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Abstract— Underwater or planetary exploration are prime
examples of missions that can benefit from autonomous agents
working together. However, discovering effective team-level
behaviors (i.e., coordinated joint actions) is challenging in these
domains as agents typically receive a sparse reward (zero—or
constant—for the majority of the interactions). To address this
issue, intrinsic rewards encourage agents to explore diverse
policies to visit the state space more effectively. Unfortunately,
as the agents’ state space grows, intrinsic reward-based (i.e.,
curiosity) approaches become less effective as they cannot
effectively distinguish a diverse set of states. In this direction, we
introduce state entropy maximization for multiagent learning
where agents explore using local (dense) rewards and learn
to solve the coordination task by leveraging global (sparse)
rewards. Because of the intrinsic ability to balance local
and global rewards, our approach enables the state entropy
function to remain effective in high dimensional state spaces.
Experiments in tightly coupled tasks requiring complex joint
actions, show that local entropy-based rewards enable agents to
discover successful team behaviors in high dimensional spaces
where previous hand-tuned count-based rewards fail.

I. INTRODUCTION

Multiagent systems (MAS) have the potential to accelerate
research in a variety of remote and exotic domains, such as
exoplanets [1] and the depths of the ocean [2]. Such potential
lies in the autonomous coordination of the agent teams, that
allows us to expand the search horizons of our systems. To
accomplish these coordination behaviors, we typically design
exploration strategies to learn optimal joint actions that
can successfully achieve collective objectives (i.e., solving
desired tasks) [3], [4]. However, finding such effective joint
policies is inherently difficult, especially (i) when scaling
up the problem complexity (e.g., the dimension of the state
space, the size of the environment, and the number of
agents) and (ii) in tightly-coupled MAS where agents have
to interact with each other in a highly coordinated manner.
Therefore, developing novel exploration methods to discover
such policies remains an open challenge.

In this direction, Deep Reinforcement Learning (RL) has
achieved remarkable progress in terms of exploration and
performance in single-agent settings. A leading approach for
promoting exploration in RL is intrinsic motivation [5] that
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considers maximizing a signal based on the state novelty
(e.g., the number of visits to a particular state). However, it is
challenging to scale intrinsic motivation in high dimensional
continuous environments since a visit to a particular state
will likely occur once. Recently, exploration-driven methods
address such an issue by modeling the state space using a
variety of techniques (e.g., density models, k-nearest neigh-
bor search or count-based rewards) [6], [7], [8], [9], [10].
Nonetheless, despite being effective exploration methods,
these solutions cannot be directly applied to multiagent
settings due to the size of the problem and the challenge
of learning both team and agent-level objectives [11], [12].

We address these issues by proposing State Entropy
Maximizing Multiagent Evolutionary Reinforcement Learn-
ing (SEM-MERL). In contrast to the common practice of
addressing the exploration-exploitation dilemma as a single
problem, we abstract it into multiple (two) levels [13]. In
more detail, individual agents maximize a state entropy sig-
nal to efficiently explore the environment and provide diverse
sets of experiences to a feam-level Evolutionary Algorithm
(EA). The EA maintains a population of entropy-maximizing
multiagent teams (i.e., a population of teams), and its goal is
to discover cooperative behaviors that lead to higher payoffs.
In particular, the proposed framework achieves scalability
by computing a k-nearest neighbor estimate of the entropy
[14], [15] at the per-agent level. In addition, SEM-MERL
maintains a uniform state distribution and makes the pro-
posed method applicable to high dimensional multiagent
tasks. In contrast, previous methods such as count-based
rewards [13] typically use a discrete distribution of states (or
quantization), hindering performance in long-duration and
high dimensional tasks. SEM-MERL allows us to apply this
hierarchical strategy in high dimensional state spaces.

To show the benefits of SEM-MERL, we conduct nu-
merous experiments in increasingly complex variations of a
well-established multi-robot cooperative exploration domain
called multi-rover exploration [16]. Here, agents are required
to take closely coordinated actions to observe different points
of interest simultaneously. Crucially, our experiments show
that SEM-MERL successfully covers a significantly larger
portion of the behavior space, allowing us to discover good
joint behaviors in these high dimensional tightly-coupled
scenarios. In contrast, we show that recent count-based ex-
ploration methods fail at scaling to these complex problems
with high degrees of coupling.

