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Abstract

Artificial intelligence (Al) is increasingly adopted in manufacturing for tasks such as au-
tomated inspection, predictive maintenance, and condition monitoring. However, the
opaque, black-box nature of many Al models remains a major barrier to industrial trust,
acceptance, and regulatory compliance. This study investigates how explainable artificial
intelligence (XAI) techniques can be used to systematically open and interpret the internal
reasoning of Al systems commonly deployed in manufacturing, rather than to optimise or
compare model performance. A unified explainability-centred framework is proposed and
applied across three representative manufacturing use cases encompassing heterogeneous
data modalities and learning paradigms: vision-based classification of casting defects,
vision-based localisation of metal surface defects, and unsupervised acoustic anomaly
detection for machine condition monitoring. Diverse models are intentionally employed as
representative black-box decision-makers to evaluate whether XAI methods can provide
consistent, physically meaningful explanations independent of model architecture, task
formulation, or supervision strategy. A range of established XAI techniques, including
Grad-CAM, Integrated Gradients, Saliency Maps, Occlusion Sensitivity, and SHAP, are
applied to expose model attention, feature relevance, and decision drivers across visual
and acoustic domains. The results demonstrate that XAl enables alignment between model
behaviour and physically interpretable defect and fault mechanisms, supporting transpar-
ent, auditable, and human-interpretable decision-making. By positioning explainability as
a core operational requirement rather than a post hoc visual aid, this work contributes a
cross-modal framework for trustworthy Al in manufacturing, aligned with Industry 5.0
principles, human-in-the-loop oversight, and emerging expectations for transparent and
accountable industrial Al systems.

Keywords: explainable artificial intelligence (XAI); trustworthy Al industrial Al; smart
manufacturing; visual inspection; acoustic anomaly detection; human-in-the-loop systems;
predictive maintenance; SHAP; Grad-CAM; Industry 5.0

1. Introduction

Al and machine learning (ML) are increasingly reshaping industrial domains by
delivering high-performing, data-driven solutions such as automated defect detection, pre-
dictive maintenance, and process optimisation. Deep learning, in particular, has achieved
state-of-the-art results in areas such as computer vision and signal analysis [1-3]. Over the
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past decade, Al has evolved into a transformative technology that is redefining indus-
trial systems, particularly within manufacturing. Its ability to process vast amounts of
heterogeneous data has enabled unprecedented levels of automation, optimisation, and pre-
dictive decision-making. However, the same complexity that drives its success especially
in deep learning models with millions of parameters has raised significant concerns about
trust, transparency, and accountability in safety-critical environments. As industries inte-
grate Al into production systems, ensuring trustworthiness becomes a prerequisite rather
than an afterthought, since decision-making in manufacturing must be both accurate
and interpretable.

The widespread adoption of Al has resulted in complex socio-technical systems where
rapid, automated decision-making often replaces slower traditional analyses. While effi-
cient, this has raised concerns about users placing excessive trust in Al outputs. Misplaced
trust can lead to over-reliance, with users accepting Al recommendations uncritically [4].
Such reliance risks treating embedded biases or errors, including Al hallucinations, as ob-
jective truth without adequate validation.

Studies further indicate that excessive reliance on Al can diminish users’ creativity,
critical thinking, and practical skills [5-7]. In manufacturing, although AI can process large
volumes of data to support decisions, the underlying meaning may be lost without human
contextual understanding. Over-reliant users may perform well in familiar situations but
struggle in novel scenarios where prior data is unavailable, limiting their ability to reason,
adapt, and generate actionable insights.

Bias in Al systems can arise from multiple sources, including user, data, and algorith-
mic bias [8]. Over-reliance on Al makes such biases difficult to detect, as outputs are often
perceived as inherently trustworthy, potentially reinforcing existing prejudices [8,9]. These
issues have led to documented discriminatory outcomes in socio-technical systems, notably
in criminal justice [10] and healthcare [11].

Despite these challenges, users continue to adopt Al due to its efficiency and rapid
decision-making capabilities [4]. However, excessive reliance poses long-term risks such as
cognitive offloading, skill degradation, and reduced accountability. A balanced approach is
therefore required, where Al supports decision-making while humans retain understanding
and responsibility. This necessitates transparency and explainability, enabling users to
understand not only what decisions are made, but why. As manufacturing and other
critical sectors increasingly depend on Al, trustworthiness grounded in explainability,
accuracy, and interpretability becomes essential for maintaining human-centred control
over decisions.

To bridge this gap, XAl has emerged as a paradigm that renders model reasoning
transparent to engineers, regulators, and operators. In manufacturing, where data are
generated from diverse sources including, but not limited to, visual imagery, acoustic
signals, and multivariate sensor data, explainability ensures that algorithmic decisions
remain auditable and physically meaningful. Incorporating XAl therefore becomes essential
not only for compliance [12] but also for actionable insights that enhance reliability and
reduce downtime.

Beyond performance, industrial AI must also be trustworthy. According to the Eu-
ropean Commission’s High-Level Expert Group on Al (HLEG), a trustworthy system
must be lawful, ethical, and robust throughout its lifecycle [13]. Among its seven key re-
quirements, transparency and human-in-the-loop (HITL) oversight are especially relevant
to manufacturing, where engineers must interpret, validate, or override model outputs
before deployment [14]. This human-centric perspective aligns with the transition from
Industry 4.0—automation-driven—to Industry 5.0, which re-centres human creativity and
collaboration [15,16]. Within this paradigm, Al acts as a partner that augments human
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capability, extending trustworthiness to ethical and operational dimensions. Building upon
this foundation, Table 1 summarises the principal forms of manufacturing data and their
corresponding XAI use cases. These modalities—vision, acoustic/vibration, and multi-
variate sensor data—capture complementary aspects of industrial processes. To explore
explainability across them, the present work examines three representative datasets: Cast-
ing Product (image classification), Defects Class and Location (object detection), and MIMII
(acoustic anomaly detection). Each dataset is evaluated independently to illustrate how
XAI techniques contribute to improved transparency and diagnostic understanding.

While significant advances have been made in applying deep learning models to man-
ufacturing tasks such as visual inspection and condition monitoring, their widespread adop-
tion remains constrained by the opaque, black-box nature of these systems. In industrial
environments particularly those that are safety-critical, quality-sensitive, or regulated the
ability to understand and audit Al-driven decisions is as important as predictive accuracy.

The primary objective of this paper is not to propose or optimise new machine learning
models, but to systematically investigate how XAI techniques can be used to open the
black-box behaviour of Al systems commonly encountered in manufacturing. To this
end, the study deliberately employs multiple representative models across heterogeneous
data modalities—vision-based classification, vision-based detection, and acoustic anomaly
detection to examine whether XAI methods can provide consistent, physically meaningful
explanations irrespective of model architecture or learning paradigm. The key contributions
of this work are as follows:

*  Cross-modal explainable Al framework: The paper presents a unified interpretive
approach for applying explainable Al techniques across heterogeneous manufacturing
data modalities, encompassing supervised vision-based classification, vision-based de-
fect localisation, and unsupervised acoustic anomaly detection. This demonstrates the
generalisability of XAl techniques beyond a single task, model architecture, or learning
paradigm. This approach focuses on structured interpretation of XAI outputs rather
than the development of quantitative explainability metrics.

e  Physically grounded interpretation of Al decisions: The study systematically links
XAI outputs to physically meaningful defect characteristics and fault mechanisms,
enabling domain-grounded interpretation of model behavior rather than purely visual
or statistical explanation. This supports actionable insight and diagnostic reasoning in
industrial environments.

¢  Explainability as a trust-enabling mechanism: The work positions explainability as
an operational component of trustworthy Al, aligned with Industry 5.0 principles,
human-in-the-loop oversight, and emerging regulatory expectations for transparency
and accountability in manufacturing Al systems.

In this work, systemising explainable Al refers to the structured and repeatable inte-
gration of explainability into heterogeneous industrial Al pipelines, where explainability
is treated as a primary analytical component rather than a post hoc visualisation. By fo-
cusing on interpretability, transparency, and trust rather than model optimisation, this
work bridges the gap between theoretical XAl research and the practical demands of real-
world industrial deployment through a systemised integration of explainability across
heterogeneous manufacturing applications. In this context, trustworthiness is addressed
through interpretability and design alignment with Industry 5.0 principles, while the em-
pirical evaluation of operator trust or empowerment through user studies is beyond the
scope of this work.
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Table 1. Comparison of manufacturing data modalities and explainable Al use cases.

Data Domain/Type Data Source Example Use Cases Task Type ]S)e:f:st:td Industrial Relevance XAI Contribution
. Surface defect detection on castings, ) )
\f)vglds, agd ma.chined.fpal‘ts. Represents automated };rt(:e ‘;;izia‘gisﬁlgllusing
Vision-Based I ° aint and coating unitormity i i i
iston-basec "mage Automate.:d . inspection Binary/Multi-Class ~ Casting visual inspection systems Grad-CAM, Integrated
Classification cameras, industrial opecs ; ficati Classification Dataset [17] for defect and quality Gradients, and Occlusion
(Grayscale/RGB Images) vision sensors *  Dimensional quality verification assurance in 7
e  Porosity detection in additive manufacturing to explain
manufacturing decision regions.
. Detection and localisation of cracks,
scratches, and dents ) ) Improves model
Vision-Based Object ) e PCB solder-joint and component .Reﬂects. industrial o transparency via
Detection and Localisation Eggtsitcniilscfcntieéi& placement verification o Multi-Class Object ~ Defects l?;g;g;ggotis:s;iqiﬁgg Grad-CAM and
(Color Images with \ P *  Tool wear and edge-chipping Detection Dataset [18] localisation for d fp " Saliency-based
Bounding Boxes) systems localisation ocalisation for detec visualisation of
i i i identification . .
e Weld seam tracking and uniformity spatial attention.
analysis
*  Machine condition monitoring
(bearings, fans, motors, pumps)
Acoustic/Vibration-Based  Microphones ¢ Tool chatter, imbalance, or looseness Models acoustic condition =~ Uses SHAP and LIME to
Time-Series Analysis accelefome tellrs detec.tlc')n ) ) Unsupervised MIMII monitoring for early fault  explain feature-level
’ *  Predictive maintenance using sound Anomaly Detection =~ Dataset [19]  detection and predictive reasoning in

(Audio or Vibration Signals)

vibration sensors

and vibration data

¢ Leakage detection in pneumatic and

compressor systems

maintenance

anomaly detection.
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The remainder of this paper is organised as follows. Section 2 provides the theoret-
ical foundation of trustworthy and XAI in industrial contexts, emphasising the role of
human oversight, transparency, and ethical governance frameworks relevant to Industry
5.0. Similarly, Section 3 discusses relevant prior studies and contributions from the existing
literature. Section 4 reviews benchmark datasets used in industrial defect detection and
condition monitoring, highlighting their relevance to Al trustworthiness and reproducibil-
ity. Section 5 examines the role of XAI in manufacturing, focusing on its contribution to
transparency across visual inspection and sensor-based monitoring systems. Section 6
describes the proposed methodology, detailing data preprocessing, model training, and in-
tegration of explainability methods for visual and acoustic modalities. Section 7 presents
and discusses the results, demonstrating how XAI enhances interpretability, diagnostic clar-
ity, and operator trust in Al-driven manufacturing systems. Finally, Section 8 concludes the
paper and outlines future research directions for advancing trustworthy and explainable
Al within smart manufacturing ecosystems.

