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Abstract

Since the paper of Kleinberg and Kleinberg, SODA’05, where it was proven that the
preferential attachment random graph with degeneracy at least 3 does not obey the
first order 0-1 law, no general methods were developed to study logical limit laws
for recursive random graph models with arbitrary degeneracy. Even in the (possibly)
simplest case of the uniform attachment, it is still not known whether the first order
convergence law holds in this model. We prove that the uniform attachment random
graph with bounded degrees obeys the first order convergence law. To prove the law,
we describe dynamics of first order equivalence classes of the random graph using
Markov chains. The convergence law follows from the existence of a limit distribution
of the considered Markov chain. To show the latter convergence, we use stochastic
approximations.
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1 Introduction

We consider first-order (FO) sentences about graphs in the language containing the
adjacency ∼ and the equality = relations. For the sake of readers’ convenience, let us
recall the definitions of sentences in this language and their quantifier depths (for more
details, see surveys [4, 14, 27]). FO formulas are words consisting of symbols of several
types: variables (lowercase letters with or without integer subscripts x, y, z, x1, x2, . . .);
relational symbols ∼,=; logical connectives ∧,∨,⇒,⇔,¬; quantifiers ∀,∃; and brackets.
The formulas are defined recursively as follows:
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Logical convergence laws

• For any two variables x, y, the expressions (x ∼ y) and (x = y) are FO formulas
with free variables x and y and without bounded variables. These formulas have
quantifier depth qd(x ∼ y) = qd(x = y) = 0.

• If expressions φ, φ1, φ2 are FO formulas, then ¬φ, (φ1∨φ2), (φ1∧φ2), (φ1 ⇒ φ2), (φ1 ⇔
φ2) are also FO formulas. For any logical connective L, the set of free variables
of the formula (φ1Lφ2) is the union of the sets of free variables of φ1, φ2; the same
applies for sets of bounded variables. The sets of free variables of φ and ¬φ coin-
cide. The quantifier depth of (φ1Lφ2) equals qd(φ1Lφ2) = max(qd(φ1), qd(φ2)); the
quantifier depths of φ and ¬φ coincide.

• Finally, if φ is a FO formula, then ∃xφ and ∀xφ are FO formulas with bounded
variable x; the set of free variables of ∃xφ, ∀xφ excludes the variable x. The
quantifier depth of both ∃xφ, ∀xφ equals qd(φ) + 1.

A FO sentence is a FO formula that does not have free variables. Informally speaking, the
quantifier depth of a sentence is the maximum number of “nested” quantifiers. When we
say that a graph G satisfies a FO sentence φ and write G |= φ, we mean that φ evaluates
to true under G (the process of evaluation of a formula is defined in accordance to its
recursive structure introduced above, see details in [4, 14]; for instance, for vertices v, u
of G, the sentence x ∼ y is true according to G and the variable assignment x = u and
y = v, if and only if u, v are adjacent in G). For example, the FO sentence

∀x∀y (x = y) ∨ (x ∼ y) ∨ (∃z (z ∼ x) ∧ (z ∼ y))

has quantifier depth 3, three variables, and describes the property of having diameter
at most 2. It is worth noting that the number of variables does not necessarily coincide
with the quantifier depth of a sentence. Nevertheless, the minimum quantifier depth
among all tautologically equivalent reformulations of a given FO sentence is always
at least the minimum number of variables (see [14, Chapters 3,6]). For instance, the
sentence

∀x∀y (x = y) ∨ (x ∼ y) ∨ (∃z (z ∼ x) ∧ (z ∼ y)) ∨ (∃z (z ∼ x) ∧ (∃x (z ∼ x) ∧ (x ∼ y)))

has quantifier depth 4, three variables, and describes the property of having diameter
at most 3 (it can be proven that these parameters are minimum possible).

Logical limit laws A random graph Gn on the vertex set [n] := {1, . . . , n} is a random
element of the set of all (simple) graphs on [n] with an arbitrary distribution over this
set. It was proven by Glebskii, Kogan, Liogon’kii and Talanov [7] and independently
by Fagin [5] that, for every FO sentence φ, either asymptotically almost all graphs
on [n] satisfy φ, or asymptotically almost all graphs on [n] do not satisfy φ. In other
words, letting Gn be uniformly distributed, we get that either P(Gn |= φ) → 1, or
P(Gn |= φ) → 0 as n → ∞. This means that the descriptive power of FO logic is
weak in the sense that it does not express properties that are not trivial on typical,
sufficiently large graphs: if there exist arbitrarily large n1 and n2 such that a (non-
vanishing) fraction of graphs on [n1] has the property and a (non-vanishing) fraction
of graphs on [n2] does not have the property, then this property cannot be described
in FO logic. This phenomenon is known as the FO zero-one law, or, for brevity, FO
0-1 law. More generally, a sequence of random graphs Gn, n ∈ N, obeys the FO 0-1
law, if, for any FO sentence φ, limn→∞P(Gn |= φ) ∈ {0, 1}. FO limit laws are known
to be helpful in the comparison of descriptive powers of different logics. For example,
the failure of the FO 0-1 law in sparse binomial random graphs was used in [29] to
prove that the minimum quantifier depth of a sentence that expresses the property of
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Logical convergence laws

containing an induced subgraph isomorphic to a given graph F is at least |E(F )|
|V (F )| + 2.

The latter fact implies some limitations of algorithms that solve the induced subgraph
isomorphism problem1 by evaluating first order sentences, since the direct evaluation
of a FO sentence of quantifier depth q on an n-vertex graph runs in time Θ(nq), see [14,
Proposition 6.6].

The most studied model in the context of FO 0-1 laws is the binomial random
graph G(n, p) (see, e.g., [12, 24, 26]), where every edge is drawn independently
with probability p. In particular, G(n, 1/2) is just a graph chosen uniformly at ran-
dom. The above mentioned classical FO 0-1 law (for p = 1/2) is generalised to
all p = p(n) such that min{p, 1 − p}nα → ∞ for every α > 0 in [26] (in particular,
this is true for all constant p ∈ (0, 1)). On the other hand, the FO 0-1 law fails for
G(n, p(n)), where p(n) = n−α and α ∈ (0, 1) is rational [25]. Moreover, even the
FO convergence law fails for this random graph (a sequence of random graphs Gn,
n ∈ N, obeys the FO convergence law, if, for every FO sentence φ, limn→∞P(Gn |=
φ) exists). Many other models are studied in the context of logical laws: random
regular graphs [9], random geometric graphs [20], uniform random trees [21], etc.
(see, e.g., [11, 27, 28, 30]). However, the usual combinatorial tools that are ap-
plied to prove logical laws seem to be insufficient to study the logical behaviour of
attachment models that are, in particular, used to model real networks (see, e.g.,
[10]).

Attachment models The attachment models are built recursively. Fix a positive
integer m, which is the degeneracy parameter of the model. At each step, one new
vertex is added to the graph, from which m new edges are drawn randomly to the old
vertices. The most studied attachment models are uniform and preferential attachment.
In the uniform attachment model [6, 15], probabilities to draw an edge to a newly
added vertex are the same for all existing vertices, while in the Bollobás–Riordan
preferential attachment model probabilities are proportional to the degrees of the
respective existing vertices. Let us recall that the preferential attachment graphs
were introduced by Barabási and Albert [1] and later were formalised by Bollobás and
Riordan [2].

In [13] Kleinberg and Kleinberg observed that the classical Bollobás–Riordan pref-
erential attachment random graph with degeneracy at least 3 does not obey the FO
0-1 law. Since then, there was no significant progress in the study of logical limit
laws for attachment models with an arbitrary degeneracy parameter m — we sum-
marise all known results below. In particular, it is still unknown whether the classical
preferential attachment random graph obeys the FO convergence law. Though the
study of random graphs is dominated by the binomial random graph (and a similar
uniform model), properties of preferential attachment models better resemble those
of real-world networks such as the graph of the Web, social networks, and citation
networks.

Let FOγ be the fragment of the FO logic comprising all sentences with at most γ
variables. In the context of FO limit laws, the following are known:

• the FO 0-1 law holds for the tree models (when only one edge is drawn at each
step, i.e. m = 1), for both preferential and uniform attachment [17],

• for the non-tree uniform model (when we draw m ≥ 2 edges at each step) and the
preferential attachment model with the degeneracy m at least 3 there is no FO 0-1
law [13, 17],

1Induced subgraph isomorphism problem is the problem of deciding whether a given input host graph
contains a subgraph isomorphic to a given input pattern graph.
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• the FOm−2 convergence law is known to be true for the uniform attachment [16],
the FOm−3 convergence law holds true for some variations of the preferential
attachment [18].

Thus, for the entire FO logic, we only know that the FO 0-1 law fails if m is large
enough (m ≥ 2 for the uniform attachment and m ≥ 3 for the preferential attachment),
while it is still unclear whether the FO convergence law fails at least for some m.
Constructions of sentences with non-trivial limit probabilities are quite straightforward:
since, for m ≥ 3, the expected number of cliques of size m + 1 converges to a finite
limit, a sentence saying that there exist at least K cliques of size m+ 1 is satisfied with
probability which is bounded away both from 0 and 1, for K large enough (see details
in [13, 17]). Though for the existential fragment of the FO logic, the convergence law
clearly holds for any attachment model (it immediately follows from the definition of
the model), no approach to study the validity of the convergence law for the entire FO
logic has been developed. In this paper, we develop a method to prove FO convergence
laws for attachment models, and apply it to the uniform attachment with bounded
degrees.

