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Abstract

Purpose A diagnostic challenge in the management of chronic kidney disease (CKD) is distinguishing diabetic kidney dis-
ease (DKD) from hypertensive kidney disease (HKD) in patients with coexisting diabetes mellitus (DM) and hypertension
(HTN), because accurate diagnosis often depends on renal biopsy as a reference standard. This study proposes a modeling
approach to identify cardiovascular biomarkers for differentiating DKD from HKD.

Methods An existing whole-body circulation model of the vascular tree was extended with a detailed renal circulation
network to predict biomarkers measured at different locations. The model parameterized sex, age, and disease factors and
was used to conduct virtual clinical trials that identified individual and combined biomarkers for DKD-HKD differentia-
tion. Biomarkers were identified with univariate and multivariate analysis and characterized with the area under the receiver
operating characteristic curve (AUC).

Results Results show that the strongest individual biomarker that is commonly used in clinical practice is pulsatility index
(PI) measured in the main renal artery, with an AUC of 0.87. Among all evaluated two-biomarker combinations, PI and
resistive index (RI) measured in the same artery achieved the highest classification performance (AUC 0.94). In comparison,
the highest performance among three-biomarker combinations (AUC 0.96) is achieved by mean blood flow rate, systolic
blood flow rate, and diastolic flow rate.

Conclusion This modeling work suggests that cardiovascular biomarkers can assist in differentiating DKD and HKD, and
proposes specific hypotheses that form a strong rationale for targeted clinical trials. If confirmed, these methods could enable
non-invasive assessment of renal vascular alterations associated with DKD and HKD, reducing reliance on kidney biopsies
for diagnostic evaluation.

Keywords Diabetic kidney disease - Hypertensive kidney disease - Computational fluid dynamic - Biomarker - Logistic
regression model

Introduction

CKD is a global health condition characterized by a progres-
sive decline in kidney function, with more than 844 million
people affected by CKD worldwide since 2017 [1]. CKD
demonstrates sex- and age-specific differences in the United
States, with a prevalence of 15% in females and 11% in
54 Ning Wang males [2], and a prevalence of 52% in individuals older than

ning.wang1 @sheffield.ac.uk 40 years old (yo), compared to 9% in individuals between
the ages of 20 and 39 [3].

The rising prevalence of DM and HTN significantly con-
tributes to the global increase in CKD cases. Research indi-
cates that CKD prevalence ranges from 19% to 66% among
diabetic patients and from 30% to 51% among hypertensive

School\of Medicine and Population Health, University patients [4]. DKD is a microvascular complication of DM,
of Sheffield, Sheffield, UK

Associate Editor Vanessa Diaz oversaw the review of this article.

INSIGNEO Institute for in silico medicine, University
of Sheffield, Sheffield, UK

School of Mechanical, Aerospace and Civil Engineering,
University of Sheffield, Sheffield, UK

Published online: 29 January 2026 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-026-03983-4&domain=pdf
http://orcid.org/0009-0002-7253-0492

N.Wang et al.

where chronic hyperglycemia induces a cascade of meta-
bolic and hemodynamic disturbances [5], while HKD is a
macrovascular complication resulting from the effects of
chronically elevated blood pressure on the renal vasculature
[6, 7]. DKD and HKD may benefit from targeted manage-
ment, but this can only be considered if the cause of CKD
is known. Unfortunately, since DM and HTN are common
comorbidities, and DKD and HKD share similar symptoms,
this is often only possible by invasive biopsy. Since this is
not considered a viable option in early disease stages, most
patients are not able to benefit from targeted management.
Specific, non-invasive diagnostic measurements are urgently
needed to allow earlier and more effective management of
CKD in patients with DM and HTN.

We hypothesize that systemic and microvascular
alterations caused by DKD and HKD lead to characteristic
signatures in hemodynamic biomarkers that can be measured
with flow-sensitive acquisition protocols, such as Doppler
ultrasound (US) and phase-contrast magnetic resonance
imaging (PC-MRI). In patients with DKD, chronic
hyperglycemia causes vasodilation of the afferent arterioles
(reducing vascular resistance) and vasoconstriction of
the efferent arterioles (increasing vascular resistance).
These hemodynamic perturbations increase glomerular
blood flow, resulting in prolonged hyperfiltration that
ultimately leads to nephron loss [8]. Conversely, in
patients with HKD, pathological overactivation of the
renin—angiotensin—aldosterone system triggers sustained
vasoconstriction in both afferent and efferent arterioles
(increasing vascular resistance) [9]. Unlike the glomerular
hyperfiltration characteristic of DKD, HKD manifests as
vascular remodeling, evidenced by structural thickening
and fibrotic stiffening of renal arterial walls. It appears
plausible that these distinct micro- and macrovascular
alterations of DKD and HKD lead to distinct patterns in
flow-sensitive Doppler US and PC-MRI, but the relationship
is complex and cannot be studied in humans by experimental
means. Unfortunately, animal models poorly represent
complex human diseases and do not properly replicate the
experimental conditions of human imaging.

In recent decades, evidence has been mounting that
reduced-order models of the cardiovascular system can
effectively simulate pathological effects on pressure,
velocity, and flow waves. These models have demonstrated
potential in identifying diagnostic biomarkers, as seen in
conditions such as pulmonary HTN [10], cerebral vasospasm
[11], or coronary artery disease [12]. This strategy
complements traditional machine learning methodologies by
enabling the quantitative analysis of biomarker input data,
thereby facilitating the detection of subtle and nonlinear
patterns that are often imperceptible through conventional
observational techniques. However, current models are
inadequate for the detailed study of CKD. Most prior studies
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target the main renal artery or the renal microcirculation in
isolation [13-16], leaving a gap in models that concurrently
represent pulse-wave propagation in the proximal renal
vasculature and disease pathophysiology. Therefore,
a higher-resolution framework is required to capture
interactions between the proximal renal vasculature and
the microcirculation that characterize early-stage DKD and
HKD.

