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Abstract

Purpose A diagnostic challenge in the management of chronic kidney disease (CKD) is distinguishing diabetic kidney dis-

ease (DKD) from hypertensive kidney disease (HKD) in patients with coexisting diabetes mellitus (DM) and hypertension 

(HTN), because accurate diagnosis often depends on renal biopsy as a reference standard. This study proposes a modeling 

approach to identify cardiovascular biomarkers for differentiating DKD from HKD.

Methods An existing whole-body circulation model of the vascular tree was extended with a detailed renal circulation 

network to predict biomarkers measured at different locations. The model parameterized sex, age, and disease factors and 

was used to conduct virtual clinical trials that identified individual and combined biomarkers for DKD-HKD differentia-

tion. Biomarkers were identified with univariate and multivariate analysis and characterized with the area under the receiver 

operating characteristic curve (AUC).

Results Results show that the strongest individual biomarker that is commonly used in clinical practice is pulsatility index 

(PI) measured in the main renal artery, with an AUC of 0.87. Among all evaluated two-biomarker combinations, PI and 

resistive index (RI) measured in the same artery achieved the highest classification performance (AUC 0.94). In comparison, 

the highest performance among three-biomarker combinations (AUC 0.96) is achieved by mean blood flow rate, systolic 

blood flow rate, and diastolic flow rate.

Conclusion This modeling work suggests that cardiovascular biomarkers can assist in differentiating DKD and HKD, and 

proposes specific hypotheses that form a strong rationale for targeted clinical trials. If confirmed, these methods could enable 

non-invasive assessment of renal vascular alterations associated with DKD and HKD, reducing reliance on kidney biopsies 

for diagnostic evaluation.

Keywords Diabetic kidney disease · Hypertensive kidney disease · Computational fluid dynamic · Biomarker · Logistic 

regression model

Introduction

CKD is a global health condition characterized by a progres-

sive decline in kidney function, with more than 844 million 

people affected by CKD worldwide since 2017 [1]. CKD 

demonstrates sex- and age-specific differences in the United 

States, with a prevalence of 15% in females and 11% in 

males [2], and a prevalence of 52% in individuals older than 

40 years old (yo), compared to 9% in individuals between 

the ages of 20 and 39 [3].

The rising prevalence of DM and HTN significantly con-

tributes to the global increase in CKD cases. Research indi-

cates that CKD prevalence ranges from 19% to 66% among 

diabetic patients and from 30% to 51% among hypertensive 

patients [4]. DKD is a microvascular complication of DM, 
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where chronic hyperglycemia induces a cascade of meta-

bolic and hemodynamic disturbances [5], while HKD is a 

macrovascular complication resulting from the effects of 

chronically elevated blood pressure on the renal vasculature 

[6, 7]. DKD and HKD may benefit from targeted manage-

ment, but this can only be considered if the cause of CKD 

is known. Unfortunately, since DM and HTN are common 

comorbidities, and DKD and HKD share similar symptoms, 

this is often only possible by invasive biopsy. Since this is 

not considered a viable option in early disease stages, most 

patients are not able to benefit from targeted management. 

Specific, non-invasive diagnostic measurements are urgently 

needed to allow earlier and more effective management of 

CKD in patients with DM and HTN.

We hypothesize that systemic and microvascular 

alterations caused by DKD and HKD lead to characteristic 

signatures in hemodynamic biomarkers that can be measured 

with flow-sensitive acquisition protocols, such as Doppler 

ultrasound (US) and phase-contrast magnetic resonance 

imaging (PC-MRI). In patients with DKD, chronic 

hyperglycemia causes vasodilation of the afferent arterioles 

(reducing vascular resistance) and vasoconstriction of 

the efferent arterioles (increasing vascular resistance). 

These hemodynamic perturbations increase glomerular 

blood flow, resulting in prolonged hyperfiltration that 

ultimately leads to nephron loss [8]. Conversely, in 

patients with HKD, pathological overactivation of the 

renin–angiotensin–aldosterone system triggers sustained 

vasoconstriction in both afferent and efferent arterioles 

(increasing vascular resistance) [9]. Unlike the glomerular 

hyperfiltration characteristic of DKD, HKD manifests as 

vascular remodeling, evidenced by structural thickening 

and fibrotic stiffening of renal arterial walls. It appears 

plausible that these distinct micro- and macrovascular 

alterations of DKD and HKD lead to distinct patterns in 

flow-sensitive Doppler US and PC-MRI, but the relationship 

is complex and cannot be studied in humans by experimental 

means. Unfortunately, animal models poorly represent 

complex human diseases and do not properly replicate the 

experimental conditions of human imaging.

In recent decades, evidence has been mounting that 

reduced-order models of the cardiovascular system can 

effectively simulate pathological effects on pressure, 

velocity, and flow waves. These models have demonstrated 

potential in identifying diagnostic biomarkers, as seen in 

conditions such as pulmonary HTN [10], cerebral vasospasm 

[11], or coronary artery disease [12]. This strategy 

complements traditional machine learning methodologies by 

enabling the quantitative analysis of biomarker input data, 

thereby facilitating the detection of subtle and nonlinear 

patterns that are often imperceptible through conventional 

observational techniques. However, current models are 

inadequate for the detailed study of CKD. Most prior studies 

target the main renal artery or the renal microcirculation in 

isolation [13–16], leaving a gap in models that concurrently 

represent pulse-wave propagation in the proximal renal 

vasculature and disease pathophysiology. Therefore, 

a higher-resolution framework is required to capture 

interactions between the proximal renal vasculature and 

the microcirculation that characterize early-stage DKD and 

HKD.

