinum-based treatment) was exclusively upregulated in these Al-detected areas.

Al models have shown a greater accuracy in predicting prognosis and survival rates as
compared to traditional algorithms [40]. Employing DL techniques, Yang et al. developed
a comprehensive index using H&E-stained WSIs, the Ovarian Cancer Digital Pathology
Index (OCDPI), which predicts prognosis associated with adjuvant therapy. Patients were
stratified into high and low OCDPI groups, and a significant association between the
OCDPI and overall survival was demonstrated [41]. Prognosis was also assessed by Wu
and colleagues by using deep learning models applied to ovarian cancer WSIs, wherein
patients with a lower score showed better survival. Furthermore, it was found that a risk
score had a better predictability of survival outcome with the HRD subgroup [42].

4. Endometrial Cancer

Endometrial cancer is the sixth commonest cancer occurring in women, with an annual
incidence of over 400,000 cases worldwide and a mortality of around 97,000 [43]. It is also
the commonest gynaecological malignancy in the developed world [44]. These cancers
are classified based on their histology and hormone receptor expression. Moreover, the
recent molecular classification of serous and endometrioid endometrial cancers categorises
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endometrial cancer into the following molecular subtypes: polymerase ¢ (POLE) mutated,
mismatch repair-deficient (MMRd), p53 abnormal (p53abn) and no specific molecular type
(NSMP) [45,46]. This classification is prognostically meaningful, especially in high-risk
cases. POLE mutations have the best prognosis, while subtypes with p53 mutations have
the worst. In addition to identifying invasive malignancy, there is a need to diagnose
endometrial hyperplasia, the disordered proliferation of endometrial tissue with an altered
gland-to-stroma ratio typically resulting from increased levels of unopposed oestrogen.
The WHO [47] classifies endometrial hyperplasia as without atypia, a benign condition,
and with atypia, a precancerous lesion which can progress to endometrial cancer. In this
wider setting, endometrial biopsies are key to diagnosis.

During diagnosis using WSIs, pathologists face the task of differentiating benign from
atypical or malignant tissue on slides, a process which can potentially be facilitated by
using trained Al models [48-50]. Using 467 H&E stained endometrial specimen WSIs, Zhao
and colleagues developed a CNN to diagnose endometrial hyperplasia with an accuracy
of over 97% [49], which was further externally validated with an accuracy of over 95%.
In another study, a DL model was developed to identify endometrial cancer from WSI
patches—significantly, a specificity of 83.7% was achieved when specimens were assessed
prospectively. This model was able to identify subtle areas on slides, thus providing
a second opinion, prompting pathologists to revisit the case in the case of diagnostic
discordance [20]. However, this work also highlights the major disadvantage of time-
consuming annotation in developing and validating such WSI models. To address this
challenge, in their later study a weakly supervised clustering-constrained attention-based
multiple instance learning (CLAM) approach developed by Lu et al. [51] was utilised [52].
They demonstrated an area under the receiver operating curve (AUROC) of 95.19%, a 4.41%
enhancement in accuracy in classifying endometrial tissue compared to using standard
multiple instance learning (MIL).

EndoNet is another AI model that has been developed to classify endometrial cancers
from hysterectomy specimen WSIs. EndoNet uses CNNs for extracting histological features
and a vision transformer for aggregating these features and classifying WSIs into low-
(endometrioid grades 1 and 2) and high-grade (endometrioid grade 3, uterine serous
carcinoma or carcinosarcoma) categories with sustained performance (AUROC 0.86 on
an external test set of images). The value of this solution is in its potential to support
pathologists in grading tumours with greater consistency [53].

