n b
Electr® 8biljty

Electron. J. Probab. 30 (2025), article no. 164, 1-23.
ISSN: 1083-6489 https://doi.org/10.1214/25-EJP1419

Logical convergence laws via stochastic approximation
and Markov processes®

Yury Malyshkin® Maksim Zhukovskii?

Abstract

Since the paper of Kleinberg and Kleinberg, SODA’05, where it was proven that the
preferential attachment random graph with degeneracy at least 3 does not obey the
first order 0-1 law, no general methods were developed to study logical limit laws
for recursive random graph models with arbitrary degeneracy. Even in the (possibly)
simplest case of the uniform attachment, it is still not known whether the first order
convergence law holds in this model. We prove that the uniform attachment random
graph with bounded degrees obeys the first order convergence law. To prove the law,
we describe dynamics of first order equivalence classes of the random graph using
Markov chains. The convergence law follows from the existence of a limit distribution
of the considered Markov chain. To show the latter convergence, we use stochastic
approximations.
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1 Introduction

We consider first-order (FO) sentences about graphs in the language containing the
adjacency ~ and the equality = relations. For the sake of readers’ convenience, let us
recall the definitions of sentences in this language and their quantifier depths (for more
details, see surveys [4, 14, 27]). FO formulas are words consisting of symbols of several
types: variables (lowercase letters with or without integer subscripts z, vy, z, x1, 22, .. .);
relational symbols ~, =; logical connectives A, V, =, <, —; quantifiers V, J; and brackets.
The formulas are defined recursively as follows:
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Logical convergence laws

» For any two variables z,y, the expressions (z ~ y) and (z = y) are FO formulas
with free variables = and y and without bounded variables. These formulas have
quantifier depth qd(x ~ y) = qd(xz = y) = 0.

« If expressions ¢, ¢1, @2 are FO formulas, then —¢, (¢1Vd2), (91A2), (61 = ¢2), (1 &
¢2) are also FO formulas. For any logical connective L, the set of free variables
of the formula (¢ L¢s) is the union of the sets of free variables of ¢, ¢5; the same
applies for sets of bounded variables. The sets of free variables of ¢ and —¢ coin-
cide. The quantifier depth of (¢1L¢2) equals qd(¢1 Loa) = max(qd(¢1),qd(¢2)); the
quantifier depths of ¢ and —¢ coincide.

* Finally, if ¢ is a FO formula, then Jz¢ and Vxz¢ are FO formulas with bounded
variable x; the set of free variables of Jdx¢, Vz¢ excludes the variable x. The
quantifier depth of both Jz¢, Vx¢ equals qd(¢) + 1.

A FO sentence is a FO formula that does not have free variables. Informally speaking, the
quantifier depth of a sentence is the maximum number of “nested” quantifiers. When we
say that a graph G satisfies a FO sentence ¢ and write G = ¢, we mean that ¢ evaluates
to true under G (the process of evaluation of a formula is defined in accordance to its
recursive structure introduced above, see details in [4, 14]; for instance, for vertices v, u
of G, the sentence x ~ y is true according to GG and the variable assignment « = v and
y = v, if and only if u, v are adjacent in (). For example, the FO sentence

VaVy (x =y) V(z ~y)V (Fz(z ~z) Az ~ y))

has quantifier depth 3, three variables, and describes the property of having diameter
at most 2. It is worth noting that the number of variables does not necessarily coincide
with the quantifier depth of a sentence. Nevertheless, the minimum quantifier depth
among all tautologically equivalent reformulations of a given FO sentence is always
at least the minimum number of variables (see [14, Chapters 3,6]). For instance, the
sentence

Vay (x = y)V (x ~ g) V (32 (2~ 0) A (2 ~ ) V (32 (2 ~ ) A Ga (2~ 2) A (& ~ 1))

has quantifier depth 4, three variables, and describes the property of having diameter
at most 3 (it can be proven that these parameters are minimum possible).