2. Background

As discussed in the Introduction, this section provides a detailed overview of the prin-
ciples of trustworthy Al the role of human oversight in Industry 5.0, and the importance of
XAl in ensuring transparency and accountability within industrial systems.

According to the European Commission’s High-Level Expert Group on Artificial Intel-
ligence (HLEG), a trustworthy Al system must satisfy three interdependent components—it
must be lawful, ethical, and robust throughout its lifecycle [13]. The HLEG further out-
lines seven key requirements for trustworthy Al: human agency and oversight, technical
robustness and safety, privacy and data governance, transparency, diversity and fairness,
societal well-being, and accountability. These principles collectively establish a foundation
for deploying Al responsibly across industrial domains [20,21]. The overall structure of
trustworthy Al, as proposed by the European Commission’s HLEG, is illustrated in Figure 1,
highlighting the interrelation between the three pillars—lawfulness, ethics, and robustness
and the seven key requirements that underpin responsible Al adoption.

and Oversight

Human Agency J

Robustness
Lawful and Safety
% ///
Trustworthy |
Ethical , < Robust
Societal ' .
- A tabilit
Well-being GERLA
Diversity Diversity
and Fairness and Fairness

Figure 1. The three pillars and seven key requirements of Trustworthy Al, adapted from the European
Commission’s HLEG framework [13]. These dimensions collectively define the foundation for ethical,
lawful, and robust Al in industrial systems.
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Among these pillars, transparency and human-in-the-loop (HITL) oversight are central
to building operational trust. Transparency refers to the degree to which stakeholders in-
cluding developers, operators, and regulators can understand an Al system’s data sources,
decision processes, and limitations. The EU Al Act further formalises this requirement by
mandating explainability and traceability for high-risk Al systems in industrial settings [14].
Complementarily, human-in-the-loop approaches ensure that Al systems augment rather
than replace human decision-making, embedding oversight mechanisms that allow humans
to interpret, validate, or override Al outputs when necessary. This human-centric per-
spective is essential in manufacturing, where system reliability, worker safety, and quality
control depend on the interplay between human expertise and automated intelligence [22].
The central role of human oversight and collaboration within Industry 5.0 is illustrated
in Figure 2, where humans, Al systems, and industrial processes operate in a continuous
feedback loop that ensures transparency, validation, and shared control.

Human-Al Collaboration

Industry 5.0
I Oversight
/_\ &
Human Factory
Collaboration

Figure 2. Human-AlI collaboration within the Industry 5.0 paradigm, emphasising human oversight,
validation, and collaboration between operators, Al systems, and industrial processes [15,22].

This emphasis on human-machine collaboration is reinforced by the ongoing transi-
tion from Industry 4.0 to Industry 5.0, a paradigm that places humans back at the core of
industrial production. Industry 5.0 emphasises sustainability, resilience, and human-centric
design over purely efficiency-driven automation. It integrates digital technologies—such as
Al, the Internet of Things (IoT), robotics, and cyber-physical systems with human creativity
and oversight [15]. Within this framework, Al becomes not only a tool for automation but
also a partner in augmenting human capability. Consequently, the concept of trustwor-
thiness expands to encompass ethical, social, and operational dimensions ensuring that
intelligent manufacturing remains both productive and human-centred [16,23].

Al’s role in manufacturing has become particularly prominent in quality control, pre-
dictive maintenance, and process optimisation, where data-driven methods have achieved
unprecedented accuracy. Deep learning models now power visual inspection systems for
surface defect detection, vibration-based fault diagnosis, and multivariate sensor fusion for
predictive maintenance. However, these models often operate as “black boxes,” providing
results without interpretable reasoning. This opacity limits operator trust and hinders
root-cause analysis when failures occur [24]. To mitigate such limitations, XAl has emerged
as a critical approach to make Al reasoning comprehensible to engineers and auditors.
By visualising which features or data regions influence predictions, XAl allows stakeholders
to assess not just whether a model works, but why it produces a given outcome [25].

Explainability is particularly important when Al models interact with diverse data
sources for instance, vision data from industrial cameras, acoustic signals from machine
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sensors, and multivariate time-series data from process monitoring systems. Each of these
data domains captures complementary aspects of manufacturing behavior: visual data
reveal surface and geometric anomalies; acoustic and vibration signals expose internal
mechanical conditions; and sensor data track thermal, electrical, or dynamic system states.
In this context, XAI provides mechanisms to interpret and validate model decisions across
these modalities. For example, visual methods such as Grad-CAM or Saliency maps
highlight spatial regions driving defect detection and classification, while SHAP (SHap-
ley Additive exPlanations) explain feature-level contributions in time-series or acoustic
analysis [26]. Such interpretability enables informed decision-making, facilitates trou-
bleshooting, and reinforces user trust in Al-assisted manufacturing. The integration of XAl
into the manufacturing pipeline is summarised in Figure 3, which depicts how data from
visual, acoustic, and sensor sources feed into Al models, followed by explainability layers

that generate interpretable outputs for human validation.

=2} ||II||I& 8{8}& S

Interpretation

Acoustic Tim ri
Pipeline Pipelir & Validation

Vision Pipeline

Image-based data Sound recordings Sensor/multivariate Domain experts
processed through analyzed using data processed with examine and
deep learning vision acoustic model time-series model | validate XAl outputs
model (YOLOv8n, (Isolation Forest) | XAl methods reveal | Ensures models'
Faster R-CNN) | Explanation temporal/sensor decisions are
Visual explanations methods (SHAP) patterns contributing statistically sound
(Grad-CAM, identify influential to prediction and operationally
Integrated acoustic features meaningful
Gradients) highlight (RMS, MFCCs)

influential regions

Figure 3. Overview of the three independent XAI pipelines used in this study. Vision, acoustic,
and time-series data are each processed through dedicated Al models and corresponding explainabil-
ity methods, with results evaluated in an Interpretation & Validation stage to ensure transparency
and trust in manufacturing Al systems.

However, the deployment of Al without proper oversight has also led to notable
failures and incidents. Studies on trustworthy Al have documented several cases where
opaque or poorly validated Al models caused operational disruptions, safety risks, or bi-
ased outcomes [27]. These “Al disasters” underscore the importance of embedding risk
management and governance frameworks such as ISO/IEC 23894:2023 [28] and the NIST
AI RMF 1.0, both of which provide structured methodologies for managing Al reliability,
bias, and transparency. In contrast, successful Al deployments in manufacturing, those
integrating explainability, human supervision, and compliance with standards demonstrate
measurable improvements in productivity, defect detection, and worker confidence [23].
These examples reveal that trustworthy Al is not merely a regulatory ideal but a tangible
enabler of industrial excellence.

A growing body of related work now explores how explainability, transparency,
and accountability can be quantitatively evaluated in industrial Al systems. Frameworks
such as BEExAI [29], OpenHEXALI [30], and OpenXAlI benchmark explainability methods
across metrics like fidelity, stability, and human interpretability [31]. Recent surveys
emphasise the need for domain-specific adaptations of these toolkits for manufacturing,
where real-time decision-making, physical safety, and multimodal data integration present
unique challenges [27]. Establishing objective criteria for evaluating XAl in manufacturing
is thus a vital step toward operationalising trustworthy Al principles.

https:/ /doi.org/10.3390/526030911


https://doi.org/10.3390/s26030911

Sensors 2026, 26, 911

8 of 36

Building upon this conceptual foundation, the present study investigates how explain-
able Al techniques can enhance transparency and reliability across manufacturing domains
characterised by visual, acoustic, and sensor-based data. By applying interpretable models
and visualisation methods to representative datasets, this work aims to demonstrate how
explainability supports diagnostic clarity, fosters trust, and operationalises the principles
of trustworthy, human-centric Al in real industrial environments. Having established
this theoretical groundwork, the Section 3 presents an overview of existing research and
contributions by other authors in this area and Section 4 examines key industrial datasets
that underpin research in explainable defect detection and condition monitoring, providing
the empirical basis for evaluating XAl techniques across diverse manufacturing contexts.

3. Related Work: Explainable AI in Manufacturing

XAI has begun to find application across multiple manufacturing domains, driven by
the need for transparent decision support in safety-critical and high-cost industrial envi-
ronments. Systematic reviews of XAl adoption in smart manufacturing show an increasing
trend toward practical deployment of explainability techniques, particularly in predictive
maintenance, defect detection, and process optimisation [32]. In the context of predictive
maintenance, several studies have highlighted the importance of explainable models to
support understanding of equipment failure predictions and decisions made by machine
learning systems. Dereci et al. discuss existing XAl approaches for predictive mainte-
nance, underscoring the growing interest in model interpretability in this domain [33].
Similarly, position papers on explainable predictive maintenance identify gaps in how
tailored explanations are provided for different user groups in industrial tasks, suggesting
that domain-specific XAI design is still under development [34].

Beyond predictive maintenance, XAI methodologies have also been applied to quality
control and defect analysis in manufacturing. Marin Diaz proposes integrating clustering
with XAI techniques such as SHAP and LIME to support both global and local interpretabil-
ity of defect prediction models in industrial settings, revealing influential production param-
eters [35]. The literature also includes conceptual frameworks that emphasise transparency,
root-cause analysis, and human interpretability for manufacturing decision support [36].
Despite these advances, existing work typically remains (modality-specific or task-specific),
often focusing on a single manufacturing application such as predictive maintenance or
quality inspection. There is limited research on (cross-modal XAI generalisation), and few
studies treat explainability as an integral part of unified human-in-the-loop industrial work-
flows. Addressing these gaps motivates the cross-modal, explainability-centred framework
proposed in this paper. To highlight how existing XAI research in manufacturing compares
to the proposed explainability framework, Table 2 summarises representative prior studies
across key capabilities such as predictive maintenance, quality analysis, human-centred
interpretability, and multi-modal evaluation.

Table 2. Comparison of explainable Al adoption in manufacturing studies.

