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Abstract

Artificial intelligence (AI) is increasingly adopted in manufacturing for tasks such as au-

tomated inspection, predictive maintenance, and condition monitoring. However, the

opaque, black-box nature of many AI models remains a major barrier to industrial trust,

acceptance, and regulatory compliance. This study investigates how explainable artificial

intelligence (XAI) techniques can be used to systematically open and interpret the internal

reasoning of AI systems commonly deployed in manufacturing, rather than to optimise or

compare model performance. A unified explainability-centred framework is proposed and

applied across three representative manufacturing use cases encompassing heterogeneous

data modalities and learning paradigms: vision-based classification of casting defects,

vision-based localisation of metal surface defects, and unsupervised acoustic anomaly

detection for machine condition monitoring. Diverse models are intentionally employed as

representative black-box decision-makers to evaluate whether XAI methods can provide

consistent, physically meaningful explanations independent of model architecture, task

formulation, or supervision strategy. A range of established XAI techniques, including

Grad-CAM, Integrated Gradients, Saliency Maps, Occlusion Sensitivity, and SHAP, are

applied to expose model attention, feature relevance, and decision drivers across visual

and acoustic domains. The results demonstrate that XAI enables alignment between model

behaviour and physically interpretable defect and fault mechanisms, supporting transpar-

ent, auditable, and human-interpretable decision-making. By positioning explainability as

a core operational requirement rather than a post hoc visual aid, this work contributes a

cross-modal framework for trustworthy AI in manufacturing, aligned with Industry 5.0

principles, human-in-the-loop oversight, and emerging expectations for transparent and

accountable industrial AI systems.

Keywords: explainable artificial intelligence (XAI); trustworthy AI; industrial AI; smart

manufacturing; visual inspection; acoustic anomaly detection; human-in-the-loop systems;

predictive maintenance; SHAP; Grad-CAM; Industry 5.0

1. Introduction

AI and machine learning (ML) are increasingly reshaping industrial domains by

delivering high-performing, data-driven solutions such as automated defect detection, pre-

dictive maintenance, and process optimisation. Deep learning, in particular, has achieved

state-of-the-art results in areas such as computer vision and signal analysis [1±3]. Over the
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past decade, AI has evolved into a transformative technology that is redefining indus-

trial systems, particularly within manufacturing. Its ability to process vast amounts of

heterogeneous data has enabled unprecedented levels of automation, optimisation, and pre-

dictive decision-making. However, the same complexity that drives its success especially

in deep learning models with millions of parameters has raised significant concerns about

trust, transparency, and accountability in safety-critical environments. As industries inte-

grate AI into production systems, ensuring trustworthiness becomes a prerequisite rather

than an afterthought, since decision-making in manufacturing must be both accurate

and interpretable.

The widespread adoption of AI has resulted in complex socio-technical systems where

rapid, automated decision-making often replaces slower traditional analyses. While effi-

cient, this has raised concerns about users placing excessive trust in AI outputs. Misplaced

trust can lead to over-reliance, with users accepting AI recommendations uncritically [4].

Such reliance risks treating embedded biases or errors, including AI hallucinations, as ob-

jective truth without adequate validation.

Studies further indicate that excessive reliance on AI can diminish users’ creativity,

critical thinking, and practical skills [5±7]. In manufacturing, although AI can process large

volumes of data to support decisions, the underlying meaning may be lost without human

contextual understanding. Over-reliant users may perform well in familiar situations but

struggle in novel scenarios where prior data is unavailable, limiting their ability to reason,

adapt, and generate actionable insights.

Bias in AI systems can arise from multiple sources, including user, data, and algorith-

mic bias [8]. Over-reliance on AI makes such biases difficult to detect, as outputs are often

perceived as inherently trustworthy, potentially reinforcing existing prejudices [8,9]. These

issues have led to documented discriminatory outcomes in socio-technical systems, notably

in criminal justice [10] and healthcare [11].

Despite these challenges, users continue to adopt AI due to its efficiency and rapid

decision-making capabilities [4]. However, excessive reliance poses long-term risks such as

cognitive offloading, skill degradation, and reduced accountability. A balanced approach is

therefore required, where AI supports decision-making while humans retain understanding

and responsibility. This necessitates transparency and explainability, enabling users to

understand not only what decisions are made, but why. As manufacturing and other

critical sectors increasingly depend on AI, trustworthiness grounded in explainability,

accuracy, and interpretability becomes essential for maintaining human-centred control

over decisions.

To bridge this gap, XAI has emerged as a paradigm that renders model reasoning

transparent to engineers, regulators, and operators. In manufacturing, where data are

generated from diverse sources including, but not limited to, visual imagery, acoustic

signals, and multivariate sensor data, explainability ensures that algorithmic decisions

remain auditable and physically meaningful. Incorporating XAI therefore becomes essential

not only for compliance [12] but also for actionable insights that enhance reliability and

reduce downtime.

Beyond performance, industrial AI must also be trustworthy. According to the Eu-

ropean Commission’s High-Level Expert Group on AI (HLEG), a trustworthy system

must be lawful, ethical, and robust throughout its lifecycle [13]. Among its seven key re-

quirements, transparency and human-in-the-loop (HITL) oversight are especially relevant

to manufacturing, where engineers must interpret, validate, or override model outputs

before deployment [14]. This human-centric perspective aligns with the transition from

Industry 4.0Ðautomation-drivenÐto Industry 5.0, which re-centres human creativity and

collaboration [15,16]. Within this paradigm, AI acts as a partner that augments human
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capability, extending trustworthiness to ethical and operational dimensions. Building upon

this foundation, Table 1 summarises the principal forms of manufacturing data and their

corresponding XAI use cases. These modalitiesÐvision, acoustic/vibration, and multi-

variate sensor dataÐcapture complementary aspects of industrial processes. To explore

explainability across them, the present work examines three representative datasets: Cast-

ing Product (image classification), Defects Class and Location (object detection), and MIMII

(acoustic anomaly detection). Each dataset is evaluated independently to illustrate how

XAI techniques contribute to improved transparency and diagnostic understanding.

While significant advances have been made in applying deep learning models to man-

ufacturing tasks such as visual inspection and condition monitoring, their widespread adop-

tion remains constrained by the opaque, black-box nature of these systems. In industrial

environments particularly those that are safety-critical, quality-sensitive, or regulated the

ability to understand and audit AI-driven decisions is as important as predictive accuracy.

The primary objective of this paper is not to propose or optimise new machine learning

models, but to systematically investigate how XAI techniques can be used to open the

black-box behaviour of AI systems commonly encountered in manufacturing. To this

end, the study deliberately employs multiple representative models across heterogeneous

data modalitiesÐvision-based classification, vision-based detection, and acoustic anomaly

detection to examine whether XAI methods can provide consistent, physically meaningful

explanations irrespective of model architecture or learning paradigm. The key contributions

of this work are as follows:

• Cross-modal explainable AI framework: The paper presents a unified interpretive

approach for applying explainable AI techniques across heterogeneous manufacturing

data modalities, encompassing supervised vision-based classification, vision-based de-

fect localisation, and unsupervised acoustic anomaly detection. This demonstrates the

generalisability of XAI techniques beyond a single task, model architecture, or learning

paradigm. This approach focuses on structured interpretation of XAI outputs rather

than the development of quantitative explainability metrics.

• Physically grounded interpretation of AI decisions: The study systematically links

XAI outputs to physically meaningful defect characteristics and fault mechanisms,

enabling domain-grounded interpretation of model behavior rather than purely visual

or statistical explanation. This supports actionable insight and diagnostic reasoning in

industrial environments.

• Explainability as a trust-enabling mechanism: The work positions explainability as

an operational component of trustworthy AI, aligned with Industry 5.0 principles,

human-in-the-loop oversight, and emerging regulatory expectations for transparency

and accountability in manufacturing AI systems.

In this work, systemising explainable AI refers to the structured and repeatable inte-

gration of explainability into heterogeneous industrial AI pipelines, where explainability

is treated as a primary analytical component rather than a post hoc visualisation. By fo-

cusing on interpretability, transparency, and trust rather than model optimisation, this

work bridges the gap between theoretical XAI research and the practical demands of real-

world industrial deployment through a systemised integration of explainability across

heterogeneous manufacturing applications. In this context, trustworthiness is addressed

through interpretability and design alignment with Industry 5.0 principles, while the em-

pirical evaluation of operator trust or empowerment through user studies is beyond the

scope of this work.
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Table 1. Comparison of manufacturing data modalities and explainable AI use cases.

Data Domain/Type Data Source Example Use Cases Task Type
Selected
Dataset

Industrial Relevance XAI Contribution

Vision-Based Image

Classification
(Grayscale/RGB Images)

Automated
cameras, industrial
vision sensors

• Surface defect detection on castings,
welds, and machined parts

• Paint and coating uniformity
inspection

• Dimensional quality verification
• Porosity detection in additive

manufacturing

Binary/Multi-Class
Classification

Casting
Dataset [17]

Represents automated
visual inspection systems
for defect and quality
assurance in
manufacturing

Provides visual
interpretability using
Grad-CAM, Integrated
Gradients, and Occlusion
to explain
decision regions.

Vision-Based Object

Detection and Localisation
(Color Images with

Bounding Boxes)

Industrial cameras,
robotic inspection
systems

• Detection and localisation of cracks,
scratches, and dents

• PCB solder-joint and component
placement verification

• Tool wear and edge-chipping
localisation

• Weld seam tracking and uniformity
analysis

Multi-Class Object
Detection

Defects
Dataset [18]

Reflects industrial
inspection tasks requiring
classification and spatial
localisation for defect
identification

Improves model
transparency via
Grad-CAM and
Saliency-based
visualisation of
spatial attention.