This study advances an established renal model with
three novel contributions compared with existing studies
[17]. The renal circulation is extended to the arcuate
arteries for a more detailed representation of the proximal
vasculature, and the renal microcirculation is modeled as
a detailed equivalent electrical circuit represented by a
lumped-parameter resistor—capacitor—resistor (R-C-R)
model. This representation enables mechanistic estimates
of glomerular filtration rate (GFR). In addition to age-
specific factors, vascular properties are parameterized by
biological sex, providing more detail on interindividual
variability than prior studies [17-19]. Furthermore, a
more clinically relevant scenario was modeled, in which
the pathophysiology of DKD and HKD was parameterized
based on coexisting DM and HTN to support biomarker
identification. Collectively, these enhancements deliver
a virtual population-level framework for quantifying
biomarker discrimination between DKD and HKD.

This study aimed to identify and evaluate individual
and composite biomarkers for the early differentiation
of DKD and HKD using a multidimensional (1D-0D)
model combined with a logistic regression-based machine
learning approach, as detailed in Section "Univariate and
multivariate logistic regression model" of the Methodology.
This framework enables modeling assessment of disease-
specific hemodynamic alterations between DKD and HKD
pathological conditions. The findings provide model-level
insights that may inform clinical trial protocols and support
the development of more targeted, accessible, and early-
stage strategies for distinguishing DKD from HKD, which
are often clinically indistinguishable in their early stages.

Methodology

An existing vascular network model was extended to
incorporate renal microcirculation, enabling the simulation
of disease-specific hemodynamic responses. The model was
parameterized to account for sex-, age-, and disease-specific
variations related to coexisting DM and HTN, DKD, and
HKD. In the following sections, the term “virtual healthy
controls” denoted disease-free simulated subjects generated
under age- and sex-specific parameter distributions. The term
“virtual patients” denoted simulated subjects instantiated
with disease-specific parameterizations (DM +HTN, DKD,
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or HKD). Using this framework, virtual clinical trials were
conducted to identify candidate biomarkers that distinguish
DKD from HKD and to assess their diagnostic accuracy.

Systemic and Renal Circulation Model

The vascular network in this study was illustrated in Fig 1.
It consisted of three components: (1) a systemic circulatory
network, (2) bilateral 1D renal arterial networks (right and
left), (3) OD renal microcirculatory networks. The dimen-
sional values of the model for the age group of 20-29 yo
were presented in the supplementary material.

Systemic Circulatory Model
The systemic circulation network followed a previous

publication, comprising 75 blood vessels represented
using a 1D modeling approach, and 29 outlet boundary

Arcuate artery

Interlobar artery

Super segmental artery

Anterior segmental artery
Posterior segmental artery

Main renal artery

©

7-Efferent arteriole 4-Glomerulus filtration 5-Distal tubule

5-Proximal tubule
3-Glomerulus capillary’

2-Afferent arteriole

conditions [17]. They were represented using the lumped-
parameter R-C-R models to represent the peripheral blood
vessels. The inlet boundary condition was defined as the
blood flow rate in the ascending aorta.

1D Renal Circulatory Model

The newly developed renal circulatory model was derived
from a previously published renal architecture consisting
of 1 main renal artery, 5 segmental arteries, and 10 inter-
lobar arteries per kidney [17]. The extension involved the
addition of bifurcations at the peripheral termini of each
interlobar artery, thereby forming two arcuate arteries per
branch, resulting in a total of 20 arcuate arteries per renal
circulation, as shown in Fig. le. These renal arteries were
represented using a 1D modeling approach, with mechani-
cal properties sourced from previously published literature
[20-23], and detailed in the supplementary material.

Fig. 1 Illustration of the systemic whole-body circulation and renal
circulation, including both anatomical structures and model repre-
sentations, (a) anatomical systemic circulation network including left
and right kidneys, (b) renal vasculature from the main renal artery
to the arcuate artery, (c¢) renal microcirculation network, (d) multi-
dimensional systemic circulation model incorporating left and right
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renal circulation networks, (e) renal vasculature represented as 1D
blood vessels, with microcirculation downstream of the arcuate artery
represented using a lumped-parameter R-C-R model, (f) coupling
scheme between the 1D arcuate artery and the lumped-parameter
R-C-R model, (g) constituent components of the lumped-parameter
R-C-R model within a single nephron
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0D Renal Microcirculatory Model

Downstream vasculature of each arcuate renal artery
was the renal microcirculation, comprising interlobular
arteries, afferent arterioles, glomerular capillaries, efferent
arterioles, renal tubules, and peritubular capillaries. The
overall resistance of the renal microcirculation, including
both vascular components and critical renal functions
involving glomerular filtration and tubular reabsorption,
was represented using the lumped-parameter R-C-R model,
as shown in Fig. 1f and 1g.

To calculate the resistance of the renal microcirculation
(PVR downstream of each arcuate renal artery), the follow-
ing assumptions were applied. Firstly, interlobular arteries
were modeled in a uniform and parallel configuration, with
650 of these branching at the peripheral terminus of each

arcuate artery [23]. Each interlobular artery subsequently
branches at its peripheral terminus into 60 glomeruli in a
parallel configuration [24], as shown in Fig. 1f. Secondly,
hemodynamics was homogeneous among the components
within the renal microcirculation, manifesting uniform resis-
tive properties and invariant pressure-flow relationships. The
total number of each component within the lumped-parame-
ter R-C-R model was summarized in Table 1.