This study advances an established renal model with 

three novel contributions compared with existing studies 

[17]. The renal circulation is extended to the arcuate 

arteries for a more detailed representation of the proximal 

vasculature, and the renal microcirculation is modeled as 

a detailed equivalent electrical circuit represented by a 

lumped-parameter resistor–capacitor–resistor (R-C-R) 

model. This representation enables mechanistic estimates 

of glomerular filtration rate (GFR). In addition to age-

specific factors, vascular properties are parameterized by 

biological sex, providing more detail on interindividual 

variability than prior studies [17–19]. Furthermore, a 

more clinically relevant scenario was modeled, in which 

the pathophysiology of DKD and HKD was parameterized 

based on coexisting DM and HTN to support biomarker 

identification. Collectively, these enhancements deliver 

a virtual population-level framework for quantifying 

biomarker discrimination between DKD and HKD.

This study aimed to identify and evaluate individual 

and composite biomarkers for the early differentiation 

of DKD and HKD using a multidimensional (1D-0D) 

model combined with a logistic regression-based machine 

learning approach, as detailed in Section "Univariate and 

multivariate logistic regression model" of the Methodology. 

This framework enables modeling assessment of disease-

specific hemodynamic alterations between DKD and HKD 

pathological conditions. The findings provide model-level 

insights that may inform clinical trial protocols and support 

the development of more targeted, accessible, and early-

stage strategies for distinguishing DKD from HKD, which 

are often clinically indistinguishable in their early stages.

Methodology

An existing vascular network model was extended to 

incorporate renal microcirculation, enabling the simulation 

of disease-specific hemodynamic responses. The model was 

parameterized to account for sex-, age-, and disease-specific 

variations related to coexisting DM and HTN, DKD, and 

HKD. In the following sections, the term “virtual healthy 

controls” denoted disease-free simulated subjects generated 

under age- and sex-specific parameter distributions. The term 

“virtual patients” denoted simulated subjects instantiated 

with disease-specific parameterizations (DM + HTN, DKD, 
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or HKD). Using this framework, virtual clinical trials were 

conducted to identify candidate biomarkers that distinguish 

DKD from HKD and to assess their diagnostic accuracy.

Systemic and Renal Circulation Model

The vascular network in this study was illustrated in Fig 1. 

It consisted of three components: (1) a systemic circulatory 

network, (2) bilateral 1D renal arterial networks (right and 

left), (3) 0D renal microcirculatory networks. The dimen-

sional values of the model for the age group of 20–29 yo 

were presented in the supplementary material.

Systemic Circulatory Model

The systemic circulation network followed a previous 

publication, comprising 75 blood vessels represented 

using a 1D modeling approach, and 29 outlet boundary 

conditions [17]. They were represented using the lumped-

parameter R-C-R models to represent the peripheral blood 

vessels. The inlet boundary condition was defined as the 

blood flow rate in the ascending aorta.

1D Renal Circulatory Model

The newly developed renal circulatory model was derived 

from a previously published renal architecture consisting 

of 1 main renal artery, 5 segmental arteries, and 10 inter-

lobar arteries per kidney [17]. The extension involved the 

addition of bifurcations at the peripheral termini of each 

interlobar artery, thereby forming two arcuate arteries per 

branch, resulting in a total of 20 arcuate arteries per renal 

circulation, as shown in Fig. 1e. These renal arteries were 

represented using a 1D modeling approach, with mechani-

cal properties sourced from previously published literature 

[20–23], and detailed in the supplementary material.

Fig. 1  Illustration of the systemic whole-body circulation and renal 

circulation, including both anatomical structures and model repre-

sentations, (a) anatomical systemic circulation network including left 

and right kidneys, (b) renal vasculature from the main renal artery 

to the arcuate artery, (c) renal microcirculation network, (d) multi-

dimensional systemic circulation model incorporating left and right 

renal circulation networks, (e) renal vasculature represented as 1D 

blood vessels, with microcirculation downstream of the arcuate artery 

represented using a lumped-parameter R-C-R model, (f) coupling 

scheme between the 1D arcuate artery and the lumped-parameter 

R-C-R model, (g) constituent components of the lumped-parameter 

R-C-R model within a single nephron
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0D Renal Microcirculatory Model

Downstream vasculature of each arcuate renal artery 

was the renal microcirculation, comprising interlobular 

arteries, afferent arterioles, glomerular capillaries, efferent 

arterioles, renal tubules, and peritubular capillaries. The 

overall resistance of the renal microcirculation, including 

both vascular components and critical renal functions 

involving glomerular filtration and tubular reabsorption, 

was represented using the lumped-parameter R-C-R model, 

as shown in Fig. 1f and 1g.

To calculate the resistance of the renal microcirculation 

(PVR downstream of each arcuate renal artery), the follow-

ing assumptions were applied. Firstly, interlobular arteries 

were modeled in a uniform and parallel configuration, with 

650 of these branching at the peripheral terminus of each 

arcuate artery [23]. Each interlobular artery subsequently 

branches at its peripheral terminus into 60 glomeruli in a 

parallel configuration [24], as shown in Fig. 1f. Secondly, 

hemodynamics was homogeneous among the components 

within the renal microcirculation, manifesting uniform resis-

tive properties and invariant pressure-flow relationships. The 

total number of each component within the lumped-parame-

ter R-C-R model was summarized in Table 1.

The Hagen–Poiseuille equation was employed to deter-

mine the vascular resistance of interlobular artery, affer-

ent arteriole, efferent arteriole, and renal tubule within the 

lumped-parameter R-C-R model (Fig. 2g), considering the 

low pulsatility within renal microcirculation [25]. Further-

more, the resistances of the glomerular capillary, glomerular 

filter, peritubular capillary, and reabsorption were calculated 

based on their ratios to the resistance of the afferent arteriole 

Table 1  Mechanical properties 

and estimated number of 

interlobular arterioles, afferent 

and efferent arterioles, and renal 

tubules

Number of interlobular arteries [23], afferent arterioles [24], blood viscosity [29], plasma viscosity [30], 

length of interlobular artery [23], afferent arteriole [31], renal tubule [32, 33], and efferent arteriole [34]. 