Capability [33] [34] [35] [36] This Work
Applied to Predictive Maintenance v v x X v
Applied to Quality/Defect Analysis X X v x v
Explicit XAI Technique Evaluation v v v X v
Human-centred Interpretability Emphasis ~ x v X v v
Multi-modal (vision + acoustic) X X X X v
Unsupervised + Supervised Integration x x v x v
Systematic Evaluation Framework x x X x v
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4. Literature Review on Industrial Defect Detection Datasets

The integration of Al into manufacturing has been accelerated by the availability
of benchmark datasets that replicate real-world inspection and monitoring tasks. Such
datasets shown in Table 3 provide standardised testbeds for developing and validating
machine learning and deep learning models, fostering reproducibility and comparability
across approaches. Among the most widely utilised resources are the Casting Product
Dataset, the GC10-DET dataset, and the MIMII dataset. Collectively, these datasets span
multiple modalities—visual inspection through binary classification, defect localisation
with multi-class detection, and machine condition monitoring using acoustic data.

Table 3. Comparison of publicly available industrial datasets supporting trustworthy AL

Dataset Modality Size Labels Task(s) Industr.1al
Domain
. Grayscale . . . .
Ca[s)’ggielirﬁ%lct Images 7348 B1r[1).aerf}éc(§)‘i)vs. Classification V1s1;?lczr;iipnec;uon
(300 x 300) &
Color Images . 10 defect types . .
GC10-DET[18]  with Bounding 2000 IMAges, with spatial Detection +  Steel surface in-
2280 .xml labels . Classification spection
Boxes location
MIMII [19] Acoustic Several hours of Normal vs. Anomaly Machine condi-
Recordings audio Abnormal Detection tion monitoring

4.1. Casting Product Dataset

The Casting Product Dataset [17] contains 7348 grayscale images of submersible
pump impeller castings as shown in Figure 4, categorized as either defective or defect-free.
The images (300 x 300 pixels) include instances of shrinkage, blowholes, pinholes, and burrs.
This dataset has been extensively used for benchmarking convolutional neural networks
(CNN’s) and related classification algorithms in automated visual inspection.

Figure 4. Representative samples from the benchmark datasets used in this study: casting defect
image for visual inspection.

From a trustworthiness perspective, this dataset supports research into robustness
and accuracy validation of defect detection models. Since binary classification decisions
directly affect product acceptance or rejection, ensuring that AI models are interpretable
and reliable is essential for gaining operator trust in industrial settings.

https:/ /doi.org/10.3390/526030911
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4.2. GC10-DET: Defects Class and Location Dataset

The GC10-DET dataset [18] significantly extends the capabilities of automated visual
inspection by offering a comprehensive collection of 2300 steel surface images that encom-
pass 2280 annotated defect instances stored in .xml format. Each annotation specifies a
bounding box, allowing the dataset to support both defect classification and localisation
tasks. It comprises ten distinct categories of surface imperfections, a few of which are
shown in Figure 5: punching (Pu), weld line (W1), crescent gap (Cg), water spot (Ws), oil
spot (Os), silk spot (Ss), inclusion (In), rolled pit (Rp), crease (Cr), and waist folding (Wf).
All defects were captured directly from steel sheet surfaces, reflecting realistic industrial
inspection conditions.

Crescent

Punching
Hole

Gap

Figure 5. Representative samples from the benchmark datasets used in this study: metal surface
defect image from the GC10-DET dataset.

This dataset provides a platform for testing advanced object detection algorithms
such as Faster R-CNN, SSD, and YOLO. Importantly, its spatial annotations facilitate
research in XAl as bounding boxes inherently provide a level of interpretability by visually
aligning algorithmic predictions with actual defect regions. In industrial practice, this
visual transparency strengthens trust between operators and Al systems, as inspectors can
verify the reasoning behind automated decisions.

4.3. MIMII Dataset

The MIMII dataset (Malfunctioning Industrial Machine Investigation and Inspec-
tion) [19] introduces an acoustic monitoring dimension, with sound recordings from fans,
pumps, valves, and slide rails. Each recording includes both normal and abnormal op-
erating conditions as shown in Figure 6, collected in realistic factory environments with
background noise.

This dataset underpins research into acoustic anomaly detection for predictive main-
tenance. It has been widely employed in studies utilising spectrogram-based CNNSs,
autoencoders, and unsupervised anomaly detection. For Al trustworthiness, MIMII en-
ables investigation into uncertainty estimation and anomaly explanation, where sound
patterns can be correlated with mechanical faults. By connecting audible signatures to
equipment health, the dataset supports transparent and justifiable decision-making in
machine condition monitoring.

4.4. Summary and Link to Al Trustworthiness

Taken together, these datasets represent complementary aspects of industrial monitor-
ing: binary defect detection, multi-class defect localisation, and acoustic anomaly identifi-
cation. Beyond enabling algorithmic development, they provide avenues for exploring key
trustworthiness dimensions of Al across diverse manufacturing contexts.

For instance, vision-based datasets such as the Casting Product and Defects Class and
Location datasets enable the study of explainability in automated inspection systems, where
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https://doi.org/10.3390/s26030911

Sensors 2026, 26,911

11 0f 36

Al models are deployed to identify surface flaws, verify geometric integrity, and detect
micro-defects during high-throughput production. These systems mirror real-world in-
spection pipelines used in casting, forging, and additive manufacturing, where explainable
Al can justify defect classifications to operators and improve rework accuracy.
Meanwhile, acoustic datasets like MIMII simulate continuous equipment monitoring
environments, where sound and vibration data are captured from motors, compressors,
and pumps to diagnose early-stage mechanical faults. Such datasets are particularly
relevant for predictive maintenance and condition-based monitoring, where explainable
models not only flag anomalies but also indicate which spectral or temporal features, such
as variations in frequency bands or energy levels, contributed to the detection outcome.
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Figure 6. Time-domain representations of acoustic signals obtained from the MIMII pump dataset
(ID 06), illustrating normal and abnormal operating conditions. The abnormal signal exhibits in-
creased amplitude variations compared to normal operation.

Extending beyond visual and acoustic sensing, the same principles of explainability
apply to multivariate time-series data obtained from process sensors measuring parameters
such as temperature, pressure, and flow rate. In these contexts, XAl can help identify which
process variables exert the greatest influence on deviations in quality or energy efficiency,
facilitating real-time, closed-loop decision-making in smart manufacturing systems.

Collectively, these datasets and modalities encompass the core operational pillars
of modern manufacturing—product inspection, machine health monitoring, and process
optimisation. Product inspection focuses on the early detection and classification of surface
defects, dimensional deviations, or assembly errors to ensure consistent quality during
production. Machine health monitoring involves continuous tracking of acoustic and
vibration signatures to identify wear, imbalance, or component degradation before critical
failures occur, thereby improving equipment reliability and reducing unplanned downtime.
Process optimisation extends these principles to multivariate sensor data, enabling real-time
adjustment of process parameters such as temperature, pressure, or feed rate to enhance
productivity, reduce energy consumption, and maintain stable operational performance.
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By integrating explainability across these domains, Al-driven systems can bridge human
interpretability with computational intelligence, ensuring that automated decisions remain
transparent, accountable, and actionable within industrial environments.

By grounding trustworthy Al research in these publicly available datasets, the field
moves closer to developing industrial systems that are not only accurate but also inter-
pretable, verifiable, and aligned with human decision-making processes. Such integration
ensures that Al systems deployed on factory floors and production lines can operate trans-
parently under real-world conditions providing engineers with meaningful insights into
why specific predictions or classifications are made. This alignment between algorithmic
intelligence and operator understanding is essential for fostering confidence in automation
and ensuring traceability in decision pathways.

Furthermore, establishing explainable methodologies across domains such as aerospace,
automotive, and high-value manufacturing is a critical enabler for the adoption of Al in
safety-critical and quality-sensitive applications. In these sectors, where even minor misclas-
sifications can lead to significant operational or economic consequences, XAl provides the
foundation for auditing model behavior, verifying compliance with industrial standards,
and ensuring that Al-driven recommendations remain consistent with domain expertise
and regulatory expectations. Building on these principles, the next section delves into how
XAIT helps make Al-driven manufacturing systems more transparent and understandable,
highlighting its impact across visual inspection, acoustic monitoring, and sensor-based
time-series analysis. The insights gained from this review set the stage for the following
Section 5, which explores how XAI techniques contribute to transparency and diagnostic
understanding across the different manufacturing modalities represented by these datasets.

5. The Role of XAI in Manufacturing

Building upon the previously discussed datasets and their industrial relevance, this
section focuses on how XAl contributes to transparency within manufacturing systems.
The increasing reliance on Al-driven models for inspection, monitoring, and maintenance
tasks demands that their decisions be interpretable and aligned with physical process
behaviour. However, the opacity of complex deep learning architectures often limits user
confidence and hinders accountability in high-stake environments. XAI addresses this limi-
tation by offering methods that clarify the reasoning behind Al outputs. In manufacturing,
such transparency is vital: engineers must be able to validate that a model’s decision is
grounded in relevant defect indicators rather than spurious patterns.

In this section, we examine how XAI contributes to transparency in manufacturing
by considering two critical data modalities: (i) vision-based inspection systems for surface
defect detection and (ii) time-series sensor data analysed with unsupervised models for
acoustic anomaly detection. Together, these perspectives provide a comprehensive view of
how XAI enhances interpretability across heterogeneous manufacturing tasks.

5.1. XAl for Vision-Based Models

Computer vision has become a cornerstone of automated manufacturing, where the
accurate detection of small surface defects can prevent costly quality failures. Deep learning-
based detectors such as convolutional neural networks and region-based architectures have
set benchmarks in defect recognition tasks [1-3]. Despite their accuracy, these models
function as black boxes, producing classifications or bounding boxes without exposing the
rationale behind their outputs. This opacity is problematic in industrial contexts where
quality engineers require clear evidence that the model has focused on physically relevant
features of the product.
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To mitigate this issue, XAl methods designed for vision tasks have been widely
adopted. Techniques such as Gradient-weighted Class Activation Mapping (Grad-CAM),
saliency maps, occlusion analysis, and Integrated Gradients generate visual heatmaps that
highlight the image regions most responsible for a prediction. These approaches translate
the internal activations of deep neural networks into interpretable visual cues that help
engineers validate whether the network has correctly focused on defect-relevant regions
rather than background noise or irrelevant features [37,38].

5.1.1. Saliency Maps
Saliency maps compute the gradient of the model output with respect to each input

pixel, capturing how small perturbations in pixel intensity affect the final class score [39].
For a model f(x) and class score Sc(x), the saliency at pixel x; is expressed as:

9S:(x)
axi

M; = ’ (1)

This method highlights the most sensitive pixels driving the classification decision, offer-
ing a first-order approximation of the model’s local behaviour. In manufacturing defect
detection, high-intensity regions in a saliency map typically correspond to cracks, pores,
or irregular textures that influenced the network’s output.