Logical limit laws A random graph G,, on the vertex set [n] := {1,...,n} is a random
element of the set of all (simple) graphs on [n] with an arbitrary distribution over this
set. It was proven by Glebskii, Kogan, Liogon’kii and Talanov [7] and independently
by Fagin [5] that, for every FO sentence ¢, either asymptotically almost all graphs
on [n| satisfy ¢, or asymptotically almost all graphs on [n] do not satisfy ¢. In other
words, letting G,, be uniformly distributed, we get that either P(G,, E ¢) — 1, or
P(G, &= ¢) — 0 as n — oco. This means that the descriptive power of FO logic is
weak in the sense that it does not express properties that are not trivial on typical,
sufficiently large graphs: if there exist arbitrarily large n; and n, such that a (non-
vanishing) fraction of graphs on [n;] has the property and a (non-vanishing) fraction
of graphs on [ny] does not have the property, then this property cannot be described
in FO logic. This phenomenon is known as the FO zero-one law, or, for brevity, FO
0-1 law. More generally, a sequence of random graphs G,,, n € IN, obeys the FO 0-1
law, if, for any FO sentence ¢, lim,_,. P(G,, E ¢) € {0,1}. FO limit laws are known
to be helpful in the comparison of descriptive powers of different logics. For example,
the failure of the FO 0-1 law in sparse binomial random graphs was used in [29] to
prove that the minimum quantifier depth of a sentence that expresses the property of
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containing an induced subgraph isomorphic to a given graph F' is at least ;55?%1 + 2.

The latter fact implies some limitations of algorithms that solve the induced subgraph
isomorphism problem’' by evaluating first order sentences, since the direct evaluation
of a FO sentence of quantifier depth ¢ on an n-vertex graph runs in time ©(n?), see [14,
Proposition 6.6].

The most studied model in the context of FO 0-1 laws is the binomial random
graph G(n,p) (see, e.g., [12, 24, 26]), where every edge is drawn independently
with probability p. In particular, G(n,1/2) is just a graph chosen uniformly at ran-
dom. The above mentioned classical FO 0-1 law (for p = 1/2) is generalised to
all p = p(n) such that min{p,1 — p}n® — oo for every o > 0 in [26] (in particular,
this is true for all constant p € (0,1)). On the other hand, the FO 0-1 law fails for
G(n,p(n)), where p(n) = n~ and a € (0,1) is rational [25]. Moreover, even the
FO convergence law fails for this random graph (a sequence of random graphs G,,
n € IN, obeys the FO convergence law, if, for every FO sentence ¢, lim, . P(G,,
¢) exists). Many other models are studied in the context of logical laws: random
regular graphs [9], random geometric graphs [20], uniform random trees [21], etc.
(see, e.g., [11, 27, 28, 30]). However, the usual combinatorial tools that are ap-
plied to prove logical laws seem to be insufficient to study the logical behaviour of
attachment models that are, in particular, used to model real networks (see, e.g.,
[10D).

Attachment models The attachment models are built recursively. Fix a positive
integer m, which is the degeneracy parameter of the model. At each step, one new
vertex is added to the graph, from which m new edges are drawn randomly to the old
vertices. The most studied attachment models are uniform and preferential attachment.
In the uniform attachment model [6, 15], probabilities to draw an edge to a newly
added vertex are the same for all existing vertices, while in the Bollobdas-Riordan
preferential attachment model probabilities are proportional to the degrees of the
respective existing vertices. Let us recall that the preferential attachment graphs
were introduced by Barabasi and Albert [1] and later were formalised by Bollobas and
Riordan [2].

In [13] Kleinberg and Kleinberg observed that the classical Bollobas-Riordan pref-
erential attachment random graph with degeneracy at least 3 does not obey the FO
0-1 law. Since then, there was no significant progress in the study of logical limit
laws for attachment models with an arbitrary degeneracy parameter m — we sum-
marise all known results below. In particular, it is still unknown whether the classical
preferential attachment random graph obeys the FO convergence law. Though the
study of random graphs is dominated by the binomial random graph (and a similar
uniform model), properties of preferential attachment models better resemble those
of real-world networks such as the graph of the Web, social networks, and citation
networks.