Lumen radius of interlobular artery [34], afferent arteriole [31], renal tubule [35], and efferent arteriole 

[31]

Parameters Label Number Viscosity

[Pa·s]

Length

[µm]

Radius

[µm]

Resistance

[Pa·s/m3]

Interlobular 1 13,000 4.00 ×  10−3 370 22.90 1.37 ×  10−13

Afferent 2 784,909 4.00 ×  10−3 112 10.70 8.71 ×  10−13

Glomerular capillary 3 N/A N/A N/A N/A 3.92 ×  10−12

Glomerular filter 4 N/A N/A N/A N/A 3.35 ×  10−14

Renal tubule 5 784,909 2.00 ×  10−3 18,000 16.40 1.27 ×  10−15

Reabsorption 6 N/A N/A N/A N/A 3.31 ×  10−14

Efferent 7 784,909 2.00 ×  10−3 120 7.97 1.52 ×  10−14

Peritubular capillary 8 N/A N/A N/A N/A 3.60 ×  10−13

Ureter 9 N/A N/A N/A N/A 7.96 ×  10−15

Fig. 2  Normalized mechanical properties between males and females, while the PVR ratio in renal circulation is 0.85 in males and 1.15 in 

females
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[26]. The vascular resistance for each component within the 

lumped-parameter R-C-R model is summarized in Table 1.

To calculate the total vascular resistance downstream 

of the arcuate artery, two steps were followed. Firstly, 

the vascular resistance of a nephron was calculated as 

4.40 ×  1012 Pa·s/m3 by summing the resistance of the afferent 

arteriole and the cumulative resistance of its downstream 

microvasculature arranged in a series configuration. The 

vascular resistance downstream of the afferent arteriole, 

as shown in Fig. 1f, was determined using nodal analysis 

based on Kirchhoff’s law. Secondly, the total vascular 

resistance downstream of an arcuate artery was calculated 

as 2.80 ×  1010  Pa·s/m3 based on two levels of parallel 

configuration. In the first level, 60 nephrons were arranged 

in parallel to an interlobular artery. In the second level, 650 

interlobular arteries (each containing 60 nephrons) were 

arranged in parallel to an arcuate artery. The resistance of an 

interlobular artery employed in this calculation was reported 

in Table 1. Full details of the calculations are presented in 

the supplementary material.

Furthermore, the PVC downstream of an arcuate was 

determined by 2.53 ×  10−11  m3/Pa [17, 27]. The GFR for 

each virtual healthy control and patient was calculated as the 

ratio of the blood flow rate filtered by the glomerulus to the 

total blood flow rate entering the glomerulus within the renal 

microcirculation. To support these numerical computations, 

this study employed an open-source software openBF to 

compute blood flow rate, velocity, pressure, and pulse-wave 

velocity (PWV) in all vessels of the network over a complete 

cardiac cycle [28].

Sex, age, and pathophysiology parameterization

This section incorporated variations in sex, age, coexisting 

systemic DM and HTN, DKD, and HKD into the vascular 

network model developed in this study.

Sex‑ and age‑specific parametrization

Sex and age variations affect several mechanical parameters, 

including blood viscosity, cardiac output (CO), length, 

lumen radius, Young’s modulus, wall thickness, PVR, and 

PVC. To parameterize a sex-specific model, each mechanical 

property was normalized through dividing the respective 

CO, blood viscosity, and mechanical values for males and 

females by their corresponding mean values, based on 

multiple sources in the literature [36, 37]. These normalized 

values were subsequently multiplied by the corresponding 

properties of the newly developed non-sex-specific model, 

as shown in Fig. 2, ensuring that the mechanical properties 

represent the variants of males and females.

Regarding the age model, the variations in the 

aforementioned parameters were assumed to apply equally to 

both males and females throughout the aging process, with 

each assumed to follow a Gaussian distribution. A validated 

age-specific model was subsequently employed to simulate 

the aging process in both male and female models [17–19], 

across six distinct age groups ranging from 20 to 79 years.

Systemic DM and HTN Parametrization

Systemic vascular damage resulting from the combined 

pathophysiological effects of DM and HTN (DM + HTN) 

was modeled prior to the onset of kidney disease. This 

systemic vascular damage affected the lumen radius [17, 38], 

Young’s modulus [39], and wall thickness [40] of the 1D 

blood vessel model. The HTN-induced vascular constriction 

effect on peripheral blood vessels was further quantified as 

a 17% increase in PVR and a 23% reduction in PVC [41, 

42], alongside a 17% decrease in CO relative to healthy 

individuals [43, 44]. Additional quantitative data supporting 

the parameterization of the DM + HTN model are presented 

in Table 2.

DKD and HKD Parameterization

DKD was classified as a microvascular disease, with renal 

microcirculation being a primary target for injury. DKD 

model quantified a 7% constricted lumen diameter of efferent 

arterioles resulting from hyperfiltration [45], accompanied 

by a 10% dilated lumen diameter of afferent arterioles, while 

maintaining other components in the lumped-parameter 

R-C-R model unchanged. These alterations can decrease the 

PVR downstream of the arcuate artery by 1%. In addition, a 

reduction in the total number of glomeruli was known as a 

consequence of prolonged hyperfiltration-induced overload 

[46]. A 57% reduction in the number of glomeruli within 

the renal microcirculation was modeled for DKD patients 

to ensure consistent GFR between DKD and HKD patients. 

This adjustment leads to an overall 35% increase in PVR 

compared with the healthy baseline, resulting in the mean 

GFR of both virtual patients with DKD and HKD remaining 

within the same early stage (stage 2) of CKD.

HKD was characterized by proximal renal vascular dam-

age resulting from systemic HTN, which was driven by con-

striction of peripheral blood vessels. Prolonged high blood 

pressure can induce structural changes within the renal 

vasculature, including hypertrophy of the vascular smooth 

muscle, which led to thickening of the vessel wall and a 

reduction in elastin, compromising the elasticity of the blood 

vessels. These alterations led to an increase in both Young’s 

modulus and wall thickness of the renal arteries. In this 

study, an additional contraction in lumen radius, together 

with increases in Young’s modulus and wall thickness, was 

applied in the proximal renal arteries to model HKD [17], 

with details in Table 2. This additional contraction in the 
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interlobular artery (Fig. 1f) was derived by applying a 10% 

scaling in PVR relative to DM + HTN baseline.