II. BACKGROUND AND RELATED WORK

The cooperative tightly coupled multi-robot search
tasks can be represented as Decentralized Partially-



Observable Markov Decision Processes (Dec-POMDPs)
[17]. Formally, a Dec-POMDP is defined by a tuple
(N,S,A,P,O,G, by, h,l,7t), where N is a finite set of
agents, S is a finite set of states, A = [[,cy Ai is the
set of joint actions and O [Licn Oi is the set of
joint observations. To model the evolution of the system,
P(s'Tt|st, al) is the state transition probability function,
while O(o'|s,a) is for observations. An episode ends after
l steps and returns a global reward G. In our setup, G
is a sparse fitness and is available only at the end of [
steps. Because the full state is not directly observed, agents
only have access to individual observations of. Therefore,
agent ¢ € N keeps track of an action-observation history
up to time ¢ (denoted as hi = (09,a?,...,0! 7" al™t ob)),
on which conditions its action selection process. As states,
observations, and actions may all be stochastic, the fitness
of a team is defined as an expectation over G. The goal of
a Dec-POMDP is to learn a joint policy m = (my,...,7N)
that maximizes this expectation.

A. Evolutionary Reinforcement Learning

Both RL and EAs have several benefits and drawbacks.
RL agents employ gradient information to drive the learning
process [18]; hence, they have a fast rate of convergence.
However, gradient-based approaches are sensitive to hyper-
parameters and suffer from high-variance and noisy esti-
mates, which can lead to sub-optimal solutions [19], [20].
Conversely, EAs do have a slower rate of convergence, but
their learning involves a population of solutions and a di-
versification process. Evolutionary Reinforcement Learning
(ERL) [21], [22] was proposed to combine the benefits of
both EAs and RL algorithms. Its EA enhances the diversity
of the solutions generated during training and pushes the
algorithms away from converging to sub-optimal solutions,
while its RL component utilizes gradient-based algorithms
to optimize specifically for the local objectives [23].

Despite the promising performance, ERL has received
limited research attention in multiagent settings. As a lead-
ing solution among the few available approaches, Multi-
agent Evolutionary Reinforcement Learning (MERL) [11]
considers individual agents that learn a local objective to
accomplish the team-level coordination task. To leverage the
benefits of ERL, MERL thus learns these local objectives
using a RL algorithm, while leveraging an EA to learn team
behaviors. However, as shown in previous works, MERL
does not scale in the task complexity (i.e., as multiagent tasks
become more tightly-coupled), when agents have to learn
using task-specific extrinsic objectives [24], [13]. Overall, it
suffers from the issue of defined objectives [25], due to its
EA being misdirected in the behavior space.

Specifically, in complex multiagent tasks, task-specific
objectives lead the algorithm to converge to solutions that
achieve well on the agent-level objectives but fail on the
actual team objective. The work [13] proposes to use task-
independent, intrinsic objective, but it does not scale to
high dimensional domains. Though it achieves to avoid the
mentioned misalignment of the objectives.

B. Exploration in Reinforcement Learning

A variety of solutions for enhancing exploration in RL
settings have been investigated. For instance, some use pre-
diction errors [26], [27], [28], [29], [30] and some employs
novelty-oriented rewards [7], [31], [6]. In particular, the
latter aims to enhance the diversity of the states encountered
by ”counting” states and rewarding agents based on the
frequency of the visited states.

In discrete state spaces, these rewards are easy to formal-
ize. For example, Novelty Seeking (NS) agents [13] have
been employed in MERL, considering a simple discretization
function that digitizes the values of the state vector to make
them countable for continuous state spaces. However, in
continuous settings, each state will likely be visited once
(unless agents are allowed to not take any actions).! For
high dimensional domains, the works [6], [7] employ density
models to estimate a count, pseudo-count. However, when an
agent exploits the novelty of a state, it receives a minimal
reward for future visitations to that state, though it can be
useful later in the environment. The paper [9] introduces
a density function employing k-nearest neighbor search to
measure the novelty of states and has shown remarkable re-
sults in single-agent settings, but the implementation requires
a running average that can result in unstable reward values.