Moreover, there have been recent attempts to combine morphological classification
with molecular typing in endometrial cancer. Im4MEC is such a DL model developed and
tested using patient data (H&E-stained WSIs) from the Post-Operative Radiation Therapy
in Endometrial Cancer (PORTEC) trial. Therein, researchers combined a self-supervised
learning model with an attention-based classification model to interpret the data and were
able to establish morphomolecular correlates and elaborate on intra-class heterogeneity [54].
Efforts have also been made to integrate Al in molecular tumour profiling, including the
identification of functional mutations including their pathogenicity from cancer genome
data [55,56]. Together, these algorithms could be used to predict the genomic profile of
individual tumours and, in turn, contribute to informing treatment decisions (e.g., choice
of targeted therapy), thereby potentially improving treatment outcomes [57]. However,
these approaches could form part of a future solution incorporating WSI as part of mul-
timodal diagnostic and prognostic platforms. In this respect, Panoptes, a CNN-based Al
tool that identifies endometrial cancer molecular subtypes [58], uses a multi-resolution
approach for H&E images, with 2.5x, 5x and 10 x magnifications yielding three-tile grids.
It classified histological subtypes with an AUROC of 0.969. Each slide was analysed in
under four minutes, a turnaround time which could prove helpful to live reporting pathol-
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ogists. This tool could also identify molecular patterns that may not be identifiable through
visual assessment by a histopathologist, such as characteristics associated with driver muta-
tions, thereby contributing to more precise diagnoses and the development of personalised
treatment plans.

The conceptual move towards personalised therapy for women with endometrial
cancer has also involved the image analysis of tertiary lymphoid structures (TLSs). Together
with B cell infiltration into tumours, TLSs have been shown to be associated with a more
favourable prognosis in endometrial cancer, putatively through their contribution to an
intratumoural immunity amplification loop believed to increase tumour sensitivity to
immunotherapy [59,60]. In this regard, Suzuki and colleagues developed an Al model
which both detected TLSs and enabled the determination of their spatial locations in
endometrial cancer WSIs [61]. Combined with molecular subtyping, TLS identification
and positioning was predictive of both progression-free survival and response to immune
checkpoint inhibitors. Given the recent incorporation of immunotherapy in the treatment
of endometrial cancer, such platforms provide tantalising early signs of the potential value
of Al in facilitating the implementation of personalised therapy in this setting.

As highlighted, although surgery is central to endometrial cancer management, tar-
geted therapy and immunotherapy are promising new treatment modalities [62-64]. Tu-
mour molecular profiles and clinicopathological factors (e.g., staging) contribute to prog-
nosis of endometrial malignancies. Among the latter, the identification of lymph node
metastasis stands out as being particularly significant. DL has been used to predict the
probability of lymph node metastasis based on perioperative H&E imaging with WSIs
from biopsy specimens [65]. The prediction achieved an AUC of 0.938 and 0.77 in inter-
nal and external cohorts, respectively. Furthermore, the heat maps generated from the
specimens helped to visualise the involvement of different WSI regions for lymph node
metastasis. Overall, this could assist pathologists in accelerating diagnostic turnaround
through targeted slide review and, coupled with other clinical and pathological features,
could improve the accuracy of identifying metastatic disease.

Following treatment, the prediction of long-term recurrence risk is crucial. In this
respect, a multimodal DL prognostication tool dubbed Histopathology-based Endometrial
Cancer Tailored Outcome Risk (HECTOR) has been developed [66]. This platform derives
prognostic information from a combination of WSIs, image-based molecular class and
anatomical stage, with lower HECTOR output scores being associated with more favourable
prognostic markers (e.g., POLE mutant lesions and grade 1) and higher scores with poorer
prognostic factors (e.g., oestrogen receptor negative and p53 mutant lesions). Since the
model inputs are both accessible and widely used diagnostically, its clinical implementation
looks promising.

5. Cervical Cancer

Cervical cancer ranks as the fourth commonest malignancy affecting women globally,
with a global annual incidence of 660,000 cases in 2022 [67]. While developed countries have
seen a decline or stabilisation in both the incidence and mortality rates attributed to cervical
cancer over the past few decades [68,69], this trend contrasts starkly with the situation
in low- and middle-income nations [67]. Disparities in screening, preventive measures
(e.g., human papilloma virus (HPV) vaccination programmes) and socio-economic factors
account for much of these inequalities. Indeed, cervical cancer is caused by infection from
high-risk (hr) HPV subtypes (e.g., 16 and 18) and typically arises from precursor cervical
intraepithelial neoplasia (CIN) or cervical glandular intraepithelial neoplasia (CGIN).