The Hagen—Poiseuille equation was employed to deter-
mine the vascular resistance of interlobular artery, affer-
ent arteriole, efferent arteriole, and renal tubule within the
lumped-parameter R-C-R model (Fig. 2g), considering the
low pulsatility within renal microcirculation [25]. Further-
more, the resistances of the glomerular capillary, glomerular
filter, peritubular capillary, and reabsorption were calculated
based on their ratios to the resistance of the afferent arteriole

Table 1 Mechanical properties

. Parameters Label Number Viscosity Length Radius Resistance

:cmd estimated number of [Pa-s] [um] [um] [Pa-s/m’]

interlobular arterioles, afferent

and efferent arterioles, and renal  [peeriobular 1 13,000 4.00x107% 370 22.90 1.37x107"3

tubules Afferent 2 784,909  4.00x107 112 10.70 8.71x 10713
Glomerular capillary 3 N/A N/A N/A N/A 3.92x10712
Glomerular filter 4 N/A N/A N/A N/A 3.35x 10714
Renal tubule 5 784,909 2.00x 1073 18,000 16.40 1.27x1071
Reabsorption 6 N/A N/A N/A N/A 3.31x1071
Efferent 7 784,909 2.00x 1073 120 7.97 1.52x 10714
Peritubular capillary 8 N/A N/A N/A N/A 3.60x10713
Ureter 9 N/A N/A N/A N/A 7.96x10713

Number of interlobular arteries [23], afferent arterioles [24], blood viscosity [29], plasma viscosity [30],
length of interlobular artery [23], afferent arteriole [31], renal tubule [32, 33], and efferent arteriole [34].
Lumen radius of interlobular artery [34], afferent arteriole [31], renal tubule [35], and efferent arteriole
[31]
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Fig.2 Normalized mechanical properties between males and females, while the PVR ratio in renal circulation is 0.85 in males and 1.15 in

females
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[26]. The vascular resistance for each component within the
lumped-parameter R-C-R model is summarized in Table 1.

To calculate the total vascular resistance downstream
of the arcuate artery, two steps were followed. Firstly,
the vascular resistance of a nephron was calculated as
4.40 % 10" Pa-s/m> by summing the resistance of the afferent
arteriole and the cumulative resistance of its downstream
microvasculature arranged in a series configuration. The
vascular resistance downstream of the afferent arteriole,
as shown in Fig. 1f, was determined using nodal analysis
based on Kirchhoff’s law. Secondly, the total vascular
resistance downstream of an arcuate artery was calculated
as 2.80x 10'% Pa-s/m? based on two levels of parallel
configuration. In the first level, 60 nephrons were arranged
in parallel to an interlobular artery. In the second level, 650
interlobular arteries (each containing 60 nephrons) were
arranged in parallel to an arcuate artery. The resistance of an
interlobular artery employed in this calculation was reported
in Table 1. Full details of the calculations are presented in
the supplementary material.

Furthermore, the PVC downstream of an arcuate was
determined by 2.53 x 107! m*/Pa [17, 27]. The GFR for
each virtual healthy control and patient was calculated as the
ratio of the blood flow rate filtered by the glomerulus to the
total blood flow rate entering the glomerulus within the renal
microcirculation. To support these numerical computations,
this study employed an open-source software openBF to
compute blood flow rate, velocity, pressure, and pulse-wave
velocity (PWV) in all vessels of the network over a complete
cardiac cycle [28].

Sex, age, and pathophysiology parameterization

This section incorporated variations in sex, age, coexisting
systemic DM and HTN, DKD, and HKD into the vascular
network model developed in this study.

Sex- and age-specific parametrization

Sex and age variations affect several mechanical parameters,
including blood viscosity, cardiac output (CO), length,
lumen radius, Young’s modulus, wall thickness, PVR, and
PVC. To parameterize a sex-specific model, each mechanical
property was normalized through dividing the respective
CO, blood viscosity, and mechanical values for males and
females by their corresponding mean values, based on
multiple sources in the literature [36, 37]. These normalized
values were subsequently multiplied by the corresponding
properties of the newly developed non-sex-specific model,
as shown in Fig. 2, ensuring that the mechanical properties
represent the variants of males and females.

Regarding the age model, the variations in the
aforementioned parameters were assumed to apply equally to

both males and females throughout the aging process, with
each assumed to follow a Gaussian distribution. A validated
age-specific model was subsequently employed to simulate
the aging process in both male and female models [17-19],
across six distinct age groups ranging from 20 to 79 years.

Systemic DM and HTN Parametrization

Systemic vascular damage resulting from the combined
pathophysiological effects of DM and HTN (DM + HTN)
was modeled prior to the onset of kidney disease. This
systemic vascular damage affected the lumen radius [17, 38],
Young’s modulus [39], and wall thickness [40] of the 1D
blood vessel model. The HTN-induced vascular constriction
effect on peripheral blood vessels was further quantified as
a 17% increase in PVR and a 23% reduction in PVC [41,
42], alongside a 17% decrease in CO relative to healthy
individuals [43, 44]. Additional quantitative data supporting
the parameterization of the DM + HTN model are presented
in Table 2.

DKD and HKD Parameterization

DKD was classified as a microvascular disease, with renal
microcirculation being a primary target for injury. DKD
model quantified a 7% constricted lumen diameter of efferent
arterioles resulting from hyperfiltration [45], accompanied
by a 10% dilated lumen diameter of afferent arterioles, while
maintaining other components in the lumped-parameter
R-C-R model unchanged. These alterations can decrease the
PVR downstream of the arcuate artery by 1%. In addition, a
reduction in the total number of glomeruli was known as a
consequence of prolonged hyperfiltration-induced overload
[46]. A 57% reduction in the number of glomeruli within
the renal microcirculation was modeled for DKD patients
to ensure consistent GFR between DKD and HKD patients.
This adjustment leads to an overall 35% increase in PVR
compared with the healthy baseline, resulting in the mean
GEFR of both virtual patients with DKD and HKD remaining
within the same early stage (stage 2) of CKD.