On the other hand, promoting state diversity as an entropy
maximization problem has been recently investigated in
RL. However, computing the entropy is intractable in high
dimensional continuous domains, so different works propose
to estimate such an entropy measure [32], [33], [34], [35],
[10]. In more detail, [32], [33] maximize entropy based on
the state density distribution, while [34], [35], [10] use a k-
nearest neighbor estimate of entropy [14], [15]. Given the
superior performance of the latter, in our work, we follow a
similar approach to the works [35], [10].

C. Entropy Maximization in RL

Shannon [36] defined the entropy H of a probability
density function (pdf) f(x) over a random vector X as
H(X) = — [ f(z)In f(2).

Crucially, we can compute the entropy of any probability
distribution. For example, in a RL context, the agent’s
probability distribution over the next possible actions at a
state s has its policy entropy. Several Deep RL methods have
employed this measure either in their objectives [37], [38],
[39] or as a regularizer [40].

In contrast, we use entropy as a measure indicating the
diversity of the states visited by an agent. Consider each state
s; as a random variable within the probability distribution
over the state visitation history, h. We can thus assign prob-
abilities based on the frequencies of each state in the history.
All count-based reward functions can be then interpreted
as maximizing this function, and the optimal distribution of
states will be the maximum entropy distribution of states over

Counting after quantization can be considered as binning the continuous
states. However, in higher dimensional environments, this binning mecha-
nism fails to maintain reliable visitation counts.



the history (i.e., each state is visited only once in the history).
However, as discussed above, relying on discretization or
density models for estimating the state visitation can cause
premature maximization of this function. In contrast, we will
show the proposed k-nearest neighbor estimate allows a more
accurate distribution of states.

III. METHOD

In contrast to the entropy maximization literature dis-
cussed in the previous section, the proposed SEM-MERL
deals with the exploration-exploitation dilemma at two sepa-
rate levels. Instead of trying to balance these components
at both the agent and team-levels, we devote agent-level
learning to learn fully exploratory policies, while exploiting
the true team objective at the team-level. To this end, we
utilize MERL as a learning framework where local policies
are learned through RL algorithms and team policies are
trained via an EA. Because MERL suffers from different
convergence times of its learning modules, devoting RL
agents to learn a fully exploratory behavior prevents RL
agents from converging to sub-optimal solutions locally.

A. State Entropy Maximization

To compute an entropy, we do not have direct access
to the pdf for a state distribution, but using the idea of
estimating the entropy based on the sample spaces [15] has
been useful in the RL settings [34], [35], [10]. So, we design
our local reward based on the k-nearest neighbor estimation
of the state entropy [14]. Say that X7, X5, ..., X, is a random
sample from the distribution whose pdf is f(x) having the
entropy, H(f).

The estimator of H(f) can be represented as H(f) =
—L 5" log [f(X;)] where f is an estimator of the pdf f(.).

k is an integer in the interval, [1,n], and for i =1,--- ,n
and let D; 1 ,, be the Euclidean distance from X; to its Eth
neighbor, || X; — XF~""||,. According to Singh er al. [14],
a good estimate of entropy, that can provide comparable
estimates to the estimator proposed by Kozachenko and
Leonenko [41], would be

= — |0 _—
k n 8 kT(p/2+1) e
where C'g is the Euler constant: Cp = — fooo et T is the

gamma, p is the dimension of X, m ~ 3.1415. In essence,
you can envision it as calculating the volumetric density of
a sphere. Finally, we can use

. (n 1 &
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as an estimate of entropy derived by Beirlant et al. [15].

B. Reward Function Design

We provide our agents their local reward based on the
function of Eq. 2 to enable them as local entropy maximizers.
In multiagent systems, search in a state space can be
exhaustive and, to speed up exploration, we introduce salient

events via our heuristic rewards, V(hﬁ) [24], [13]. These
heuristics are task-specific; however, in sparse reward do-
mains where we can define salient events, they can be used
for more efficient exploration [42]. These heuristics allows
our agents to highlight the states that are worth visiting.
Note that these heuristic rewards are not always available to
the agents, they only appear, when agents experience salient
events [13].

To compute the estimate of entropy as our reward function,
we keep a dynamic history (memory) of observed states.
After making an observation, we compute the Euclidean
distance, D, of each observation in the history to the current
observed state. Then, we sort distances of the observed
states and derive our estimate of entropy over the k-nearest
neighbors (where we use k = 5 for our experiments) as the
reward by following the work [35]. k£ needs to be tuned
according to the dimension of the state space, but, for our
experiments, we keep it fixed to see how it behaves across
varying sizes of state vectors. An alternative formulation can
include a division of the distance, D; j ,,, by the k, but our
agents exhibit the best stability without this division.