Screening plays an important role in early diagnosis of cervical cancer and its precursor
lesions, including cervical cytology, hrHPV testing and DNA ploidy testing [70]. Although
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screening is efficiently practiced in North America and Europe, many countries in Asia and
Africa are yet to achieve this goal [71]. In this regard, while cytology is a low-cost method
and the most followed in developing countries, it has certain limitations, including a lower
sensitivity in detecting precursor lesions compared to HPV testing [72,73]. Furthermore,
the dearth of diagnostic pathologists in developing countries [74] poses a problem to its
effective implementation. Fortunately, there are encouraging findings in using Al for screen-
ing purposes [75-78], with several studies performed in resource-limited settings [78-82].
From a research standpoint, DL/ML tools were found to have a higher specificity (>90%)
for hrHPV serotypes and detecting high-grade atypia compared to detecting low-risk
serotypes and low-grade atypia. As such, there is potential for complementary use of Al for
screening, alongside conventional methods. As outlined above, HPV subtypes can be either
high- or low-risk based on malignant potential: the former include subtypes 16, 18, 31, 33,
35, 45, 52 and 58, while the latter include subtypes 6, 11, 56, 59 and 66 [83]. Few studies
have used Al models along with PCR assays on cytological specimens to differentiate
the different HPV subtypes [78,84], which can support diagnoses. The integration of this
approach with genomic profiles and biomarkers has enabled triaging methods [85] and risk
stratification. The opportunities to automate cytology have been reviewed in detail [86] to
reveal that, although the existing methods have increased the number of slides screened
by cytopathologists, the accuracy by which results are interpreted decreases when large
number of specimens are reviewed in a day. WSIs of histology and cytology specimens also
present distinct challenges in computer vision due to differences between histology and
cytology specimens. Histology WSIs include intact tissue architecture, showing organised
structural layers that highlight spatial relationships among cells and tissues. By contrast,
cytology WSIs contain dispersed cells, often isolated from their tissue context, which com-
plicates spatial inference and orientation and can pose scanning challenges (and allied
Al-based interpretation) typically owing to the multiple planes of focus. Nevertheless,
advances in scanning technologies have overcome some of these issues, and Wang and
colleagues developed a fully automated DL system to analyse cervical cytology specimen
WHSIs capable of detecting high-grade squamous intraepithelial lesions or squamous cell
carcinoma with a precision of 0.93. As with other approaches, this requires further valida-
tion in a clinical setting but may provide a helpful adjunct screening tool for cervical cancer
and its precursor lesions [87]. Another tool for automating the interpretation of cervical
cytology is the Pap Smear Analysis Tool (PAT). The purported merit of this technology
lies with its ability to screen out cytologically normal specimens (0% false negative rate),
thereby enabling cytologists to concentrate on suspicious specimens and reducing both
workloads and review times. Again, the potential of such platforms may come into their
own in developing economies and healthcare systems where there is a paucity of both
cytologists and funding [88]. Thus, further development into implementation of screening
and diagnostic methods remains critical.

The incorporation of Al into histology has helped with the classification of cervical
lesions. Pre-fed CNNs were able to distinguish malignant from non-malignant H&E-stained
histological section WSIs of cervical biopsy specimens in the research setting [89], a stepping
stone towards improving diagnostics. In this respect, Cheng and colleagues developed a
tool that combined low- and high-resolution WSIs [90]. Images were first screened by a
low-resolution model which located suspicious regions and generated location heatmaps.
Areas with a probability greater than 0.5 were then cropped according to the heat maps and
passed through high-resolution models to identify 10 lesional cells based on a probability
score. Finally, a WSI classification model using a recurrent neural network (RNN) combined
the features of these 10 lesional cells to determine the likelihood that the entire slide was
positive for malignancy.
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Akin to models that have been developed in other gynaecological malignancies, Al
has made advances in terms of prognostication in cervical cancer too [91-93]. Therein,
prediction models to stratify prognostic disease recurrence risk have been developed [91],
formulated based on factors including age, tumour size, stromal invasion and adjuvant ther-
apy, where they predicted disease-free survival and overall survival in post-surgery patients
with early-stage cervical cancer. As highlighted above, these prediction models may have
value in informing the development of future multimodal approaches incorporating the
use of WSIs. Assigning a pathological risk score [93] with the help of information extracted
by DL from WSIs has also helped personalise the risk of recurrence in individual patients.