Virtual Clinical Trials

This section coupled the vascular model with distinct 

parameterizations to generate virtual patients for the 

extraction of waveform-derived biomarkers under DKD and 

HKD pathological conditions. A logistic regression model 

was subsequently employed to evaluate the diagnostic utility 

of these biomarkers through both univariate and multivariate 

analyses.

Generation of Virtual Healthy Controls and Patients

To generate sex- and age-specific virtual healthy controls, 

CO and all the mechanical parameters of each blood vessel 

were assumed to be mutually independent. These normalized 

parameters were randomly and independently assigned in the 

age-specific model, by sampling each value for each blood 

vessel from its respective Gaussian distribution. Age-spe-

cific male or female subjects were generated by multiplying 

the dimensional parameters of the 20–29 yo male or female 

model by the normalized values for CO and mechanical 

properties across all blood vessels in the age-specific model.

The generated virtual healthy controls comprised 

24,000 individuals, categorized by sex (male and female) 

and six distinct age groups ranging from 20 to 79 yo, with 

each subgroup containing 2000 individuals. To maintain 

physiological validity, a filtering process was implemented 

to exclude any subjects whose mean systolic (SBP) or 

diastolic (DBP) brachial blood pressure values deviated 

from the 99% confidence interval (more than 2.575 

standard deviations) of the experimentally determined 

mean [47], and threshold of RI [48], in various sex- and 

age-specific virtual controls. These physiological filters 

included 6188 physiological cases from the 24,000 

generated virtual healthy controls, resulting in an average 

inclusion rate of 26%.

To generate virtual patients representing patients with 

DM + HTN, parameters of each healthy subject from 

12 sex- and age-specific virtual controls were scaled by 

multiplying them by the normalized values for CO and 

mechanical properties across all blood vessels (Table 2). 

This resulted in an equal number of virtual patients per 

sex- and age-specific group as in the corresponding virtual 

healthy controls. Utilizing the same methodological 

framework, each virtual patient with DM + HTN was 

scaled by multiplying their mechanical parameters by the 

normalized values across corresponding blood vessels 

in the DKD and HKD model, to generate the sex- and 

age-specific DM + HTN + DKD and DM + HTN + HKD 

patients.

The sex- and age-specific virtual healthy controls 

were validated against in vivo literature data for SBP 

and DBP in the brachial artery, the mean RI across 10 

segmental renal arteries, and the mean renal blood flow 

(RBF) rate in the main renal artery. The DM + HTN 

[49], DM + HTN + DKD, and DM + HTN + HKD virtual 

patients were validated against in vivo literature data for 

the mean RI across 10 segmental renal arteries.

Table 2  Normalized mechanical 

parameters derived from the 

healthy model for DM + HTN, 

DM + HTN + DKD, and 

DM + HTN + HKD models, 

respectively

Parameters DM + HTN DM + HTN + DKD DM + HTN + HKD

Normalized Normalized Normalized

GFR [ml/min] 93 (10) 84 (8) 85 (8)

Cardiac output 0.83 0.83 0.83

Blood viscosity 1.20 1.20 1.20

Systemic circulation

 Length 1.00 1.00 1.00

 Lumen radius 0.97 0.97 0.97

 Young’s modulus 1.25 1.25 1.25

 Wall thickness 1.12 1.12 1.12

 PVR 1.17 1.17 1.17

 PVC 0.77 0.77 0.77

Renal circulation

 Length 1.00 1.00 1.00

 Lumen radius 0.97 0.97 0.95

 Young’s modulus 1.25 1.25 1.40

 Wall thickness 1.12 1.12 1.23

 PVR 1.17 1.35 1.29

 PVC 0.77 0.77 0.77
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Biomarkers Extraction

This study translates clinically accessible renal hemodynamic 

waveforms into quantitative biomarkers. Currently, RI and PI 

are quantified with Doppler US [49–51], whereas renal blood 

velocity and volumetric flow rate are measured with PC-MRI 

[52]. PWV can also be derived with 4D PC-MRI, although 

its application to the renal artery is not well established [53]. 

Finally, renal–artery pressure is not reliably obtainable by MRI 

in clinical practice and is consequently measured invasively 

with pressure wires [54, 55].

The candidate biomarkers in this study were computed 

from the full cardiac cycle waveforms of RBF rate, velocity, 

pressure, and PWV in the main, segmental, interlobar, and 

arcuate renal arteries for each virtual patient. From each 

waveform, peak systolic, end diastolic, and cycle mean value 

defined as the arithmetic mean across a cardiac cycle were 

computed as candidate biomarkers. RI and pulsatility index 

(PI) were computed for the left and right renal networks 

according to Eqs. 1 and 2. Furthermore, systolic acceleration 

and diastolic deceleration slope of RBF rate, velocity, pressure, 

and PWV waveform were computed to serve as additional 

candidate biomarkers, as detailed in Eqs. 3 and 4.