So, the reward an agent receives at a state, s;, becomes

T(Si) = V(hg)log(Di,k,n + 1) 3)

Algorithm 1: Computes a sequence of local entropy
maximizing reward for agent ¢ over a single episode.

1 Initialize state s°, history h9 = {0?}.

2 fort € [0,h—1] do

3 | Retrieve action af, state s+ and observation
ottt

Compute Euclidean Distances, D, to of“Vo S h?

Sort elements of D

Choose the kth element

reward < V (h)log(D; k., + 1) of Eq. 3

R B U fat, of 1)

if V(hi™) > 1.0 then

10 L reward < reward x V (hith)

11 Yield reward

e X N A A

C. Multiagent Evolutionary Reinforcement Learning

MERL [11] is an ideal algorithm where agent-specific
policies are trained on local objectives through gradient-
based RL algorithms and team policies are trained based
on a global objective via an EA. We define local objectives
as fully exploratory objectives and EA learns exploitative
policies. In this work, the local exploratory objective is the
k-nearest neighbor estimate of state entropy (Section III-A).

In the MERL framework, its EA optimizes through a
population of multi-head actors. Each head of a multi-head
actor, representing an agent, is trained via its own replay
buffer using an off-policy gradient-based RL algorithm, TD3
[43]. We employ a standard EA [44] as in the work [11].



Algorithm 2: Multiagent Evolutionary Reinforce-
ment Learning (MERL) [11] with State Entropy
Maximization

1 Initialize a population of M multi-head actor teams
each having N agents, pop,

2 Initialize a set of N replay buffers and N local TD3
agents

3 for gen € [1,00] do

4 foreach team m € pop, do

5 Fitness =0

6 for t € [0, Timesteps] do

7 foreach agent A € Ay,..., Ay do
8 Compute local reward, r?,

9 (via Algorithm 1)

10 foreach ReplayBuffer R €

Rl, ey Ry do

1 L append (0!, 0'*1 at rt) to R
12 Compute team reward G

13 Assign G as Reward of team 7
14 /Il Evolve pop,
15 Return the Champion
16 Send the policy gradient team to pop, replace

with the team achieving the lowest reward

IV. EXPERIMENTS

Our experiments aim to answer the following questions:

o How well do our agents perform in high dimensional
state spaces?

o Are our agents able to discover good behaviors in tightly
coupled tasks?

o How do our agents perform tasks complicated by both
tight-coupling and high dimensional state spaces?

We test our agents in a well-established multi-robot co-
ordination and navigation domain called multi-rover explo-
ration [16], since navigation is a well-established domain
also in many single-agent RL fields (e.g., safety [45], [46]).
This domain requires a team of agents to solve a tightly
coupled multi-robot problem where multiple agents need
to take correct closely coordination joint actions. As this
number of agents increases the task complexity increases.
Therefore, it is difficult to unearth these joint actions. When
the dimension of their state space increases, it gets much
more challenging to discover good team behaviors. Thus, we
test our state entropy maximizing agents in scenarios where
we increase the state-vector size and the task complexity.

A. Multi-Rover Exploration Domain

Multi-rover exploration domain [16], [11] (Fig. 2) is a
tightly coupled multiagent domain where there are multiple
rovers that need to observe multiple points of interest (POIs).
Each of these POIs needs to be observed simultaneously by a
number of rovers which is determined according to the cou-
pling factor in the environment. However, robots first need to

discover these POIs by navigating in the environment. The
coupling factor is not known to the agents and agents can
only infer about it when they receive their rewards, but these
rewards are not provided to them until the end of an episode.
And, they can only achieve an increase in the reward, when
they successfully observe a POI with their teammates. These
rovers are equipped with two types of sensors, POI and
rover sensors. In an environmental configuration, there exists
a parameter setting the resolution of how agents perceive
their environment. This resolution determines the number of
sensors that an agent has. For example, 90° of resolution
denotes the case where an agent has 4 pairs of sensors (4
90° channels in a 360° of coverage). From each channel,
agents can detect both their teammates and POls.