5.1.2. Gradient-Weighted Class Activation Mapping

Grad-CAM [40] extends this concept by leveraging the gradient information flowing
into the last convolutional layer of a CNN. For class c, the importance of feature map A* is

1 ay°
c
= = 2
a Z;;Mi‘j @

determined as follows:

where Z is the number of spatial locations. The Grad-CAM heatmap is then obtained
as follows:

LGrad-cam = ReLU (Z “lccAk> @3)
k

This produces a coarse localisation map showing which image regions contribute most to
a specific class prediction. In defect inspection, Grad-CAM helps visualise whether the
model attends to actual defect areas rather than uniform surfaces or shadows.

5.1.3. Integrated Gradients

Integrated Gradients (IG) [41] attributes importance to each input feature by integrat-
ing gradients along a straight path from a baseline (e.g., a black image) x’ to the actual
input x. For feature i, the attribution is

1Gi(x) = (3 —x)) [ SO g, @

Unlike raw gradients, IG mitigates the problem of gradient saturation and yields smoother,
more stable attributions. In industrial contexts, it provides a cumulative importance
estimate, indicating which structural or texture features most influence the defect classifica-
tion outcome.
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5.1.4. Occlusion Sensitivity

Occlusion analysis, introduced by Zeiler and Fergus [42], measures how the class score
changes when local regions of an image are masked or replaced. For class c, the importance
of region R is given by

ASC(R) = Sc(x) —Sc (X \ R) )

where x \ R denotes the input with region R occluded. This technique identifies the most
critical areas for classification by directly testing the model’s sensitivity to missing visual
information—an effective strategy for verifying the robustness of defect localisation models
in quality inspection.

Together, these visualisation methods bridge deep network reasoning with human
interpretation, allowing practitioners to confirm whether model attention aligns with
ground-truth defect locations. Their complementary nature—gradient-based (Saliency,
Grad-CAM, IG) versus perturbation-based (Occlusion) provides a comprehensive toolkit
for interpreting convolutional models used in manufacturing inspection [37,38].

In our study, we applied these techniques to two datasets. Using the casting product
dataset [17], YOLOv8n was trained for defect detection, and its outputs were interpreted
through Grad-CAM, Integrated Gradients, saliency maps, and occlusion. These expla-
nations revealed how the detector localised casting defects, confirming whether predic-
tions aligned with ground-truth anomalies. In parallel, the Defects Class and Location
dataset [18] was used to train Faster R-CNN for defect classification and localisation. Ex-
planations from Grad-CAM and saliency mapping were employed to analyse bounding
box predictions, providing insight into how the network distinguished between defect
categories and their spatial placement. This combination of models and interpretability
methods demonstrates that XAl strengthens the reliability of computer vision systems in
manufacturing by coupling detection accuracy with transparent reasoning.

5.2. XAl for Time-Series and Unsupervised Models

While visual inspection addresses visible surface anomalies, many industrial systems
rely on continuous sensor monitoring, producing time-series data such as sound or vi-
bration signals. These modalities are essential for tasks such as predictive maintenance
and fault diagnosis. A challenge in this setting is that labeled datasets are often scarce,
making unsupervised learning approaches more practical. Methods like Isolation Forests or
autoencoders detect deviations from normal operating behavior but, as unlabeled models,
their decision-making is even less transparent than that of supervised vision models [43].

Recent research has extended XAI to such contexts, showing that techniques like
SHAP—originally developed for tabular and image data can be adapted to univariate and
multivariate time-series [12,37,44]. Other studies have proposed KernelSHAP-based expla-
nations for unsupervised models, generating local instance-level interpretability [45], while
some frameworks also provide global insights into anomaly detection mechanisms [46,47].
Collectively, these advances illustrate that interpretability can be achieved even in the
absence of labeled data, enhancing both trust and diagnostic capability.

SHAP attributes the contribution of each feature by applying Shapley values from
cooperative game theory [44]. For a model f with feature set F, the Shapley value ¢; of
feature i is defined as:

I(|E] —|S] —1)!
o=y PHEZEER ps0 ) - ) ©

SCR\(i}

This ensures a fair distribution of feature contributions by averaging over all possible
subsets S of features. SHAP provides both local interpretability (per-instance explanations)
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and global interpretability (average importance across the dataset), enabling transparent
understanding of model behaviour in sensor-based fault detection tasks.

Our contribution builds on this direction using the MIMII dataset [19], which contains
acoustic recordings of industrial machines. We trained an Isolation Forest exclusively on
normal signals to learn the baseline of machine operation and applied it for anomaly detec-
tion. SHAP was then integrated to identify which acoustic features—including root mean
square (RMS) energy, zero-crossing rate (ZCR), and Mel-frequency cepstral coefficients
(MFCCs), drove the classification of abnormal segments. This enabled fine-grained inter-
pretability, linking anomaly decisions to specific signal properties and offering actionable
insights into machine behavior. In this way, XAl transformed a purely statistical detector
into a transparent tool for acoustic monitoring in manufacturing.

5.3. Bridging Modalities

Existing literature on XAI in manufacturing has largely concentrated on a single
modality, either focusing on vision-based defect detection or on sensor-driven anomaly
analysis. By contrast, our study integrates XAl across both domains. We applied Grad-
CAM, saliency, Integrated Gradients, and occlusion maps to deep learning models for
defect detection, and complemented this with SHAP applied to time-series data modeled
by Isolation Forests. This cross-modal perspective demonstrates that explainability can be
systematically embedded into diverse manufacturing pipelines, from supervised vision
models to unsupervised acoustic detectors.

By unifying these approaches, our work advances the goal of trustworthy Al in manu-
facturing, showing that interpretability is not restricted to one data type or model family
but can be consistently applied across heterogeneous industrial tasks. This establishes a
foundation for the broader adoption of XAl in production systems where both accuracy
and transparency are paramount. After examining the theoretical and practical role of
XAl in enhancing transparency, Section 6 presents the proposed methodology, describing
how explainability is systematically integrated into Al pipelines for visual and acoustic
inspection tasks.

6. Methodology

The proposed methodology is designed as a unified framework for integrating XAI
into manufacturing applications, with the primary objective of investigating how XAI
techniques can be used to open the black-box behaviour of Al systems commonly en-
countered in industrial practice. Rather than optimising or comparing machine learning
models, the study treats model selection as a secondary consideration and employs the
chosen models as representative black-box decision-makers, enabling focused evaluation
of explainability. The framework follows a common sequence of steps, data acquisition
and preprocessing, model training, application of explainability techniques, and evalua-
tion—adapted to different manufacturing data modalities. To demonstrate the breadth and
generalisability of the approach, the methodology is applied to three representative case
studies: image classification of casting defects, object detection of metal surface defects,
and acoustic anomaly detection in machine sound.

To support the explainability-centred objective, the study deliberately employs diverse
model architectures and learning paradigms, including supervised convolutional neural
networks for visual inspection, region-based object detectors for defect localisation, and un-
supervised anomaly detection models for acoustic condition monitoring. This diversity
is intentional and enables systematic assessment of whether XAI methods can provide
meaningful and physically interpretable explanations independent of model structure, task
formulation, or supervision strategy. In the visual inspection domain, YOLOvS8n is used
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as a lightweight representative of convolutional models deployed in real-time industrial
inspection systems. The intent is not to demonstrate superiority over alternative CNN
architectures, but to evaluate whether gradient- and activation-based XAI techniques can
successfully expose the internal reasoning of a commonly adopted deep learning classi-
fier in quality control scenarios. For defect localisation, Faster R-CNN is employed as a
representative region-based detector widely used in industrial and research contexts. Its
two-stage architecture provides a suitable testbed for examining whether explainability
techniques can align model attention with physically meaningful defect regions rather
than background artefacts. In the acoustic condition monitoring task, an Isolation Forest is
selected to represent unsupervised anomaly detection, reflecting the practical reality that
labelled fault data are often unavailable in manufacturing environments. Here, the em-
phasis is not on anomaly detection performance in isolation, but on assessing whether
feature-level explainability methods such as SHAP can transform an inherently opaque
statistical model into a transparent and interpretable diagnostic tool.

By intentionally avoiding model comparison and hyperparameter optimisation,
the study maintains a clear focus on explainability as the central experimental variable.
The use of heterogeneous models allows the work to demonstrate that XAl techniques can
be systematically applied across diverse industrial Al pipelines to support transparency,
trust, and human-in-the-loop decision-making. Each case study is described in detail below.

6.1. Casting Defects: Image Classification with YOLOvS8 and Explainability

The Casting Defects dataset [17] was employed to investigate the role of explainable
XAl in automated defect detection. This dataset contains grayscale images of automotive
casting components divided into two categories: ok_front, representing defect-free samples,
and def_front, representing defective castings with surface irregularities such as blow-
holes and cracks. Images are organised into train and test directories with subfolders
corresponding to each class. Although the dataset is grayscale, images were processed as
three-channel tensors to meet the input requirements of the chosen model. The complete
workflow for this experiment, from data preparation to explainability and validation, is
illustrated in Figure 7.

To increase dataset diversity and reduce orientation bias, in-place rotation augmenta-
tion was applied to both the training and testing sets. Each sample was rotated by 45°, 90°,
and 135° using affine transformations implemented in OpenCV. A reflective padding mode
was employed to avoid artificial edges caused by rotation. Augmented images were stored
alongside the originals, effectively expanding the dataset size fourfold. This preprocessing
strategy improved model generalisation and robustness against positional variation.

For classification, the YOLOvS8n classifier (yolov8n-cls.pt) was adopted. This
lightweight convolutional neural network comprises a convolutional backbone and a
linear classification head. Fine-tuning was carried out using the Ultralytics API with de-
fault settings for classification tasks. Training employed the categorical cross-entropy loss,
defined as

C
L=-Y yclogi., 7)
c=1

where y, is the ground-truth label and §. is the predicted probability for class c. Since
the task is binary, C = 2. The network was trained for three epochs with a batch size
of forty and an input resolution of 300 x 300 pixels. Training was performed on GPU
hardware when available, and on CPU otherwise. The best-performing checkpoint was
stored at runs/classify/train3/weights/best.pt and was subsequently used for all
explainability experiments. The overall pipeline followed in this study is summarized in
Algorithm 1.
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Figure 7. Workflow of the visual inspection experiment using YOLOVS8 and explainable AI (XAI)
techniques. The process includes: (1) data preparation through image collection and augmentation,
(2) model training with YOLOVS, (3) inference and evaluation on test images, (4) application of Grad-
CAM, Integrated Gradients, Occlusion, and Saliency methods for explainability, and (5) visualisation
and validation of heatmaps to confirm focus on true defect regions.