Ehrenfeucht-Fraïssé game The main tool for proving logical laws is the Ehrenfeucht-
Fraïssé game (see, e.g., [14, Chapter 11.2]). Let us recall the rules of the game. The
board consists of two vertex–disjoint graphs G and H. There are two players, Spoiler
and Duplicator. The number of rounds R is fixed. In each round, Spoiler chooses a
vertex either in G, or in H; then Duplicator chooses a vertex in the other graph. When R

rounds are played, vertices x1, . . . , xR are chosen in G and vertices y1, . . . , yR are chosen
in H. Duplicator wins if and only if the bijection that maps each xi to yi, i ∈ [R], is an
isomorphism of graphs G[{x1, . . . , xR}] and H[{y1, . . . , yR}].2 The Ehrenfeucht-Fraïssé
game provides a connection between the existence of a winning strategy for Duplicator
in the game in R rounds on two graphs and their indistinguishability in terms of FO
sentences with quantifier depth at most R. This connection could be formulated in the
following way. Let us say that two graphs are FOR-equivalent if, for every FO sentence
φ with quantifier depth at most R, either φ is true on both graphs or it is false on both
graphs.

Theorem 1.1. Duplicator has a winning strategy on graphs G and H in R rounds if and
only if G and H are FOR-equivalent.

We will need the following direct consequence of Theorem 1.1.

Corollary 1.2. If for every ε > 0 and R ∈ N there exist a positive integer M and graph
families Ai, i ∈ [M ], such that, for any two representatives of one family, Duplicator wins
the game in R rounds (which is equivalent to indistinguishability in the FO logic with
quantifier depth at most R) and

P (Gn ∈ Ai) → pi, i ∈ [M ],

M∑
i=1

pi > 1− ε,

then Gn satisfies the FO convergence law.

Indeed, assume that the requirements of Corollary 1.2 hold and let φ be a first order
sentence of quantifier depth R. Due to Theorem 1.1, any two graphs from Ai are not
distinguishable by φ. Therefore, for n large enough and every i ∈ [M ] such that graphs
from Ai satisfy φ,

P(Gn |= φ,Gn ∈ Ai) = P(Gn ∈ Ai) ∈ (pi − ε/M, pi + ε/M),

2In the usual way, we denote by G[A] the induced subgraph of G induced on the set of vertices A ⊂ V (G).
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implying∣∣∣∣∣∣P(Gn |= φ)−
∑

i:∀G∈Ai,G|=φ

pi

∣∣∣∣∣∣ ≤ ε+

∣∣∣∣∣∣P(Gn |= φ)−
∑

i:∀G∈Ai,G|=φ

P(Gn ∈ Ai)

∣∣∣∣∣∣
≤ ε+ P(Gn /∈ ∪iAi) ≤ 2ε+

(
1−

M∑
i=1

pi

)
≤ 3ε,

as required.
It is worth noting that the FOR-equivalence relation partitions the set of all graphs

into finitely many equivalence classes, see [14, Corollary 3.16].
Our plan is to use Corollary 1.2 to prove the convergence laws for uniform attachment

random graphs with bounded degree. Assume that the two players play the R-rounds
game on two sufficiently large uniform attachment random graphs G1 ⊂ G2 on vertex
sets [n1] and [n2] respectively. Let r be large enough (depending on R). For an induced
subgraph F of a graph G, we call the induced subgraph of G containing all vertices
that are at distance at most r from some vertex of F the r-neighbourhood of F . In
particular, the induced subgraph spanned by all vertices that are at distance at most
r from a given vertex v is the r-neighbourhood of v. It can be shown that there exists
n0 such that, with probability at least 1− ε, G′

1 := G1\[n0] and G′
2 := G2\[n0] are almost

trees — the r-neighbourhood of every vertex contains at most one cycle (we call a
connected graph with exactly one cycle unicyclic), see, e.g., [16, Lemma 3]. Moreover,
with the same probability bound, for every admissible3 rooted tree T of depth r, there
are many vertices such that their rooted r-neighbourhoods are isomorphic to T in both
graphs G′

1, G
′
2 (cf. Lemma 6.1). Then, for Duplicator to win it is enough to guarantee

that, for each FOR-equivalence class C and for every a ∈ {3, . . . , r}, the numbers of
r-neighbourhoods of a-cycles Ca that have isomorphic representatives in C are either
equal in G′

1, G
′
2 or large in both graphs. On the one hand, it is not difficult to give a

structural description of logical equivalence classes of unicyclic graphs and distinguish
between unicyclic graphs that appear as r-neighbourhoods with probability arbitrarily
close to 1 and unicyclic graphs such that the probabilities of their appearance as r-
neighbourhoods have non-trivial limits. On the other hand, there are equivalence classes
with infinitely many admissible unicyclic graphs, and this makes it hard to study the
limit behaviour of the number of r-neighbourhoods that belong to such a class.4 Indeed,
note that Corollary 1.2 requires a finite decomposition into graph families, so that a
further refinement of logical equivalence classes into, say, isomorphism classes does
not help. However, if we bound the degrees of Gn, then this is no longer the case —
the number of representatives in each of the equivalence classes becomes bounded as
well.

It is straightforward to observe that the convergence of probabilities for isomorphism
classes does not necessarily imply the convergence for logical equivalence classes.
Consider the following example: Define a deterministic sequence of nested rooted trees
of the same depth T1 ⊂ T2 ⊂ . . ., where Ti is a perfect tree of a large enough arity ai
when i is odd, while, for even i, the tree Ti is obtained from Ti−1 by attaching to the root
a path of length equal to the depth of the tree. Although each isomorphism class contains
at most one tree from the sequence, the convergence law fails. Indeed, for every i, Ti

3A rooted graph H is admissible, if, for n large enough, with positive probability, for some vertex v of Gn,
its r-neighbourhood rooted in v is isomorphic to H.

4There is also a similar obstacle with subtrees “growing from [n0]” (i.e. rooted in [n0] and having all the
other vertices outside of [n0]) in G1, G2 since there are trees such that the probabilities of their appearance as
r-neighbourhoods of vertices from [n0] have non-trivial limits. See Section 9 for the description of the winning
strategy of Duplicator where, in particular, it is explained why we should take care of trees rooted in [n0].
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and Ti−1 are distinguished by a sentence that asserts the existence of a vertex that has
degree 2. In particular, Spoiler has a winning strategy on Ti and Ti−1 in 4 rounds. Note
that in this example there are two equivalence classes, each containing infinitely many
trees: one consists of all Ti with odd i and the other of all Ti with even i.

The formal statement of the new result Let us introduce the model of graphs
Gn = Gn(m, d) that we consider in the paper. We start with a complete graph Gm on
m vertices. Then, at each step, we construct a graph Gn by adding to Gn−1 a new
vertex and drawing m edges from it to different vertices, chosen uniformly at random
out of existing vertices each of whom has degree less than d. Note that, for such a
procedure to be possible, we need the condition d ≥ 2m. The case d = 2m is easier
since in this case all but a constant number of vertices have degree d. It has been
already considered separately in [19] and requires a different approach that cannot be
generalised to other d.

Note that Gn, for m ≥ 2, still does not obey the FO 0-1 law — the reason is the
same as for the original uniform attachment model, see [17]. Indeed, if we consider
the number of diamond graphs (for m = 2) or the number of complete graphs on m+ 1

vertices (for m ≥ 3), it could be proven (similar to the way it was done in Section 2 of
[17], but with modifications based on the arguments that appear in Sections 4, 5 of the
present paper) that the probability to have a certain number of such graphs is bounded
away from both 0 and 1.

Let us formulate our main result.

Theorem 1.3. For every m ≥ 2 and d > 2m, Gn(m, d) obeys the FO convergence law.

Proof outline We derive Theorem 1.3 from Corollary 1.2. Specifically, we partition
the set of asymptotically almost all graphs (with respect to the measure induced by
Gn(m, d)) into finitely many disjoint families Ai, so that each family Ai lies within a single
FOR-equivalence class, and the probability P(Gn(m, d) ∈ Ai) converges as n → ∞. As
previously noted, it suffices to characterise the distribution of FOR-equivalence classes
of r-neighbourhoods of vertices in the random graph, that are typically either trees
or unicyclic graphs, where r = r(R) does not depend on n. Since, in bounded-degree
graphs, there are only finitely many isomorphism classes of subtrees and unicyclic
graphs with a given fixed diameter, it suffices to analyse the limit behaviour of these
isomorphism classes (which is done in Sections 5–8, as described below). We now outline
the proof strategy in more detail and refer to the sections where each part is developed.