POI and rover sensors’ values for an agent, A;, are
computed as:

M) s — max(#)
§(A;, POLj)” """ 0(A;, Aj)(4)
where Wpoy; is the worth of a POI; detected by the sensors
of an agent A;, and 0(.,.) denotes the distance between
two objects. Agents take actions defined by two continuous
values, speed and direction.

To observe a POI, agents need to be present within POIs’
activation radius. We introduce the heuristic reward, V' (h),
of Eq. 3, when agents navigate into the activation radius of a
POI. The value of saliency is equal to the value of that POIL.
Agents are not provided this radius, but when they navigate
to a POI and simultaneously observe that POI with a number
of their teammates, they achieve a global team reward defined
by the global reward function, G:

_ X Wror [(POL)
ZiL:l WPOIj

where L is the number of POIs, Wpoy, is the value of the
POIy, and I(.) is the Boolean function returning 1, if POI},
is visited by a sufficient number of agents, 0, otherwise.

spor = max(

G

(&)

B. Experimental Parameters

We compare our proposed method with novelty seeking
(NS) agents [24], [13] that employ quantization to make
continuous states countable. It discretizes the values of the
local observations of agents. As the work [13] suggests,
we use binary quantization of the values, and allows us to
construct the reward function, W, for an observation
o. The drawback of this function is that it does not allow
us to decrease the quantization level, because the lowest
possible resolution for an element is 1-bit. Our proposed
method utilizes the estimate of state entropy, whereas NS
agents derive a count based reward. NS agents were proposed
to balance exploration and exploitation at the hierarchical
levels as well; however, its main module that derives its
count-based reward is not scalable to high dimensional state
spaces. Because quantization is applied only at value-level,
NS-MERL does not apply any modifications to the actual
dimension of agents’ state-vectors.
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Fig. 2: Multi-Rover environment with a coupling of 2. The
blue lines represent the field view and observations of a rover.
The red triangle is an unobserved POI, as only one rover is
inside its activation area. In contrast, the green triangle is
successfully observed by two rovers simultaneously.

Cumulat

Cumulative DEFs

H H
Entropy Entropy

(a) Novelty Seeking (b) State Entropy Maximizing

Fig. 3: Analysis of the behaviors learned in Fig. 4
when coupling is 7. Each behavior is defined via their
contribution to the team that they are in using Difference
Evaluation Functions (DEFs) [16], D, and their state entropy,
H. The color-gradient denotes their team’s total reward.

In our multi-robot coordination domain, we test our
method against NS agents first in a configuration where we
increase the dimension of the state space by increasing the
number of sensors of agents. Secondly, we test our agents to
answer how they perform in tightly coupled tasks. Because
NS agents were presented as a method that can explore
efficiently under tight-coupling, we test our agents also under
increasing coupling factor. Our hypothesis is that, as the
number of dimensions of a multiagent state space increases,
NS agents fail or poorly perform in tightly coupled tasks, but,
in contrast, our proposed method addresses this problem.

Note that we do not only increase the state space to

compute our reward, but the states given to the neural
networks also grow at the same rate; therefore, as we add
additional sensors, increase the dimension of the problem.

C. Results

The performances on plots are the results of 135 evolu-
tionary generations and the RL steps (gradient updates) are
provided on the x-axes. Each plot denotes the average of
10 statistical runs. We employ the same hyper-parameters
provided in the works [13], [11], [10].

SEM-MERL aims to enable agents to learn exploratory
behaviors in high dimensional tasks. In this section, we test
our agents mainly in two experimental configurations and,
then analyze the behaviors learned by our agents.

In all experimental configurations, we deploy 8 rovers in
an environment where there are 9 POIls. These POIs are
distributed according to their values on three layers and
these layers are parallel to each other where each represents
60° chord of a circle. Each layer has 3 POIs. The POIs
that are worth the least are on the closest layers and, as
agents move away from their starting point, they discover
POIs with higher values. The most inner layer has the POIs
worth 2, the middle one has the POIs valued 5, and the
outer one has the POIs with value 10. We expect agents
to learn behaviors that discover POIs with higher values.
However, it is impossible for agents to observe all POIs
(due to limited episode length); hence, we normalize the
performances on each plot. The leftmost plot, in Fig. 1, is
normalized according to the maximum performance of all
runs of its experiments.