Algorithm 1 Casting Defect Classification and Explainability Framework

: Input: Dataset D with classes ok_front, def front

: Output: Trained YOLOvV8n classifier with explanations
: Load dataset, convert grayscale to 3-channel tensors
Apply rotation augmentation (45°, 90°, 135°)

: Train YOLOvVS8n classifier with cross-entropy loss

: Evaluate and save best checkpoint

: For each test sample, compute explanations:

N U A W N e

¢ Saliency Maps

¢ Grad-CAM (SmoothGradCAM++)
¢ Integrated Gradients

* Occlusion Sensitivity

8: Normalise and overlay explanation maps on original images
9: Visualise and interpret model focus on defect regions

These training parameters follow standard fine-tuning practices for YOLO-based
models reported in the literature and official Ultralytics YOLOvVS8 implementations, where
pretrained weights and limited training epochs are commonly used for industrial inspection
tasks to ensure stable convergence on moderate-sized datasets [48,49].

To provide insights into the decision-making process of the YOLOvS8n classifier, four
complementary XAI techniques were employed. Saliency maps were computed by evaluat-
ing the gradient of the class score with respect to each input pixel, which measures how
sensitive the model’s prediction is to changes in individual pixel intensities. In simple terms,
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pixels with larger gradient values have a greater influence on the final decision, highlighting
the specific regions in the image that most strongly affect the classification outcome.

(8)

where S.(x) denotes the logit for class c. Gradient-weighted Class Activation Mapping
(Grad-CAM) was also used to generate coarse, class-discriminative heatmaps from the final
convolutional layer. Feature map weights were calculated as

1 ay* k
ap = 7 ZE S AL Grad-cam = ReLU (; A > ©)
1 ] 1]

where A are the feature maps and Z is the normalisation factor. A more stable vari-
ant, SmoothGradCAM++, was employed to improve localisation around fine-grained
defect cues.

Integrated Gradients were applied to capture attributions along a continuous path
from a baseline input x’ to the actual input x. For feature i, the attribution is defined as

IG;(x) = (x; — x}) /01 OF(x +;;(ix — XI))duc. (10)

This technique provides smoother and more reliable attributions than raw gradients
by reducing sensitivity to gradient saturation.

Finally, Occlusion Sensitivity was used as a perturbation-based method to evaluate the
importance of local regions. In this approach, an image region R is systematically masked,
and the change in the class score is recorded:

ASC(R) = Sc(x) - Sc(x \ R)r (11)

where x \ R denotes the occluded image. Scanning the mask across the input produced a
spatial importance map, which highlighted defect-sensitive regions in the castings.

For each explainability method, the resulting heatmaps were scaled between 0 and
1 and visually overlaid on the original casting images using consistent color maps. This
allowed an intuitive inspection of where the model was “looking” when making its deci-
sions. In other words, the highlighted areas show which parts of the image most influenced
the classification. Combining gradient-based, activation-based, and perturbation-based
methods gave a complete picture of the model’s reasoning and helped confirm that it
focused on actual defect regions rather than irrelevant background patterns.

6.2. Metal Surface Defects: Object Detection with Faster R-CNN and Explainability

The Defects Class and Location dataset [18] was employed to evaluate explainability in
the context of object detection for metal surface inspection. This dataset comprises images
of metal surfaces annotated with bounding boxes in Pascal VOC XML format, describing
the location and type of surface defects. Each image is associated with one or more defect
regions, and the labels correspond to defect classes obtained from the folder structure.
The complete workflow followed in this study is summarised in Algorithm 2.

To construct the dataset, XML files were parsed to extract bounding box coordinates
and class labels. Each bounding box was normalised with respect to the image dimensions
to ensure numerical stability during training. The dataset was divided into training and
validation subsets using an 80/20 split, stratified by defect class. To address class imbalance,
oversampling of under-represented classes was performed until each class reached parity
with the largest class. A custom PyTorch (version 2.5.1, CUDA 12.1) Dataset was imple-
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mented to return paired samples (x, y), where x is the input image and y = boxes, labels
represents the ground-truth bounding boxes and class identifiers.

Algorithm 2 Metal Surface Defect Detection and Explainability Framework

: Input: Dataset D of annotated metal surface images

: Output: Trained Faster R-CNN model with explanations

: Parse Pascal VOC XML files to extract bounding boxes and defect classes

Normalise bounding box coordinates by image dimensions

: Split dataset into training (80%) and validation (20%) subsets

Apply oversampling to balance under-represented defect classes

: Construct a PyTorch dataset returning (x, y) pairs with images and targets

: Initialise Faster R-CNN with ResNet-50 FPN backbone and replace detection head to
match number of classes
9: Train model for 50 epochs with batch size 4 using SGD optimiser (Ir = 0.005, momen-

tum = 0.9, weight decay = 5 x 10~%)

10: Optimise multi-task loss £ = L5 + AL,y

11: Save the best-performing model checkpoint

12: For each test image, compute visual explanations:

® NS U W N e

* Saliency Maps: compute gradients of class logits w.r.t. input pixels
* Grad-CAM: generate class-discriminative heatmaps from convolutional layers in
the detection backbone
13: Normalise explanation maps to [0, 1] and overlay on input images
14: Compare predicted bounding boxes with ground-truth annotations
15: Assess whether explanation highlights coincide with true defect regions

The availability of ground-truth bounding box annotations in the GC10-DET dataset
enables quantitative validation of defect localisation using standard object detection metrics.
In this study, predicted bounding boxes produced by the Faster R-CNN model are quantita-
tively evaluated against ground-truth annotations, achieving peak localisation performance
of approximately mloU = 0.44 and mAP@0.5 = 0.61, which provides sufficient confidence
in the plausibility of the localisation results. Explainability analysis is then applied to these
validated predictions, and the quality of XAl is assessed by examining the spatial align-
ment between high-activation regions in the explanation maps and the annotated defect
locations. Importantly, localisation accuracy is not treated as the primary optimisation
objective; rather, it serves as contextual grounding to ensure that explainability results are
interpreted in relation to reliable defect detection rather than evaluated in isolation.

The detection model was based on the Faster R-CNN architecture, implemented in
the TorchVision library. A ResNet-50 backbone with Feature Pyramid Network (FPN)
was adopted, initialised with weights pretrained on COCO. The classification head was
modified to accommodate the number of defect classes in the dataset plus the background
class. Training was conducted for fifty epochs with a batch size of four. The stochastic
gradient descent (SGD) optimiser was used with a learning rate of 0.005, momentum of
0.9, and weight decay of 5 x 10~%. This training configuration follows widely adopted
practices in Faster R-CNN-based industrial defect detection, as established in the original
Faster R-CNN formulation and subsequent object detection literature, providing stable
convergence and reliable localisation performance without task-specific hyperparameter
tuning, which aligns with the explainability-centred objective of this study rather than
performance optimisation [50]. The model was trained to minimise the multi-task loss
function of Faster R-CNN, which combines a classification loss L5 and a bounding-box
regression loss Lpy:

L= 'Ccls + )"Chow (12)
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where A balances the contribution of the regression term.

The explainability analysis was carried out using both gradient-based and activation-
based attribution methods. Saliency maps were obtained by computing the absolute
gradient of the detection score with respect to input pixels, thereby identifying sensitive
regions. Grad-CAM was employed on the backbone convolutional layers to generate
class-discriminative activation maps, defined as

Lérad-CAM = RelLU ZalccAk ’ (13)
k

where A¥ denotes the feature maps and «j, are weights derived from the gradients of the
class score with respect to A¥. These explanation maps were normalised and overlaid
on the corresponding input images to provide interpretable insights into the model’s
decision-making process.

6.3. Acoustic Anomaly Detection: Isolation Forest with XAl for Time-Series Data

In this part of the study, we investigated anomaly detection in acoustic signals using
an unsupervised learning approach combined with explainable artificial intelligence (XAI).
The dataset consisted of audio recordings of machines under both normal and abnormal
operating conditions, stored as .wav files in separate normal/ and abnormal/ directories.
Each recording was sampled at 16 kHz, preserving both low- and high-frequency character-
istics. The complete workflow for acoustic anomaly detection and explainability is detailed
in Algorithm 3 and illustrated in Figure 8.

Visualization &

e Analysis
Setup and
Libraries Standardize features Create feature plots,
using Generate anomaly anomaly score plots,
Import Librosa, StandardScaler; scores per frame; SHAP summary
Scikit-learn, SHAP, structure into normal aggregate to file- plots, and LIME
LIME, and Matplotlib and mixed sets level predictions explanations

Feature Model Explainability Outcome
Extraction Development

Use SHAP for global Demonstrate robust
Extract RMS, ZCR, Train Isolation feature importance anomaly detection
Spectral Centroid, Forest on normal and LIME for local with time-domain +
Spectral Bandwidth, data with anomaly frequency-domain

and MFCCs contamination, explanations features and

n_estimators, and improved
max_samples interpretability

Figure 8. Workflow of the acoustic anomaly detection and explainability experiment. The process
begins with setup and library configuration, followed by feature extraction of acoustic descriptors
such as RMS, zero-crossing rate (ZCR), spectral centroid, spectral bandwidth, and MFCCs. After fea-
ture standardisation and dataset structuring, an Isolation Forest model is trained on normal data to
detect anomalies. SHAP is then applied for global feature importance analysis, and the results are
visualised through anomaly score plots and SHAP summary plots to interpret model behavior and
validate feature contributions.
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Algorithm 3 Acoustic Anomaly Detection and Explainability Framework

Input: Audio dataset D with normal/ and abnormal/ recordings

Output: Trained Isolation Forest with SHAP explanations
3: Load all audio files and resample to 16 kHz

Segment each recording into frames of length 1024 with hop size 512

Extract per-frame features: RMS, ZCR, Centroid, Bandwidth, MFCC1-MFCC3
6: Normalise all features using z-score standardisation

Train Isolation Forest on normal samples with contamination parameter 0.05

For each test recording:

e Compute anomaly scores s(f;) for each frame
¢ Apply threshold 6 (90th percentile) to detect anomalies
¢ Map frame indices back to time domain and highlight anomalous segments

9: Apply SHAP to obtain local and global feature attributions
Aggregate predictions at the file level (abnormal if >30% anomalous frames)
Compute confusion matrix, precision, recall, and F1-score
12: Visualise waveform plots with shaded anomalies and overlay XAI explanations

Feature Extraction Each audio signal was divided into overlapping frames of length
1024 samples with a hop size of 512. From every frame, seven features were extracted using
the Librosa library: Root Mean Square (RMS) energy, Zero-Crossing Rate (ZCR), Spectral
Centroid, Spectral Bandwidth, and the first three Mel-Frequency Cepstral Coefficients
(MFCCs). This resulted in a feature vector of dimension d = 7 for each frame ¢:

ft = [RMS,}, ZCRt, Centroidt, Bandwidtht, MFCClt, MFCCZ,}, MFCC:‘Bt] . (14:)

The selection of acoustic features in this study is intentionally guided by human inter-
pretability rather than by maximising model performance. The chosen indicators RMS
energy, zero-crossing rate, spectral centroid, spectral bandwidth, and low-order MFCCs
are widely used in acoustic condition monitoring because they correspond to perceptually
meaningful properties of sound, such as loudness, roughness, brightness, and timbral
variation. These characteristics are directly related to what human operators perceive as
abnormal machine behaviour, including increased vibration, harsh impacts, tonal shifts,
or broadband noise.