Acoustic/Vibration-Based
Time-Series Analysis

(Audio or Vibration Signals)

Microphones,
accelerometers,
vibration sensors

• Machine condition monitoring
(bearings, fans, motors, pumps)

• Tool chatter, imbalance, or looseness
detection

• Predictive maintenance using sound
and vibration data

• Leakage detection in pneumatic and
compressor systems

Unsupervised
Anomaly Detection

MIMII
Dataset [19]

Models acoustic condition
monitoring for early fault
detection and predictive
maintenance

Uses SHAP and LIME to
explain feature-level
reasoning in
anomaly detection.
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The remainder of this paper is organised as follows. Section 2 provides the theoret-

ical foundation of trustworthy and XAI in industrial contexts, emphasising the role of

human oversight, transparency, and ethical governance frameworks relevant to Industry

5.0. Similarly, Section 3 discusses relevant prior studies and contributions from the existing

literature. Section 4 reviews benchmark datasets used in industrial defect detection and

condition monitoring, highlighting their relevance to AI trustworthiness and reproducibil-

ity. Section 5 examines the role of XAI in manufacturing, focusing on its contribution to

transparency across visual inspection and sensor-based monitoring systems. Section 6

describes the proposed methodology, detailing data preprocessing, model training, and in-

tegration of explainability methods for visual and acoustic modalities. Section 7 presents

and discusses the results, demonstrating how XAI enhances interpretability, diagnostic clar-

ity, and operator trust in AI-driven manufacturing systems. Finally, Section 8 concludes the

paper and outlines future research directions for advancing trustworthy and explainable

AI within smart manufacturing ecosystems.

2. Background

As discussed in the Introduction, this section provides a detailed overview of the prin-

ciples of trustworthy AI, the role of human oversight in Industry 5.0, and the importance of

XAI in ensuring transparency and accountability within industrial systems.

According to the European Commission’s High-Level Expert Group on Artificial Intel-

ligence (HLEG), a trustworthy AI system must satisfy three interdependent componentsÐit

must be lawful, ethical, and robust throughout its lifecycle [13]. The HLEG further out-

lines seven key requirements for trustworthy AI: human agency and oversight, technical

robustness and safety, privacy and data governance, transparency, diversity and fairness,

societal well-being, and accountability. These principles collectively establish a foundation

for deploying AI responsibly across industrial domains [20,21]. The overall structure of

trustworthy AI, as proposed by the European Commission’s HLEG, is illustrated in Figure 1,

highlighting the interrelation between the three pillarsÐlawfulness, ethics, and robustness

and the seven key requirements that underpin responsible AI adoption.

Figure 1. The three pillars and seven key requirements of Trustworthy AI, adapted from the European

Commission’s HLEG framework [13]. These dimensions collectively define the foundation for ethical,

lawful, and robust AI in industrial systems.

https://doi.org/10.3390/s26030911
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Among these pillars, transparency and human-in-the-loop (HITL) oversight are central

to building operational trust. Transparency refers to the degree to which stakeholders in-

cluding developers, operators, and regulators can understand an AI system’s data sources,

decision processes, and limitations. The EU AI Act further formalises this requirement by

mandating explainability and traceability for high-risk AI systems in industrial settings [14].

Complementarily, human-in-the-loop approaches ensure that AI systems augment rather

than replace human decision-making, embedding oversight mechanisms that allow humans

to interpret, validate, or override AI outputs when necessary. This human-centric per-

spective is essential in manufacturing, where system reliability, worker safety, and quality

control depend on the interplay between human expertise and automated intelligence [22].

The central role of human oversight and collaboration within Industry 5.0 is illustrated

in Figure 2, where humans, AI systems, and industrial processes operate in a continuous

feedback loop that ensures transparency, validation, and shared control.

Figure 2. Human±AI collaboration within the Industry 5.0 paradigm, emphasising human oversight,

validation, and collaboration between operators, AI systems, and industrial processes [15,22].

This emphasis on human±machine collaboration is reinforced by the ongoing transi-

tion from Industry 4.0 to Industry 5.0, a paradigm that places humans back at the core of

industrial production. Industry 5.0 emphasises sustainability, resilience, and human-centric

design over purely efficiency-driven automation. It integrates digital technologiesÐsuch as

AI, the Internet of Things (IoT), robotics, and cyber-physical systems with human creativity

and oversight [15]. Within this framework, AI becomes not only a tool for automation but

also a partner in augmenting human capability. Consequently, the concept of trustwor-

thiness expands to encompass ethical, social, and operational dimensions ensuring that

intelligent manufacturing remains both productive and human-centred [16,23].

AI’s role in manufacturing has become particularly prominent in quality control, pre-

dictive maintenance, and process optimisation, where data-driven methods have achieved

unprecedented accuracy. Deep learning models now power visual inspection systems for

surface defect detection, vibration-based fault diagnosis, and multivariate sensor fusion for

predictive maintenance. However, these models often operate as ªblack boxes,º providing

results without interpretable reasoning. This opacity limits operator trust and hinders

root-cause analysis when failures occur [24]. To mitigate such limitations, XAI has emerged

as a critical approach to make AI reasoning comprehensible to engineers and auditors.

By visualising which features or data regions influence predictions, XAI allows stakeholders

to assess not just whether a model works, but why it produces a given outcome [25].

Explainability is particularly important when AI models interact with diverse data

sources for instance, vision data from industrial cameras, acoustic signals from machine

https://doi.org/10.3390/s26030911
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sensors, and multivariate time-series data from process monitoring systems. Each of these

data domains captures complementary aspects of manufacturing behavior: visual data

reveal surface and geometric anomalies; acoustic and vibration signals expose internal

mechanical conditions; and sensor data track thermal, electrical, or dynamic system states.

In this context, XAI provides mechanisms to interpret and validate model decisions across

these modalities. For example, visual methods such as Grad-CAM or Saliency maps

highlight spatial regions driving defect detection and classification, while SHAP (SHap-

ley Additive exPlanations) explain feature-level contributions in time-series or acoustic

analysis [26]. Such interpretability enables informed decision-making, facilitates trou-

bleshooting, and reinforces user trust in AI-assisted manufacturing. The integration of XAI

into the manufacturing pipeline is summarised in Figure 3, which depicts how data from

visual, acoustic, and sensor sources feed into AI models, followed by explainability layers

that generate interpretable outputs for human validation.

Figure 3. Overview of the three independent XAI pipelines used in this study. Vision, acoustic,

and time-series data are each processed through dedicated AI models and corresponding explainabil-

ity methods, with results evaluated in an Interpretation & Validation stage to ensure transparency

and trust in manufacturing AI systems.

However, the deployment of AI without proper oversight has also led to notable

failures and incidents. Studies on trustworthy AI have documented several cases where

opaque or poorly validated AI models caused operational disruptions, safety risks, or bi-

ased outcomes [27]. These ªAI disastersº underscore the importance of embedding risk

management and governance frameworks such as ISO/IEC 23894:2023 [28] and the NIST

AI RMF 1.0, both of which provide structured methodologies for managing AI reliability,

bias, and transparency. In contrast, successful AI deployments in manufacturing, those

integrating explainability, human supervision, and compliance with standards demonstrate

measurable improvements in productivity, defect detection, and worker confidence [23].

These examples reveal that trustworthy AI is not merely a regulatory ideal but a tangible

enabler of industrial excellence.

A growing body of related work now explores how explainability, transparency,

and accountability can be quantitatively evaluated in industrial AI systems. Frameworks

such as BEExAI [29], OpenHEXAI [30], and OpenXAI benchmark explainability methods

across metrics like fidelity, stability, and human interpretability [31]. Recent surveys

emphasise the need for domain-specific adaptations of these toolkits for manufacturing,

where real-time decision-making, physical safety, and multimodal data integration present

unique challenges [27]. Establishing objective criteria for evaluating XAI in manufacturing

is thus a vital step toward operationalising trustworthy AI principles.

https://doi.org/10.3390/s26030911
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Building upon this conceptual foundation, the present study investigates how explain-

able AI techniques can enhance transparency and reliability across manufacturing domains

characterised by visual, acoustic, and sensor-based data. By applying interpretable models

and visualisation methods to representative datasets, this work aims to demonstrate how

explainability supports diagnostic clarity, fosters trust, and operationalises the principles

of trustworthy, human-centric AI in real industrial environments. Having established

this theoretical groundwork, the Section 3 presents an overview of existing research and

contributions by other authors in this area and Section 4 examines key industrial datasets

that underpin research in explainable defect detection and condition monitoring, providing

the empirical basis for evaluating XAI techniques across diverse manufacturing contexts.

3. Related Work: Explainable AI in Manufacturing

XAI has begun to find application across multiple manufacturing domains, driven by

the need for transparent decision support in safety-critical and high-cost industrial envi-

ronments. Systematic reviews of XAI adoption in smart manufacturing show an increasing

trend toward practical deployment of explainability techniques, particularly in predictive

maintenance, defect detection, and process optimisation [32]. In the context of predictive

maintenance, several studies have highlighted the importance of explainable models to

support understanding of equipment failure predictions and decisions made by machine

learning systems. Dereci et al. discuss existing XAI approaches for predictive mainte-

nance, underscoring the growing interest in model interpretability in this domain [33].

Similarly, position papers on explainable predictive maintenance identify gaps in how

tailored explanations are provided for different user groups in industrial tasks, suggesting

that domain-specific XAI design is still under development [34].

Beyond predictive maintenance, XAI methodologies have also been applied to quality

control and defect analysis in manufacturing. Marín Díaz proposes integrating clustering

with XAI techniques such as SHAP and LIME to support both global and local interpretabil-

ity of defect prediction models in industrial settings, revealing influential production param-

eters [35]. The literature also includes conceptual frameworks that emphasise transparency,

root-cause analysis, and human interpretability for manufacturing decision support [36].

Despite these advances, existing work typically remains (modality-specific or task-specific),

often focusing on a single manufacturing application such as predictive maintenance or

quality inspection. There is limited research on (cross-modal XAI generalisation), and few

studies treat explainability as an integral part of unified human-in-the-loop industrial work-

flows. Addressing these gaps motivates the cross-modal, explainability-centred framework

proposed in this paper. To highlight how existing XAI research in manufacturing compares

to the proposed explainability framework, Table 2 summarises representative prior studies

across key capabilities such as predictive maintenance, quality analysis, human-centred

interpretability, and multi-modal evaluation.

Table 2. Comparison of explainable AI adoption in manufacturing studies.

Capability [33] [34] [35] [36] This Work

Applied to Predictive Maintenance ✓ ✓ × × ✓

Applied to Quality/Defect Analysis × × ✓ × ✓

Explicit XAI Technique Evaluation ✓ ✓ ✓ × ✓

Human-centred Interpretability Emphasis × ✓ × ✓ ✓

Multi-modal (vision + acoustic) × × × × ✓

Unsupervised + Supervised Integration × × ✓ × ✓

Systematic Evaluation Framework × × × × ✓

https://doi.org/10.3390/s26030911
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4. Literature Review on Industrial Defect Detection Datasets

The integration of AI into manufacturing has been accelerated by the availability

of benchmark datasets that replicate real-world inspection and monitoring tasks. Such

datasets shown in Table 3 provide standardised testbeds for developing and validating

machine learning and deep learning models, fostering reproducibility and comparability

across approaches. Among the most widely utilised resources are the Casting Product

Dataset, the GC10-DET dataset, and the MIMII dataset. Collectively, these datasets span

multiple modalitiesÐvisual inspection through binary classification, defect localisation

with multi-class detection, and machine condition monitoring using acoustic data.