For ease of future reference, biomarkers extracted during 

the peak systolic phase, end diastolic phase, and mean value 

were denoted by “Phase name” followed by “Parameter 

name.” Biomarkers extracted as systolic acceleration slope and 

diastolic deceleration slope were denoted by “Acceleration” 

and “Deceleration,” followed by “Parameter name.”

where V
PSV

 is the peak systolic blood velocity, and V
EDV

 is 

the end diastolic blood velocity.

where V
Mean

 is the mean blood velocity.

where Y
PS

 is the waveform value at the peak systolic phase of 

the cardiac cycle, Y
I
 is the waveform value at the beginning 

of the systolic upstroke, t
PS

 is the time at the peak systolic 

phase of the cardiac cycle, and t
b
 is the time at the beginning 

of the systolic upstroke.

where Y
PS

 is the waveform value at the peak systolic phase 

of the cardiac cycle, Y
ED

 is the waveform value at the end 

(1)RI =
V

PSV
− V

EDV

V
PSV

,

(2)PI =
V

PSV
− V

EDV

V
Mean

,

(3)Systolic acceleration slope =

Y
PS

− Y
b

t
PS

− t
b

,

(4)Diastolic deceleration slope =

YPS − YED

tPS − tED

,

diastolic phase of the cardiac cycle, t
PS

 is the time at the peak 

systolic phase of the cardiac cycle, and t
ED

 is the time at the 

end diastolic phase of the cardiac cycle.

Univariate and Multivariate Logistic Regression Model

Logistic regression was chosen as the primary model due 

to its superior performance over support vector machine, 

random forest, and decision tree in preliminary analyses of 

virtual patients with DKD and HKD. Firstly, a univariate 

analysis was conducted to evaluate their diagnostic potential 

and to identify optimal measurement locations with strong 

performance across different sex and age groups. This 

process involved training and validating a logistic regression 

model on one biomarker at a time, based on biomarkers 

extracted from virtual patients. This model used 70% of the 

data for training and 30% for validation, and the procedure 

was repeated over 50 random sampling iterations. Model 

performance was assessed using the AUC, as determined by 

ROC curve analysis, along with accuracy.

Secondly, a correlation analysis was performed on 

the biomarkers extracted from the optimal measurement 

location in the univariate analysis. This analysis assessed 

the degree of association between biomarkers to understand 

potential redundancy and multicollinearity in the subsequent 

multivariate analysis.

Thirdly, a multivariate analysis was performed to identify 

the high-performing biomarker combinations at the optimal 

measurement location. The biomarkers were divided into 

two groups: the first included all available biomarkers 

and was referred to as the Full Biomarkers Group; the 

second included commonly used biomarkers, excluding 

pressure- and PWV-related biomarkers and was referred to 

as the Common Biomarker Group. The dimensionality of 

the biomarker combinations was progressively increased 

from 2 to 25. For each level of dimensionality, all possible 

biomarker combinations were randomly generated and 

evaluated using the same training and cross-validation 

procedure as applied in the univariate analysis. The 

biomarker weights, also referred to as logistic regression 

coefficients, were calculated for each biomarker within each 

combination. The 10 biomarkers most frequently appearing 

among the top 100 highest-performing combinations with 

an AUC greater than 0.8 were identified and counted at each 

dimensionality level.

Results

Validation of Sex‑ and Age‑Specific Virtual Controls

Fig. 3 presents the validation of openBF predictive results 

against in vivo literature data across various sex- and 
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Fig. 3  Validation of openBF 

predictive results in sex- and 

age-specific virtual healthy 

controls against in vivo litera-

ture data, a–d: comparison of 

modeled SBP and DBP in the 

brachial artery against in vivo 

data [47], e–f: comparison of 

modeled mean RBF rate in main 

renal arteries against in vivo 

data [56], g–h: comparison of 

RI distributions in the segmen-

tal renal artery against in vivo 

data [48]
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age-specific virtual healthy controls, with all predictions 

lying within an acceptable range of variation. In males, 

SBP ranges from approximately 118 mmHg in the 20–29 

age group to around 126 mmHg in the 70–79 group. A simi-

lar trend is observed in females, with SBP rising from about 

112 mmHg to 121 mmHg across the same age group. In 

contrast, DBP remains relatively constant with age, averag-

ing around 78 mmHg in males and 75 mmHg in females. 

Furthermore, male subjects exhibit a decrease in the mean 

RBF rate from around 1210 ml/min in the 20–29 age group 

to approximately 844 ml/min in the 70–79 age group. In 

comparison, female subjects show a similar downward trend, 

with the mean RBF rate declining from about 887 ml/min to 

576 ml/min. In addition, in males, RI increases from around 

0.61 in the 20–29 age group to about 0.65 in the 70–79 age 

group, while in females, RI increases from approximately 

0.63 to 0.69.

Validation of Virtual Patients

Figure 4 presents the comparison of RI between openBF 

predictive results and in vivo literature data for healthy, 

DM + HTN, DKD (with DM + HTN), and HKD (with 

DM + HTN) populations. The largest discrepancy between 

the openBF results and in vivo data is observed in the upper 

whisker of the DKD group, where the openBF result is 0.72 

compared to 0.67 from in vivo data, resulting in a percent-

age difference of 7.19%. Furthermore, virtual patients with 

DM + HTN, even in the absence of explicitly parameterized 

kidney disease, exhibit an elevated RI, with a mean value of 

0.69 compared to 0.63 in healthy individuals. In addition, 

among the kidney disease groups, virtual patients with HKD 

present a mean RI comparable to DM + HTN, while DKD 

exhibits the highest mean RI at 0.74.

Univariate Analysis

Figure 5 presents that velocity- and flow-related biomarkers, 

particularly PI, achieve the highest AUC values in the main 

renal artery. However, their diagnostic performance declines 

progressively from the main renal artery (proximal) to the 

arcuate artery (peripheral). In contrast, biomarkers associ-

ated with PWV, pressure, and area maintain relatively stable 

diagnostic performance across the renal vascular network. 

For instance, diastolic PWV, diastolic pressure, and diastolic 

area exhibit AUC values of approximately 0.73, 0.60, and 

0.63, respectively, across the renal vascular network. Con-

versely, biomarkers derived from the slopes of acceleration 

and deceleration consistently show low diagnostic perfor-

mance across the renal vascular network. Similar trends are 

observed in AUC results for the remaining sex- and age-

specific virtual patients, as detailed in the supplementary 

material.

Correlation Analysis

Figure 6 presents clustering patterns among the biomarkers. 