6. Vulval and Vaginal Cancers

Vulval and vaginal cancers are rare gynaecological malignancies with around 47,336
and 18,819 new cases reported worldwide every year, respectively, in 2022 [94]. While
squamous cell carcinoma (SCC) is the most prevalent histological type of vulval malig-
nancy, others include basal cell carcinomas, malignant melanomas, vulvar Paget’s disease,
verrucous carcinomas and adenocarcinomas. HPV is responsible for around 30-40% of
SCCs, while the HPV-independent type can reportedly evolve on a background of chronic
lichen sclerosis. Given that vaginal cancers arise most commonly from lesions in the vulva,
cervix or other adjacent sites, primary vaginal cancer is defined as a disease with no history
of adjacent lesions in the cervix and vulva. While these cancers may be HPV- (more com-
monly) or non-HPV-related, histological diagnosis following biopsy remains the diagnostic
gold standard regardless.

The most significant work to date using image-based diagnostics has been a recent
study exploring the use of CNNs in differentiating LSIL and HSIL from vaginal mucosa
using colposcopic images (with a high specificity of 99.7%) [95]. Future Al techniques incor-
porating both macroscopic and microscopic images may provide a holistic approach combin-
ing the benefits of both point of care and subsequent histopathological validation. However,
given the relative rarity of vulval and vaginal cancers, there has—unsurprisingly—been
limited research in applying Al diagnostic and prognostic solutions in these pathologies.
In part, this is a reflection of a combination of targeted funding to investigating other,
more common cancers, as well as the relative scarcity of WSIs on which Al models can be
trained and tested. However, adapting existing platforms applied to similar lesions with
related aetiologies in other anatomical sites could direct future research endeavours. For
example, Al has been used in oral SCCs from histopathological slides of biopsy specimens
with a specificity of 0.92 [96]. Such methods could be translated to the vulval and vaginal
SCC setting, where they could be applied to assist pathologists with diagnosis. Similarly,
in malignant melanomas of the eyelid, DL algorithms have been developed to aid with
diagnosis [97]. This approach could potentially be utilised to underpin the development of
diagnostic algorithms of the rarer mucosal melanomas of the vulva. Thus, as Al research
continues to evolve, potential advances made in other anatomical areas with comparable
malignancies and their precursors could be adapted to the histopathological diagnosis of
rare manifestations in other anatomical sites.

7. Discussion

The applications of Al in gynaecological malignancy histopathology could have trans-
formative applications in the diagnosis, prognosis and management of these diseases,
as highlighted by this review and summarised in Figure 1. The studies reviewed have
been included in Table 1. However, many studies in the field remain dogged by several
limitations which preclude their clinical use at present. Firstly, Al tools are frequently
confined to the research environment rather than being properly trialled in a real-life clini-



Cancers 2025, 17,1343

90f19

cal environment, which is a key contributor to establishing safety, efficacy and end-user
(i.e., pathologist) engagement and adoption [42]. Secondly, most studies have a small
sample size and can often use single-centre-source WSIs [78,85], which makes it difficult to
accurately predict the comparability and universality of different Al model performances.
Furthermore, technical challenges pertaining to platform agnosia can arise as a result of
the use of scanners from different manufacturers that may impact algorithm performance
because of differences in the optical and computed properties of digitised histopathology
slides [98]. Differences in H&E staining protocols across histopathology laboratories could
also introduce variability and affect consistency in analytical performance [99], although
some of these hurdfles have been overcome by colour balance pre-processing. Technologies
developed for resection samples may also encounter limitations when applied to biopsies
or tissue samples with different histological contexts, such as lymph node metastases, due
to their distinct architecture and morphology. In this regard, they may not represent the
histopathological diversity encountered in the clinical setting [58] and fail to account for
less common subtypes of malignancies [65]. For instance, while high-grade serous type
in ovarian cancer and squamous cell carcinoma in cervical cancer are well represented,
other, less common subtypes may be overlooked. Finally, studies aiming at developing
clinically meaningful solutions should also pay particular attention to the nature of source
specimens (e.g., frozen versus formalin-fixed only) [100], thus underscoring the value of
multidisciplinary investigatory teams with input from pathologists, computer scientists,
cancer biologists and biomedical scientists.