HKD was characterized by proximal renal vascular dam-
age resulting from systemic HTN, which was driven by con-
striction of peripheral blood vessels. Prolonged high blood
pressure can induce structural changes within the renal
vasculature, including hypertrophy of the vascular smooth
muscle, which led to thickening of the vessel wall and a
reduction in elastin, compromising the elasticity of the blood
vessels. These alterations led to an increase in both Young’s
modulus and wall thickness of the renal arteries. In this
study, an additional contraction in lumen radius, together
with increases in Young’s modulus and wall thickness, was
applied in the proximal renal arteries to model HKD [17],
with details in Table 2. This additional contraction in the
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Table 2 Normalized mechanical

; Parameters DM +HTN DM +HTN +DKD DM +HTN +HKD
parameters derived from the
healthy model for DM + HTN, Normalized Normalized Normalized
o gﬁiﬁg}iﬁﬂm, GFR [ml/min] 93 (10) 84 (8) 85 (8)
respectively Cardiac output 0.83 0.83 0.83
Blood viscosity 1.20 1.20 1.20
Systemic circulation
Length 1.00 1.00 1.00
Lumen radius 0.97 0.97 0.97
Young’s modulus 1.25 1.25 1.25
Wall thickness 1.12 1.12 1.12
PVR 1.17 1.17 1.17
PVC 0.77 0.77 0.77
Renal circulation
Length 1.00 1.00 1.00
Lumen radius 0.97 0.97 0.95
Young’s modulus 1.25 1.25 1.40
Wall thickness 1.12 1.12 1.23
PVR 1.17 1.35 1.29
PVC 0.77 0.77 0.77

interlobular artery (Fig. 1f) was derived by applying a 10%
scaling in PVR relative to DM + HTN baseline.

Virtual Clinical Trials

This section coupled the vascular model with distinct
parameterizations to generate virtual patients for the
extraction of waveform-derived biomarkers under DKD and
HKD pathological conditions. A logistic regression model
was subsequently employed to evaluate the diagnostic utility
of these biomarkers through both univariate and multivariate
analyses.

Generation of Virtual Healthy Controls and Patients

To generate sex- and age-specific virtual healthy controls,
CO and all the mechanical parameters of each blood vessel
were assumed to be mutually independent. These normalized
parameters were randomly and independently assigned in the
age-specific model, by sampling each value for each blood
vessel from its respective Gaussian distribution. Age-spe-
cific male or female subjects were generated by multiplying
the dimensional parameters of the 20-29 yo male or female
model by the normalized values for CO and mechanical
properties across all blood vessels in the age-specific model.

The generated virtual healthy controls comprised
24,000 individuals, categorized by sex (male and female)
and six distinct age groups ranging from 20 to 79 yo, with
each subgroup containing 2000 individuals. To maintain
physiological validity, a filtering process was implemented
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to exclude any subjects whose mean systolic (SBP) or
diastolic (DBP) brachial blood pressure values deviated
from the 99% confidence interval (more than 2.575
standard deviations) of the experimentally determined
mean [47], and threshold of RI [48], in various sex- and
age-specific virtual controls. These physiological filters
included 6188 physiological cases from the 24,000
generated virtual healthy controls, resulting in an average
inclusion rate of 26%.

To generate virtual patients representing patients with
DM + HTN, parameters of each healthy subject from
12 sex- and age-specific virtual controls were scaled by
multiplying them by the normalized values for CO and
mechanical properties across all blood vessels (Table 2).
This resulted in an equal number of virtual patients per
sex- and age-specific group as in the corresponding virtual
healthy controls. Utilizing the same methodological
framework, each virtual patient with DM + HTN was
scaled by multiplying their mechanical parameters by the
normalized values across corresponding blood vessels
in the DKD and HKD model, to generate the sex- and
age-specific DM+ HTN + DKD and DM + HTN + HKD
patients.

The sex- and age-specific virtual healthy controls
were validated against in vivo literature data for SBP
and DBP in the brachial artery, the mean RI across 10
segmental renal arteries, and the mean renal blood flow
(RBF) rate in the main renal artery. The DM + HTN
[49], DM+ HTN + DKD, and DM + HTN + HKD virtual
patients were validated against in vivo literature data for
the mean RI across 10 segmental renal arteries.
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Biomarkers Extraction

This study translates clinically accessible renal hemodynamic
waveforms into quantitative biomarkers. Currently, RI and PI
are quantified with Doppler US [49-51], whereas renal blood
velocity and volumetric flow rate are measured with PC-MRI
[52]. PWYV can also be derived with 4D PC-MRI, although
its application to the renal artery is not well established [53].
Finally, renal-artery pressure is not reliably obtainable by MRI
in clinical practice and is consequently measured invasively
with pressure wires [54, 55].

The candidate biomarkers in this study were computed
from the full cardiac cycle waveforms of RBF rate, velocity,
pressure, and PWV in the main, segmental, interlobar, and
arcuate renal arteries for each virtual patient. From each
waveform, peak systolic, end diastolic, and cycle mean value
defined as the arithmetic mean across a cardiac cycle were
computed as candidate biomarkers. RI and pulsatility index
(PI) were computed for the left and right renal networks
according to Eqgs. 1 and 2. Furthermore, systolic acceleration
and diastolic deceleration slope of RBF rate, velocity, pressure,
and PWV waveform were computed to serve as additional
candidate biomarkers, as detailed in Egs. 3 and 4.