The phases of RBF Rate (mean, systolic, and diastolic) and 

the slopes of RBF Rate (acceleration and deceleration) are 

not directly clustered but belong to separate groups within 

the same broader cluster. Furthermore, clusters of flow-

related biomarkers show moderate to strong correlations 

Fig. 4  Validation of RI 

in segmental renal arter-

ies against in vivo literature 

data across populations of 

healthy [48], DM + HTN 

[49], DM + HTN + DKD, and 

DM + HTN + HKD [51], the 

percentage difference is deter-

mined as the absolute difference 

between the openBF prediction 

and the in vivo data, divided by 

their mean and expressed as a 

percentage
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with pressure-related biomarkers, and velocity-related 

biomarkers are moderately clustered with PWV-related 

biomarkers.

One cluster includes biomarkers such as mean RBF rate 

and mean pressure, which show strong positive correlations 

(r = 0.78). In contrast, mean velocity and mean area display 

strong negative correlations (r = −  0.81), and RI and 

diastolic pressure exhibit moderate negative correlations 

(r = − 0.37). Figure 6 also highlights variable pairs with 

weak correlations, suggesting minimal linear association 

between the respective pairs, such as RI and Systolic PWV 

(r = 0.06) and diastolic pressure and deceleration velocity 

(r = 0.03).

Multivariate Analysis

Figure 7 presents the multivariate analysis of biomarker 

combinations, highlighting model performance, biomarker 

selection frequency, and logistic regression weights. When 

using biomarkers in the Full Biomarker Group (Fig. 7a), the 

model achieves an AUC of 0.97 and an accuracy of 0.91 with 

two biomarkers. With three biomarkers, the model achieves 

an improved AUC of 0.99 and an accuracy of 0.95. Adding a 

fourth biomarker results in only marginal improvement, with 

both AUC and accuracy converging at 0.93. When using 

biomarkers in the Common Biomarker Group (Fig. 7b), a 

similar trend is observed, with AUC and accuracy at each 

dimensionality of the biomarker combination slightly lower 

than those achieved using the Full Biomarker Group.

Figure 7c and d present that acceleration pressure is the 

most frequently selected biomarker in the Full Biomarker 

Group (55 combinations), and mean RBF rate appears in 

the most combinations in the Common Biomarker Group 

(51 combinations). In the two-biomarker combinations, 

PI, diastolic RBF rate, RI, and mean RBF rate exhibit 

comparable selection frequencies across both the Full 

Biomarker Group and Common Biomarker Group.

Figure 7e and f present the biomarker weights derived 

from logistic regression models for the most frequently 

selected biomarkers. Mean RBF rate and PI emerge as the 

Fig. 5  AUC for biomarkers across different renal arteries in a 50–59 yo male virtual patients
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most influential biomarkers in both classifiers trained on the 

Full Biomarker Group and the Common Biomarker Group 

and also appear as the most frequently selected biomarkers 

in Fig. 7c and d. Furthermore, Table 3 shows that classifiers 

trained using both groups achieve comparable AUC and 

accuracy, with a maximum AUC difference of 0.02 and an 

accuracy difference of 0.04.

Potential Biomarkers in DKD and HKD Models

Fig. 8 presents the optimal performance two- and three-bio-

marker combinations from the Full and Common Biomarker 

Group, respectively. In Fig. 8a, the DKD and HKD groups 

are relatively well stratified, whereas Fig. 8b shows a slightly 

tighter clustering of data points around the best-fit curve. 

Within the Full Biomarker Group, HKD generally exhibits 

a higher acceleration RBF rate than DKD, while accelera-

tion pressure is similar in both groups. Within the Common 

Biomarker Group, RI tends to be marginally higher in DKD 

than in HKD, contributing to the tighter scatter. Furthermore, 

Fig. 8c shows more pronounced stratification along the PI axis 

(y-axis), indicating greater variability when PI is included. In 

contrast, Fig. 8d, the points are more tightly aligned, with 

stratification primarily driven by the mean RBF rate (x-axis).

Fig. 6  Pearson correlation coefficients between biomarkers measured in the main renal artery for a 50–59 yo male virtual patients
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Fig. 7  Multivariate analysis of biomarker combinations using the Full 

Biomarker Group and Common Biomarker Group, a optimal AUC 

and accuracy as the number of biomarkers increases in the classifier 

trained on the Full Biomarker Group, b optimal AUC and accuracy 

as the number of biomarkers increases in the classifier trained on the 

Common Biomarker Group, c top ten most frequently selected bio-

markers among top one hundred high-performing two- and three-bio-

marker combinations in the classifier trained on the Full Biomarker 

Group, d top ten most frequently selected biomarkers among top one 

hundred high-performing two- and three-biomarker combinations 

in the classifier trained on the Common Biomarker Group, e logistic 

regression coefficients of the most frequently selected biomarkers in 

the classifier trained on the Full Biomarker Group, f logistic regres-

sion coefficients of the most frequently selected biomarkers in the 

classifier trained on the Common Biomarker Group 
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Discussion

This study establishes a multidimensional computational 

framework for modeling systemic and renal circulation 

hemodynamics, integrating physiological variations 

across sex- and age-specific, as well as pathology in 

renal vasculature associated with DKD and HKD. This 

study aims to evaluate the hypothesis that divergent 

systemic and microvascular variants arising from distinct 

pathophysiological mechanisms of DKD and HKD can 

be leveraged for an early diagnostic application through 

cardiovascular biomarkers derived from blood flow 

waveform analysis.

The results presented in Fig. 3 indicate the predictive 

accuracy of openBF as validated using virtual healthy con-

trols. The results highlight that trends in brachial SBP and 

DBP, mean RBF rate, and RI with aging in both male and 

female are closely consistent with those observed from in 

vivo studies [47, 48, 56]. Our findings reveal marked sex-

specific differences in key parameters, including CO, lumen 

radius, Young’s modulus, and wall thickness, as shown in 

Fig. 1. The smaller lumen radius in females may contrib-

ute to higher PVR, leading to elevated blood pressure [25, 

57–59]. However, males generally exhibit higher systemic 

blood pressure compared to females, as elevated blood 

pressure is more significantly influenced by higher CO and 

increased Young’s modulus, which are typically observed 

in males [60, 61]. These sex-specific differences also affect 

mean RBF rate and RI values to varying degrees, under-

scoring the necessity of incorporating sex-specific vascular 

parameters to accurately capture hemodynamic variability. 