Table 1. Study cohort details of Al-based analytical platforms applied to the gynaecological pathology
diagnostic setting.

Paper Morphological  Molecular Proenostication Data Source Training/Validation External
Authors Subtyping Subtyping 8 Test Set Size Validation
Ovarian Cancer
Original-Training: 5914;
First Affiliated Validation: 1478
Wu et al. [25] No No No Hospital of Xinjiang Augmented-Training: No
Medical University 65,050;
Validation: 16,262
BenTaieb et al. [27] Yes No No Unclear Training set size: 73 No
. Training set size: 948
Farahani et al. [28] Yes No No OYCARE Archives, Validation test set size: No
University of Calgary 60
Training set size:
University Hospitals 1,040,149 tumour tiles
Bourgade et al. [32] No Yes—BRCA No of Nantes and Rennes,  Validation test set size: Yes
TCGA 111,727
tumour tiles
Shafi et al. [36] No Yes—HRD No Unclear Training set size: 150 No
Tri-Service General
Hospital and the Training data set size:
Wang et al. [37] No No Yes National Defense 187; Testing data set No
Medical Center, size: 101
Taipei, Taiwan
HUS Helsinki Training set size: 205
Laury etal. [35] Yes No No University Hospital Test set size: 22 No
Laury et al. [40] Yes Yes—JUN Yes Helsinki Biobank Iraining set: 205; No

Validation set: 22
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Table 1. Cont.
Paper Morphological Molecular .. Training/Validation External
Authors Subtyping Subtyping Prognostication Data Source Test Set Size Validation
TCGA-OV, Prostate,
Lung, Colorectal, and
Ovarian Cancer
Yang et al. [41] Yes No Yes Screening Trial 2449 slides Yes
(PLCO) and Harbin
Medical University
Cancer Hospital
) Yes—HRD, Training data set: 72
Wu et al. [42] No BRCA Yes TCGA-OV Test data set: 18 No
Endometrial Cancer
NHS Greater Glasgow
and Clyde Training data set: 1248
Fell et al. [48] No No No Biorepository and Validation data set: 616 No
Pathology Tissue Test data set: 863
Resource
Training data set: 6248;
Validation data set:
Zhao et al. [49] Yes No No Unclear 1564; External Yes
validation data set: 1631
Thll_;d Aiftf 1111atfed Data set size: 3302;
Sun et al. [50] Yes No No ospria’ o External validation data Yes
Zhengzhou
. . set: 200
University
Mohammadi Training data set: 998
etal. [52] Yes No No iCAIRD Validation data set: 466 No
' Test data set: 864
Dartmouth Health, Training data set: 929;
Goyaletal. [53] Yes No No TCGA Validation data set: 100 Yes
PORTEC-1,
PORTEC-2,
Yes;E&LE’ PORTEC-3, TCGA, Training set data size:
Fremond et al. [54] No p ’ Yes TransPORTEC pilot 1240; Test set data size: No
MMRd, .
study, Medisch 393
NSMP
Spectrum Twente
cohort
TCGA, Clinical
Yes Proteomic Tumor .
Hong et al. [58] Yes (multiple) Yes Analysis Consortium, Data set size: 496 Yes
NYU Hospitals
. Kyoto Cohort, ICI .
Suzuki et al. [61] No No Yes Cohort, TCGA Data set size: 966 No
West China Second
University Hospital,
Qingdao University, Internal data set
- Affiliated Yantai Yu size: 2104
Feng etal. [65] Yes No Yes Huang Ding Hospital, External data set Yes
Beijing Maternal and size: 533
Child Health Care
Hospital
PORTEC 1’2’3’ Test data set: 353;
. University Medical .. j .
Volinsky-Fremond R Training data set: 1408;
Yes Yes Yes Center Groningen, S Yes
et al. [66] . . . External validation data
Leiden University set: 310
Medical Center ’
Cervical Cancer
Kinondo Kwetu
Holmstrom et al. [76] Yes No No Health Services Clinic, Training data set: 360; No