For ease of future reference, biomarkers extracted during
the peak systolic phase, end diastolic phase, and mean value
were denoted by “Phase name” followed by ‘“Parameter
name.” Biomarkers extracted as systolic acceleration slope and
diastolic deceleration slope were denoted by “Acceleration”
and “Deceleration,” followed by “Parameter name.”
Vesv = Vepv

RI = , ey

VPS v

where Vg is the peak systolic blood velocity, and Vi), is
the end diastolic blood velocity.

Pl = Visy — VEDV7 @
VMean
where V,,,,., is the mean blood velocity.
. . Yps = ¥
Systolic acceleration slope = ———, ?3)
Ips =1

where Ypg is the waveform value at the peak systolic phase of
the cardiac cycle, Y, is the waveform value at the beginning
of the systolic upstroke, #¢ is the time at the peak systolic
phase of the cardiac cycle, and f,, is the time at the beginning
of the systolic upstroke.
Ypg =Y
Diastolic deceleration slope = u, 4)
Ips = Igp
where Y)pg is the waveform value at the peak systolic phase
of the cardiac cycle, Yy, is the waveform value at the end

diastolic phase of the cardiac cycle, ¢ is the time at the peak
systolic phase of the cardiac cycle, and fg, is the time at the
end diastolic phase of the cardiac cycle.

Univariate and Multivariate Logistic Regression Model

Logistic regression was chosen as the primary model due
to its superior performance over support vector machine,
random forest, and decision tree in preliminary analyses of
virtual patients with DKD and HKD. Firstly, a univariate
analysis was conducted to evaluate their diagnostic potential
and to identify optimal measurement locations with strong
performance across different sex and age groups. This
process involved training and validating a logistic regression
model on one biomarker at a time, based on biomarkers
extracted from virtual patients. This model used 70% of the
data for training and 30% for validation, and the procedure
was repeated over 50 random sampling iterations. Model
performance was assessed using the AUC, as determined by
ROC curve analysis, along with accuracy.

Secondly, a correlation analysis was performed on
the biomarkers extracted from the optimal measurement
location in the univariate analysis. This analysis assessed
the degree of association between biomarkers to understand
potential redundancy and multicollinearity in the subsequent
multivariate analysis.

Thirdly, a multivariate analysis was performed to identify
the high-performing biomarker combinations at the optimal
measurement location. The biomarkers were divided into
two groups: the first included all available biomarkers
and was referred to as the Full Biomarkers Group; the
second included commonly used biomarkers, excluding
pressure- and PWV-related biomarkers and was referred to
as the Common Biomarker Group. The dimensionality of
the biomarker combinations was progressively increased
from 2 to 25. For each level of dimensionality, all possible
biomarker combinations were randomly generated and
evaluated using the same training and cross-validation
procedure as applied in the univariate analysis. The
biomarker weights, also referred to as logistic regression
coefficients, were calculated for each biomarker within each
combination. The 10 biomarkers most frequently appearing
among the top 100 highest-performing combinations with
an AUC greater than 0.8 were identified and counted at each
dimensionality level.

Results
Validation of Sex- and Age-Specific Virtual Controls

Fig. 3 presents the validation of openBF predictive results
against in vivo literature data across various sex- and
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Fig.3 Validation of openBF
predictive results in sex- and
age-specific virtual healthy
controls against in vivo litera-
ture data, a—d: comparison of
modeled SBP and DBP in the
brachial artery against in vivo
data [47], e—f: comparison of
modeled mean RBF rate in main
renal arteries against in vivo
data [56], g-h: comparison of
RI distributions in the segmen-
tal renal artery against in vivo
data [48]
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age-specific virtual healthy controls, with all predictions
lying within an acceptable range of variation. In males,
SBP ranges from approximately 118 mmHg in the 20-29
age group to around 126 mmHg in the 70-79 group. A simi-
lar trend is observed in females, with SBP rising from about
112 mmHg to 121 mmHg across the same age group. In
contrast, DBP remains relatively constant with age, averag-
ing around 78 mmHg in males and 75 mmHg in females.
Furthermore, male subjects exhibit a decrease in the mean
RBF rate from around 1210 ml/min in the 20-29 age group
to approximately 844 ml/min in the 70-79 age group. In
comparison, female subjects show a similar downward trend,
with the mean RBF rate declining from about 887 ml/min to
576 ml/min. In addition, in males, RI increases from around
0.61 in the 20-29 age group to about 0.65 in the 70-79 age
group, while in females, RI increases from approximately
0.63 to 0.69.

Validation of Virtual Patients

Figure 4 presents the comparison of RI between openBF
predictive results and in vivo literature data for healthy,
DM + HTN, DKD (with DM +HTN), and HKD (with
DM +HTN) populations. The largest discrepancy between
the openBF results and in vivo data is observed in the upper
whisker of the DKD group, where the openBF result is 0.72
compared to 0.67 from in vivo data, resulting in a percent-
age difference of 7.19%. Furthermore, virtual patients with
DM +HTN, even in the absence of explicitly parameterized
kidney disease, exhibit an elevated RI, with a mean value of
0.69 compared to 0.63 in healthy individuals. In addition,

among the kidney disease groups, virtual patients with HKD
present a mean RI comparable to DM + HTN, while DKD
exhibits the highest mean RI at 0.74.

Univariate Analysis

Figure 5 presents that velocity- and flow-related biomarkers,
particularly PI, achieve the highest AUC values in the main
renal artery. However, their diagnostic performance declines
progressively from the main renal artery (proximal) to the
arcuate artery (peripheral). In contrast, biomarkers associ-
ated with PWYV, pressure, and area maintain relatively stable
diagnostic performance across the renal vascular network.
For instance, diastolic PW'V, diastolic pressure, and diastolic
area exhibit AUC values of approximately 0.73, 0.60, and
0.63, respectively, across the renal vascular network. Con-
versely, biomarkers derived from the slopes of acceleration
and deceleration consistently show low diagnostic perfor-
mance across the renal vascular network. Similar trends are
observed in AUC results for the remaining sex- and age-
specific virtual patients, as detailed in the supplementary
material.