The existence of a suitable decomposition of the set of all graphs into families Ai,
i ∈ [M ], is established in Section 9 via Lemmas 9.1 and 9.2. We introduce two graph
properties that we call Q1 and Q2. Lemma 9.1 is deterministic and it guarantees that
these two properties are sufficient conditions for the existence of a winning strategy for
Duplicator. Lemma 9.2 then shows the existence of families Ai, i ∈ [M ], satisfying the
assumptions of Corollary 1.2, such that any pair of graphs from the same family Ai has
properties Q1 and Q2, which in turn impies Theorem 1.3.

The key properties Q1 and Q2 of pairs of graphs G1 ⊂ G2 characterise the distribution
of small cycles and subtrees in G1, G2. Specifically, they say that in both graphs G1, G2

there are two small sets of vertices V0 ⊂ V ′
0 , where V0 contains only vertices with degree

exactly d and V ′
0 includes vertices that are close to V0, such that

(1) any two small cycles not intersecting V0 are far from each other,

(2) for any admissible5 rooted tree T of small depth r, there exist sufficiently many

5With positive probability, there exists a vertex in the random graph such that the r-ball around it is
isomorphic to this tree — see the definition in Section 6.
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vertices, that are far from V ′
0 and from each other, whose r-neighbourhoods are

isomorphic to T , and

(3) if G1[V
′
0 ] = G2[V

′
0 ], then for any rooted unicyclic6 graph C of small diameter, there

is r such that either in both G1, G2 there are sufficiently many vertices, that are far
from V ′

0 and from each other, whose r-neighbourhoods are isomorphic to C, or the
numbers of such r-neighbourhoods in the two graphs are equal.

Lemma 9.1 is a stand-alone lemma and it is relatively straightforward to prove. In
contrast, Lemma 9.2 is technically much more challenging. The proof makes up for the
majority of the paper and relies on results from all Sections 2–8. In particular, the fact
that small cycles are typically far from each other, that is required by (1), is exactly
Lemma 5.2 given in Section 5. Property (2) follows directly from a law of large numbers
for a count of admissible trees given by Lemma 6.1 in Section 6. The proof of the latter
lemma uses the so-called stochastic approximation method (see Section 2 and, e.g.,
[3, 23] for more details). To the best of our knowledge, an application of stochastic
approximations to prove logical limit laws is novel. We hope that it may be used to prove
FO convergence for the original uniform attachment model and for some other recursive
models as well. As discussed earlier, the main difficulty in the derivation of convergence
laws for recursive models lies in the treatment of unicyclic graphs — corresponding here
to property (3). This property is ensured by Lemma 8.1 that is presented in Section 8. Its
proof relies on approximating counts of unicyclic graphs using Markov chains, applying
results concerning the existence of limiting distributions for those chains, and leveraging
the fact that Gn(m, d) typically has unbounded number of cycles of any fixed length —
see Lemma 7.1 in Section 7.

Organisation of the paper In Section 2 we state the stochastic approximation theorem
that we use in Sections 3 and 6. In Section 3 we prove auxiliary results about the
asymptotic behaviour of the number of vertices of a given degree, which is a particular
case of a more general result that asserts the law of large numbers for trees counts,
presented in Section 6. In Section 4 we describe the random graph structure induced by
[n0] — that plays the role of the set V0 from our overview of the proof strategy — where
n0 is a sufficiently large constant. In Sections 5 and 7 we prove an upper bound and
a lower bound on the number of small cycles in the random graph, respectively. The
limit distribution of unicyclic subgraphs is investigated in Section 8. Finally, Section 9
proves Lemma 9.1 and Lemma 9.2 and therefore completes the proof of Theorem 1.3 by
describing the winning strategy of Duplicator.

2 Stochastic approximation

Let us consider an r-dimensional process Z(n), with filtration Fn, which is defined in
the following way (see [3] for more details on stochastic approximations)

Z(n+ 1)− Z(n) =
1

n+ 1
(F (Z(n)) + En+1 +Rn+1) , (2.1)

where En, Rn and the function F satisfy the following conditions. There exists U ⊂ Rr

such that Zn ∈ U for all n almost surely (a.s. for brevity) and

A1 The function F : Rr → Rr is continuous and bounded in some neighbourhood of U ,
has a unique root θ in U , such that in some neighbourhood of the root (which may
have some elements outside of U ),

F (x) = H(x− θ) +O (|x− θ|a)
6A connected graph with exactly one cycle.
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for some a > 1, where the matrix H is stable, i.e. the real parts of the eigenvalues
of H are strictly negative. The smallest of the absolute values of these real parts is
bigger than 1/2.

A2 For any ε > 0

sup
|x−θ|>ε,x∈U

F t(x)(x− θ) < 0.

Note that for condition A2 to hold it is enough for the derivative matrix of F (x) to
exist and to be stable in U . We also note that the matrix H in the condition A1 is
the derivative of F at x = θ.

A3 En is a martingale difference with respect to Fn (recall that a process En is a
martingale difference process with respect to a filtration Fn if E(En+1 | Fn) = 0

for all n) and for some δ ∈ (0, 1/2), Rn = O(nδ) a.s. (i.e. there exists a non-random
constant C, such that lim supn→∞

|Rn|
nδ ≤ C a.s.), and

∞∑
n=1

En+1

n1−δ
< ∞ a.s.

Note that due to convergence theorems for martingale differences (see [3, Ap-
pendix B]) for the last condition to hold it is enough that supnE(|En+1|2 | Fn) < ∞
a.s.

We need the following result (see the proof in [3, Theorem 3.1.1]):

Theorem 2.1. Under the above conditions, Z(n) → θ a.s. with the convergence rate

|Z(n)− θ| = o(n−δ) a.s.

(
i.e.

|Z(n)− θ|
n−δ

→ 0 a.s.

)
.

3 Number of vertices of fixed degree

In our model, at step n+ 1, the probability to draw an edge to a given existing vertex
equals to

1−
(
n−Nd(n)−1

m

)(
n−Nd(n)

m

) = 1− n−Nd(n)−m

n−Nd(n)
=

m

n−Nd(n)
, (3.1)

whereNk(n) is the number of vertices with degree k at time n for k ∈ {m, . . . , d}. In order
to use this formula, we study an asymptotical behaviour of Nk(n). Let Xk(n) := Nk(n)/n,
m ≤ k ≤ d. Let us consider the equation(

m

m+ 1− x

)d−m

= x. (3.2)

Recall that d > 2m. Since

∂

∂x

(
(d−m) ln

m

m+ 1− x
− lnx

)
=

d−m

m+ 1− x
− 1

x
=

x(d−m+ 1)−m− 1

x(m+ 1− x)

is negative on
(
0, m+1

d−m+1

)
and is positive on

(
m+1

d−m+1 , 1
)
and since the equation (3.2) has

root x = 1, it also has a unique root x = ρd on (0, 1), which is strictly less than m+1
d−m+1 ,

which is, in turn, less than 2m
d .

Let us define

ρk :=
(1− ρd)m

k−m

(m+ 1− ρd)k−m+1
, k = m, . . . , d− 1. (3.3)

Lemma 3.1. Xk(n) → ρk with rate |Xk(n)− ρk| = o(n−1/2+δ) for any δ > 0 a.s.
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Proof. Let Fn be the filtration that corresponds to the graphs Gn. Let v
(1)
n , . . . , v

(m)
n be

the vertices that the vertex added at step n+ 1 sends the edges to. In what follows, we
denote by degn(v) the degree of a vertex v in the graph Gn. We get

E (Nm(n+ 1)−Nm(n) | Fn) = 1−
m∑
i=1

P
(
degn(v

(i)
n ) = m | Fn

)
= 1− m

n−Nd(n)
Nm(n),

E (Nk(n+ 1)−Nk(n) | Fn) =

m∑
i=1

[
P
(
degn(v

(i)
n ) = k− 1 | Fn

)
− P

(
degn(v

(i)
n ) = k | Fn

)]
=

m

n−Nd(n)
(Nk−1(n)−Nk(n)) , k = m+ 1, . . . , d− 1,

E (Nd(n+ 1)−Nd(n) | Fn) =

m∑
i=1

P
(
degn(v

(i)
n ) = d− 1 | Fn

)
=

m

n−Nd(n)
Nd−1(n).

Since the total number of edges in Gn is strictly less than mn and is twice less than the
sum of all degrees in the graph, we get that the number of vertices of degree d does not
exceed 2mn

d . Therefore, if d > 2m we get that Xd(n) ≤ 2m
d < 1. Note that for Xk(n) we

get

E (Xk(n+ 1)−Xk(n) | Fn) =
1

n+ 1
(E (Nk(n+ 1)−Nk(n) | Fn)−Xk(n)) . (3.4)

Hence, if we define functions (on [0, 1)d−m × [0, 2m
d ))

fm(xm, . . . , xd) = 1−
(

m

1− xd
+ 1

)
xm,

fk(xm, . . . , xd) =
m

1− xd
xk−1 −

(
m

1− xd
+ 1

)
xk, k = m+ 1, . . . , d− 1, (3.5)

fd(xm, . . . , xd) =
m

1− xd
xd−1 − xd,

we would get that for all k ∈ {m, . . . , d},

E (Xk(n+ 1)−Xk(n) | Fn) =
1

n+ 1
fk (Xm(n), . . . , Xd(n)) . (3.6)

For the vector Z(n) := (Xm(n), . . . , Xd(n)) we have the following representation

Z(n+ 1)− Z(n) =
1

n+ 1

(
F (Z(n)) + (n+ 1)(Z(n+ 1)− E(Z(n+ 1) | Fn))

)
,

where F (xm, . . . , xd) = (fm(xm, . . . , xd), . . . , fd(xm, . . . , xd))
t. Set

En+1 = (n+ 1)(Z(n+ 1)− E(Z(n+ 1) | Fn)), Rn+1 = 0.