From a human-in-the-loop perspective, this feature design supports explainability
by ensuring that XAI outputs can be related back to operators’ practical auditory skills
rather than abstract latent representations. For example, elevated RMS energy corresponds
to louder or more energetic sounds, while changes in spectral centroid and MFCCs re-
flect shifts in tonal balance that are often audible during mechanical degradation. This
approach aligns with prior work on human-centred and explainable acoustic monitoring,
where interpretable features are preferred to preserve operator understanding and reduce
over-reliance on opaque Al systems. To ensure comparability across features, z-score
normalisation was applied:

p_ Jri— Wi
A , 15
f ti o; ( )
where p; and o; are the mean and standard deviation of feature i computed from the
training set.
Anomaly Detection Model An Isolation Forest (IF) was trained exclusively on normal

feature vectors to learn the statistical profile of healthy machine sounds. The contamination
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parameter was set to 0.05 to reflect the expected proportion of anomalies. For each frame f;,
the anomaly score was computed as the negative decision function:

s(fr) = —h(f), (16)

where h(f;) denotes the average path length of f; across the isolation trees. Frames with
high anomaly scores were more likely to correspond to faulty machine states.

Temporal Anomaly Mapping Predictions were generated frame by frame, and the
anomaly scores were mapped back to the time domain using

n-H

t= ,
sr

(17)

where 7 is the frame index, H = 512 is the hop size, and sr = 16,000 Hz is the sampling rate.
A threshold 6 corresponding to the 90th percentile of anomaly scores was chosen:

6 = Percentilegy(s(f1),...,s(fr)), (18)

and frames with s(f;) > 6 were flagged as anomalies. These anomalous regions were
highlighted on the waveform plots, enabling visual inspection of fault events over time.
Explainability To enhance transparency, the SHAP (Shapley Additive Explanations)
method was applied to interpret the model’s predictions. SHAP provided both local
explanations—using waterfall plots for individual anomalies and global explanations
using beeswarm plots across the entire dataset. For each time frame ¢, SHAP computed
per-feature contribution values ¢!, satisfying the additive property of feature attributions:

d
f(&) =do+ Yol (19)

i=1

Evaluation For file-level detection, a recording was considered abnormal if more
than 30% of its frames were flagged as anomalies. Performance was assessed using
a confusion matrix and standard metrics: precision, recall, and Fl-score. In addition,
waveform plots with shaded anomaly regions and XAI visualisations were generated for
qualitative assessment.

This methodology combined domain-specific audio feature extraction, unsupervised
learning via Isolation Forest, and multi-level explainability using SHAP. It ensured both
accurate anomaly detection and interpretability, addressing the requirements of industrial
condition monitoring. The following Section 7 presents and analyses the experimental
results obtained from the proposed methodology, demonstrating how XAI enhances inter-
pretability and trust in Al-driven quality and condition monitoring systems.

7. Results and Discussion

This section presents the explainability outcomes obtained across two complementary
sensing regimes in manufacturing: vision-based inspection and acoustic condition monitor-
ing. We first analyse the vision-based pipelines—casting defect classification (YOLOv8n)
and metal surface defect detection and localisation (Faster R-CNN)—with a focus on
how post-hoc explanations (Grad-CAM, Integrated Gradients, Saliency, and Occlusion)
reveal the spatial evidence supporting each decision and align with physically meaning-
ful defect cues. We then examine the acoustic pipeline (Isolation Forest on MIMII-style
recordings), where feature-level attributions from SHAP clarify the temporal-spectral char-
acteristics driving anomaly flags. Throughout, our emphasis is on transparency, traceability,
and operator interpretability: rather than reporting accuracy as the primary endpoint, we
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assess whether explanations are consistent with domain knowledge, expose failure modes,
and provide auditable justification suitable for deployment in industrial settings.

7.1. Vision-Based Explainability Results

This subsection presents explainability results from two vision-based manufacturing
pipelines: casting defect classification using YOLOv8n and metal surface defect detection
using Faster R-CNN. Before applying explainability techniques, both models were evalu-
ated using standard performance metrics to ensure reliable behaviour (accuracy, precision,
recall, and F1-score for YOLOv8n; IoU and mAP for Faster R-CNN). This confirms that the
explanations reflect functioning industrial Al systems rather than poor model performance.
While all XAI methods highlight regions relevant to the models’ decisions, noticeable dis-
crepancies are observed. Gradient-based methods such as Grad-CAM produce smoother,
class-focused heatmaps, whereas saliency-based approaches are more sensitive to local
variations and background noise. These differences show that XAl provides complemen-
tary, not definitive, explanations, reinforcing the need for cautious interpretation supported
by domain knowledge in safety-critical manufacturing contexts.

In conventional computer vision pipelines, the user typically receives only the final
model prediction, such as a class label or bounding box without any visibility into the
reasoning process behind it. As illustrated in Figure 9, the classifier can indicate whether a
casting is “defective” or “non-defective,” but this output alone provides limited diagnostic
value to an operator. However, through the integration of XAl techniques, the same decision
can be decomposed into interpretable visual evidence (Figure 10). Thus, explainability not
only communicates the outcome but also reveals why the model reached it, bridging the
gap between algorithmic prediction and human understanding.

For the casting defect classification task, the YOLOvS8n classifier was evaluated us-
ing four gradient- and perturbation-based explanation methods: Grad-CAM, Integrated
Gradients, Saliency Maps, and Occlusion Sensitivity. Grad-CAM visualisations (Figure 10)
consistently highlighted localised regions corresponding to surface imperfections such
as blowholes, cracks, and uneven textures, closely aligning with the ground-truth defect
zones identified by domain experts. Integrated Gradients produced smooth attribution
maps concentrated around defect contours, suggesting that the classifier’s activations were
driven by physically meaningful surface variations rather than background illumination
or part geometry. The Saliency maps reinforced these findings by revealing high-gradient
responses precisely at surface discontinuities, while Occlusion analysis confirmed that
masking the defective region resulted in a substantial reduction in the model’s confi-
dence score. Together, these interpretability outcomes validate that the YOLOv8n model’s
decision-making process is both spatially focused and industrially relevant, making it
suitable for deployment in automated visual inspection pipelines.

In the case of the metal surface defect detection dataset, the Faster R-CNN model
was analysed to examine whether its predictions were accompanied by coherent spatial
explanations. Grad-CAM heatmaps extracted from the network’s feature pyramid layers
(Figure 11) revealed that the detector’s attention concentrated within annotated bounding
boxes for diverse defect types, including scratches, dents, and surface inclusions. This
alignment between the model’s activation patterns and the annotated ground truth under-
scores its capacity for interpretable localisation. Moreover, saliency visualisations provided
finer delineation of defect boundaries, indicating that the detector relied on texture vari-
ations and edge discontinuities that are consistent with physical defect manifestations.
Importantly, explainability also revealed potential limitations, such as partial attention
on background reflections in high-gloss samples, highlighting the usefulness of XAI in
diagnosing model biases and guiding further dataset refinement.
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Original
Prediction: def front (0.73)

Figure 9. Traditional /black-box Al prediction

Original Grad-CAM (def front) Integrated Gradients (def_front)
Prediction: def_front (0.73) . .
(b) (c)
Occlusion Sensitivity (def_front) Saliency Map (def_front)

(d) (e)

Figure 10. Explainability results for the YOLOVS classifier on casting defect detection. (a) Original
input image, (b) Grad-CAM heatmap, (c) Integrated Gradients attribution, (d) Occlusion Sensitivity
map, and (e) Saliency map.

XAl
Tools

Faster
RCNN

Figure 11. The Faster R-CNN model detects a punching hole defect, followed by XAI tools generating
Saliency and Grad-CAM maps that highlight the regions influencing the model’s decision, improving
transparency and human interpretability.

Collectively, the visual XAl analyses across both datasets demonstrate that deep learn-
ing models can produce interpretable, physically consistent justifications for their decisions
when supported by appropriate explainability frameworks. Beyond confirming that models
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attend to relevant regions, these visual explanations empower human operators to audit Al
reasoning, verify conformity with industrial standards such as EN4179, and confidently
integrate Al systems into high-value manufacturing workflows.

7.2. Acoustic Anomaly Detection and Explainability

This section presents the experimental results and technical interpretation of the acous-
tic anomaly detection framework based on the Isolation Forest (IF) algorithm integrated
with XAI tools. The study focuses on developing an interpretable, unsupervised learning
pipeline capable of detecting abnormal sound events in industrial environments while
maintaining full transparency of the model’s decision process. The results encompass fea-
ture extraction, model training, quantitative performance evaluation, and interpretability
analysis, collectively demonstrating that the system achieves robust detection accuracy and
high transparency—key requirements for trustworthy Al in manufacturing.

7.2.1. Feature Extraction and Data Representation

Each audio sample was preprocessed at a fixed sampling frequency of 16 kHz and
divided into overlapping frames of 1024 samples with a hop length of 512 samples. For each
frame, seven time—frequency features were extracted using the librosa library, resulting in a
seven-dimensional feature vector defined as:

ft = [RMS,}, ZCRt, Centroidt, Bandwidtht, MFCClt, MFCCZt, MFCC3,§],

where RMS denotes Root Mean Square energy, ZCR represents the Zero Crossing Rate,
Centroid and Bandwidth correspond to the spectral centroid and bandwidth, and MFCC1-3
are the first three Mel-Frequency Cepstral Coefficients. These descriptors collectively
capture amplitude, frequency, and timbral characteristics of the acoustic signal. To ensure
numerical stability and uniform scaling across features, the data were standardised using
z-score normalisation:

Oj

7

fli= fri — Hi

where p; and o; represent the mean and standard deviation of feature i computed from the
training set.

7.2.2. Model Training and Parameterisation

An Isolation Forest (IF) model was trained exclusively on feature vectors extracted
from recordings of normal machine operation. This approach enables unsupervised learn-
ing of the statistical distribution of healthy system behavior. The model’s hyperparameters
were configured as follows: number of estimators = 100, contamination = 0.05, and random
state = 42 for reproducibility.