Correlation Analysis

Figure 6 presents clustering patterns among the biomarkers.
The phases of RBF Rate (mean, systolic, and diastolic) and
the slopes of RBF Rate (acceleration and deceleration) are
not directly clustered but belong to separate groups within
the same broader cluster. Furthermore, clusters of flow-
related biomarkers show moderate to strong correlations

Fig.4 Validation of RI 1.00
in segmental renal arter- B in vivo
ies against in vivo literature
data across populations of I openBF
healthy [48], DM +HTN 0901 o Mean
[49], DM +HTN + DKD, and )
DM +HTN +HKD [51], the =— Median
percentage difference is deter-
mined as the absolute difference 0.80
between the openBF prediction
and the in vivo data, divided by _
their mean and expressed as a _
percentage o 0.70

0.60 H

0.501

0.40 Healthy

DM+HTN  DM+HTN+DKD DM+HTN+HKD
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Fig.5 AUC for biomarkers across different renal arteries in a 50-59 yo male virtual patients

with pressure-related biomarkers, and velocity-related
biomarkers are moderately clustered with PWV-related
biomarkers.

One cluster includes biomarkers such as mean RBF rate
and mean pressure, which show strong positive correlations
(r=0.78). In contrast, mean velocity and mean area display
strong negative correlations (r=— 0.81), and RI and
diastolic pressure exhibit moderate negative correlations
(r=—0.37). Figure 6 also highlights variable pairs with
weak correlations, suggesting minimal linear association
between the respective pairs, such as RI and Systolic PWV
(r=0.06) and diastolic pressure and deceleration velocity
(r=0.03).

Multivariate Analysis
Figure 7 presents the multivariate analysis of biomarker
combinations, highlighting model performance, biomarker

selection frequency, and logistic regression weights. When
using biomarkers in the Full Biomarker Group (Fig. 7a), the
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model achieves an AUC of 0.97 and an accuracy of 0.91 with
two biomarkers. With three biomarkers, the model achieves
an improved AUC of 0.99 and an accuracy of 0.95. Adding a
fourth biomarker results in only marginal improvement, with
both AUC and accuracy converging at 0.93. When using
biomarkers in the Common Biomarker Group (Fig. 7b), a
similar trend is observed, with AUC and accuracy at each
dimensionality of the biomarker combination slightly lower
than those achieved using the Full Biomarker Group.

Figure 7c and d present that acceleration pressure is the
most frequently selected biomarker in the Full Biomarker
Group (55 combinations), and mean RBF rate appears in
the most combinations in the Common Biomarker Group
(51 combinations). In the two-biomarker combinations,
PI, diastolic RBF rate, RI, and mean RBF rate exhibit
comparable selection frequencies across both the Full
Biomarker Group and Common Biomarker Group.

Figure 7e and f present the biomarker weights derived
from logistic regression models for the most frequently
selected biomarkers. Mean RBF rate and PI emerge as the
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most influential biomarkers in both classifiers trained on the
Full Biomarker Group and the Common Biomarker Group
and also appear as the most frequently selected biomarkers
in Fig. 7c and d. Furthermore, Table 3 shows that classifiers
trained using both groups achieve comparable AUC and
accuracy, with a maximum AUC difference of 0.02 and an
accuracy difference of 0.04.

Potential Biomarkers in DKD and HKD Models

Fig. 8 presents the optimal performance two- and three-bio-
marker combinations from the Full and Common Biomarker
Group, respectively. In Fig. 8a, the DKD and HKD groups
are relatively well stratified, whereas Fig. 8b shows a slightly
tighter clustering of data points around the best-fit curve.

Within the Full Biomarker Group, HKD generally exhibits
a higher acceleration RBF rate than DKD, while accelera-
tion pressure is similar in both groups. Within the Common
Biomarker Group, RI tends to be marginally higher in DKD
than in HKD, contributing to the tighter scatter. Furthermore,
Fig. 8c shows more pronounced stratification along the PI axis
(y-axis), indicating greater variability when PI is included. In
contrast, Fig. 8d, the points are more tightly aligned, with
stratification primarily driven by the mean RBF rate (x-axis).
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@ Springer

()

Pl

Mean RBF Rate
Diastolic RBF Rate
Mean Velocity
Acceleration Velocity
Diastolic Velocity
Systolic RBF Rate
Systolic Velocity
Acceleration RBF Rate

Group, d top ten most frequently selected biomarkers among top one
hundred high-performing two- and three-biomarker combinations
in the classifier trained on the Common Biomarker Group, e logistic
regression coefficients of the most frequently selected biomarkers in
the classifier trained on the Full Biomarker Group, f logistic regres-
sion coefficients of the most frequently selected biomarkers in the
classifier trained on the Common Biomarker Group



A Virtual Trial to Identify Cardiovascular Biomarkers for Differentiating Diabetic and...