Table 3. Comparison of publicly available industrial datasets supporting trustworthy AI.

Dataset Modality Size Labels Task(s)
Industrial
Domain

Casting Product
Dataset [17]

Grayscale
Images

(300 × 300)
7348

Binary (OK vs.
Defective)

Classification
Visual inspection

of castings

GC10-DET [18]
Color Images

with Bounding
Boxes

2300 images,
2280 .xml labels

10 defect types
with spatial

location

Detection +
Classification

Steel surface in-
spection

MIMII [19]
Acoustic

Recordings
Several hours of

audio
Normal vs.
Abnormal

Anomaly
Detection

Machine condi-
tion monitoring

4.1. Casting Product Dataset

The Casting Product Dataset [17] contains 7348 grayscale images of submersible

pump impeller castings as shown in Figure 4, categorized as either defective or defect-free.

The images (300 × 300 pixels) include instances of shrinkage, blowholes, pinholes, and burrs.

This dataset has been extensively used for benchmarking convolutional neural networks

(CNNs) and related classification algorithms in automated visual inspection.

Figure 4. Representative samples from the benchmark datasets used in this study: casting defect

image for visual inspection.

From a trustworthiness perspective, this dataset supports research into robustness

and accuracy validation of defect detection models. Since binary classification decisions

directly affect product acceptance or rejection, ensuring that AI models are interpretable

and reliable is essential for gaining operator trust in industrial settings.

https://doi.org/10.3390/s26030911
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4.2. GC10-DET: Defects Class and Location Dataset

The GC10-DET dataset [18] significantly extends the capabilities of automated visual

inspection by offering a comprehensive collection of 2300 steel surface images that encom-

pass 2280 annotated defect instances stored in .xml format. Each annotation specifies a

bounding box, allowing the dataset to support both defect classification and localisation

tasks. It comprises ten distinct categories of surface imperfections, a few of which are

shown in Figure 5: punching (Pu), weld line (Wl), crescent gap (Cg), water spot (Ws), oil

spot (Os), silk spot (Ss), inclusion (In), rolled pit (Rp), crease (Cr), and waist folding (Wf).

All defects were captured directly from steel sheet surfaces, reflecting realistic industrial

inspection conditions.

Figure 5. Representative samples from the benchmark datasets used in this study: metal surface

defect image from the GC10-DET dataset.

This dataset provides a platform for testing advanced object detection algorithms

such as Faster R-CNN, SSD, and YOLO. Importantly, its spatial annotations facilitate

research in XAI, as bounding boxes inherently provide a level of interpretability by visually

aligning algorithmic predictions with actual defect regions. In industrial practice, this

visual transparency strengthens trust between operators and AI systems, as inspectors can

verify the reasoning behind automated decisions.

4.3. MIMII Dataset

The MIMII dataset (Malfunctioning Industrial Machine Investigation and Inspec-

tion) [19] introduces an acoustic monitoring dimension, with sound recordings from fans,

pumps, valves, and slide rails. Each recording includes both normal and abnormal op-

erating conditions as shown in Figure 6, collected in realistic factory environments with

background noise.

This dataset underpins research into acoustic anomaly detection for predictive main-

tenance. It has been widely employed in studies utilising spectrogram-based CNNs,

autoencoders, and unsupervised anomaly detection. For AI trustworthiness, MIMII en-

ables investigation into uncertainty estimation and anomaly explanation, where sound

patterns can be correlated with mechanical faults. By connecting audible signatures to

equipment health, the dataset supports transparent and justifiable decision-making in

machine condition monitoring.

4.4. Summary and Link to AI Trustworthiness

Taken together, these datasets represent complementary aspects of industrial monitor-

ing: binary defect detection, multi-class defect localisation, and acoustic anomaly identifi-

cation. Beyond enabling algorithmic development, they provide avenues for exploring key

trustworthiness dimensions of AI across diverse manufacturing contexts.

For instance, vision-based datasets such as the Casting Product and Defects Class and

Location datasets enable the study of explainability in automated inspection systems, where

https://doi.org/10.3390/s26030911
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AI models are deployed to identify surface flaws, verify geometric integrity, and detect

micro-defects during high-throughput production. These systems mirror real-world in-

spection pipelines used in casting, forging, and additive manufacturing, where explainable

AI can justify defect classifications to operators and improve rework accuracy.

Meanwhile, acoustic datasets like MIMII simulate continuous equipment monitoring

environments, where sound and vibration data are captured from motors, compressors,

and pumps to diagnose early-stage mechanical faults. Such datasets are particularly

relevant for predictive maintenance and condition-based monitoring, where explainable

models not only flag anomalies but also indicate which spectral or temporal features, such

as variations in frequency bands or energy levels, contributed to the detection outcome.

Figure 6. Time-domain representations of acoustic signals obtained from the MIMII pump dataset

(ID 06), illustrating normal and abnormal operating conditions. The abnormal signal exhibits in-

creased amplitude variations compared to normal operation.

Extending beyond visual and acoustic sensing, the same principles of explainability

apply to multivariate time-series data obtained from process sensors measuring parameters

such as temperature, pressure, and flow rate. In these contexts, XAI can help identify which

process variables exert the greatest influence on deviations in quality or energy efficiency,

facilitating real-time, closed-loop decision-making in smart manufacturing systems.

Collectively, these datasets and modalities encompass the core operational pillars

of modern manufacturingÐproduct inspection, machine health monitoring, and process

optimisation. Product inspection focuses on the early detection and classification of surface

defects, dimensional deviations, or assembly errors to ensure consistent quality during

production. Machine health monitoring involves continuous tracking of acoustic and

vibration signatures to identify wear, imbalance, or component degradation before critical

failures occur, thereby improving equipment reliability and reducing unplanned downtime.

Process optimisation extends these principles to multivariate sensor data, enabling real-time

adjustment of process parameters such as temperature, pressure, or feed rate to enhance

productivity, reduce energy consumption, and maintain stable operational performance.
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By integrating explainability across these domains, AI-driven systems can bridge human

interpretability with computational intelligence, ensuring that automated decisions remain

transparent, accountable, and actionable within industrial environments.

By grounding trustworthy AI research in these publicly available datasets, the field

moves closer to developing industrial systems that are not only accurate but also inter-

pretable, verifiable, and aligned with human decision-making processes. Such integration

ensures that AI systems deployed on factory floors and production lines can operate trans-

parently under real-world conditions providing engineers with meaningful insights into

why specific predictions or classifications are made. This alignment between algorithmic

intelligence and operator understanding is essential for fostering confidence in automation

and ensuring traceability in decision pathways.

Furthermore, establishing explainable methodologies across domains such as aerospace,

automotive, and high-value manufacturing is a critical enabler for the adoption of AI in

safety-critical and quality-sensitive applications. In these sectors, where even minor misclas-

sifications can lead to significant operational or economic consequences, XAI provides the

foundation for auditing model behavior, verifying compliance with industrial standards,

and ensuring that AI-driven recommendations remain consistent with domain expertise

and regulatory expectations. Building on these principles, the next section delves into how

XAI helps make AI-driven manufacturing systems more transparent and understandable,

highlighting its impact across visual inspection, acoustic monitoring, and sensor-based

time-series analysis. The insights gained from this review set the stage for the following

Section 5, which explores how XAI techniques contribute to transparency and diagnostic

understanding across the different manufacturing modalities represented by these datasets.

5. The Role of XAI in Manufacturing

Building upon the previously discussed datasets and their industrial relevance, this

section focuses on how XAI contributes to transparency within manufacturing systems.

The increasing reliance on AI-driven models for inspection, monitoring, and maintenance

tasks demands that their decisions be interpretable and aligned with physical process

behaviour. However, the opacity of complex deep learning architectures often limits user

confidence and hinders accountability in high-stake environments. XAI addresses this limi-

tation by offering methods that clarify the reasoning behind AI outputs. In manufacturing,

such transparency is vital: engineers must be able to validate that a model’s decision is

grounded in relevant defect indicators rather than spurious patterns.

In this section, we examine how XAI contributes to transparency in manufacturing

by considering two critical data modalities: (i) vision-based inspection systems for surface

defect detection and (ii) time-series sensor data analysed with unsupervised models for

acoustic anomaly detection. Together, these perspectives provide a comprehensive view of

how XAI enhances interpretability across heterogeneous manufacturing tasks.

5.1. XAI for Vision-Based Models

Computer vision has become a cornerstone of automated manufacturing, where the

accurate detection of small surface defects can prevent costly quality failures. Deep learning-

based detectors such as convolutional neural networks and region-based architectures have

set benchmarks in defect recognition tasks [1±3]. Despite their accuracy, these models

function as black boxes, producing classifications or bounding boxes without exposing the

rationale behind their outputs. This opacity is problematic in industrial contexts where

quality engineers require clear evidence that the model has focused on physically relevant

features of the product.
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To mitigate this issue, XAI methods designed for vision tasks have been widely

adopted. Techniques such as Gradient-weighted Class Activation Mapping (Grad-CAM),

saliency maps, occlusion analysis, and Integrated Gradients generate visual heatmaps that

highlight the image regions most responsible for a prediction. These approaches translate

the internal activations of deep neural networks into interpretable visual cues that help

engineers validate whether the network has correctly focused on defect-relevant regions

rather than background noise or irrelevant features [37,38].

5.1.1. Saliency Maps

Saliency maps compute the gradient of the model output with respect to each input

pixel, capturing how small perturbations in pixel intensity affect the final class score [39].

For a model f (x) and class score Sc(x), the saliency at pixel xi is expressed as:

Mi =

∣

∣

∣

∣

∂Sc(x)

∂xi

∣

∣

∣

∣

(1)

This method highlights the most sensitive pixels driving the classification decision, offer-

ing a first-order approximation of the model’s local behaviour. In manufacturing defect

detection, high-intensity regions in a saliency map typically correspond to cracks, pores,

or irregular textures that influenced the network’s output.