Let us find solutions of F (xm, . . . , xd) = 0, i.e. of the system of equations
1−

(
m

1−xd

)
xm = xm,

m
1−xd

(xk−1 − xk) = xk, k = m+ 1, . . . , d− 1,
m

1−xd
xd−1 = xd.

(3.7)

We get

xm =
1− xd

m+ 1− xd
,

xk =
m

m+ 1− xd
xk−1, k = m+ 1, . . . , d− 1.
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Hence for k = m+ 1, . . . , d− 1

xk =
(1− xd)m

k−m

(m+ 1− xd)k−m+1
.

For xd we get that
m

1− xd

(1− xd)m
d−1−m

(m+ 1− xd)d−1−m+1
− xd = 0,

which is equivalent to (
m

m+ 1− xd

)d−m

= xd.

This equation has a unique root xd = ρd in (0, 2m/d), which results in the existence of a
unique solution xk = ρk, k = m, . . . , d − 1. Note that the system (3.7) is equivalent (by
summing all rows) to the system

1−
(

m
1−xd

)
xm = xm,

m
1−xd

(xk−1 − xk) = xk, k = m+ 1, . . . , d− 1,

1 = xm + . . .+ xd.

(3.8)

Let us check the conditions of Theorem 2.1. For non-zero partial derivatives of functions
fk, k = m, . . . , d, we would get:

∂fm
∂xm

(xm, . . . , xd) = − m
1−xd

− 1,
∂fm
∂xd

(xm, . . . , xd) = − m
(1−xd)2

xm,
∂fk

∂xk−1
(xm, . . . , xd) = m

1−xd
, k = m+ 1, . . . , d− 1,

∂fk
∂xk

(xm, . . . , xd) = − m
1−xd

− 1, k = m+ 1, . . . , d− 1,
∂fk
∂xd

(xm, . . . , xd) = m
(1−xd)2

(xk−1 − xk), k = m+ 1, . . . , d− 1,
∂fd

∂xd−1
(xm, . . . , xd) = m

1−xd
,

∂fd
∂xd

(xm, . . . , xd) = −1 + m
(1−xd)2

xd−1.

(3.9)

Hence, the characteristic polynomial of the derivative matrix is

P (λ) = (−1)d−m

(
m

1− xd

)d−m(
− m

(1− xd)2
xm

)
+

d−1∑
k=m+1

(−1)d−k

(
m

1− xd

)d−k (
− m

1− xd
− 1− λ

)k−m
m

(1− xd)2
(xk−1 − xk)

+

(
− m

1− xd
− 1− λ

)d−m(
−1 +

m

(1− xd)2
xd−1 − λ

)
= (−1)d−m

d∑
k=m+1

(
m

1− xd

)d−k (
m

1− xd
+ 1 + λ

)k−m
m

(1− xd)2
xk−1

− (−1)d−m
d−1∑
k=m

(
m

1− xd

)d−k (
m

1− xd
+ 1 + λ

)k−m
m

(1− xd)2
xk

− (−1)d−m

(
m

1− xd
+ 1 + λ

)d−m

(1 + λ)

= (−1)d−m
d−1∑
k=m

(
m

1− xd

)d−k−1(
m

1− xd
+ 1 + λ

)k−m
m

(1− xd)2
xk(1 + λ)

− (−1)d−m

(
m

1− xd
+ 1 + λ

)d−m

(1 + λ) .
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Let us denote t = 1 + λ, c = m
1−xd

. Then

P (λ) = (−1)d−m+1tQ(t),

where

Q(t) := (c+ t)d−m −
d−1∑
k=m

cd−k(c+ t)k−m xk

1− xd
.

For Q(t) we get

Q(t) =

d−m∑
i=0

(
d−m

i

)
cd−m−iti −

d−1∑
k=m

cd−k
k−m∑
i=0

(
k −m

i

)
ck−m−iti

xk

1− xd

=

d−m∑
i=0

(
d−m

i

)
cd−m−iti −

d−m−1∑
i=0

cd−m−iti
d−1∑

k=m+i

(
k −m

i

)
xk

1− xd

= td−m +

d−m−1∑
i=0

cd−m−iti

((
d−m

i

)
−

d−1∑
k=m+i

(
k −m

i

)
xk

1− xd

)
.

Note that(
d−m

i

)
−

d−1∑
k=m+i

(
k −m

i

)
xk

1− xd
≥
(
d−m− 1

i

)(
1−

∑d−1
k=m+i xk

1− xd

)

since
(
d−m

i

)
= d−m

d−m−i

(
d−m−1

i

)
≥
(
d−m−1

i

)
and

(
k−m

i

)
≤
(
d−m−1

i

)
for all k ≤ d − 1. There-

fore, if
∑d

k=m xk ≤ 1 (in particular, when xi = ρi), Q(t) has non-negative coefficients
and, therefore, does not have roots with positive real parts. Note that P (−1) = 0. As a
result, we get that the largest real part of eigenvalues of the derivative matrix equals
−1 if

∑d
k=m xk ≤ 1. Note that

∑d
k=m Xk(n) = 1. Therefore the process Z(n) satisfies the

conditions A1,A2 of Theorem 2.1 on the set

U =

{
xm + . . .+ xd = 1, xk ≥ 0, k = m, . . . , d, xd ≤ 2m

d

}
.

To check condition A3 we first recall that Rn+1 = 0. At each step we draw m edges,
so we change degrees of exactly m vertices, while adding one new vertex. Hence,
|Nk(n+ 1)−Nk(n)| ≤ m+ 1 and |Xk(n+ 1)−Xk(n)| ≤ m+1

n . Therefore, for En+1 we get

|En+1| ≤ (n+ 1) (|Z(n+ 1)− Z(n)|+ |E(Z(n+ 1)− Z(n) | Fn)|)

≤ 2
(n+ 1)(m+ 1)(d−m+ 1)

n
,

which results in condition A3. By Theorem 2.1, we get the conclusion of Lemma 3.1.

4 Probability to have degree less than d

We will need the following variant of the Chernoff bound.

Lemma 4.1 ([22, Theorem 4.4]). Let Xi, i ≥ k, k > 1, be independent Bernoulli random
variables with EXi =

p
i for some p > 0. Let Sn =

∑n
i=k Xi, n > k. Then, for any δ > 0,

P

(
Sn ≤ (1− δ)p(ln(n+ 1)− ln k)

)
≤
(
n+ 1

k

)−δ2p
2

,

P

(
Sn ≥ (1 + δ)p(lnn− ln(k − 1))

)
≤
(

n

k − 1

)−δ2p
2+δ

.
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Note that Lemma 4.1 indeed follows immediately from the standard Chernoff bound
[22, Theorem 4.4] since ESn = p

∑n
i=k

1
i is greater than ln(n + 1) − ln k and less than

lnn− ln(k − 1) for all n > k > 1.
Let us consider the evolution of the degree of a given vertex. Fix a time s and consider

the vertex s that appears at this time. It appears with the degree m. If its degree at time
t ≥ s is less than d the probability to draw an edge to it (from the vertex t+ 1) equals
to m

t−Nd(t)
. For x ∈ (0, 1), let Xi(x), i ≥ s, be independent Bernoulli random variables

with EXi(x) = x and let each process (Xi(x), x ∈ (0, 1)) be independent of Gi. Set

Xi := Xi

(
m

i−Nd(i)

)
for i ≥ s. Clearly, there are independent Bernoulli X ′

i, i ≥ s, such

that EX ′
i =

m
i and X ′

i ≤ Xi for all i ≥ s. Then, due to Lemma 4.1, the probability that
the vertex s has degree less than d at time n > s does not exceed

P

(
n−1∑
i=s

Xi ≤ d−m− 1

)
≤ P

(
n−1∑
i=s

X ′
i ≤ d−m− 1

)
≤ c

(n
s

)−m/2

for some positive constant c. By repeating this estimate to vertices that appear at the
beginning of our graph process, we would get the following result.

Lemma 4.2. For any fixed s, with high probability (hereinafter we write ‘w.h.p.’ for
brevity, i.e. with probability tending to 1 as n → ∞) the degree of s in Gn equals d. In
particular, for any fixed n0 and a, w.h.p., the degree of each vertex in the a-neighbourhood
of the first n0 vertices has degree equal to d.