Table 3 Detailed results for top

; . Biomarkers Metrics

five high-performing two- and

three-biomarker combinations Biomarker 1 Biomarker 2 Biomarker 3 AUC Accuracy

in the classifiers trained on

the Full Biomarker Group and Full Biomarker Group

Common Biomarker Group Acceleration RBF Rate Acceleration Pressure - 0.97 0.91
Acceleration RBF Rate Deceleration Pressure - 0.97 0.91
Acceleration Pressure PI - 0.96 0.88
Diastolic Pressure Diastolic RBF Rate - 0.95 0.88
Deceleration Pressure PI - 0.95 0.87
Systolic Pressure PI Diastolic Pressure 0.99 0.95
Deceleration Pressure PI Diastolic Pressure 0.99 0.95
Mean Pressure PI Deceleration Pressure 0.99 0.95
Acceleration Pressure PI Diastolic Pressure 0.99 0.95
Systolic Pressure PI Deceleration Pressure 0.99 0.95

Common Biomarker Group

PI RI - 0.95 0.87
Mean Velocity Acceleration Velocity - 0.92 0.84
Systolic Velocity Mean Velocity - 0.92 0.84
Mean RBF Rate Acceleration RBF Rate - 0.92 0.83
Systolic RBF Rate Mean RBF Rate - 0.91 0.83
Mean RBF Rate Systolic RBF Rate Diastolic RBF Rate 0.97 0.91
Mean RBF Rate Acceleration RBF Rate Diastolic RBF Rate 0.96 0.89
Mean RBF Rate Systolic RBF Rate Deceleration RBF Rate ~ 0.96 0.89
Mean RBF Rate PI Diastolic RBF Rate 0.96 0.88
Mean Velocity Systolic Velocity Diastolic Velocity 0.95 0.88

Discussion

This study establishes a multidimensional computational
framework for modeling systemic and renal circulation
hemodynamics, integrating physiological variations
across sex- and age-specific, as well as pathology in
renal vasculature associated with DKD and HKD. This
study aims to evaluate the hypothesis that divergent
systemic and microvascular variants arising from distinct
pathophysiological mechanisms of DKD and HKD can
be leveraged for an early diagnostic application through
cardiovascular biomarkers derived from blood flow
waveform analysis.

The results presented in Fig. 3 indicate the predictive
accuracy of openBF as validated using virtual healthy con-
trols. The results highlight that trends in brachial SBP and
DBP, mean RBF rate, and RI with aging in both male and
female are closely consistent with those observed from in
vivo studies [47, 48, 56]. Our findings reveal marked sex-
specific differences in key parameters, including CO, lumen
radius, Young’s modulus, and wall thickness, as shown in
Fig. 1. The smaller lumen radius in females may contrib-
ute to higher PVR, leading to elevated blood pressure [25,
57-59]. However, males generally exhibit higher systemic
blood pressure compared to females, as elevated blood
pressure is more significantly influenced by higher CO and

increased Young’s modulus, which are typically observed
in males [60, 61]. These sex-specific differences also affect
mean RBF rate and RI values to varying degrees, under-
scoring the necessity of incorporating sex-specific vascular
parameters to accurately capture hemodynamic variability.
Although we parameterize the sex factor in our model and
validate the sex-specific virtual healthy controls against
certain in vivo studies, the sex factor remains a critical con-
sideration in clinical research [62] due to physiological and
mechanical differences in the cardiovascular system. How-
ever, sex factors can be overlooked in some modeling studies
[18, 63, 64] when they are not the primary research focus.
The results presented in Fig. 4 indicate that in the absence
of diagnosed kidney disease, patients with DM + HTN
exhibit elevated RI values compared to healthy individuals,
aligning with trends observed from some in vivo data [49,
65]. These RI values are not as high as those observed
in some patients diagnosed with DKD or HKD [51, 66,
67]. This suggests that alterations in systemic vascular
properties can influence renal hemodynamics by affecting
blood velocity waveforms, thereby contributing to elevated
RI. This is consistent with findings from Madsen’s study,
which reported that increased vascular stiffness is associated
with impaired diastolic function [68]. Furthermore, RI is
approximately 10% higher in virtual patients with DKD
than in DM + HTN, while HKD remains comparable to
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Fig.8 Scatter plot of the optimal diagnostic performance using two- and three-biomarker combinations in a 50-59 yo male virtual patients with
DM +HTN+DKD and DM +HTN + HKD; the dark blue point represents DKD patients, while the dark red point represents HKD patients

DM + HTN. The increase in RI in DKD patients is due
to a greater increase in PVR, caused by contraction of
the efferent arteriole and a decrease in nephron number,
compared with HKD patients, whereas comparable RI
in HKD reflects greater large-artery stiffness and wall
thickening with a modest increase in PVR, which raises
Vpgy and only slightly lowers Vgpy, keeping RI close to
that in DM+ HTN. RI (mean=0.74, SD=0.04) in the
DKD virtual patients exhibits a distribution consistent
with a clinical study by Li et al. (RI=0.70, SD=0.07),
in which all patients are diagnosed with DKD via kidney
biopsy and 71% had coexisting systemic DM and HTN [66].
However, both Hashimoto et al. (RI=0.65, SD=0.07) and
Kawai et al. report lower RI values in HTN patients with

@ Springer

renal impairment compared with RI observed in our virtual
patients with HKD [51, 67]. The higher RI predicted by
openBF may be attributed to only 21% of patients in this
study diagnosed with coexisting systemic DM and HTN.
Biomarker performance is highly location-dependent,
underscoring the importance of measurement location
in clinical applications. As shown in Fig. 5, velocity-
related biomarkers, such as PI, diastolic RBF rate, RI,
and diastolic velocity, show better diagnostic performance
than other types of biomarkers. However, their diagnostic
performance decreases progressively from the main
renal artery (proximal) to the arcuate artery (peripheral).
These results suggest that velocity-related biomarkers
are less effective in detecting pathophysiological
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alterations in peripheral arteries, potentially due to
complex hemodynamic conditions or reduced sensitivity
in these regions, highlighting the regional dependence of
their diagnostic performance. This finding corroborates
established clinical practices in which velocity-related
biomarkers, such as PI and RI, are typically assessed in
the proximal segments of renal vasculature for diagnosing
kidney disease [69, 70]. The diminished diagnostic
performance in more peripheral regions may be attributed
to local hemodynamic influences, including increased
microvascular resistance and complex branching patterns,
which attenuate the effectiveness of velocity-related
biomarkers [71]. These findings underscore the necessity
of location-specific biomarker selection to improve
diagnostic accuracy and guide more targeted interventions
in kidney disease.