5.1.2. Gradient-Weighted Class Activation Mapping

Grad-CAM [40] extends this concept by leveraging the gradient information flowing

into the last convolutional layer of a CNN. For class c, the importance of feature map Ak is

determined as follows:

αc
k =

1

Z ∑
i

∑
j

∂yc

∂Ak
ij

(2)

where Z is the number of spatial locations. The Grad-CAM heatmap is then obtained

as follows:

Lc
Grad-CAM = ReLU

(

∑
k

αc
k Ak

)

(3)

This produces a coarse localisation map showing which image regions contribute most to

a specific class prediction. In defect inspection, Grad-CAM helps visualise whether the

model attends to actual defect areas rather than uniform surfaces or shadows.

5.1.3. Integrated Gradients

Integrated Gradients (IG) [41] attributes importance to each input feature by integrat-

ing gradients along a straight path from a baseline (e.g., a black image) x′ to the actual

input x. For feature i, the attribution is

IGi(x) = (xi − x′i)
∫ 1

α=0

∂F(x′ + α(x − x′))

∂xi
dα (4)

Unlike raw gradients, IG mitigates the problem of gradient saturation and yields smoother,

more stable attributions. In industrial contexts, it provides a cumulative importance

estimate, indicating which structural or texture features most influence the defect classifica-

tion outcome.
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5.1.4. Occlusion Sensitivity

Occlusion analysis, introduced by Zeiler and Fergus [42], measures how the class score

changes when local regions of an image are masked or replaced. For class c, the importance

of region R is given by

∆Sc(R) = Sc(x)− Sc(x \ R) (5)

where x \ R denotes the input with region R occluded. This technique identifies the most

critical areas for classification by directly testing the model’s sensitivity to missing visual

informationÐan effective strategy for verifying the robustness of defect localisation models

in quality inspection.

Together, these visualisation methods bridge deep network reasoning with human

interpretation, allowing practitioners to confirm whether model attention aligns with

ground-truth defect locations. Their complementary natureÐgradient-based (Saliency,

Grad-CAM, IG) versus perturbation-based (Occlusion) provides a comprehensive toolkit

for interpreting convolutional models used in manufacturing inspection [37,38].

In our study, we applied these techniques to two datasets. Using the casting product

dataset [17], YOLOv8n was trained for defect detection, and its outputs were interpreted

through Grad-CAM, Integrated Gradients, saliency maps, and occlusion. These expla-

nations revealed how the detector localised casting defects, confirming whether predic-

tions aligned with ground-truth anomalies. In parallel, the Defects Class and Location

dataset [18] was used to train Faster R-CNN for defect classification and localisation. Ex-

planations from Grad-CAM and saliency mapping were employed to analyse bounding

box predictions, providing insight into how the network distinguished between defect

categories and their spatial placement. This combination of models and interpretability

methods demonstrates that XAI strengthens the reliability of computer vision systems in

manufacturing by coupling detection accuracy with transparent reasoning.

5.2. XAI for Time-Series and Unsupervised Models

While visual inspection addresses visible surface anomalies, many industrial systems

rely on continuous sensor monitoring, producing time-series data such as sound or vi-

bration signals. These modalities are essential for tasks such as predictive maintenance

and fault diagnosis. A challenge in this setting is that labeled datasets are often scarce,

making unsupervised learning approaches more practical. Methods like Isolation Forests or

autoencoders detect deviations from normal operating behavior but, as unlabeled models,

their decision-making is even less transparent than that of supervised vision models [43].

Recent research has extended XAI to such contexts, showing that techniques like

SHAPÐoriginally developed for tabular and image data can be adapted to univariate and

multivariate time-series [12,37,44]. Other studies have proposed KernelSHAP-based expla-

nations for unsupervised models, generating local instance-level interpretability [45], while

some frameworks also provide global insights into anomaly detection mechanisms [46,47].

Collectively, these advances illustrate that interpretability can be achieved even in the

absence of labeled data, enhancing both trust and diagnostic capability.

SHAP attributes the contribution of each feature by applying Shapley values from

cooperative game theory [44]. For a model f with feature set F, the Shapley value ϕi of

feature i is defined as:

ϕi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!

|F|!

[

f (S ∪ {i})− f (S)
]

(6)

This ensures a fair distribution of feature contributions by averaging over all possible

subsets S of features. SHAP provides both local interpretability (per-instance explanations)
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and global interpretability (average importance across the dataset), enabling transparent

understanding of model behaviour in sensor-based fault detection tasks.

Our contribution builds on this direction using the MIMII dataset [19], which contains

acoustic recordings of industrial machines. We trained an Isolation Forest exclusively on

normal signals to learn the baseline of machine operation and applied it for anomaly detec-

tion. SHAP was then integrated to identify which acoustic featuresÐincluding root mean

square (RMS) energy, zero-crossing rate (ZCR), and Mel-frequency cepstral coefficients

(MFCCs), drove the classification of abnormal segments. This enabled fine-grained inter-

pretability, linking anomaly decisions to specific signal properties and offering actionable

insights into machine behavior. In this way, XAI transformed a purely statistical detector

into a transparent tool for acoustic monitoring in manufacturing.

5.3. Bridging Modalities

Existing literature on XAI in manufacturing has largely concentrated on a single

modality, either focusing on vision-based defect detection or on sensor-driven anomaly

analysis. By contrast, our study integrates XAI across both domains. We applied Grad-

CAM, saliency, Integrated Gradients, and occlusion maps to deep learning models for

defect detection, and complemented this with SHAP applied to time-series data modeled

by Isolation Forests. This cross-modal perspective demonstrates that explainability can be

systematically embedded into diverse manufacturing pipelines, from supervised vision

models to unsupervised acoustic detectors.

By unifying these approaches, our work advances the goal of trustworthy AI in manu-

facturing, showing that interpretability is not restricted to one data type or model family

but can be consistently applied across heterogeneous industrial tasks. This establishes a

foundation for the broader adoption of XAI in production systems where both accuracy

and transparency are paramount. After examining the theoretical and practical role of

XAI in enhancing transparency, Section 6 presents the proposed methodology, describing

how explainability is systematically integrated into AI pipelines for visual and acoustic

inspection tasks.

6. Methodology

The proposed methodology is designed as a unified framework for integrating XAI

into manufacturing applications, with the primary objective of investigating how XAI

techniques can be used to open the black-box behaviour of AI systems commonly en-

countered in industrial practice. Rather than optimising or comparing machine learning

models, the study treats model selection as a secondary consideration and employs the

chosen models as representative black-box decision-makers, enabling focused evaluation

of explainability. The framework follows a common sequence of steps, data acquisition

and preprocessing, model training, application of explainability techniques, and evalua-

tionÐadapted to different manufacturing data modalities. To demonstrate the breadth and

generalisability of the approach, the methodology is applied to three representative case

studies: image classification of casting defects, object detection of metal surface defects,

and acoustic anomaly detection in machine sound.

To support the explainability-centred objective, the study deliberately employs diverse

model architectures and learning paradigms, including supervised convolutional neural

networks for visual inspection, region-based object detectors for defect localisation, and un-

supervised anomaly detection models for acoustic condition monitoring. This diversity

is intentional and enables systematic assessment of whether XAI methods can provide

meaningful and physically interpretable explanations independent of model structure, task

formulation, or supervision strategy. In the visual inspection domain, YOLOv8n is used
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as a lightweight representative of convolutional models deployed in real-time industrial

inspection systems. The intent is not to demonstrate superiority over alternative CNN

architectures, but to evaluate whether gradient- and activation-based XAI techniques can

successfully expose the internal reasoning of a commonly adopted deep learning classi-

fier in quality control scenarios. For defect localisation, Faster R-CNN is employed as a

representative region-based detector widely used in industrial and research contexts. Its

two-stage architecture provides a suitable testbed for examining whether explainability

techniques can align model attention with physically meaningful defect regions rather

than background artefacts. In the acoustic condition monitoring task, an Isolation Forest is

selected to represent unsupervised anomaly detection, reflecting the practical reality that

labelled fault data are often unavailable in manufacturing environments. Here, the em-

phasis is not on anomaly detection performance in isolation, but on assessing whether

feature-level explainability methods such as SHAP can transform an inherently opaque

statistical model into a transparent and interpretable diagnostic tool.

By intentionally avoiding model comparison and hyperparameter optimisation,

the study maintains a clear focus on explainability as the central experimental variable.

The use of heterogeneous models allows the work to demonstrate that XAI techniques can

be systematically applied across diverse industrial AI pipelines to support transparency,

trust, and human-in-the-loop decision-making. Each case study is described in detail below.

6.1. Casting Defects: Image Classification with YOLOv8 and Explainability

The Casting Defects dataset [17] was employed to investigate the role of explainable

XAI in automated defect detection. This dataset contains grayscale images of automotive

casting components divided into two categories: ok_front, representing defect-free samples,

and def_front, representing defective castings with surface irregularities such as blow-

holes and cracks. Images are organised into train and test directories with subfolders

corresponding to each class. Although the dataset is grayscale, images were processed as

three-channel tensors to meet the input requirements of the chosen model. The complete

workflow for this experiment, from data preparation to explainability and validation, is

illustrated in Figure 7.

To increase dataset diversity and reduce orientation bias, in-place rotation augmenta-

tion was applied to both the training and testing sets. Each sample was rotated by 45◦, 90◦,

and 135◦ using affine transformations implemented in OpenCV. A reflective padding mode

was employed to avoid artificial edges caused by rotation. Augmented images were stored

alongside the originals, effectively expanding the dataset size fourfold. This preprocessing

strategy improved model generalisation and robustness against positional variation.

For classification, the YOLOv8n classifier (yolov8n-cls.pt) was adopted. This

lightweight convolutional neural network comprises a convolutional backbone and a

linear classification head. Fine-tuning was carried out using the Ultralytics API with de-

fault settings for classification tasks. Training employed the categorical cross-entropy loss,

defined as

L = −
C

∑
c=1

yc log ŷc, (7)

where yc is the ground-truth label and ŷc is the predicted probability for class c. Since

the task is binary, C = 2. The network was trained for three epochs with a batch size

of forty and an input resolution of 300 × 300 pixels. Training was performed on GPU

hardware when available, and on CPU otherwise. The best-performing checkpoint was

stored at runs/classify/train3/weights/best.pt and was subsequently used for all

explainability experiments. The overall pipeline followed in this study is summarized in

Algorithm 1.
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Figure 7. Workflow of the visual inspection experiment using YOLOv8 and explainable AI (XAI)

techniques. The process includes: (1) data preparation through image collection and augmentation,

(2) model training with YOLOv8, (3) inference and evaluation on test images, (4) application of Grad-

CAM, Integrated Gradients, Occlusion, and Saliency methods for explainability, and (5) visualisation

and validation of heatmaps to confirm focus on true defect regions.