5 Number of cycles: Upper bound

Let us estimate the probability that a new cycle of length r is formed at time n+ 1.
To form a cycle of length r we have to connect a new vertex with two vertices joined by
a path of length r − 2 that are open to attachment (there are n−Nd(n) such vertices).
There are at most (dr−2 − 1)(n−Nd(n)) ordered pairs (v, u) of vertices that are open to
attachment and joined by an (r−2)-path. Indeed, there at most n−Nd(n) ways to choose
the first vertex v in the pair. Since v has degree at most d − 1 and every other vertex
has degree at most d, the ball around v of radius r− 2 has at most (d− 1)dr−3 ≤ dr−2 − 1

vertices (excluding v). Thus, there are at most dr−2 − 1 ways to choose the vertex u.
Recall that the number of vertices of degree d, denoted by Nd(n), does not exceed

2m
d n. Hence, the probability to form a new cycle of length r does not exceed

m(m− 1)
(dr−2 − 1)(n−Nd(n))

(n−Nd(n))(n−Nd(n)− 1)
≤ m(m− 1)dr−2

n−Nd(n)
≤ m(m− 1)dr−2(

1− 2m
d

)
n

. (5.1)

Let n > m(m − 1)dr−1. Let Cmax
r be the maximum possible number of r-cycles on first

m(m − 1)dr−1 + 1 vertices. For i ∈ {m(m − 1)dr−1 + 1, . . . , n}, let Xi be the indicator
random variable of the event that a new r-cycle appears with the introduction of the i-th
vertex in Gi. As we have just proved, there exist independent Bernoulli random variable

X ′
i such that, for all i ∈ {m(m−1)dr−1+1, . . . , n}, EX ′

i = p/i, where p = m(m−1)dr−2

1− 2m
d

, and

X ′
i ≥ Xi. Clearly, the total number of r-cycles in Gn is at most Cmax

r +
∑n

i=m(m−1)dr−1+1 Yi,
where Yi is the number of r-cycles created at step i. We have that Yi = 0 whenever
Xi = 0. Moreover, Yi ≤ dr−3m(m − 1)/2 for all i almost surely, since any cycle that
appears at step i involves two edges {i, v} and {i, u} (out of m) that contain the vertex
i and a path between v and u in Gi−1 of length r − 2. Any such path consists of r − 3

vertices other than u and v. So there are at most dr−3 ways to choose the path, since
all vertices in Gi−1 have degrees at most d. We conclude that the number of r-cycles
in Gn is at most Cr +

∑n
i=m(m−1)dr−1+1 X

′
id

r−3m(m− 1)/2. Due to Lemma 4.1 there are
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constants C, c > 0, such that

P

dr−3m(m− 1)

2

n∑
i=m(m−1)dr−1+1

X ′
i > C lnn

 ≤ cn−2. (5.2)

The total number of r-cycles that contain at least one vertex i ∈ {m(m−1)dr−1+1, . . . , n}
equals

Y Σ
n :=

n∑
i=m(m−1)dr−1+1

Yi ≤
dr−3m(m− 1)

2

∑
Xi ≤

dr−3m(m− 1)

2

∑
X ′

i.

Due to (5.2), we get
∑∞

n=m(m−1)dr−1+1P(Y
Σ
n > C lnn) < ∞. Since the total number

of r-cycles in Gn is at most O(1)-far from Y Σ
n , due to the Borel–Cantelli lemma7, the

probability that there are more than C lnn cycles in Gn for some n > N tends to 0 as
N → ∞, i.e. we proved the following result.

Lemma 5.1. For any r > 2, the number of cycles of length r in Gn is O(lnn) a.s.

Note that w.h.p. there are at most C lnn vertices in the a-neighbourhood of the union
of all r-cycles. Therefore the probability to draw an edge to this neighbourhood at time
n does not exceed C lnn

n (for some constant C), and to draw two edges does not exceed
C ln2 n

n2 . Therefore, by the Borel–Cantelli lemma, we get the following result.

Lemma 5.2. For any ε > 0 and ` there is s such that with probability at least 1 − ε in
[n]\[s] there are no connected subgraphs with at most ` vertices and at least 2 cycles.

6 Number of rooted trees

For a rooted tree T , let NT (n) be the number of vertices that are roots of maximal
subtrees of Gn (a subtree is maximal in Gn if all its non-leaf vertices are adjacent only
to vertices of that tree) isomorphic to T . Note that the set of all isomorphism classes
of rooted trees with degrees at most d of a given depth is finite. We would refer to a
maximal subtree of Gn isomorphic to a tree T from that set as having the type T (i.e.
when we talk about the type of a tree in Gn we assume it is rooted and maximal). Also,
we call a tree T max-admissible, if with positive probability its isomorphic copy is a
maximal subtree of Gn for large enough n. In the current section, we prove the following
statement:

Lemma 6.1. For any max-admissible tree T there is a constant ρT ∈ (0, 1), such that for
any δ > 0

NT (n) = ρTn+ o(n1/2+δ) a.s.

In particular, for all s ∈ N and any max-admissible tree T w.h.p. there are at least s
vertices in Gn that are roots of maximal subtrees of Gn that are isomorphic to T .

Proof. Let us fix b ∈ N and consider variables XT (n) := NT (n)/n and vector Zb(n) :=

(XTi
(n)) over all max-admissible rooted trees Ti of depth b (there are only finitely many

such trees). Note that the case b = 1 refer to the number of stars and was already
considered in Section 3. Let b > 1. The order of the elements of Zb(n) (or, in other words,
the order on the set of all max-admissible trees of depth b) is defined in a way such that
an addition of new branches (that preserves the depth of the tree) increases the order.
It could be done by induction on b in the following way. If T1, T2 are stars (i.e. b = 1),

7Let us recall that Borel–Cantelli lemma states the following. Let Bn, n ∈ N, be a sequence of events such
that

∑
n∈N P(Bn) < ∞. Then P(∩∞

N=1 ∪∞
N=n Bn) = limN→∞ P(∪∞

N=nBn) = 0. In our case, Bn = {Y Σ
n >

C lnn}.
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then T1 ≺ T2 if and only if T1 has less leaves than T2. Assume that ≺ on the set of all
max-admissible trees of depth b− 1 is defined. Let s1, s2 be the number of children of
roots of trees T1, T2 of depth b respectively. If s1 < s2, then T1 ≺ T2. If s1 = s2 =: s,
then let T 1

j , . . . , T
s
j be the subtrees of Tj rooted at the children v1j , . . . , v

s
j of the root of Tj

comprising all descendants of these children and ordered in the decreasing order. Then
T1 ≺ T2 if and only if (T 1

1 , . . . , T
s
1 ) ≺s (T

1
2 , . . . , T

s
2 ), where ≺s is the lexicographical order

on the set of s-vectors of trees of depth b− 1 induced by the order ≺.
Note that

E(XT (n+ 1)−XT (n) | Fn) =
1

n+ 1

(
E(NT (n+ 1)−NT (n) | Fn)−XT (n)

)
.

There are two ways to change NT (n) at time n+1. We could draw an edge to a maximum
tree isomorphic to T or we could create a new copy of T rooted at n+ 1. Recall that due
to equation (3.1) for each given vertex of degree less than d the probability to draw an
edge to it is

m

n−Nd(n)
=

1

n

m

1− Nd(n)
n

.

In a rooted tree T , fix a non-leaf vertex u. Then the expected number (conditioned on
Gn) of trees T ′ in Gn of type T such that an edge is drawn from n+ 1 to a vertex u′ of T ′

and there exists an isomorphism of rooted trees T → T ′ sending u to u′ equals

C
mNT (n)

n

1− Nd(n)
n

= C
mXT (n)

1−Xd(n)
,

where the constant C = C(T, u) corresponds to the number of vertices that belong to the
orbit of u under the action of the automorphism group of the rooted tree T . We stress
that all automorphisms of T preserve the root R, so C(T,R) = 1. For instance, let us
consider a “regular” tree T of depth 3 such that all leaves are at distance 3 from the root
and all non-leaf vertices have degree k. Then any vertex u at distance 1 from the root
has C(T, u) = k since the group of automorphisms of T induces the symmetric group
Sk on the k vertices adjacent to the root (any two branches adjacent to the root can be
permuted). Since, on the next layer, there are k(k − 1) vertices, any vertex u at distance
2 from the root has C(T, u) = k(k − 1) (clearly, for every two vertices at distance 2 from
the root there exists an automorphism that maps one to another).

Recall that Xd(n) ≤ 2m
d , and hence, due to the condition 2m < d, Xd(n) is bounded

away from 1.
The type of the maximal tree T ∗

n+1 of depth b with root n+ 1 would correspond to the
probability distribution induced by the numbers of maximal trees of depth b− 1 at time
n. It is defined by the types of trees of depth b − 1, to whose roots we draw m edges
from vertex n+ 1. For a max-admissible tree T of depth b such that its root has exactly
m children, let M(T ) be the set of children of the root of T and let T (T ) be the multiset
of types of the m subtrees of T rooted in u ∈ M(T ) and containing all descendants of u.
For t ∈ T (T ), let ν(t) be the multiplicity of the type t in the multiset T (T ). Let t1, . . . , ts
be all the different types from T (T ). Note that, for t ∈ T (T ) and i ∈ [m], the probability
(subject to Gn) that the i-th edge emanating from the vertex n+ 1 meets the root of a
maximal subtree of Gn of type t, equals Nt(n)

n−Nd(n)
= Xt(n)

1−Xd(n)
. Then∣∣∣∣P(T ∗

n+1
∼= T | Gn)−

(
m

ν(t1), . . . , ν(ts)

) ∏s
i=1 Nti(n) · . . . · (Nti(n)− ν(ti) + 1)

(n−Nd(n)) · . . . · (n−Nd(n)−m+ 1)

∣∣∣∣ ≤ Pcycle,

where Pcycle is the probability to create a cycle of length at most 2b + 1 at step n + 1

which is O(1/n) due to the bound (5.1). Therefore, the conditional probability (subject
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to Gn) to create a tree of type T rooted in the vertex n+ 1 at step n+ 1 is a polynomial

function of
Xti

(n)

1−Xd(n)
, for every i ∈ [s], up to O( 1n ) error term.