Although we parameterize the sex factor in our model and 

validate the sex-specific virtual healthy controls against 

certain in vivo studies, the sex factor remains a critical con-

sideration in clinical research [62] due to physiological and 

mechanical differences in the cardiovascular system. How-

ever, sex factors can be overlooked in some modeling studies 

[18, 63, 64] when they are not the primary research focus.

The results presented in Fig. 4 indicate that in the absence 

of diagnosed kidney disease, patients with DM + HTN 

exhibit elevated RI values compared to healthy individuals, 

aligning with trends observed from some in vivo data [49, 

65]. These RI values are not as high as those observed 

in some patients diagnosed with DKD or HKD [51, 66, 

67]. This suggests that alterations in systemic vascular 

properties can influence renal hemodynamics by affecting 

blood velocity waveforms, thereby contributing to elevated 

RI. This is consistent with findings from Madsen’s study, 

which reported that increased vascular stiffness is associated 

with impaired diastolic function [68]. Furthermore, RI is 

approximately 10% higher in virtual patients with DKD 

than in DM + HTN, while HKD remains comparable to 

Table 3  Detailed results for top 

five high-performing two- and 

three-biomarker combinations 

in the classifiers trained on 

the Full Biomarker Group and 

Common Biomarker Group 

Biomarkers Metrics

Biomarker 1 Biomarker 2 Biomarker 3 AUC Accuracy

Full Biomarker Group

 Acceleration RBF Rate Acceleration Pressure – 0.97 0.91

 Acceleration RBF Rate Deceleration Pressure – 0.97 0.91

 Acceleration Pressure PI – 0.96 0.88

 Diastolic Pressure Diastolic RBF Rate – 0.95 0.88

 Deceleration Pressure PI – 0.95 0.87

 Systolic Pressure PI Diastolic Pressure 0.99 0.95

 Deceleration Pressure PI Diastolic Pressure 0.99 0.95

 Mean Pressure PI Deceleration Pressure 0.99 0.95

 Acceleration Pressure PI Diastolic Pressure 0.99 0.95

 Systolic Pressure PI Deceleration Pressure 0.99 0.95

Common Biomarker Group

 PI RI – 0.95 0.87

 Mean Velocity Acceleration Velocity – 0.92 0.84

 Systolic Velocity Mean Velocity – 0.92 0.84

 Mean RBF Rate Acceleration RBF Rate – 0.92 0.83

 Systolic RBF Rate Mean RBF Rate – 0.91 0.83

 Mean RBF Rate Systolic RBF Rate Diastolic RBF Rate 0.97 0.91

 Mean RBF Rate Acceleration RBF Rate Diastolic RBF Rate 0.96 0.89

 Mean RBF Rate Systolic RBF Rate Deceleration RBF Rate 0.96 0.89

 Mean RBF Rate PI Diastolic RBF Rate 0.96 0.88

 Mean Velocity Systolic Velocity Diastolic Velocity 0.95 0.88
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DM + HTN. The increase in RI in DKD patients is due 

to a greater increase in PVR, caused by contraction of 

the efferent arteriole and a decrease in nephron number, 

compared with HKD patients, whereas comparable RI 

in HKD reflects greater large-artery stiffness and wall 

thickening with a modest increase in PVR, which raises 

 VPSV and only slightly lowers  VEDV, keeping RI close to 

that in DM + HTN. RI (mean = 0.74, SD = 0.04) in the 

DKD virtual patients exhibits a distribution consistent 

with a clinical study by Li et al. (RI = 0.70, SD = 0.07), 

in which all patients are diagnosed with DKD via kidney 

biopsy and 71% had coexisting systemic DM and HTN [66]. 

However, both Hashimoto et al. (RI = 0.65, SD = 0.07) and 

Kawai et al. report lower RI values in HTN patients with 

renal impairment compared with RI observed in our virtual 

patients with HKD [51, 67]. The higher RI predicted by 

openBF may be attributed to only 21% of patients in this 

study diagnosed with coexisting systemic DM and HTN.

Biomarker performance is highly location-dependent, 

underscoring the importance of measurement location 

in clinical applications. As shown in Fig. 5, velocity-

related biomarkers, such as PI, diastolic RBF rate, RI, 

and diastolic velocity, show better diagnostic performance 

than other types of biomarkers. However, their diagnostic 

performance decreases progressively from the main 

renal artery (proximal) to the arcuate artery (peripheral). 

These results suggest that velocity-related biomarkers 

are less effective in detecting pathophysiological 

Fig. 8  Scatter plot of the optimal diagnostic performance using two- and three-biomarker combinations in a 50–59 yo male virtual patients with 

DM + HTN + DKD and DM + HTN + HKD; the dark blue point represents DKD patients, while the dark red point represents HKD patients
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alterations in peripheral arteries, potentially due to 

complex hemodynamic conditions or reduced sensitivity 

in these regions, highlighting the regional dependence of 

their diagnostic performance. This finding corroborates 

established clinical practices in which velocity-related 

biomarkers, such as PI and RI, are typically assessed in 

the proximal segments of renal vasculature for diagnosing 

kidney disease [69, 70]. The diminished diagnostic 

performance in more peripheral regions may be attributed 

to local hemodynamic influences, including increased 

microvascular resistance and complex branching patterns, 

which attenuate the effectiveness of velocity-related 

biomarkers [71]. These findings underscore the necessity 

of location-specific biomarker selection to improve 

diagnostic accuracy and guide more targeted interventions 

in kidney disease.