Algorithm 1 Casting Defect Classification and Explainability Framework

1: Input: Dataset D with classes ok_front, def_front
2: Output: Trained YOLOv8n classifier with explanations
3: Load dataset, convert grayscale to 3-channel tensors
4: Apply rotation augmentation (45◦, 90◦, 135◦)
5: Train YOLOv8n classifier with cross-entropy loss
6: Evaluate and save best checkpoint
7: For each test sample, compute explanations:

• Saliency Maps
• Grad-CAM (SmoothGradCAM++)
• Integrated Gradients
• Occlusion Sensitivity

8: Normalise and overlay explanation maps on original images
9: Visualise and interpret model focus on defect regions

These training parameters follow standard fine-tuning practices for YOLO-based

models reported in the literature and official Ultralytics YOLOv8 implementations, where

pretrained weights and limited training epochs are commonly used for industrial inspection

tasks to ensure stable convergence on moderate-sized datasets [48,49].

To provide insights into the decision-making process of the YOLOv8n classifier, four

complementary XAI techniques were employed. Saliency maps were computed by evaluat-

ing the gradient of the class score with respect to each input pixel, which measures how

sensitive the model’s prediction is to changes in individual pixel intensities. In simple terms,
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pixels with larger gradient values have a greater influence on the final decision, highlighting

the specific regions in the image that most strongly affect the classification outcome.

Mi =

∣

∣

∣

∣

∂Sc(x)

∂xi

∣

∣

∣

∣

(8)

where Sc(x) denotes the logit for class c. Gradient-weighted Class Activation Mapping

(Grad-CAM) was also used to generate coarse, class-discriminative heatmaps from the final

convolutional layer. Feature map weights were calculated as

αc
k =

1

Z ∑
i

∑
j

∂yc

∂Ak
ij

, Lc
Grad-CAM = ReLU

(

∑
k

αc
k Ak

)

, (9)

where Ak are the feature maps and Z is the normalisation factor. A more stable vari-

ant, SmoothGradCAM++, was employed to improve localisation around fine-grained

defect cues.

Integrated Gradients were applied to capture attributions along a continuous path

from a baseline input x′ to the actual input x. For feature i, the attribution is defined as

IGi(x) = (xi − x′i)
∫ 1

0

∂F(x′ + α(x − x′))

∂xi
dα. (10)

This technique provides smoother and more reliable attributions than raw gradients

by reducing sensitivity to gradient saturation.

Finally, Occlusion Sensitivity was used as a perturbation-based method to evaluate the

importance of local regions. In this approach, an image region R is systematically masked,

and the change in the class score is recorded:

∆Sc(R) = Sc(x)− Sc(x \ R), (11)

where x \ R denotes the occluded image. Scanning the mask across the input produced a

spatial importance map, which highlighted defect-sensitive regions in the castings.

For each explainability method, the resulting heatmaps were scaled between 0 and

1 and visually overlaid on the original casting images using consistent color maps. This

allowed an intuitive inspection of where the model was ªlookingº when making its deci-

sions. In other words, the highlighted areas show which parts of the image most influenced

the classification. Combining gradient-based, activation-based, and perturbation-based

methods gave a complete picture of the model’s reasoning and helped confirm that it

focused on actual defect regions rather than irrelevant background patterns.

6.2. Metal Surface Defects: Object Detection with Faster R-CNN and Explainability

The Defects Class and Location dataset [18] was employed to evaluate explainability in

the context of object detection for metal surface inspection. This dataset comprises images

of metal surfaces annotated with bounding boxes in Pascal VOC XML format, describing

the location and type of surface defects. Each image is associated with one or more defect

regions, and the labels correspond to defect classes obtained from the folder structure.

The complete workflow followed in this study is summarised in Algorithm 2.

To construct the dataset, XML files were parsed to extract bounding box coordinates

and class labels. Each bounding box was normalised with respect to the image dimensions

to ensure numerical stability during training. The dataset was divided into training and

validation subsets using an 80/20 split, stratified by defect class. To address class imbalance,

oversampling of under-represented classes was performed until each class reached parity

with the largest class. A custom PyTorch (version 2.5.1, CUDA 12.1) Dataset was imple-
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mented to return paired samples (x, y), where x is the input image and y = boxes, labels

represents the ground-truth bounding boxes and class identifiers.

Algorithm 2 Metal Surface Defect Detection and Explainability Framework

1: Input: Dataset D of annotated metal surface images
2: Output: Trained Faster R-CNN model with explanations
3: Parse Pascal VOC XML files to extract bounding boxes and defect classes
4: Normalise bounding box coordinates by image dimensions
5: Split dataset into training (80%) and validation (20%) subsets
6: Apply oversampling to balance under-represented defect classes
7: Construct a PyTorch dataset returning (x, y) pairs with images and targets
8: Initialise Faster R-CNN with ResNet-50 FPN backbone and replace detection head to

match number of classes
9: Train model for 50 epochs with batch size 4 using SGD optimiser (lr = 0.005, momen-

tum = 0.9, weight decay = 5 × 10−4)
10: Optimise multi-task loss L = Lcls + λLbox

11: Save the best-performing model checkpoint
12: For each test image, compute visual explanations:

• Saliency Maps: compute gradients of class logits w.r.t. input pixels
• Grad-CAM: generate class-discriminative heatmaps from convolutional layers in

the detection backbone

13: Normalise explanation maps to [0, 1] and overlay on input images
14: Compare predicted bounding boxes with ground-truth annotations
15: Assess whether explanation highlights coincide with true defect regions

The availability of ground-truth bounding box annotations in the GC10-DET dataset

enables quantitative validation of defect localisation using standard object detection metrics.

In this study, predicted bounding boxes produced by the Faster R-CNN model are quantita-

tively evaluated against ground-truth annotations, achieving peak localisation performance

of approximately mIoU = 0.44 and mAP@0.5 = 0.61, which provides sufficient confidence

in the plausibility of the localisation results. Explainability analysis is then applied to these

validated predictions, and the quality of XAI is assessed by examining the spatial align-

ment between high-activation regions in the explanation maps and the annotated defect

locations. Importantly, localisation accuracy is not treated as the primary optimisation

objective; rather, it serves as contextual grounding to ensure that explainability results are

interpreted in relation to reliable defect detection rather than evaluated in isolation.

The detection model was based on the Faster R-CNN architecture, implemented in

the TorchVision library. A ResNet-50 backbone with Feature Pyramid Network (FPN)

was adopted, initialised with weights pretrained on COCO. The classification head was

modified to accommodate the number of defect classes in the dataset plus the background

class. Training was conducted for fifty epochs with a batch size of four. The stochastic

gradient descent (SGD) optimiser was used with a learning rate of 0.005, momentum of

0.9, and weight decay of 5 × 10−4. This training configuration follows widely adopted

practices in Faster R-CNN±based industrial defect detection, as established in the original

Faster R-CNN formulation and subsequent object detection literature, providing stable

convergence and reliable localisation performance without task-specific hyperparameter

tuning, which aligns with the explainability-centred objective of this study rather than

performance optimisation [50]. The model was trained to minimise the multi-task loss

function of Faster R-CNN, which combines a classification loss Lcls and a bounding-box

regression loss Lbox:

L = Lcls + λLbox, (12)
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where λ balances the contribution of the regression term.

The explainability analysis was carried out using both gradient-based and activation-

based attribution methods. Saliency maps were obtained by computing the absolute

gradient of the detection score with respect to input pixels, thereby identifying sensitive

regions. Grad-CAM was employed on the backbone convolutional layers to generate

class-discriminative activation maps, defined as

Lc
Grad-CAM = ReLU

(

∑
k

αc
k Ak

)

, (13)

where Ak denotes the feature maps and αc
k are weights derived from the gradients of the

class score with respect to Ak. These explanation maps were normalised and overlaid

on the corresponding input images to provide interpretable insights into the model’s

decision-making process.

6.3. Acoustic Anomaly Detection: Isolation Forest with XAI for Time-Series Data

In this part of the study, we investigated anomaly detection in acoustic signals using

an unsupervised learning approach combined with explainable artificial intelligence (XAI).

The dataset consisted of audio recordings of machines under both normal and abnormal

operating conditions, stored as .wav files in separate normal/ and abnormal/ directories.

Each recording was sampled at 16 kHz, preserving both low- and high-frequency character-

istics. The complete workflow for acoustic anomaly detection and explainability is detailed

in Algorithm 3 and illustrated in Figure 8.

Figure 8. Workflow of the acoustic anomaly detection and explainability experiment. The process

begins with setup and library configuration, followed by feature extraction of acoustic descriptors

such as RMS, zero-crossing rate (ZCR), spectral centroid, spectral bandwidth, and MFCCs. After fea-

ture standardisation and dataset structuring, an Isolation Forest model is trained on normal data to

detect anomalies. SHAP is then applied for global feature importance analysis, and the results are

visualised through anomaly score plots and SHAP summary plots to interpret model behavior and

validate feature contributions.
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Algorithm 3 Acoustic Anomaly Detection and Explainability Framework

Input: Audio dataset D with normal/ and abnormal/ recordings
Output: Trained Isolation Forest with SHAP explanations

3: Load all audio files and resample to 16 kHz
Segment each recording into frames of length 1024 with hop size 512
Extract per-frame features: RMS, ZCR, Centroid, Bandwidth, MFCC1±MFCC3

6: Normalise all features using z-score standardisation
Train Isolation Forest on normal samples with contamination parameter 0.05
For each test recording:

• Compute anomaly scores s(ft) for each frame
• Apply threshold θ (90th percentile) to detect anomalies
• Map frame indices back to time domain and highlight anomalous segments

9: Apply SHAP to obtain local and global feature attributions
Aggregate predictions at the file level (abnormal if >30% anomalous frames)
Compute confusion matrix, precision, recall, and F1-score

12: Visualise waveform plots with shaded anomalies and overlay XAI explanations

Feature Extraction Each audio signal was divided into overlapping frames of length

1024 samples with a hop size of 512. From every frame, seven features were extracted using

the Librosa library: Root Mean Square (RMS) energy, Zero-Crossing Rate (ZCR), Spectral

Centroid, Spectral Bandwidth, and the first three Mel-Frequency Cepstral Coefficients

(MFCCs). This resulted in a feature vector of dimension d = 7 for each frame t:

ft = [RMSt, ZCRt, Centroidt, Bandwidtht, MFCC1t, MFCC2t, MFCC3t]. (14)

The selection of acoustic features in this study is intentionally guided by human inter-

pretability rather than by maximising model performance. The chosen indicators RMS

energy, zero-crossing rate, spectral centroid, spectral bandwidth, and low-order MFCCs

are widely used in acoustic condition monitoring because they correspond to perceptually

meaningful properties of sound, such as loudness, roughness, brightness, and timbral

variation. These characteristics are directly related to what human operators perceive as

abnormal machine behaviour, including increased vibration, harsh impacts, tonal shifts,

or broadband noise.