In order to change the type of a given maximal tree in Gn (to another given type) of
depth b we need to draw an edge from the vertex n+ 1 to one of its vertices and draw
the rest of the edges to the roots of trees of depth at most b − 2 of given types (that
depends on the type of a tree we want to obtain). We also need to make sure that all
trees are disjoint — the probability of drawing edges to “intersecting” trees is of order
O
(
1
n

)
. So, the probability of changing the type of the given tree in the described way

(subject to Gn) is a polynomial function of 1
1−Xd(n)

and XTi
(n), up to a term O( 1n ), where

Ti are max-admissible trees of depth b− 2.

Therefore8

E(Zb(n+ 1)− Zb(n) | Fn) =
1

n+ 1

(
AbZb(n)− Zb(n) + Yb +O

(
1

n

))
where Ab = Ab(Z1(n), . . . , Zb−2(n)) is a lower-triangular matrix with negative elements
on the diagonal and non-negative under the diagonal and Yb = Yb(Zb−1(n), Xd(n)) is a
vector, such that the elements of both Ab and Yb are polynomials of 1

1−Xd(n)
and XTi(n),

where Ti are trees of depth at most b− 2 (for Ab) or exactly b− 1 (for Yb). Let us consider
Fb(Z1, . . . , Zb) := AbZb(n)− Zb(n) + Yb (note that Ab and Yb are functions of Z1, . . . , Zb−1

itself). Recall that Z1 contains Xd, so Fb is deterministic. We would use induction over
b to prove that there is a unique solution of the system Fi(z1, . . . , zi) = 0, i = 1, . . . , b (in
an appropriate area). We already established the existence of the unique (non-zero)
root for the case b = 1. Assume there are unique non-zero solutions z∗1 , . . . , z

∗
b−1 of the

systems Fi(z1, . . . , zi) = 0, i = 1, . . . , b− 1. If we define Hb(zb) = Fb(z
∗
1 , . . . , z

∗
b−1, zb), then

Hb(zb) = 0 is a system of linear equations with the unique root z∗b since Ab is lower-
triangular with negative elements on the diagonal. Now let us show that all components
of z∗b are positive. Recall that all elements under the diagonal of Ab are non-negative and
each (except first) row has at least one positive element outside the diagonal (if a tree is
not the smallest possible, we could remove one vertex with its children from it to make
it smaller). All components of Yb(z

∗
b−1, ρd) are non-negative as well. Hence it is enough

to show that the first element of Yb is positive. It follows from the fact that the smallest
max-admissible tree of depth b (which corresponds to the first coordinate of zb) could be
obtained by drawing edges from a new vertex to the smallest max-admissible trees of
depth b− 1 and the first coordinate of z∗b−1 is positive by the induction hypothesis.

Let us consider the vector Wb(n) = (Z1(n), . . . , Zb(n)). We get that

E(Wb(n+ 1)−Wb(n) | Fn) =
1

n+ 1

(
F1 +O

(
1

n

)
, . . . , Fb +O

(
1

n

))
.

The derivative matrix of function (F1, . . . , Fb)(z1, . . . , zb) is of the following form. Around
the diagonal, it has b blocks: the i-th block is the derivative matrix of Fi with respect
to zi. For i > 1, the i-th block is a lower-triangular matrix (since Fi = Aizi − zi + Yi)
with diagonal elements at most −1. The block that corresponds to i = 1 was studied in
Section 3 and has characteristic polynomial P (λ) with the biggest root −1. Since each
Fi depends only on z1, . . . , zi, all elements above the blocks are 0. Therefore the highest
eigenvalue of the derivative matrix of (F1, . . . , Fb) is −1 (for all possible values of the
process). Hence Wb(n) satisfies condition A2 of Theorem 2.1. Since functions (F1, . . . , Fb)

have second-order derivatives, condition A1 is satisfied as well. To check condition A3

8For a sequence of r-dimensional vectors an ∈ Rr, n ∈ N, where r ∈ N does not depend on n, we
write an = O(1/n), if there exists a constant C > 0 such that, for all n, ‖an‖ < C/n. Here, ‖an‖ is the
`2-norm of an.
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note that if we take

En+1 = (n+ 1)

(
Wb(n+ 1)− E(Wb(n+ 1) | Fn)

)
,

then

Rn+1 : = (n+ 1)(Wb(n+ 1)−Wb(n))− (F1, . . . , Fb)− En+1

= (n+ 1)E(Wb(n+ 1)−Wb(n) | Fn)− (F1, . . . , Fb) = O

(
1

n

)
a.s.

and

|En+1| ≤ (n+ 1)|Wb(n+ 1)−Wb(n)|+ (n+ 1)|E(Wb(n+ 1)−Wb(n) | Fn)| ≤ C

for some constant C since the number of trees of depth b that could be impacted by the
vertex n+1 is bounded from above by a constant, which results in condition A3. Therefore,
due to Theorem 2.1 Wb(n) converges a.s. to (z∗1 , . . . , z

∗
b ) with the rate o(n−1/2+δ) for any

δ > 0 a.s.

7 Number of cycles: Lower bound

By Lemma 6.1, recall that for any max-admissible rooted tree T of depth r − 1 there
exists ρT > 0, such that

NT (n) = ρTn+ o(n2/3) a.s. (7.1)

Let Tr−1 be the set of all max-admissible trees T of depth r − 1, such that the root of T
and at least one vertex at distance r − 2 from the root have degrees less than d each.
Note that this set is not empty. For every tree T ∈ Tr−1, its root R and its vertex u of
degree less than d and at distance exactly r − 2 from R, the addition of edges {n+ 1, R}
and {n+ 1, u} creates an r-cycle. The number of such pairs {R, u} over all T ∈ Tr−1 is at
least 1

2

∑
T∈Tr−1

NT (n) since each pair is counted at most twice. Then, since m ≥ 2 and
due to (7.1), the probability to draw a cycle of length r at step n+ 1 (subject to Gn) is at
least ∑

T∈Tr−1

NT (n)
m(m− 1)

2(n−Xd(n))2
≥ 1

n

∑
T∈T

ρT − o(n−4/3) a.s.

Therefore, there exist p > 0, n0 ∈ N, and independent Bernoulli random variables
ζn ∼ Bern(p/n), n ≥ n0, such that a.s., for all n ≥ n0, the increase in the number of
cycles at step n+ 1 is not less than ζn. For any n0 due to Lemma 4.2 w.h.p. all vertices
in the r-neighbourhood of [n0] have degrees equal to d, and, hence, w.h.p. if a cycle
arises at step n+ 1, then it entirely belongs to [n+ 1] \ [n0]. Due to Lemma 4.1 and the
approximation by Bernoulli random variables ζn, there are constants c, C, δ > 0, such
that the number of r-cycles in [n] \ [n0] exceeds c lnn with probability at least 1− Cn−δ.
Therefore, we get the following result.

Lemma 7.1. For any s, r and n0 w.h.p. there are at least s cycles of length r that are
entirely in [n]\[n0].

8 Number of unicyclic graphs

Let us recall that a graph U is unicyclic if it is connected and contains exactly one
cycle. In other words, a unicyclic graph comprises a cycle (of length `) with disjoint
trees growing from this cycle (we assume that all trees have the same depth k; ` and k

are fixed for the rest of the section). Let U be a max-admissible unicyclic (maximality
and max-admissibility in the case of unicyclic graphs are defined exactly in the same
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way as for trees) graph. We say that a maximal unicyclic subgraph of Gn has type U if it
is isomorphic to U . We have one specific type U0 of unicyclic graphs with all non-leaf
vertices having degree d. Let us call such unicyclic graphs complete. As above, NU (n)

is the number of maximal subgraphs in Gn isomorphic to U . Let us consider the vector
Z(n) = (NUi

(n))i=1,...,K , where Ui are all non-complete unicycle graphs of depth k (i.e.
the depth of trees growing from the cycle) comprising an `-cycle, ordered from the
smallest to the largest (the linear order on unicyclic graphs could be defined in the same
way as on rooted trees), and K = K(k, `) is the number of unicyclic graphs of such kind.
Process Z(n) takes values in ZK

+ . Note that the complete unicyclic graph U0 could only
be obtained by adding a leaf (since the degree of a new vertex equals m) to a unique
non-leaf vertex of UK with degree less than d. In this section, we prove that Z(n) has a
limiting probability distribution.