The IF algorithm isolates anomalies by recursively partitioning the feature space
using randomly selected attributes and thresholds, yielding an anomaly score for each
input vector:

S(ft) = 7h(ft),

where h(f;) denotes the average path length required to isolate f; within the ensemble of
decision trees. Frames exhibiting higher anomaly scores are more likely to correspond to
abnormal conditions.

7.2.3. Threshold Selection and Frame-Level Detection

A global threshold 6 was determined empirically to maximise the separation be-
tween normal and abnormal recordings. During inference, each test file was segmented
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into frames, and the anomaly score of each frame was compared against . Frame-level
predictions were generated according to:

1, ifs(f) >,

0, otherwise.

bt =

The binary sequence {y;} was subsequently mapped to the time domain using the
frame indices and hop length, allowing direct visualisation of abnormal regions on the
waveform. Temporal overlays illustrate that the detected anomalies align with audible
deviations such as abrupt impacts, irregular vibrations, or frequency drifts.

7.2.4. Quantitative Evaluation

The overall model performance is summarised in Figure 12, which presents the con-
fusion matrix, Receiver Operating Characteristic (ROC) curve, and Precision—Recall (PR)
curve for the test dataset. The model achieved an overall accuracy of 89%, with macro-
averaged precision, recall, and F1-score of 0.85, 0.89, and 0.86, respectively. For the normal
class, the precision and recall were 0.90 and 0.88, while for the abnormal class they were
0.74 and 0.89, respectively. The ROC curve exhibits an Area Under the Curve (AUC) of
0.945, confirming excellent discriminative ability between normal and abnormal operating
conditions. The high recall for abnormal cases indicates strong sensitivity to fault events,
which is crucial in predictive maintenance applications where missed detections can lead
to costly system failures. Similarly, the PR curve demonstrates consistent precision at high
recall levels, showing that the model maintains reliability under class imbalance.

Confusion Matrix

300
44
Normal 250
T 200
=
Lo
o
2
= 150
Abnormal 15 123 100
50
Normal Abnormal
Predicted label
ROC Curve Precision-Recall Curve

10

0.9
08
08

0.6 4

TPR
Precision

0.4+

024

0.04 —— AUC=0.945

0.0 0.2 04 0.6 0.8 10 0.0 0.2 0.4 0.6 08 1.0
FPR Recall
Figure 12. Performance evaluation of the Isolation Forest model for acoustic anomaly detection. The
top panel shows the confusion matrix summarising classification accuracy across normal and abnor-
mal classes, while the bottom panel illustrates the ROC and Precision-Recall curves, demonstrating
strong discriminative capability (AUC = 0.945, overall accuracy = 89%).
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These results confirm that the Isolation Forest, trained solely on normal data, effectively
identifies unseen abnormal acoustic signatures without supervision, validating its suitabil-
ity for real-time monitoring systems that demand both reliability and interpretability.

7.2.5. Global and Local Explainability

To provide interpretability for the unsupervised model, the SHapley Additive exPla-
nations (SHAP) framework was employed. The scoring function for the SHAP analysis
was defined such that higher SHAP values correspond to a higher likelihood of anoma-
lous behaviour.

Score(X) = —IF.decision_function(X)

Global SHAP summaries aggregated at the dataset level revealed that RMS energy
and Spectral Centroid exerted the strongest positive influence on anomaly scores, followed
by MFCC1. These findings align with physical intuition—abnormal machine behavior
typically manifests through increased vibration energy and shifts in spectral distribution.

Local interpretability was achieved through frame-specific waterfall plots, which
decompose each frame’s anomaly score into additive feature contributions. In abnormal
segments, elevated values of certain acoustic features contributed to higher anomaly scores,
while lower values of other features reduced the anomaly response. Such analyses help
reveal the specific acoustic characteristics that drive anomaly detection decisions.

7.2.6. Signal-Level Summarisation

At the recording level, an anomaly ratio Ranomaly Was computed as:
1T
Ranomaly = T Z“A{S(ff) > 6}'
t=1

where T denotes the total number of frames. If Rinomaly exceeded 0.2, the correspond-
ing signal was classified as abnormal. This simple yet effective rule allowed robust
separation between healthy and faulty recordings, providing clear, interpretable out-
puts such as: ‘‘Signal classified as NORMAL (anomaly ratio = 0.13)”’ or ‘‘Signal
classified as ABNORMAL (anomaly ratio = 0.75)”’. Visualisation of detected anoma-
lies confirmed that the IF model consistently highlighted time intervals associated with
mechanical irregularities while maintaining low false-alarm rates in normal states.

7.2.7. Case Study: Normal Signal (Normal_003)

The Normal_003 recording represents a baseline example of healthy machine operation.
The waveform shown in Figure 13 exhibits a stable amplitude profile with no sustained high-
energy bursts or irregular transients. Although a small number of frames (47 out of 313,
corresponding to Ranomaty = 0.15) were flagged as locally anomalous, these intervals were
short, non-contiguous, and did not exceed the decision threshold at the signal level. This
behaviour is consistent with minor acoustic fluctuations typical of normal mechanical
processes such as background resonance, airflow variation, or sensor noise.

From a statistical standpoint, the Isolation Forest’s decision function remained close to
zero across most frames, indicating high similarity to the learned distribution of normal
features. The corresponding SHAP-based feature attribution analysis further supports this
conclusion. As illustrated in Figure 14, MFCC1 and MFCC3 provided small positive contri-
butions to the local anomaly score, primarily reflecting transient cepstral shifts associated
with momentary changes in acoustic tone. However, these effects were counterbalanced
by negative contributions from Bandwidth, Centroid, and MFCC2, which stabilised the
overall score and prevented escalation into an abnormal classification.
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Waveform with Highlighted Anomalies — Normal_003
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Figure 13. Waveform of the Normal_003 signal with anomaly spans highlighted in red. A total
of 47 out of 313 frames (15.02%) were flagged by the Isolation Forest as locally anomalous. These
sparse, short-duration events are non-contiguous and correspond to normal operational fluctuations,
resulting in a final classification of “Normal”.

The per-sound feature deviation analysis in Figure 15 quantifies this behaviour at the
global level. The largest deviations from the mean normal baseline occurred in MFCC1
(A = 0.76) and RMS energy (A = 0.67), followed by MFCC2 (A = 0.36). These moderate
deltas indicate limited variation in spectral envelope and overall energy—expected for
normal operation with mild acoustic modulation. Low deviations in Spectral Centroid and
Bandwidth further confirm that the frequency distribution and spectral spread remained
consistent with healthy operation.

3.158 = MFCC1
1.17 = ZCR
1.671 = RMS . +0.01

—~1.256 = Bandwidth . +0
0.945 = Centroid ' +0

—1.293 = MFCC2 ' +0

~0.125 -0.100 -0.075 —0.050 —-0.025 0.000 0.025 0.050
FIAX)] = -0.133
Figure 14. SHAP waterfall plot for a representative flagged frame in Normal_003. MFCC1 and
MFCC3 contribute small positive values to the frame-level anomaly score, reflecting transient cepstral
variability, while Bandwidth, Centroid, and MFCC2 provide compensating negative contributions.
This balance keeps the aggregated anomaly score below the threshold, confirming normal behaviour.

From a physical interpretation perspective, these results indicate that the machine
emitted a stable acoustic signature characterised by steady vibrational energy and a consis-
tent harmonic content. The Isolation Forest’s decision to classify the recording as normal
aligns with both the data-driven model behaviour and the underlying physics of the pro-
cess: minor transient events may occur naturally, but they do not reflect a fault state or
abnormal dynamics.

Overall, the Normal_003 case demonstrates the model’s ability to tolerate benign signal
variability without overreacting to transient fluctuations. It validates the robustness and
selectivity of the proposed anomaly detection framework—essential qualities for reliable
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industrial condition monitoring, where low false-alarm rates are critical for operator trust,
maintenance efficiency, and compliance with explainable Al standards.

Feature Deviations for This Sound
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Figure 15. Per-sound feature deviation plot for Normal_003. The highest deviations are observed
in MFCC1 (A = 0.76) and RMS (A = 0.67), followed by MFCC2 (A = 0.36). All deviations remain
within the statistical range observed for healthy signals, confirming stable machine operation.

7.2.8. Case Study: Abnormal Signal (Abnormal_004)

The Abnormal 004 recording represents a typical example of faulty machine be-
haviour. Unlike the stable characteristics of Normal_003, this signal exhibits sustained
high-energy oscillations and irregular transient peaks, as seen in Figure 16. The Isolation
Forest identified a large proportion of frames as anomalous, yielding an anomaly ratio
of Ranomaly = 0.74, well above the decision threshold (6 = 0.20). The dense red regions
indicate that abnormal dynamics persisted across most of the 10 s recording, signifying a
prolonged deviation from nominal machine operation.

Waveform with Highlighted Anomalies — Abnormal_004

0.10
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—0.05 +

—0.10 4
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Figure 16. Waveform of the Abnormal_004 signal with anomaly spans highlighted in red. The dense
and persistent red intervals across the 10 s duration reflect continuous abnormal behaviour. The
high anomaly ratio (Ranomaly = 0.74) indicates that the majority of frames deviate from the learned
distribution of normal acoustic features.

From a statistical standpoint, the Isolation Forest’s decision function produced strongly
negative scores across most frames, confirming a significant departure from the normal
feature manifold. This is further supported by the per-sound feature deviation plot in
Figure 17. Here, RMS energy exhibits an exceptionally large deviation (A = 4.1), followed
by MFCC1 (A = 2.2) and MFCC2 (A = 0.4). These large positive deviations indicate
abnormal increases in vibration amplitude and cepstral coefficients, implying pronounced
spectral and energetic shifts. Such deviations correspond physically to mechanical imbal-
ance, frictional drag, or early-stage bearing impacts that alter both the energy envelope and
the harmonic content of the signal.
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Feature Deviations for This Sound

4.0 4

35

3.0 4

Z:Hy

2.04

Mean Difference

1.5 1

1.0 1

0.5

0.0 . . I— ; . . :
Gy Q- R ha N YV gl
& £ & & & & “gc,('

Figure 17. Feature deviation plot for Abnormal_004. RMS shows the largest deviation (A = 4.1),
followed by MFCC1 (A = 2.2). These extreme deviations indicate high vibration energy and broad
spectral modulation, characteristics consistent with mechanical faults.

Local feature attribution using SHAP analysis (Figure 18) provides additional inter-
pretive insight. RMS and MFCC1 contributed the most substantial positive values to the
frame-level anomaly score, clearly driving the Isolation Forest’s fault decision. MFCC2,
Centroid, and Bandwidth also made positive contributions, indicating broader and more
variable frequency content. By contrast, MFCC3 exerted a small negative influence, but in-
sufficient to offset the dominant energy and spectral effects. The combined impact of these
features yielded a net anomaly score of f(x) = 0.096, reinforcing the classification of the
frame—and by extension the entire recording—as abnormal.