From a human-in-the-loop perspective, this feature design supports explainability

by ensuring that XAI outputs can be related back to operators’ practical auditory skills

rather than abstract latent representations. For example, elevated RMS energy corresponds

to louder or more energetic sounds, while changes in spectral centroid and MFCCs re-

flect shifts in tonal balance that are often audible during mechanical degradation. This

approach aligns with prior work on human-centred and explainable acoustic monitoring,

where interpretable features are preferred to preserve operator understanding and reduce

over-reliance on opaque AI systems. To ensure comparability across features, z-score

normalisation was applied:

f ′t,i =
ft,i − µi

σi
, (15)

where µi and σi are the mean and standard deviation of feature i computed from the

training set.

Anomaly Detection Model An Isolation Forest (IF) was trained exclusively on normal

feature vectors to learn the statistical profile of healthy machine sounds. The contamination
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parameter was set to 0.05 to reflect the expected proportion of anomalies. For each frame ft,

the anomaly score was computed as the negative decision function:

s(ft) = −h(ft), (16)

where h(ft) denotes the average path length of ft across the isolation trees. Frames with

high anomaly scores were more likely to correspond to faulty machine states.

Temporal Anomaly Mapping Predictions were generated frame by frame, and the

anomaly scores were mapped back to the time domain using

t =
n · H

sr
, (17)

where n is the frame index, H = 512 is the hop size, and sr = 16,000 Hz is the sampling rate.

A threshold θ corresponding to the 90th percentile of anomaly scores was chosen:

θ = Percentile90(s(f1), . . . , s(fT)), (18)

and frames with s(ft) > θ were flagged as anomalies. These anomalous regions were

highlighted on the waveform plots, enabling visual inspection of fault events over time.

Explainability To enhance transparency, the SHAP (Shapley Additive Explanations)

method was applied to interpret the model’s predictions. SHAP provided both local

explanationsÐusing waterfall plots for individual anomalies and global explanations

using beeswarm plots across the entire dataset. For each time frame t, SHAP computed

per-feature contribution values ϕt
i , satisfying the additive property of feature attributions:

f (ft) = ϕ0 +
d

∑
i=1

ϕt
i . (19)

Evaluation For file-level detection, a recording was considered abnormal if more

than 30% of its frames were flagged as anomalies. Performance was assessed using

a confusion matrix and standard metrics: precision, recall, and F1-score. In addition,

waveform plots with shaded anomaly regions and XAI visualisations were generated for

qualitative assessment.

This methodology combined domain-specific audio feature extraction, unsupervised

learning via Isolation Forest, and multi-level explainability using SHAP. It ensured both

accurate anomaly detection and interpretability, addressing the requirements of industrial

condition monitoring. The following Section 7 presents and analyses the experimental

results obtained from the proposed methodology, demonstrating how XAI enhances inter-

pretability and trust in AI-driven quality and condition monitoring systems.

7. Results and Discussion

This section presents the explainability outcomes obtained across two complementary

sensing regimes in manufacturing: vision-based inspection and acoustic condition monitor-

ing. We first analyse the vision-based pipelinesÐcasting defect classification (YOLOv8n)

and metal surface defect detection and localisation (Faster R-CNN)Ðwith a focus on

how post-hoc explanations (Grad-CAM, Integrated Gradients, Saliency, and Occlusion)

reveal the spatial evidence supporting each decision and align with physically meaning-

ful defect cues. We then examine the acoustic pipeline (Isolation Forest on MIMII-style

recordings), where feature-level attributions from SHAP clarify the temporal±spectral char-

acteristics driving anomaly flags. Throughout, our emphasis is on transparency, traceability,

and operator interpretability: rather than reporting accuracy as the primary endpoint, we
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assess whether explanations are consistent with domain knowledge, expose failure modes,

and provide auditable justification suitable for deployment in industrial settings.

7.1. Vision-Based Explainability Results

This subsection presents explainability results from two vision-based manufacturing

pipelines: casting defect classification using YOLOv8n and metal surface defect detection

using Faster R-CNN. Before applying explainability techniques, both models were evalu-

ated using standard performance metrics to ensure reliable behaviour (accuracy, precision,

recall, and F1-score for YOLOv8n; IoU and mAP for Faster R-CNN). This confirms that the

explanations reflect functioning industrial AI systems rather than poor model performance.

While all XAI methods highlight regions relevant to the models’ decisions, noticeable dis-

crepancies are observed. Gradient-based methods such as Grad-CAM produce smoother,

class-focused heatmaps, whereas saliency-based approaches are more sensitive to local

variations and background noise. These differences show that XAI provides complemen-

tary, not definitive, explanations, reinforcing the need for cautious interpretation supported

by domain knowledge in safety-critical manufacturing contexts.

In conventional computer vision pipelines, the user typically receives only the final

model prediction, such as a class label or bounding box without any visibility into the

reasoning process behind it. As illustrated in Figure 9, the classifier can indicate whether a

casting is ªdefectiveº or ªnon-defective,º but this output alone provides limited diagnostic

value to an operator. However, through the integration of XAI techniques, the same decision

can be decomposed into interpretable visual evidence (Figure 10). Thus, explainability not

only communicates the outcome but also reveals why the model reached it, bridging the

gap between algorithmic prediction and human understanding.

For the casting defect classification task, the YOLOv8n classifier was evaluated us-

ing four gradient- and perturbation-based explanation methods: Grad-CAM, Integrated

Gradients, Saliency Maps, and Occlusion Sensitivity. Grad-CAM visualisations (Figure 10)

consistently highlighted localised regions corresponding to surface imperfections such

as blowholes, cracks, and uneven textures, closely aligning with the ground-truth defect

zones identified by domain experts. Integrated Gradients produced smooth attribution

maps concentrated around defect contours, suggesting that the classifier’s activations were

driven by physically meaningful surface variations rather than background illumination

or part geometry. The Saliency maps reinforced these findings by revealing high-gradient

responses precisely at surface discontinuities, while Occlusion analysis confirmed that

masking the defective region resulted in a substantial reduction in the model’s confi-

dence score. Together, these interpretability outcomes validate that the YOLOv8n model’s

decision-making process is both spatially focused and industrially relevant, making it

suitable for deployment in automated visual inspection pipelines.

In the case of the metal surface defect detection dataset, the Faster R-CNN model

was analysed to examine whether its predictions were accompanied by coherent spatial

explanations. Grad-CAM heatmaps extracted from the network’s feature pyramid layers

(Figure 11) revealed that the detector’s attention concentrated within annotated bounding

boxes for diverse defect types, including scratches, dents, and surface inclusions. This

alignment between the model’s activation patterns and the annotated ground truth under-

scores its capacity for interpretable localisation. Moreover, saliency visualisations provided

finer delineation of defect boundaries, indicating that the detector relied on texture vari-

ations and edge discontinuities that are consistent with physical defect manifestations.

Importantly, explainability also revealed potential limitations, such as partial attention

on background reflections in high-gloss samples, highlighting the usefulness of XAI in

diagnosing model biases and guiding further dataset refinement.

https://doi.org/10.3390/s26030911

https://doi.org/10.3390/s26030911


Sensors 2026, 26, 911 24 of 36

Figure 9. Traditional/black-box AI prediction

(a) (b) (c)

(d) (e)

Figure 10. Explainability results for the YOLOv8 classifier on casting defect detection. (a) Original

input image, (b) Grad-CAM heatmap, (c) Integrated Gradients attribution, (d) Occlusion Sensitivity

map, and (e) Saliency map.

Figure 11. The Faster R-CNN model detects a punching hole defect, followed by XAI tools generating

Saliency and Grad-CAM maps that highlight the regions influencing the model’s decision, improving

transparency and human interpretability.

Collectively, the visual XAI analyses across both datasets demonstrate that deep learn-

ing models can produce interpretable, physically consistent justifications for their decisions

when supported by appropriate explainability frameworks. Beyond confirming that models
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attend to relevant regions, these visual explanations empower human operators to audit AI

reasoning, verify conformity with industrial standards such as EN4179, and confidently

integrate AI systems into high-value manufacturing workflows.

7.2. Acoustic Anomaly Detection and Explainability

This section presents the experimental results and technical interpretation of the acous-

tic anomaly detection framework based on the Isolation Forest (IF) algorithm integrated

with XAI tools. The study focuses on developing an interpretable, unsupervised learning

pipeline capable of detecting abnormal sound events in industrial environments while

maintaining full transparency of the model’s decision process. The results encompass fea-

ture extraction, model training, quantitative performance evaluation, and interpretability

analysis, collectively demonstrating that the system achieves robust detection accuracy and

high transparencyÐkey requirements for trustworthy AI in manufacturing.

7.2.1. Feature Extraction and Data Representation

Each audio sample was preprocessed at a fixed sampling frequency of 16 kHz and

divided into overlapping frames of 1024 samples with a hop length of 512 samples. For each

frame, seven time±frequency features were extracted using the librosa library, resulting in a

seven-dimensional feature vector defined as:

ft = [RMSt, ZCRt, Centroidt, Bandwidtht, MFCC1t, MFCC2t, MFCC3t],

where RMS denotes Root Mean Square energy, ZCR represents the Zero Crossing Rate,

Centroid and Bandwidth correspond to the spectral centroid and bandwidth, and MFCC1±3

are the first three Mel-Frequency Cepstral Coefficients. These descriptors collectively

capture amplitude, frequency, and timbral characteristics of the acoustic signal. To ensure

numerical stability and uniform scaling across features, the data were standardised using

z-score normalisation:

f ′t,i =
ft,i − µi

σi
,

where µi and σi represent the mean and standard deviation of feature i computed from the

training set.