Lemma 8.1. For any i1, . . . , iK there exists a constant c = c(i1, . . . , iK) such that

P(NU1
(n) = i1, . . . , NUK

(n) = iK) → c

as n → ∞, and
∑

i1,...,iK∈Z+
c(i1, . . . , ik) = 1. Moreover for any n0

P(NU0 > n0) → 1

as n → ∞.

Proof. For a fixed max-admissible unicyclic graph U , at time n+ 1 the value of NU may
change due to the following reasons (similar to the changing of the number of rooted
trees from the previous section).

• A new graph may be created by drawing 2 edges from the vertex n+ 1 to a single
tree of a certain type (recall that by Lemma 3.1, the probability to draw an edge to
a given vertex (subject to Gn) equals

1
(1−ρd)n

+ o(n−4/3) a.s.), and the rest of the
edges to roots of “disjoint” (without common non-leaf vertices) trees of certain
types. By Lemma 6.1, for a max-admissible tree T , we have NT = ρTn+ θT (n)n

2/3,
where, for every C, maxT : |V (T )|≤C θT (n) → 0 a.s. Hence, in the same way as in the
previous section, the conditional probability of creating a unicyclic graph of type U

this way (given Gn) equals
cU
n + o(n−4/3) a.s. for some constant cU ≥ 0.

• A U -isomorphic graph may be created from a fixed smaller unicyclic subgraph H

of the type U ′, if the vertex n+ 1 sends an edge to a non-leaf vertex of H and the
rest of the edges to roots of “disjoint” trees of certain fixed types in a way that
H becomes of type U (i.e. the maximal subgraph comprising the same cycle and
having the same depth as H becomes of type U ). The conditional probability of
creating a maximal subgraph of type U in this way (given H) equals

cU′,U
n +o(n−4/3)

for some constant cU ′,U ≥ 0.

If U has at least one non-leaf vertex of degree less than d, the previous procedure could
reduce NU (n) by drawing an edge to a unicyclic graph of the type U . Once a maximal
unicyclic subgraph becomes complete, it never changes its type.

Note that the conditional probability (given Gn) to perform more than one of such
operations (maybe for different types of U ) at the same time equals O

(
1
n2

)
a.s. We prove

the existence of a limiting probability distribution for Z(n) by considering an auxiliary
process which is defined below.

Let us consider a Markov chain S(n) = (S1(n), . . . , SK(n)) on ZK
+ (see, e.g., [8,

Chapter 6] for more details on Markov chains and corresponding terminology) with
transition probabilities (we denote ci := cUi

, cj,i := cUj ,Ui
for brevity)
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• for i ∈ [K],

P(Si(n+ 1) = Si(n) + 1, Sj(n+ 1) = Sj(n), j 6= i) =
ci
n
;

• for 1 ≤ j < i ≤ K,

P(Si(n+ 1) = Si(n) + 1, Sj(n+ 1) = Sj(n)− 1, Sk(n+ 1) = Sk(n), k 6= i, j) =
cj,iSj

n
;

• cK,0 = 1/(1− ρd) and

P(SK(n+ 1)− SK(n) = −1, Sj(n+ 1) = Sj(n), j 6= K) =
cK,0SK

n
;

•

P(∀i Si(n+ 1) = Si(n)) = 1−
K∑
i=1

ci
n

−
∑

1≤j<i≤K

cj,iSj

n
− cK,0SK

n
.

Since sums of error terms o
(
n−4/3

)
and O

(
1
n2

)
converge, such terms would not

impact process Z(n) after some random moment N , and hence the existence of the
limiting probability distribution for Z(n) follows from its existence for S(n) for any initial
distribution.

Note that c1 6= 0, CK,0 6= 0 and from the definition of cU,U ′ and the ordering, it follows
that for any i, j strictly between 1 and K, we get that

• there are 1 = i1 < . . . < it = i, such that cis,is+1
6= 0 for all s ∈ [t− 1],

• there are j = j1 < . . . < jp = K, such that cis,is+1 6= 0 for all s ∈ [p− 1].

This implies that S(n) is aperiodic and irreducible. Note that S(n) is not time-homoge-
neous. Let us consider a random walk S′(t) on ZK

+ that reflects only those moves of S(n)
when it changes its state (i.e. for every t, S′(t) := S(nt), where nt is the t-th moment n
such that S(n) 6= S(n− 1)). Since c

n , c 6= 0, forms a divergent series, by Borel–Cantelli
lemma, all coordinates of S change infinitely many times a.s., so S′ is well defined. Also,
since the conditional probability (given S(n−1) = x) to change the state at time n is c

n−1 ,
where c depends only on x, we get that the conditional probability that the state at time
n becomes y (for a fixed y 6= x), subject to Sn = x and the event that the state is changed,
does not depend on n, and only depends on x and y. Thus, S′(t) is time-homogeneous
and its transition probabilities are given by

• P(S′
i(t+ 1) = S′

i(t) + 1, S′
j(t+ 1) = S′

j(t), j 6= i) = ci
D(S′(t)) ,

• P(S′
i(t+ 1) = S′

i(t) + 1, S′
j(t+ 1) = S′

j(t)− 1, S′
k(t+ 1) = Sk(t), k 6= i, j) =

cj,iS
′
j(t)

D(S′(t)) ,

• P(S′
K(t+ 1)− S′

K(t) = −1, S′
j(t+ 1) = S′

j(t), j 6= K) =
cK,0S

′
K(t)

D(S′(t)) ,

where

D(S′(t)) =

K∑
i=1

ci +
∑

1≤j<i≤K

cj,iS
′
j(t) + cK,0S

′
K(t).

Let us consider S′
1(t). There are constants c− and c+, such that

P(S′
1(t+ 1)− S′

1(t) = −1 | S′(t)) ≥ c−
S′
1(t)

|S′(t)|+ 1
,

P(S′
1(t+ 1)− S′

1(t) = 1 | S′(t)) ≤ c+
1

|S′(t)|+ 1
.
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Hence, for large enough S′
1(t) (i.e. with S′

1(t) ≥ N for some N ∈ N),

E

(
S′
1(t+ 1)− S′

1(t) | S′(t), S′
1(t) > N, S′

1(t+ 1) 6= S′
1(t)

)
< C < 0

for some constant C. Therefore S′
1(t) is positively persistent. Consider Wi(t) =

(S′
1(t), . . . , S

′
i(t)), i = 1, . . . ,K. Let us assume that Wi(t) is positively persistent, and

prove that the same is true for Wi+1(t). Note that there are constants C1, C2 > 0, such
that

P(S′
i+1(t+ 1)− S′

i+1(t) = 1 | S′(t)) < C1
|Wi+1(t)|+ 1

|S′(t)|+ 1
,

P(S′
i+1(t+ 1)− S′

i+1(t) = −1 | S′(t)) > C2

S′
i+1(t)

|S′(t)|+ 1
.

Let N > C1

C2
, N ∈ N. We get

E

(
S′
i+1(t+ 1)− S′

i(t) | S′(t), S′
i+1(t) > N |Wi+1(t)|, S′

i+1(t+ 1) 6= S′
i+1(t)

)
< C < 0

for some constant C. Hence, the probability P(S′
i+1(t+ t′) ≤ N |Wi+1(t+ t′)| | S′

i+1(t) ≤
N |Wi+1(t)|) is bounded away from 0 as t′ → ∞. Since Wi(t) is positively persistent, it
implies that Wi+1(t) = (Wi(t), S

′
i+1(t)) is positively persistent as well.

As result, for each state s = (s1, . . . , sK) probabilities P(S′(t + t′) = s | S′(t) = s)

(as t′ → ∞) are bounded away from 0. Hence, the same is true for probabilities
P(S(nt+t′) = s | S(nt) = s) as t′ → ∞, and for P(S(t + t′) = s | S(t) = s) as well.
Therefore, there exists a limiting distribution for S(n) (and for Z(n)).

The second part of Lemma 8.1 follows from Lemma 7.1 and the existence of the
limiting distribution for Z(n).

9 Convergence laws

Fix R ∈ N and set a = 3R. For r ∈ N, let us call a unicyclic graph comprising a cycle
of length at most r and trees of depth exactly r an r-graph. The cycle of a unicyclic
graph is called its kernel . An r-graph is complete if all its vertices have degrees either 1
or d, and all its trees are perfect and of the same depth.

Below we define graph properties Q1 and Q2 that imply the existence of a winning
strategy of Duplicator. Consider some integer numbers n > N0 > n0. We say that a
graph G with maximum degree d on [n] has property Q1, if

1. any two cycles of length at most a with vertices outside of [n0] are at distance at
least 3a from each other;

2. any vertex outside of [N0] is at distance at least 3a from [n0];

3. any vertex from [N0] has degree d;

4. for any max-admissible tree T of depth at most a, there are at least R maximal
subgraphs in G isomorphic to T at distance at least a from [N0] and each other, and
the same is true for any complete a-graph U .

Now, assume that n1 > n2 > N0, and G1, G2 are graphs on [n1] and [n2] respectively
such that G1|[N0] = G2|[N0]. We say that the pair of graphs (G1, G2) has property Q2, if
for any non-complete max-admissible a-graph U ,

• either the numbers of maximal subgraphs in Gi isomorphic to U are equal for
i ∈ {1, 2},
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• or, in both graphs, there are at least R maximal copies of U that are distance at
least a from [N0] and each other.