The correlation structure groups biomarkers into 

physiologically coherent clusters relevant to disease 

discrimination. Specifically, PWV indicates arterial 

stiffness, while velocity and RBF capture intrarenal 

perfusion. In addition, the lumen area reflects vessel size 

and compliance, with a lower area indicating constriction 

or reduced compliance. Moreover, pressure indices quantify 

upstream driving pressure and hemodynamic load. Finally, 

RI and PI characterize downstream microvascular resistance 

and pulsatility. These clusters imply that multivariate models 

gain by combining stiffness, perfusion, compliance, driving 

pressure, and downstream resistance rather than relying 

on near-duplicate signals. Consistently, top-performing 

pairs couple pressure with flow or velocity, capturing the 

driving force and the vascular response and approximating 

the pressure-flow relationship and vascular impedance to 

improve discrimination.

The optimal performance of biomarker combinations 

using the Full Biomarker Group is slightly higher than 

that of combinations derived from only the Full Biomarker 

Group. In both cases, performance shows relatively small 

improvement beyond three biomarkers and converges when 

four biomarkers are used. This trend suggests that the 

inclusion of additional biomarkers may initially enhance 

AUC and accuracy, possibly by increasing the model’s 

capacity to represent variation associated with group 

differences. However, the marginal gain diminishes as the 

added biomarkers contribute increasingly redundant or non-

informative features.

These virtual clinical trials can improve cost-effectiveness 

in clinical trials by optimizing scan protocols and 

prioritizing candidate biomarkers, thereby focusing trial 

resources (scanning time and study budget) on the most 

informative biomarker panels. Because kidney biopsy is 

rarely performed to diagnose early-stage disease, these 

non-invasive imaging biomarkers could be used as adjuncts 

to refine pretest probability and support risk stratification. 

They are not positioned to replace biopsy at present. If their 

discrimination performance is confirmed prospectively, they 

could support biopsy decisions by identifying equivocal 

cases and deprioritizing biopsy in clearly low-risk patients, 

thereby reducing unnecessary invasive procedures. Because 

flow-based indices capture vascular dysfunction before 

overt structural change, they are expected to be useful in 

earlier disease stages and for monitoring treatment response, 

with stage-specific thresholds defined through prospective 

validation.

This study also has some limitations that need to 

be considered. Firstly, the current framework does not 

incorporate variability beyond age and sex, including 

ethnicity, medication effects, anthropometric characteristics 

(body weight, height, body surface area), and interindividual 

variation in nephron number (approximately 0.6 to 1.2 

million per kidney). These determinants shape vascular 

and nephron-scale structure and function and can influence 

biomarker performance. Future work should incorporate 

these covariates using allometric scaling to link them to 

vascular properties within the model and literature-informed 

priors [72, 73], to improve personalization and enhance the 

generalizability of the proposed biomarkers.

Secondly, the renal microcirculation is represented 

with a lumped R-C-R parameter model implemented as an 

equivalent circuit. This circuit is not coupled to the proximal 

renal circulation and does not explicitly include renal 

autoregulatory mechanisms. This simplification constrains 

accurate representation of dynamic interactions between 

the proximal circulation and the renal microcirculation 

under pathological conditions. Future work should improve 

physiological fidelity by detailing the proximal renal 

vasculature and coupling it to microvascular compartments, 

incorporating renal autoregulation, and modeling kidney 

disease progression [15, 74].

Thirdly, a total of 6188 physiological cases were 

retained, representing 26% of the 24,000 generated 

virtual healthy controls. This low inclusion rate is mainly 

due to independent random sampling. Although each 

parameter falls within physiological ranges, selecting them 

independently can produce unphysiological combinations. 

Future work could use correlation-constrained sampling. At 

the arterial tree level, one could apply physiology-consistent 

constraints, by enforcing Murray’s law for branching and 

radius scaling [75], standardize the coupling between the 

lumen and the wall using a single tube law derived from 

thin wall mechanics [76], and apply a proximal-to-distal 

elasticity gradient to regularize wall parameters [77]. 

By reducing degrees of freedom and limiting parameter 

degeneracy, the proportion of physiologically implausible 

virtual controls should decrease substantially.

The diagnostic performance of the proposed biomarkers 

in differentiating DKD from HKD currently lacks in vivo 
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validation, which limits clinical translatability. Future work 

should focus on patient cohorts mirroring the modeled 

scenarios, specifically patients with coexisting DM and HTN 

who are clinically classified as DKD or HKD, with CKD 

stage 2 confirmed by laboratory blood and urine tests. The 

same biomarkers identified in this study should be acquired 

using the appropriate imaging modalities. Clinical validation 

could then apply logistic regression with ROC analysis, 

replicating the approach described in this study. Translation 

into clinical practice is constrained by the lack of a gold 

standard to distinguish DKD from HKD. Although kidney 

biopsy serves as the reference test, the procedure is invasive, 

carries bleeding risk, and is rarely undertaken in early CKD, 

while clinical criteria are often nonspecific with overlapping 

phenotypes. Furthermore, routine clinical application will 

require standardized acquisition protocols across scanners and 

sites, reproducible waveform extraction, and rigorous signal 

quality control.

In conclusion, this study highlights the potential of 

hemodynamic-related biomarkers, combined with a 

multidimensional mechanistic modeling and machine 

learning-based approach, to distinguish between DKD 

and HKD. Our findings show that proximal renal arteries, 

such as the main renal artery and segmental renal artery, 

are the optimal locations for obtaining these biomarkers. 

Furthermore, the utilization of two to three biomarkers with 

moderate correlation can improve the diagnostic accuracy for 

distinguishing DKD from HKD. Among these biomarkers, 

Mean RBF Rate and PI serve as the foundational biomarkers, 

appearing most frequently in high-performing combinations 

and accessible with routine clinical measurements. This 

study represents a notable advancement in kidney disease 

diagnostics, offering a modeling and non-invasive method for 

addressing two complex and overlapping pathologies.
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