7.2.2. Model Training and Parameterisation

An Isolation Forest (IF) model was trained exclusively on feature vectors extracted

from recordings of normal machine operation. This approach enables unsupervised learn-

ing of the statistical distribution of healthy system behavior. The model’s hyperparameters

were configured as follows: number of estimators = 100, contamination = 0.05, and random

state = 42 for reproducibility.

The IF algorithm isolates anomalies by recursively partitioning the feature space

using randomly selected attributes and thresholds, yielding an anomaly score for each

input vector:

s(ft) = −h(ft),

where h(ft) denotes the average path length required to isolate ft within the ensemble of

decision trees. Frames exhibiting higher anomaly scores are more likely to correspond to

abnormal conditions.

7.2.3. Threshold Selection and Frame-Level Detection

A global threshold θ was determined empirically to maximise the separation be-

tween normal and abnormal recordings. During inference, each test file was segmented
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into frames, and the anomaly score of each frame was compared against θ. Frame-level

predictions were generated according to:

yt =







1, if s(ft) > θ,

0, otherwise.

The binary sequence {yt} was subsequently mapped to the time domain using the

frame indices and hop length, allowing direct visualisation of abnormal regions on the

waveform. Temporal overlays illustrate that the detected anomalies align with audible

deviations such as abrupt impacts, irregular vibrations, or frequency drifts.

7.2.4. Quantitative Evaluation

The overall model performance is summarised in Figure 12, which presents the con-

fusion matrix, Receiver Operating Characteristic (ROC) curve, and Precision±Recall (PR)

curve for the test dataset. The model achieved an overall accuracy of 89%, with macro-

averaged precision, recall, and F1-score of 0.85, 0.89, and 0.86, respectively. For the normal

class, the precision and recall were 0.90 and 0.88, while for the abnormal class they were

0.74 and 0.89, respectively. The ROC curve exhibits an Area Under the Curve (AUC) of

0.945, confirming excellent discriminative ability between normal and abnormal operating

conditions. The high recall for abnormal cases indicates strong sensitivity to fault events,

which is crucial in predictive maintenance applications where missed detections can lead

to costly system failures. Similarly, the PR curve demonstrates consistent precision at high

recall levels, showing that the model maintains reliability under class imbalance.

Figure 12. Performance evaluation of the Isolation Forest model for acoustic anomaly detection. The

top panel shows the confusion matrix summarising classification accuracy across normal and abnor-

mal classes, while the bottom panel illustrates the ROC and Precision±Recall curves, demonstrating

strong discriminative capability (AUC = 0.945, overall accuracy = 89%).
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These results confirm that the Isolation Forest, trained solely on normal data, effectively

identifies unseen abnormal acoustic signatures without supervision, validating its suitabil-

ity for real-time monitoring systems that demand both reliability and interpretability.

7.2.5. Global and Local Explainability

To provide interpretability for the unsupervised model, the SHapley Additive exPla-

nations (SHAP) framework was employed. The scoring function for the SHAP analysis

was defined such that higher SHAP values correspond to a higher likelihood of anoma-

lous behaviour.

Score(X) = −IF.decision_function(X)

Global SHAP summaries aggregated at the dataset level revealed that RMS energy

and Spectral Centroid exerted the strongest positive influence on anomaly scores, followed

by MFCC1. These findings align with physical intuitionÐabnormal machine behavior

typically manifests through increased vibration energy and shifts in spectral distribution.

Local interpretability was achieved through frame-specific waterfall plots, which

decompose each frame’s anomaly score into additive feature contributions. In abnormal

segments, elevated values of certain acoustic features contributed to higher anomaly scores,

while lower values of other features reduced the anomaly response. Such analyses help

reveal the specific acoustic characteristics that drive anomaly detection decisions.

7.2.6. Signal-Level Summarisation

At the recording level, an anomaly ratio Ranomaly was computed as:

Ranomaly =
1

T

T

∑
t=1

⊮{s(ft) > θ},

where T denotes the total number of frames. If Ranomaly exceeded 0.2, the correspond-

ing signal was classified as abnormal. This simple yet effective rule allowed robust

separation between healthy and faulty recordings, providing clear, interpretable out-

puts such as: łSignal classified as NORMAL (anomaly ratio = 0.13)ž or łSignal

classified as ABNORMAL (anomaly ratio = 0.75)ž. Visualisation of detected anoma-

lies confirmed that the IF model consistently highlighted time intervals associated with

mechanical irregularities while maintaining low false-alarm rates in normal states.

7.2.7. Case Study: Normal Signal (Normal_003)

The Normal_003 recording represents a baseline example of healthy machine operation.

The waveform shown in Figure 13 exhibits a stable amplitude profile with no sustained high-

energy bursts or irregular transients. Although a small number of frames (47 out of 313,

corresponding to Ranomaly = 0.15) were flagged as locally anomalous, these intervals were

short, non-contiguous, and did not exceed the decision threshold at the signal level. This

behaviour is consistent with minor acoustic fluctuations typical of normal mechanical

processes such as background resonance, airflow variation, or sensor noise.

From a statistical standpoint, the Isolation Forest’s decision function remained close to

zero across most frames, indicating high similarity to the learned distribution of normal

features. The corresponding SHAP-based feature attribution analysis further supports this

conclusion. As illustrated in Figure 14, MFCC1 and MFCC3 provided small positive contri-

butions to the local anomaly score, primarily reflecting transient cepstral shifts associated

with momentary changes in acoustic tone. However, these effects were counterbalanced

by negative contributions from Bandwidth, Centroid, and MFCC2, which stabilised the

overall score and prevented escalation into an abnormal classification.
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Figure 13. Waveform of the Normal_003 signal with anomaly spans highlighted in red. A total

of 47 out of 313 frames (15.02%) were flagged by the Isolation Forest as locally anomalous. These

sparse, short-duration events are non-contiguous and correspond to normal operational fluctuations,

resulting in a final classification of ªNormalº.

The per-sound feature deviation analysis in Figure 15 quantifies this behaviour at the

global level. The largest deviations from the mean normal baseline occurred in MFCC1

(∆ = 0.76) and RMS energy (∆ = 0.67), followed by MFCC2 (∆ = 0.36). These moderate

deltas indicate limited variation in spectral envelope and overall energyÐexpected for

normal operation with mild acoustic modulation. Low deviations in Spectral Centroid and

Bandwidth further confirm that the frequency distribution and spectral spread remained

consistent with healthy operation.

Figure 14. SHAP waterfall plot for a representative flagged frame in Normal_003. MFCC1 and

MFCC3 contribute small positive values to the frame-level anomaly score, reflecting transient cepstral

variability, while Bandwidth, Centroid, and MFCC2 provide compensating negative contributions.

This balance keeps the aggregated anomaly score below the threshold, confirming normal behaviour.

From a physical interpretation perspective, these results indicate that the machine

emitted a stable acoustic signature characterised by steady vibrational energy and a consis-

tent harmonic content. The Isolation Forest’s decision to classify the recording as normal

aligns with both the data-driven model behaviour and the underlying physics of the pro-

cess: minor transient events may occur naturally, but they do not reflect a fault state or

abnormal dynamics.

Overall, the Normal_003 case demonstrates the model’s ability to tolerate benign signal

variability without overreacting to transient fluctuations. It validates the robustness and

selectivity of the proposed anomaly detection frameworkÐessential qualities for reliable
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industrial condition monitoring, where low false-alarm rates are critical for operator trust,

maintenance efficiency, and compliance with explainable AI standards.

Figure 15. Per-sound feature deviation plot for Normal_003. The highest deviations are observed

in MFCC1 (∆ = 0.76) and RMS (∆ = 0.67), followed by MFCC2 (∆ = 0.36). All deviations remain

within the statistical range observed for healthy signals, confirming stable machine operation.

7.2.8. Case Study: Abnormal Signal (Abnormal_004)

The Abnormal_004 recording represents a typical example of faulty machine be-

haviour. Unlike the stable characteristics of Normal_003, this signal exhibits sustained

high-energy oscillations and irregular transient peaks, as seen in Figure 16. The Isolation

Forest identified a large proportion of frames as anomalous, yielding an anomaly ratio

of Ranomaly = 0.74, well above the decision threshold (θ = 0.20). The dense red regions

indicate that abnormal dynamics persisted across most of the 10 s recording, signifying a

prolonged deviation from nominal machine operation.

Figure 16. Waveform of the Abnormal_004 signal with anomaly spans highlighted in red. The dense

and persistent red intervals across the 10 s duration reflect continuous abnormal behaviour. The

high anomaly ratio (Ranomaly = 0.74) indicates that the majority of frames deviate from the learned

distribution of normal acoustic features.

From a statistical standpoint, the Isolation Forest’s decision function produced strongly

negative scores across most frames, confirming a significant departure from the normal

feature manifold. This is further supported by the per-sound feature deviation plot in

Figure 17. Here, RMS energy exhibits an exceptionally large deviation (∆ = 4.1), followed

by MFCC1 (∆ = 2.2) and MFCC2 (∆ = 0.4). These large positive deviations indicate

abnormal increases in vibration amplitude and cepstral coefficients, implying pronounced

spectral and energetic shifts. Such deviations correspond physically to mechanical imbal-

ance, frictional drag, or early-stage bearing impacts that alter both the energy envelope and

the harmonic content of the signal.
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Figure 17. Feature deviation plot for Abnormal_004. RMS shows the largest deviation (∆ = 4.1),

followed by MFCC1 (∆ = 2.2). These extreme deviations indicate high vibration energy and broad

spectral modulation, characteristics consistent with mechanical faults.

Local feature attribution using SHAP analysis (Figure 18) provides additional inter-

pretive insight. RMS and MFCC1 contributed the most substantial positive values to the

frame-level anomaly score, clearly driving the Isolation Forest’s fault decision. MFCC2,

Centroid, and Bandwidth also made positive contributions, indicating broader and more

variable frequency content. By contrast, MFCC3 exerted a small negative influence, but in-

sufficient to offset the dominant energy and spectral effects. The combined impact of these

features yielded a net anomaly score of f (x) = 0.096, reinforcing the classification of the

frameÐand by extension the entire recordingÐas abnormal.

From a physical perspective, the Abnormal_004 signal reflects a clear deterioration

in mechanical stability. The elevated RMS levels denote excessive vibration energy, while

the strong MFCC1 and MFCC2 activations suggest a deformation of the spectral envelope

typically caused by rotating or oscillating components operating under mechanical stress.