From a physical perspective, the Abnormal_004 signal reflects a clear deterioration
in mechanical stability. The elevated RMS levels denote excessive vibration energy, while
the strong MFCC1 and MFCC2 activations suggest a deformation of the spectral envelope
typically caused by rotating or oscillating components operating under mechanical stress.
The temporal persistence of these deviations implies a structural rather than transient
anomaly—such as bearing wear, imbalance, or partial shaft misalignment—leading to
characteristic broadband noise and energy surges.

Overall, the Abnormal_004 case demonstrates the ability of the proposed framework
to correctly identify and explain significant fault behaviour. The model not only detects the
anomaly through statistical deviation but also attributes its cause to physically meaningful
acoustic features. This strengthens the argument that the Isolation Forest—combined with
SHAP-based interpretability—offers a robust, transparent, and physics-consistent tool for
industrial fault detection and diagnosis.

7.2.9. Discussion and Implications

The explainability analyses confirm that the Isolation Forest (IF) model grounds its
predictions in physically meaningful acoustic features, rather than arbitrary statistical
patterns. As observed across the analysed recordings, RMS energy and spectral centroid
consistently act as dominant indicators of abnormal behavior, while MFCC coefficients
capture subtle shifts in harmonic structure linked to machine health. High RMS values
correspond to elevated vibrational energy, typically resulting from mechanical friction,
bearing impacts, or shaft misalignment. Similarly, abrupt spectral centroid fluctuations
reflect frequency-weighted energy shifts caused by unbalanced rotation or surface irreg-
ularities. By associating these measurable physical phenomena with model responses,
the framework bridges the gap between data-driven detection and domain-grounded di-
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agnosis, thus transforming the IF model from a black-box detector into an interpretable
diagnostic tool.

flx) =1
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Figure 18. SHAP waterfall plot for a representative anomalous frame in Abnormal_004. RMS
and MFCC1 dominate the positive contributions to the anomaly score, supported by moderate
effects from MFCC2, Centroid, and Bandwidth. MFCC3 provides minimal negative contribution,
indicating that the abnormality arises primarily from sustained increases in vibrational energy and
cepstral dynamics.

Table 4 summarises the interpretability outcomes for all ten analysed signals. The
per-signal analysis demonstrates the model’s capability to generalise across different acous-
tic signatures, accurately distinguishing between stable and degraded states. Normal
recordings exhibit low anomaly ratios (Ranomaty < 0.2) and feature deviations limited to
low-magnitude fluctuations in MFCC1, RMS, or MFCC2. In contrast, abnormal recordings
display sustained anomaly ratios above 0.65 and amplified A values in RMS and MFCC1,
confirming the strong association between high energy content and machine degrada-
tion. At the frame level, SHAP attributions reinforce this interpretation—normal cases
show balanced contributions across features, whereas abnormal cases are dominated by
energy-centric (RMS) and cepstral (MFCC1, MFCC2) components, highlighting the precise
spectral-temporal signatures of mechanical faults.

These findings highlight the coherence between statistical and physical interpretability.
The unsupervised IF model, trained solely on normal data, successfully learns the acoustic
manifold of healthy machine states. When deviations occur, they correspond directly
to physically plausible shifts in spectral energy or harmonic distribution—features that
engineers can relate to tangible faults. This interpretive alignment provides strong evidence
of model trustworthiness. Moreover, the quantitative explainability (via SHAP) ensures
that operators can trace individual decisions back to specific features and time intervals,
enabling fault localisation and root-cause inference.

From a system-design perspective, this integration of anomaly detection and SHAP-
based interpretability strikes a crucial balance between accuracy, transparency, and de-
ployability. The high AUC value of 0.945 confirms detection robustness, while per-signal
interpretability mitigates the risk of overfitting and false alarms. The method’s unsu-
pervised nature eliminates the dependency on labeled fault data—often unavailable in
industrial environments—making it ideal for scalable, cross-asset condition monitoring.

In the context of Industry 4.0, such explainable anomaly detection systems play a
pivotal role in achieving Trustworthy Al for predictive maintenance. They provide a dual
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advantage: reliable early fault detection and transparent decision rationale. This trans-
parency not only fosters operator trust and regulatory compliance (e.g., Al Act, ISO/IEC
23894) but also supports continuous improvement loops where insights from SHAP-driven
analysis can inform maintenance planning, sensor design, and process optimisation. Over-
all, the combination of Isolation Forest and SHAP represents a practical yet theoretically
grounded approach toward interpretable, reliable, and data-efficient acoustic anomaly de-
tection in manufacturing environments. In this study, systemisation refers to the repeatable
integration and interpretation of explainability outputs across heterogeneous models and
data modalities, rather than the definition of universal explainability methodologies or
metrics. Building on the experimental findings, the final Section 8 concludes the paper by
summarising key contributions and outlining future research directions to further advance
trustworthy and explainable Al in smart manufacturing.

Table 4. Per-signal interpretability summary showing anomaly ratios, dominant feature deviations,
and SHAP-based contributors for Normal and Abnormal recordings.

Anom. Frames Top A Features SHAP Top

Ref ID File Name Frames (%) Threshold Final Class ®) Contributors
MFCC1 (0.7647),
Normal_003 00000037.wav 313 47 (15.02) —0.0873 Normal RMS (0.6708), MFZCin’ i\{/ll\ljéC?:,
MECC2 (0.3567) !
MFCC1 (0.9427), MFCC2
Normal_005 00000068.wav 313 78 (24.92) —1.0873 Abnormal  MFCC3 (0.6974), Centroid Z’CR
ZCR (0.4648) !
Centroid
B (0.5619), ZCR _
Normal_002 00000161.wav 313 42 (13.42) 1.0873 Normal (0.5589), MFCC3
(0.5482)
ZCR (2.0425),
Normal_001 00000230.wav 313 204 (65.18) —1.0873 Abnormal MFCC2 (1'.4 328), MFCC2, ZCR’
Centroid Centroid
(1.4098)
Centroid
B (0.8532), MFCC2 _
Normal_004 00000231.wav 313 46 (14.70) 1.0873 Normal (0.8267), ZCR
(0.7526)
RMS (4.1267), MECC2
Abnormal_004  00000026.wav 313 207 (66.13) —1.0873 Abnormal  MFCC1 (2.2232), Bandwidth ,ZCR
MEFCC2 (0.3332) !
RMS (3.6100), MEFCC2,
Abnormal_005 00000029.wav 313 234 (74.76) —1.0873 Abnormal  MFCC1 (2.4282), Bandwidth,
MECC3 (0.8650) Centroid
RMS (3.7095), MEFCC2,
Abnormal_001  00000033.wav 313 253 (80.83) —1.0873 Abnormal  MFCC1 (2.6006), Bandwidth,
MFCC3 (0.3028) Centroid
RMS (6.4281), Bandwidth
Abnormal_003  00000053.wav 313 284 (90.73) —1.0873 Abnormal MECCL (3.'2028)’ MFCC2,
Bandwidth Centroid
(0.2648) entro
MEFECC2 (2.0744),
Centroid ZCR, MFCC3
Abnormal_002  00000096.wav 313 247 (78.91) —1.0873 Abnormal (1.7369), C ’ntr id !
Bandwidth entro
(1.4135)
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8. Conclusions and Future Work

This study has demonstrated how explainable artificial intelligence (XAI) can trans-
form black-box models into transparent, auditable, and trustworthy tools for industrial
decision-making. By applying XAI techniques to both vision-based and acoustic datasets,
a cross-modal framework was developed that enhances human understanding of Al rea-
soning while maintaining strong detection performance.

In the visual domain, Grad-CAM, Integrated Gradients, and Occlusion analyses
showed that YOLOv8n and Faster R-CNN models focused on physically meaningful defect
regions, confirming interpretability in automated quality inspection. In the acoustic domain,
SHAP analysis of Isolation Forest results provided feature-level transparency, revealing
that anomalies were driven by energy and frequency deviations consistent with actual
mechanical faults.

Explainability was found to complement accuracy rather than hinder it—enabling
interpretable, compliant, and human-trusted Al systems within Industry 4.0 and the
evolving Industry 5.0 paradigm. Moving forward, integrating Human-in-the-Loop (HITL)
frameworks will be essential to strengthen collaboration between Al systems and human
experts. Through interactive decision support, Al can assist humans in diagnosing faults
and suggesting corrective actions, while human feedback refines Al reasoning and prevents
automation bias.

The responsible integration of Al across all industries could be improved through
the adoption of XAI principles, transforming opaque black-box systems into transparent
frameworks. This transparency is critical for preventing cognitive offloading, preserving
user memory, and mitigating the detrimental effects of over-reliance which erodes critical
thinking and skill sets. By offering clear insight into why a decision was made, XAI helps to
expose and eliminate systemic biases and also allows humans to learn from system outputs
to build context and knowledge. This will promote innovation and improve the quality of
work and decisions.

In a human-centric design, technology adopters should intentionally define the di-
vision of work to ensure the human role remains engaging and fulfilling. They should
aim to actively support job retention, satisfaction, and preventing the human worker from
being relegated only to tasks the Al cannot handle. Al presents an opportunity to use
tools like gamification or accessible, customised explanations to make manufacturing jobs
more motivating, enjoyable, and accessible to a more diverse talent pool. While research
into human performance and experience is needed, the continued development in XAl is
essential including the traceability of data sources. This extended view of XAl is vital to
ensure systems are less biased and more inclusive, guaranteeing that the underlying data
itself was obtained and utilised in a transparent and ethical way, which is key to building a
truly collaborative and socially sustainable future.

Future work will advance toward causal and counterfactual explainability, multimodal
data fusion, and embedding interpretability within digital twins. By fostering a symbiotic
relationship between human expertise and machine intelligence, this research envisions
Al systems that not only explain and predict but also collaborate with humans to make
informed, transparent, and trustworthy industrial decisions.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

XAI Explainable Artificial Intelligence

CNN Convolutional Neural Network

Faster R-CNN  Faster Region-Based Convolutional Neural Network
YOLOvVS You Only Look Once, version 8

Grad-CAM Gradient-weighted Class Activation Mapping
1G Integrated Gradients

IF Isolation Forest

SHAP Shapley Additive Explanations

MEFCC Mel-Frequency Cepstral Coefficients

RMS Root Mean Square

ZCR Zero-Crossing Rate

ROC Receiver Operating Characteristic

PR Precision—Recall

AUC Area Under the Curve

Fl-score Harmonic Mean of Precision and Recall

International Organization for Standardization

ISO/IEC /International Electrotechnical Commission
Al Act European Union Artificial Intelligence Act
AMRC Advanced Manufacturing Research Centre
HVMC High-Value Manufacturing Catapult

RGB Red-Green-Blue
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