Kinondo, Kwale
County

Validation data set: 361




Cancers 2025, 17,1343 11 of 19
Table 1. Cont.
Paper Morphological Molecular .. Training/Validation External
Authors Subtyping Subtyping Prognostication Data Source Test Set Size Validation
Cervical Cytology
Laboratory,
Department of Training data set: 485;
Wong et al. [78] Yes No No Pathology, The Validation data set: 120 No
University of
Hong Kong
Bao et al. [80] Yes No No Hubei, China Training data set: No
’ 4 103,793
Uganda Cancer
Institute,
International Agency Training data set: 70;
Nakisige et al. [82] Yes No No for Research on Test data set: 20; No
Cancer, Leiden Validation data set: 10
University Medical
Center
Pathania et al. [84] Yes No No Unclear Training data set: 13,000 Yes
The First Affiliated
Tian et al. [85] Yes Yes No Hospital of Sun 30 Samples No
Yat-sen University
Department of
Pathology, Tri-Service
General Hospital, Training data set: 97;
Wang etal. [57] Yes No No National Defense Test data set: 46 No
Medical Center,
Taipei, Taiwan
e Mbarara Regional Dataset 1: 917; Dataset
William et al. [88] Yes No No Referral Hospital 2: 497; Dataset 3: 60 No
Training set size: 46,810;
. . Test set size: 6617;
Cheng et al. [90] Yes No No Multiple hospitals Validation set No
size: 10,229
Qilu Hospital of Training data set: 385;
Chuetal. [91] Yes No Yes Shandong University Validation data set: 96 No
Department of
Obstetrics and
Obrzut et al. [92] No No Yes Gynaecology of the Unclear No
Rzeszow State
Hospital in Poland
. . Training data set: 836;
Chen et al. [93] No No Yes Multiple hospitals Validation data set: 354 No
Tertiary Care Centre Training/Validation
Meats Zellr?g?]as Yes No No (Centro Materno data sets: 51,525; Test No
T Infantil do Norte) data set size: 5725

While there have been significant advances made in Al in the context of diagnos-
tic pathology, current systems typically operate on completing a single target activity,
such as morphological/molecular typing or immunohistochemical scoring, which can
often be effectively standardised. By contrast, pathological diagnosis has increasingly
become a multi-step process, often integrating multi-source data (e.g., histological subtyp-
ing/grading, immunohistochemistry and sequencing), where pathologists’ interpretation
remains central. Moreover, the reality of working within the real-life variation in the quality
of clinical specimens in terms of staining protocols, tissue fixation or artifacts (e.g., tissue
folds, crushed cells and cell debris) means that any Al-based solution would have to be
resilient to “non-standard” histology in WSIs and likely require continued pathologist
overview to ensure diagnostic accuracy in any early adoption programme. Indeed, whilst
Al-based solutions may prove to be valuable adjuncts with the potential to improve diag-
nostic service efficiency and cost, the threshold for replacing clinicians is unlikely to be met
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even in the presence of full automation, as pathologists will remain essential for rare lesion
identification, diagnostic probability assessments, quality control and clinico-legal liability.
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Figure 1. Existing applications of Al in the diagnostic setting for different gynaecological malignancies
(Created in BioRender. Joshua, A. https://BioRender.com/w15v459, accessed on 21 January 2025).