The correlation structure groups biomarkers into
physiologically coherent clusters relevant to disease
discrimination. Specifically, PWV indicates arterial
stiffness, while velocity and RBF capture intrarenal
perfusion. In addition, the lumen area reflects vessel size
and compliance, with a lower area indicating constriction
or reduced compliance. Moreover, pressure indices quantify
upstream driving pressure and hemodynamic load. Finally,
RI and PI characterize downstream microvascular resistance
and pulsatility. These clusters imply that multivariate models
gain by combining stiffness, perfusion, compliance, driving
pressure, and downstream resistance rather than relying
on near-duplicate signals. Consistently, top-performing
pairs couple pressure with flow or velocity, capturing the
driving force and the vascular response and approximating
the pressure-flow relationship and vascular impedance to
improve discrimination.

The optimal performance of biomarker combinations
using the Full Biomarker Group is slightly higher than
that of combinations derived from only the Full Biomarker
Group. In both cases, performance shows relatively small
improvement beyond three biomarkers and converges when
four biomarkers are used. This trend suggests that the
inclusion of additional biomarkers may initially enhance
AUC and accuracy, possibly by increasing the model’s
capacity to represent variation associated with group
differences. However, the marginal gain diminishes as the
added biomarkers contribute increasingly redundant or non-
informative features.

These virtual clinical trials can improve cost-effectiveness
in clinical trials by optimizing scan protocols and
prioritizing candidate biomarkers, thereby focusing trial
resources (scanning time and study budget) on the most
informative biomarker panels. Because kidney biopsy is
rarely performed to diagnose early-stage disease, these
non-invasive imaging biomarkers could be used as adjuncts
to refine pretest probability and support risk stratification.

They are not positioned to replace biopsy at present. If their
discrimination performance is confirmed prospectively, they
could support biopsy decisions by identifying equivocal
cases and deprioritizing biopsy in clearly low-risk patients,
thereby reducing unnecessary invasive procedures. Because
flow-based indices capture vascular dysfunction before
overt structural change, they are expected to be useful in
earlier disease stages and for monitoring treatment response,
with stage-specific thresholds defined through prospective
validation.

This study also has some limitations that need to
be considered. Firstly, the current framework does not
incorporate variability beyond age and sex, including
ethnicity, medication effects, anthropometric characteristics
(body weight, height, body surface area), and interindividual
variation in nephron number (approximately 0.6 to 1.2
million per kidney). These determinants shape vascular
and nephron-scale structure and function and can influence
biomarker performance. Future work should incorporate
these covariates using allometric scaling to link them to
vascular properties within the model and literature-informed
priors [72, 73], to improve personalization and enhance the
generalizability of the proposed biomarkers.

Secondly, the renal microcirculation is represented
with a lumped R-C-R parameter model implemented as an
equivalent circuit. This circuit is not coupled to the proximal
renal circulation and does not explicitly include renal
autoregulatory mechanisms. This simplification constrains
accurate representation of dynamic interactions between
the proximal circulation and the renal microcirculation
under pathological conditions. Future work should improve
physiological fidelity by detailing the proximal renal
vasculature and coupling it to microvascular compartments,
incorporating renal autoregulation, and modeling kidney
disease progression [15, 74].

Thirdly, a total of 6188 physiological cases were
retained, representing 26% of the 24,000 generated
virtual healthy controls. This low inclusion rate is mainly
due to independent random sampling. Although each
parameter falls within physiological ranges, selecting them
independently can produce unphysiological combinations.
Future work could use correlation-constrained sampling. At
the arterial tree level, one could apply physiology-consistent
constraints, by enforcing Murray’s law for branching and
radius scaling [75], standardize the coupling between the
lumen and the wall using a single tube law derived from
thin wall mechanics [76], and apply a proximal-to-distal
elasticity gradient to regularize wall parameters [77].
By reducing degrees of freedom and limiting parameter
degeneracy, the proportion of physiologically implausible
virtual controls should decrease substantially.

The diagnostic performance of the proposed biomarkers
in differentiating DKD from HKD currently lacks in vivo
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validation, which limits clinical translatability. Future work
should focus on patient cohorts mirroring the modeled
scenarios, specifically patients with coexisting DM and HTN
who are clinically classified as DKD or HKD, with CKD
stage 2 confirmed by laboratory blood and urine tests. The
same biomarkers identified in this study should be acquired
using the appropriate imaging modalities. Clinical validation
could then apply logistic regression with ROC analysis,
replicating the approach described in this study. Translation
into clinical practice is constrained by the lack of a gold
standard to distinguish DKD from HKD. Although kidney
biopsy serves as the reference test, the procedure is invasive,
carries bleeding risk, and is rarely undertaken in early CKD,
while clinical criteria are often nonspecific with overlapping
phenotypes. Furthermore, routine clinical application will
require standardized acquisition protocols across scanners and
sites, reproducible waveform extraction, and rigorous signal
quality control.

In conclusion, this study highlights the potential of
hemodynamic-related biomarkers, combined with a
multidimensional mechanistic modeling and machine
learning-based approach, to distinguish between DKD
and HKD. Our findings show that proximal renal arteries,
such as the main renal artery and segmental renal artery,
are the optimal locations for obtaining these biomarkers.
Furthermore, the utilization of two to three biomarkers with
moderate correlation can improve the diagnostic accuracy for
distinguishing DKD from HKD. Among these biomarkers,
Mean RBF Rate and PI serve as the foundational biomarkers,
appearing most frequently in high-performing combinations
and accessible with routine clinical measurements. This
study represents a notable advancement in kidney disease
diagnostics, offering a modeling and non-invasive method for
addressing two complex and overlapping pathologies.
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