Let FO” be the fragment of the FO logic comprising all sentences with at most ~
variables. In the context of FO limit laws, the following are known:

e the FO 0-1 law holds for the tree models (when only one edge is drawn at each
step, i.e. m = 1), for both preferential and uniform attachment [17],

 for the non-tree uniform model (when we draw m > 2 edges at each step) and the
preferential attachment model with the degeneracy m at least 3 there is no FO 0-1
law [13, 17],

!Induced subgraph isomorphism problem is the problem of deciding whether a given input host graph
contains a subgraph isomorphic to a given input pattern graph.
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 the FO™ 2 convergence law is known to be true for the uniform attachment [16],
the FO™ ™ convergence law holds true for some variations of the preferential
attachment [18].

Thus, for the entire FO logic, we only know that the FO 0-1 law fails if m is large
enough (m > 2 for the uniform attachment and m > 3 for the preferential attachment),
while it is still unclear whether the FO convergence law fails at least for some m.
Constructions of sentences with non-trivial limit probabilities are quite straightforward:
since, for m > 3, the expected number of cliques of size m + 1 converges to a finite
limit, a sentence saying that there exist at least K cliques of size m + 1 is satisfied with
probability which is bounded away both from 0 and 1, for K large enough (see details
in [13, 17]). Though for the existential fragment of the FO logic, the convergence law
clearly holds for any attachment model (it immediately follows from the definition of
the model), no approach to study the validity of the convergence law for the entire FO
logic has been developed. In this paper, we develop a method to prove FO convergence
laws for attachment models, and apply it to the uniform attachment with bounded
degrees.

Ehrenfeucht-Fraissé game The main tool for proving logical laws is the Ehrenfeucht-
Fraissé game (see, e.g., [14, Chapter 11.2]). Let us recall the rules of the game. The
board consists of two vertex—disjoint graphs G and H. There are two players, Spoiler
and Duplicator. The number of rounds R is fixed. In each round, Spoiler chooses a
vertex either in G, or in H; then Duplicator chooses a vertex in the other graph. When R
rounds are played, vertices z1, ...,z are chosen in GG and vertices y1, ..., yr are chosen
in H. Duplicator wins if and only if the bijection that maps each x; to y;, i € [R], is an
isomorphism of graphs G[{z1,...,2r}] and H[{yi,...,yr}].2 The Ehrenfeucht-Fraissé
game provides a connection between the existence of a winning strategy for Duplicator
in the game in R rounds on two graphs and their indistinguishability in terms of FO
sentences with quantifier depth at most R. This connection could be formulated in the
following way. Let us say that two graphs are FO p-equivalent if, for every FO sentence
¢ with quantifier depth at most R, either ¢ is true on both graphs or it is false on both
graphs.

Theorem 1.1. Duplicator has a winning strategy on graphs G and H in R rounds if and
only if G and H are FOg-equivalent.

We will need the following direct consequence of Theorem 1.1.
Corollary 1.2. If for every ¢ > 0 and R € IN there exist a positive integer M and graph
families A;, i € [M], such that, for any two representatives of one family, Duplicator wins
the game in R rounds (which is equivalent to indistinguishability in the FO logic with
quantifier depth at most R) and

M
P(GnGAi)%pi, iE[M], Zpi>1—€,
=1

then G,, satisfies the FO convergence law.

Indeed, assume that the requirements of Corollary 1.2 hold and let ¢ be a first order
sentence of quantifier depth R. Due to Theorem 1.1, any two graphs from .4; are not
distinguishable by ¢. Therefore, for n large enough and every ¢ € [M] such that graphs
from A; satisfy ¢,

IP(Gn |: (byGn € Az) :IP(Gn S Al) S (pl _E/Mapi +E/M)7

2In the usual way, we denote by G[A] the induced subgraph of G induced on the set of vertices A C V(G).
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implying

P(GulEd)— Y pi|<e+|PGuEo®)— > P(GneAd)
iVGEA;,Gl=¢ :VGeA;,GE=d

i=1

M
< €+IP(G7L ¢ UzAl) < 2+ <1 —Zpi> < 3g,

as required.

It is worth noting that the FO z-equivalence relation partitions the set of all graphs
into finitely many equivalence classes, see [14, Corollary 3.16].