The temporal persistence of these deviations implies a structural rather than transient

anomalyÐsuch as bearing wear, imbalance, or partial shaft misalignmentÐleading to

characteristic broadband noise and energy surges.

Overall, the Abnormal_004 case demonstrates the ability of the proposed framework

to correctly identify and explain significant fault behaviour. The model not only detects the

anomaly through statistical deviation but also attributes its cause to physically meaningful

acoustic features. This strengthens the argument that the Isolation ForestÐcombined with

SHAP-based interpretabilityÐoffers a robust, transparent, and physics-consistent tool for

industrial fault detection and diagnosis.

7.2.9. Discussion and Implications

The explainability analyses confirm that the Isolation Forest (IF) model grounds its

predictions in physically meaningful acoustic features, rather than arbitrary statistical

patterns. As observed across the analysed recordings, RMS energy and spectral centroid

consistently act as dominant indicators of abnormal behavior, while MFCC coefficients

capture subtle shifts in harmonic structure linked to machine health. High RMS values

correspond to elevated vibrational energy, typically resulting from mechanical friction,

bearing impacts, or shaft misalignment. Similarly, abrupt spectral centroid fluctuations

reflect frequency-weighted energy shifts caused by unbalanced rotation or surface irreg-

ularities. By associating these measurable physical phenomena with model responses,

the framework bridges the gap between data-driven detection and domain-grounded di-
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agnosis, thus transforming the IF model from a black-box detector into an interpretable

diagnostic tool.

Figure 18. SHAP waterfall plot for a representative anomalous frame in Abnormal_004. RMS

and MFCC1 dominate the positive contributions to the anomaly score, supported by moderate

effects from MFCC2, Centroid, and Bandwidth. MFCC3 provides minimal negative contribution,

indicating that the abnormality arises primarily from sustained increases in vibrational energy and

cepstral dynamics.

Table 4 summarises the interpretability outcomes for all ten analysed signals. The

per-signal analysis demonstrates the model’s capability to generalise across different acous-

tic signatures, accurately distinguishing between stable and degraded states. Normal

recordings exhibit low anomaly ratios (Ranomaly < 0.2) and feature deviations limited to

low-magnitude fluctuations in MFCC1, RMS, or MFCC2. In contrast, abnormal recordings

display sustained anomaly ratios above 0.65 and amplified ∆ values in RMS and MFCC1,

confirming the strong association between high energy content and machine degrada-

tion. At the frame level, SHAP attributions reinforce this interpretationÐnormal cases

show balanced contributions across features, whereas abnormal cases are dominated by

energy-centric (RMS) and cepstral (MFCC1, MFCC2) components, highlighting the precise

spectral±temporal signatures of mechanical faults.

These findings highlight the coherence between statistical and physical interpretability.

The unsupervised IF model, trained solely on normal data, successfully learns the acoustic

manifold of healthy machine states. When deviations occur, they correspond directly

to physically plausible shifts in spectral energy or harmonic distributionÐfeatures that

engineers can relate to tangible faults. This interpretive alignment provides strong evidence

of model trustworthiness. Moreover, the quantitative explainability (via SHAP) ensures

that operators can trace individual decisions back to specific features and time intervals,

enabling fault localisation and root-cause inference.

From a system-design perspective, this integration of anomaly detection and SHAP-

based interpretability strikes a crucial balance between accuracy, transparency, and de-

ployability. The high AUC value of 0.945 confirms detection robustness, while per-signal

interpretability mitigates the risk of overfitting and false alarms. The method’s unsu-

pervised nature eliminates the dependency on labeled fault dataÐoften unavailable in

industrial environmentsÐmaking it ideal for scalable, cross-asset condition monitoring.

In the context of Industry 4.0, such explainable anomaly detection systems play a

pivotal role in achieving Trustworthy AI for predictive maintenance. They provide a dual
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advantage: reliable early fault detection and transparent decision rationale. This trans-

parency not only fosters operator trust and regulatory compliance (e.g., AI Act, ISO/IEC

23894) but also supports continuous improvement loops where insights from SHAP-driven

analysis can inform maintenance planning, sensor design, and process optimisation. Over-

all, the combination of Isolation Forest and SHAP represents a practical yet theoretically

grounded approach toward interpretable, reliable, and data-efficient acoustic anomaly de-

tection in manufacturing environments. In this study, systemisation refers to the repeatable

integration and interpretation of explainability outputs across heterogeneous models and

data modalities, rather than the definition of universal explainability methodologies or

metrics. Building on the experimental findings, the final Section 8 concludes the paper by

summarising key contributions and outlining future research directions to further advance

trustworthy and explainable AI in smart manufacturing.

Table 4. Per-signal interpretability summary showing anomaly ratios, dominant feature deviations,

and SHAP-based contributors for Normal and Abnormal recordings.

Ref ID File Name Frames
Anom. Frames

(%)
Threshold Final Class

Top ∆ Features
(∆)

SHAP Top
Contributors

Normal_003 00000037.wav 313 47 (15.02) −0.0873 Normal
MFCC1 (0.7647),

RMS (0.6708),
MFCC2 (0.3567)

MFCC1, MFCC3,
ZCR, RMS

Normal_005 00000068.wav 313 78 (24.92) −1.0873 Abnormal
MFCC1 (0.9427),
MFCC3 (0.6974),

ZCR (0.4648)

MFCC2,
Centroid, ZCR

Normal_002 00000161.wav 313 42 (13.42) −1.0873 Normal

Centroid
(0.5619), ZCR

(0.5589), MFCC3
(0.5482)

±

Normal_001 00000230.wav 313 204 (65.18) −1.0873 Abnormal

ZCR (2.0425),
MFCC2 (1.4328),

Centroid
(1.4098)

MFCC2, ZCR,
Centroid

Normal_004 00000231.wav 313 46 (14.70) −1.0873 Normal

Centroid
(0.8532), MFCC2

(0.8267), ZCR
(0.7526)

±

Abnormal_004 00000026.wav 313 207 (66.13) −1.0873 Abnormal
RMS (4.1267),

MFCC1 (2.2232),
MFCC2 (0.3332)

MFCC2,
Bandwidth, ZCR

Abnormal_005 00000029.wav 313 234 (74.76) −1.0873 Abnormal
RMS (3.6100),

MFCC1 (2.4282),
MFCC3 (0.8650)

MFCC2,
Bandwidth,

Centroid

Abnormal_001 00000033.wav 313 253 (80.83) −1.0873 Abnormal
RMS (3.7095),

MFCC1 (2.6006),
MFCC3 (0.3028)

MFCC2,
Bandwidth,

Centroid

Abnormal_003 00000053.wav 313 284 (90.73) −1.0873 Abnormal

RMS (6.4281),
MFCC1 (3.2028),

Bandwidth
(0.2648)

Bandwidth,
MFCC2,
Centroid

Abnormal_002 00000096.wav 313 247 (78.91) −1.0873 Abnormal

MFCC2 (2.0744),
Centroid
(1.7369),

Bandwidth
(1.4135)

ZCR, MFCC3,
Centroid
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8. Conclusions and Future Work

This study has demonstrated how explainable artificial intelligence (XAI) can trans-

form black-box models into transparent, auditable, and trustworthy tools for industrial

decision-making. By applying XAI techniques to both vision-based and acoustic datasets,

a cross-modal framework was developed that enhances human understanding of AI rea-

soning while maintaining strong detection performance.

In the visual domain, Grad-CAM, Integrated Gradients, and Occlusion analyses

showed that YOLOv8n and Faster R-CNN models focused on physically meaningful defect

regions, confirming interpretability in automated quality inspection. In the acoustic domain,

SHAP analysis of Isolation Forest results provided feature-level transparency, revealing

that anomalies were driven by energy and frequency deviations consistent with actual

mechanical faults.

Explainability was found to complement accuracy rather than hinder itÐenabling

interpretable, compliant, and human-trusted AI systems within Industry 4.0 and the

evolving Industry 5.0 paradigm. Moving forward, integrating Human-in-the-Loop (HITL)

frameworks will be essential to strengthen collaboration between AI systems and human

experts. Through interactive decision support, AI can assist humans in diagnosing faults

and suggesting corrective actions, while human feedback refines AI reasoning and prevents

automation bias.

The responsible integration of AI across all industries could be improved through

the adoption of XAI principles, transforming opaque black-box systems into transparent

frameworks. This transparency is critical for preventing cognitive offloading, preserving

user memory, and mitigating the detrimental effects of over-reliance which erodes critical

thinking and skill sets. By offering clear insight into why a decision was made, XAI helps to

expose and eliminate systemic biases and also allows humans to learn from system outputs

to build context and knowledge. This will promote innovation and improve the quality of

work and decisions.

In a human-centric design, technology adopters should intentionally define the di-

vision of work to ensure the human role remains engaging and fulfilling. They should

aim to actively support job retention, satisfaction, and preventing the human worker from

being relegated only to tasks the AI cannot handle. AI presents an opportunity to use

tools like gamification or accessible, customised explanations to make manufacturing jobs

more motivating, enjoyable, and accessible to a more diverse talent pool. While research

into human performance and experience is needed, the continued development in XAI is

essential including the traceability of data sources. This extended view of XAI is vital to

ensure systems are less biased and more inclusive, guaranteeing that the underlying data

itself was obtained and utilised in a transparent and ethical way, which is key to building a

truly collaborative and socially sustainable future.

Future work will advance toward causal and counterfactual explainability, multimodal

data fusion, and embedding interpretability within digital twins. By fostering a symbiotic

relationship between human expertise and machine intelligence, this research envisions

AI systems that not only explain and predict but also collaborate with humans to make

informed, transparent, and trustworthy industrial decisions.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence

XAI Explainable Artificial Intelligence

CNN Convolutional Neural Network

Faster R-CNN Faster Region-Based Convolutional Neural Network

YOLOv8 You Only Look Once, version 8

Grad-CAM Gradient-weighted Class Activation Mapping

IG Integrated Gradients

IF Isolation Forest

SHAP Shapley Additive Explanations

MFCC Mel-Frequency Cepstral Coefficients

RMS Root Mean Square

ZCR Zero-Crossing Rate

ROC Receiver Operating Characteristic

PR Precision±Recall

AUC Area Under the Curve

F1-score Harmonic Mean of Precision and Recall

ISO/IEC
International Organization for Standardization

/International Electrotechnical Commission

AI Act European Union Artificial Intelligence Act

AMRC Advanced Manufacturing Research Centre

HVMC High-Value Manufacturing Catapult

RGB Red±Green±Blue
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