Note that, if G1, G2 have maximum degree d, property Q1, and the pair (G1, G2) has
property Q2, then, for any positive integer δ ≤ 2R, the numbers of maximal subgraphs
in Gi isomorphic to a given non-complete max-admissible a-graph U with all vertices at
distance at least δ from [n0] are equal for i ∈ {1, 2}.
Lemma 9.1. If both graphs G1, G2 have maximum degree d, have property Q1, and the
pair (G1, G2) has property Q2, then Duplicator has a winning strategy in the Ehrenfeucht-
Fraïssé game on graphs G1, G2 in R rounds.

Proof. Let us define the winning strategy of Duplicator. For a vertex v and r ∈ N, let
Br(v) be the r-neighbourhood of v (i.e., the closed ball in the graph metric of radius
r and the center at v). In the same way, for a set of vertices U , Br(U) = ∪v∈UBr(v) is
the r-neighbourhood of U . Note that we omit a reference to a graph in the notation
for these balls — each time we use the notation, the host graph would be clear from
the context. For every round i ∈ [R], we denote by x1, . . . , xi and y1, . . . , yi the vertices
chosen in graphs where Spoiler and Duplicator made the i-th move respectively (say, G1

and G2 respectively). For xj and yj , j ∈ [i], let us denote by Xj and Yj the unions of sets
of vertices of all kernels of non-complete 2R-graphs in G1 and G2 respectively such that
these kernels are completely outside [n0], and are at distance at most 2R−j+1 from xj and
yj respectively. Since G1, G2 have property Q1, each of the sets Xj , Yj comprises at most
1 cycle. For a set A ⊂ V (G1) and a set B ⊂ V (G2), we say that they are i-equivalent,
and write A ≡i B, if the following conditions are fulfilled:

• the sets of j ∈ [i] such that the respective vertex xj (yj) belongs to A (B) are equal,

• there exists an isomorphism ϕ : G1|A → G2|B of the induced subgraphs on A and
B that maps xj to yj for all j such that xj ∈ A and preserves (in both directions) all
kernels that are outside [n0] of non-complete 2R-graphs,

• if xi is at distance at most 2R−i+1 from [n0], then ϕ can be extended to an isomor-
phism of G1|A∪[N0] and G2|B∪[N0] that maps every vertex of [N0] to itself.

We define the strategy by induction on the number of rounds that have been just
played. Fix i ∈ [R] and assume that, in round i, Spoiler makes a move in G1 (without
loss of generality — if the move was done in G2, then the strategy is exactly the same),
and that for all j ≤ i − 1, B2R−j+1(Xj ∪ {xj}) ≡j B2R−j+1(Yj ∪ {yj}). Note that, if i = 1,
then there are no additional requirements on the graphs. We also note that, due to the
assumption, the map sending xj to yj , j ∈ [i − 1], is an isomorphism of G1|{x1,...,xi−1}
and G2|{y1,...,yi−1}. So if we succeed with the induction step, then we get the winning
strategy for Duplicator.

1. If d(xi, [n0]) ≤ 2R−i+1 then Duplicator chooses yi = xi. We need to check that
B2R−i+1(Xi ∪ {xi}) ≡j B2R−i+1(Yi ∪ {yi}). Due to property Q1, every cycle of length
at most a which is completely outside [N0] is far from xi = yi, and so Xi = Yi = ∅.
Also, the balls B2R−i+1(xi) and B2R−i+1(yi) are equal and lie entirely in [N0]. If
there is j < i such that xj ∈ B2R−i+1(xi), then, by the induction hypothesis,
B2R−j+1(xj) ≡j B2R−j+1(yj), implying that B2R−j+1(xj) = B2R−j+1(yj) due to the
third condition in the definition of the relation ≡j . Then xj = yj belongs to
B2R−i+1(xi) = B2R−i+1(yi). The relation B2R−i+1(Xi ∪ {xi}) ≡j B2R−i+1(Yi ∪ {yi})
follows. If there are no such j, then there is also no j such that yj ∈ B2R−i+1(yi),
and the relation is immediate.
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2. Assume that d(xi, [n0]) > 2R−i+1 and that there exists j < i such that xj ∈
B2R−i+1(Xi ∪ {xi}). Let j < i be the biggest such round. Then B2R−i+1(Xi ∪
{xi}) ⊂ B2R−j+1(Xj ∪ {xj}), and either Xi = Xj or Xi = ∅. Let J be the set
of all j′ < j such that xj′ ∈ B2R−j+1(Xj ∪ {xj}). Since B2R−j+1(Xj ∪ {xj}) ≡j

B2R−j+1(Yj ∪ {yj}) by the induction hypothesis, we may find an isomorphism
ϕ : G1|B

2R−j+1 (Xj∪{xj}) → G2|B
2R−j+1 (Yj∪{yj}) such that ϕ(xj′) = y′j for all j

′ ∈ J ,
there are no yj′ ∈ B2R−j+1(Yj ∪ {yj}) for j′ ∈ [j − 1] \ J , and ϕ(Xj) = Yj . Dupli-
cator chooses yi = ϕ(xi). It is obvious that ϕ′ := ϕ|B2R−i+1 (Xi∪{xi}) is the desired
isomorphism that insures that B2R−i+1(Xi ∪ {xi}) ≡i B2R−i+1(Yi ∪ {yi}).

3. Finally, we assume that d(xi, [n0]) > 2R−i+1 and there are no j < i such that
xj ∈ B2R−i+1(Xi ∪ {xi}). If Xi 6= ∅, then let U1 be the unique maximal 2R-graph
with the kernel Xi. Due to the observation after the definition of property Q2
and due to property Q1, in the other graph there exists a maximal 2R-graph U2

isomorphic to U1 such that

• the kernel of U2 is either at least at the same distance from [n0] as the kernel
of U1 from [n0], or is at distance at least 2R from [n0];

• U2 is at distance at least 2a from the cycle of length at most 2R that meets the
2R−j+1-neighbourhood of yj for every j < i;

• if, for some j < i, the 2R−j+1-neighbourhood of yj does not meet a cycle of
length at most 2R, then the cycle of U2 is at distance greater than 2R−j+1 from
yj .

Consider an isomorphism ϕ : U1 → U2, that sends the vertex xi to a vertex
which is at distance more than 2R−i+1 from [n0] and set yi = ϕ(xi). The relation
B2R−i+1(Xi ∪ {xi}) ≡i B2R−i+1(Yi ∪ {yi}) is straightforward.
Finally, if Xi = ∅, then the existence of a good choice of yi follows from property
Q1.(4). Indeed, there are only two options: 1) B2R−i+1 is a maximal subtree, and
then there is an isomorphic maximal subtree in the other graph which is at distance
at least a from the neighbourhoods of all yj , j < i; 2) there is a complete maximal
unicyclic graph comprising a cycle of length at most R which is at distance at most
2R−i+1 from xi, and then there is an isomorphic maximal unicyclic subgraph in the
other graph which is at distance at least a from the neighbourhoods of all yj , j < i.
The choice of yi is straightforward.

Theorem 1.3 follows from Corollary 1.2 and the following lemma.

Lemma 9.2. For any R ∈ N and any ε > 0 there are N0 > n0, graph families Ai, i ∈ [M ],
and numbers pi > 0, i ∈ [M ],

∑M
i=1 pi > 1− ε, such that

• all graphs in ti∈[M ]Ai have property Q1;

• if n1 > n2 > N0 and graphs G1 ⊃ G2 on [n1] and [n2] respectively belong to the
same family Ai, then the pair (G1, G2) has property Q2;

• for every i ∈ [M ], limn→∞P(Gn ∈ Ai) = pi.

Proof. Fix R ∈ N and ε > 0. By Lemmas 4.2, 5.2, 6.1, 8.1, there exist N > N0 > n0 such
that with probability at least 1− ε, for all n ≥ N , Gn has maximum degree d and property
Q1, and all its vertices that are at distance at most 4a from [N0] have degree d. We let A
to be the union over all n ≥ N of the families of graphs G on [n] such that the maximum
degree of G equals d, G has property Q1, and all the vertices of G at distance at most 4a
from [N0] have degree d. It remains to partition A = tM

i=1Ai in an appropriate way.
Let M be all K-tuples (we refer to Section 8 to recall the definition of K) of non-

negative integers that are at most R, and set M := |M|M0, where M0 is the number of
all admissible maximal subgraphs of GN on [N0]. For each i ∈ [M ], the respective tuple
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mi ∈ M, and the respective admissible H on [N0], let Ai ⊂ A be the set of all graphs G
from A such that G|[N0] = H and Z̃(G) = mi, where Z̃(G) consists of Z̃j = min{R,NUj

}.
By Lemma 8.1, for every i ∈ [M ], there exists pi := limn→∞P(Gn ∈ Ai). Note that, for
every graph from A, every its maximal unicyclic subgraph with a cycle of length at most
a and depth a that is at distance at most a from [N0], is complete (since all the vertices
at distance at most 4a from [N0] have degree d). Property Q2 follows.
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