Our plan is to use Corollary 1.2 to prove the convergence laws for uniform attachment
random graphs with bounded degree. Assume that the two players play the R-rounds
game on two sufficiently large uniform attachment random graphs G; C G on vertex
sets [n1] and [nq] respectively. Let r be large enough (depending on R). For an induced
subgraph F of a graph G, we call the induced subgraph of G containing all vertices
that are at distance at most r from some vertex of F' the r-neighbourhood of F. In
particular, the induced subgraph spanned by all vertices that are at distance at most
r from a given vertex v is the r-neighbourhood of v. It can be shown that there exists
ng such that, with probability at least 1 — e, G| := G1\[ng] and G} := G2\[no] are almost
trees — the r-neighbourhood of every vertex contains at most one cycle (we call a
connected graph with exactly one cycle unicyclic), see, e.g., [16, Lemma 3]. Moreover,
with the same probability bound, for every admissible® rooted tree T of depth r, there
are many vertices such that their rooted r-neighbourhoods are isomorphic to 7" in both
graphs G/, G} (cf. Lemma 6.1). Then, for Duplicator to win it is enough to guarantee
that, for each FOg-equivalence class C and for every a € {3,...,r}, the numbers of
r-neighbourhoods of a-cycles C, that have isomorphic representatives in C are either
equal in G, G, or large in both graphs. On the one hand, it is not difficult to give a
structural description of logical equivalence classes of unicyclic graphs and distinguish
between unicyclic graphs that appear as r-neighbourhoods with probability arbitrarily
close to 1 and unicyclic graphs such that the probabilities of their appearance as r-
neighbourhoods have non-trivial limits. On the other hand, there are equivalence classes
with infinitely many admissible unicyclic graphs, and this makes it hard to study the
limit behaviour of the number of r-neighbourhoods that belong to such a class.* Indeed,
note that Corollary 1.2 requires a finite decomposition into graph families, so that a
further refinement of logical equivalence classes into, say, isomorphism classes does
not help. However, if we bound the degrees of G, then this is no longer the case —
the number of representatives in each of the equivalence classes becomes bounded as
well.

It is straightforward to observe that the convergence of probabilities for isomorphism
classes does not necessarily imply the convergence for logical equivalence classes.
Consider the following example: Define a deterministic sequence of nested rooted trees
of the same depth 77 C Ts C ..., where T; is a perfect tree of a large enough arity a;
when i is odd, while, for even 4, the tree T; is obtained from T;_; by attaching to the root
a path of length equal to the depth of the tree. Although each isomorphism class contains
at most one tree from the sequence, the convergence law fails. Indeed, for every i, T;

3A rooted graph H is admissible, if, for n large enough, with positive probability, for some vertex v of G,
its r-neighbourhood rooted in v is isomorphic to H.

4There is also a similar obstacle with subtrees “growing from [no]” (i.e. rooted in [no] and having all the
other vertices outside of [ng]) in G1, G2 since there are trees such that the probabilities of their appearance as
r-neighbourhoods of vertices from [ng] have non-trivial limits. See Section 9 for the description of the winning
strategy of Duplicator where, in particular, it is explained why we should take care of trees rooted in [ng].
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and T;_; are distinguished by a sentence that asserts the existence of a vertex that has
degree 2. In particular, Spoiler has a winning strategy on 7; and 7;_; in 4 rounds. Note
that in this example there are two equivalence classes, each containing infinitely many
trees: one consists of all 7; with odd 7 and the other of all 7; with even 4.

The formal statement of the new result Let us introduce the model of graphs
G, = G, (m,d) that we consider in the paper. We start with a complete graph G,, on
m vertices. Then, at each step, we construct a graph G,, by adding to G,,_; a new
vertex and drawing m edges from it to different vertices, chosen uniformly at random
out of existing vertices each of whom has degree less than d. Note that, for such a
procedure to be possible, we need the condition d > 2m. The case d = 2m is easier
since in this case all but a constant number of vertices have degree d. It has been
already considered separately in [19] and requires a different approach that cannot be
generalised to other d.

Note that G,,, for m > 2, still does not obey the FO 0-1 law — the reason is the
same as for the original uniform attachment model, see [17]. Indeed, if we consider
the number of diamond graphs (for m = 2) or the number of complete graphs on m + 1
vertices (for m > 3), it could be proven (similar to the way it was done in Section 2 of
[17], but with modifications based on the arguments that appear in Sections 4, 5 of the
present paper) that the probability to have a certain number of such graphs is bounded
away from both 0 and 1.