1) Growing State Space: In our first set of experiments,
we set a constant coupling factor, 5, and varied the dimen-
sionality of state spaces. In Fig. 1, when agents have 8 total
sensors (4 POI and 4 rover sensors), agents using NS agents
outperform our agents (under the constant k of 5). However,
as soon as we grow the state space, our agents outperform
NS agents. In these plots, as we increase the number of
dimensions of agents’ state vectors, we see that our SEM
agents scale much better than NS agents.

2) Increasing Task Complexity: Increasing the coupling
factor, requiring more agents to successfully observe a POI,
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makes finding of good team behaviors challenging. It ba-
sically squeezes good team policies down to narrow areas
in the policy-space. NS agents were proposed to show that
novelty-seeking in multiagent systems helps agents find those
policies even under high coupling factors. However, growing
the state space of agents moves the problem to a different
level and makes the discovery of the team policies where
agents take highly coordinated actions much more difficult.

When agents are equipped with 32 sensors, SEM-MERL
agents are able to discover good joint actions and they
outperform NS agents across all coupling factors (Fig. 4).

3) Behavioral Diversity: We expect our agents to perform
in both tightly coupled and high dimensional tasks through
their ability to learn a large range of behavioral diversity.
The paper [13] has already shown that employing these
exploration-driven rewards enriches the behavioral diversity,
so that agents are able to perform even under highly tightly
coupled tasks. In this paper, we multiagent-specific diversity
plot, proposed in the work [13], representing each behavior
on three main axes. Fig. 3 has two plots whose x-axes
represent a behavior’s state entropy, H, (computed over dis-
cretized versions of visited states) y-axes denote a behavior’s
contribution, D, to its team’s global reward [16] and the third
axes use the color gradient where warmer colors represent a
behavior’s team’s reward, G.

V. DISCUSSION

Our method is broadly applicable to hardware because it
does not depend on any specific type of input, but rather
focuses on measuring distances of state observations (e.g.
LIDAR data, images) which can be adopted by any multi-
robot system. After generating trajectories, the robots can
query alternate paths in physical robots or on any ROS-based
simulator employing Gazebo. We will consider the porting
on real hardware as future work.

This paper addresses the problem of poor exploration of
multiagent teams operating in high dimensional state spaces.
Instead of the conventional way of addressing exploration-
exploitation dilemma, we divide the main problem, exploring
at the agent-level and exploiting at the global team level.
We use k-nearest neighbor estimate of state entropy and

maximize this estimate locally by providing it to the agents
as rewards. Because we compute the reward function as k-
nearest neighbor estimate of entropy, we do not rely on den-
sity models or discretization of state vectors, and our method
is able to promote maximum entropy state distribution while
avoiding the convergence of the novelty of states to zero.

We test our SEM agents against Novelty Seeking (NS)
agents [24], [13] in a cooperative multi-robot coordination
domain where agents are dependent on each other’s actions.
As this degree of dependency (coupling) increases, the
difficulty of tasks increases and finding good team behaviors
becomes difficult. Even in the state spaces with increased
dimensionality, our agents are able to learn good team
behaviors (Fig. 4) under high coupling. From our behavior
analysis (Fig. 3), agents are able to do this by learning
behaviors that do not only have higher state entropy, but
also higher contribution to their team’s reward.

VI. CONCLUSION

Overall, we apply the strategy of explore locally and
exploit globally to high dimensional multiagent state spaces.
To our knowledge, this paper is making the contribution
of proposal of a framework that significantly improves the
performance and enables the exploration of closely coordi-
nated team policies of tightly coupled multiagent systems
operating in high dimensional state spaces. Our work also
enables agents to compute a reward function in when the
state vectors have elements varying differently (e.g. velocity,
distances, positions). When the computation is based on
discretization of states like NS rewards, discretization should
be carefully hand-tuned and this makes their scalability to
different environments more difficult.

The current work is leading the way toward an efficient
exploration framework in high dimensional state spaces. As
a future work, we suggest that exploration via joint states
of agents can improve the long-term learning. However, the
computation of Euclidean distances can be uninformative
after a certain dimension of vectors. We recommend using
an embedding network [9], or an encoder [10] to reduce the
dimension of state spaces that are larger than 32 dimensions
down to 24, or 32 dimensions, as our experiments suggest.
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