As a result, one of the areas requiring further investment is the development of mean-
ingful datasets and image annotations (including those from different scanners to ensure
platform agnosia). Since all forms of Al require input data such as images, text and genomic
profiles, improvement in these spheres can further improve the performance of AI models,
particularly with applications such as learning using privileged information (LUPI) [101].
Moreover, enhancing the quality of input data by incorporating diverse data sets with a
variety of WSIs with representative variability in histological patterns from different popu-
lations can potentially eliminate the risk of bias arising in AI models [102]. In cases where
there are few data sets available (e.g., lower genital tract malignancies), augmentation
techniques can help refine data, especially those of histopathological images [103]. This has,
for example, been explored in cervical cancer, with the development of synthetic images
with real image similarity [104]. As such, further work in this area and expanding it to
other gynaecological malignancies could contribute to further improving the functionality
and performance of existing Al models.
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The integration of Al models and tools into clinical practice faces multiple challenges,
among which the issue of data drift features prominently. Data drift arises when Al models
exhibit divergent performance in real-world environments compared to during their train-
ing phase. Alone, these changes are sufficient to invalidate the use of any model for use in
a clinical setting. Incorporating explainability into AI models may facilitate addressing this
challenge [105]. Explainability essentially refers to making the decisions and predictions
made by Al algorithms more understandable and interpretable to humans and overcoming
the so-called “black box” criticism often levelled at ML-based solutions. In this regard,
dividing WSIs into functional units (based on cell structure and type) instead of spatial
units (based on dimensions and pixel counts) could improve explainability upon pathology
review. The use of manually curated features (i.e., quantitative features of size, colour
and morphology) to classify images while using ML tools may also impact explainabil-
ity [106], although additional limitations including the time taken and the use of specialists
(whose time these solutions aim to spare) need to be considered. Additionally, periodic
retraining—and subsequent locking—of these models could contribute to mitigating the
effects of data drift.

While implementing these Al models in clinical settings, the training of pathologists
in order to efficiently utilise these tools is also critical. In this respect, an end-user-based
study [107] found that high usability, user involvement and levels of trust play a role in the
reception and willingness to adopt Al in pathology. Active collaboration between the data
scientists creating the technology and the pathologists using it is crucial, where adequate
support from leadership, space, staffing, storage and scanners are important for effective
integration of the two fields [108].

The final consideration on the path to clinical adoption is the clearance of regulatory
hurdles. Various country-specific organisations (e.g., US FDA, UK National Institute
for Clinical Excellence, etc.) evaluate such technologies from the standpoint of efficacy,
reproducibility, safety, patient benefit and cost-benefit evaluations, which are not only
critical to providing an independent review of these platforms but also in offering credibility
and establishing reimbursement channels.

8. Conclusions

Thus, the untouched potential of Al in gynaecological malignancies can have promis-
ing applications in the clinical setting. However, the co-operation between data scientists
and clinical pathologists with further input from regulatory bodies, healthcare system in-
frastructure managers and pharmaceutical companies will be critical to ensuring that these
technologies are appropriately tailored to answering clinical diagnostic queries, thereby
maximising their efficacy and applicability. There is undoubtedly a need for an overarch-
ing vision that can see beyond the short-term additional investment in the extra steps of
digitising pathology services and implementing Al in the patient pathway that, in the long
term, will yield time, accuracy and cost benefits for pathologists and, most importantly,
their patients.

Author Contributions: A.J., KE.A. and N.M.O. all contributed to writing and reviewing the
manuscript content. All authors have read and agreed to the published version of the manuscript.

Funding: The authors are greatly indebted to the Tony Bramall Charitable Trust for funding
KEA's Fellowship.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors have no conflicts of interest to declare.



Cancers 2025, 17,1343 14 of 19

Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

WSI Whole Slide Imaging

FDA Food and Drug Administration

DL Deep Learning

HRD Homologous Recombinant Deficiency
PARPi Poly-ADP-ribose polymerase inhibitor
CNN Convolutional Neural Networks

EMA European Medicines Agency

OCDPI Ovarian Cancer Digital Pathology Index
POLE Polymerase ¢

MMRd Mismatch Repair Deficient

NSMP No Specific Molecular Type

WHO World Health Organisation

CLAM Clustering-constrained Attention-based Multiple instance learning
AUROC Area Under the Receiver Operating Curve

PORTEC  Post Operative Radiation Therapy in Endometrial Cancer

TLS Tertiary Lymphoid Structures

HECTOR Histopathology based Endometrial Cancer Tailored Outcome Risk
MIL Multiple Instance Learning

HPV Human Papilloma Virus

CIN Cervical Intraepithelial Neoplasia

CGIN Cervical Glandular Intraepithelial Neoplasia

PAT Pap Smear Analysis Tool

RNN Recurrent Neural Network

PLCO Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial
SCC Squamous Cell Carcinoma
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