Let us formulate our main result.

Theorem 1.3. For every m > 2 and d > 2m, G,,(m,d) obeys the FO convergence law.

Proof outline We derive Theorem 1.3 from Corollary 1.2. Specifically, we partition
the set of asymptotically almost all graphs (with respect to the measure induced by
Gn(m,d)) into finitely many disjoint families .A;, so that each family .A; lies within a single
FOgr-equivalence class, and the probability P(G,,(m,d) € A;) converges as n — co. As
previously noted, it suffices to characterise the distribution of FOr-equivalence classes
of r-neighbourhoods of vertices in the random graph, that are typically either trees
or unicyclic graphs, where r = r(R) does not depend on n. Since, in bounded-degree
graphs, there are only finitely many isomorphism classes of subtrees and unicyclic
graphs with a given fixed diameter, it suffices to analyse the limit behaviour of these
isomorphism classes (which is done in Sections 5-8, as described below). We now outline
the proof strategy in more detail and refer to the sections where each part is developed.

The existence of a suitable decomposition of the set of all graphs into families A;,
i € [M], is established in Section 9 via Lemmas 9.1 and 9.2. We introduce two graph
properties that we call Q1 and Q2. Lemma 9.1 is deterministic and it guarantees that
these two properties are sufficient conditions for the existence of a winning strategy for
Duplicator. Lemma 9.2 then shows the existence of families A;, i € [M], satisfying the
assumptions of Corollary 1.2, such that any pair of graphs from the same family .A; has
properties Q1 and Q2, which in turn impies Theorem 1.3.

The key properties Q1 and Q2 of pairs of graphs G; C G5 characterise the distribution
of small cycles and subtrees in G, G5. Specifically, they say that in both graphs G, G5
there are two small sets of vertices V C V{j, where V; contains only vertices with degree
exactly d and V{ includes vertices that are close to V5, such that

(1) any two small cycles not intersecting V, are far from each other,
(2) for any admissible® rooted tree T of small depth r, there exist sufficiently many

SWith positive probability, there exists a vertex in the random graph such that the r-ball around it is
isomorphic to this tree — see the definition in Section 6.
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vertices, that are far from V] and from each other, whose r-neighbourhoods are
isomorphic to 7', and

(3) if G1[Vy] = G2[V{], then for any rooted unicyclic® graph C of small diameter, there
is r such that either in both G, G5 there are sufficiently many vertices, that are far
from VO/ and from each other, whose r-neighbourhoods are isomorphic to C, or the
numbers of such r-neighbourhoods in the two graphs are equal.

Lemma 9.1 is a stand-alone lemma and it is relatively straightforward to prove. In
contrast, Lemma 9.2 is technically much more challenging. The proof makes up for the
majority of the paper and relies on results from all Sections 2-8. In particular, the fact
that small cycles are typically far from each other, that is required by (1), is exactly
Lemma 5.2 given in Section 5. Property (2) follows directly from a law of large numbers
for a count of admissible trees given by Lemma 6.1 in Section 6. The proof of the latter
lemma uses the so-called stochastic approximation method (see Section 2 and, e.g.,
[3, 23] for more details). To the best of our knowledge, an application of stochastic
approximations to prove logical limit laws is novel. We hope that it may be used to prove
FO convergence for the original uniform attachment model and for some other recursive
models as well. As discussed earlier, the main difficulty in the derivation of convergence
laws for recursive models lies in the treatment of unicyclic graphs — corresponding here
to property (3). This property is ensured by Lemma 8.1 that is presented in Section 8. Its
proof relies on approximating counts of unicyclic graphs using Markov chains, applying
results concerning the existence of limiting distributions for those chains, and leveraging
the fact that G,,(m, d) typically has unbounded number of cycles of any fixed length —
see Lemma 7.1 in Section 7.

Organisation of the paper In Section 2 we state the stochastic approximation theorem
that we use in Sections 3 and 6. In Section 3 we prove auxiliary results about the
asymptotic behaviour of the number of vertices of a given degree, which is a particular
case of a more general result that asserts the law of large numbers for trees counts,
presented in Section 6. In Section 4 we describe the random graph structure induced by
[ng] — that plays the role of the set 1, from our overview of the proof strategy — where
ng is a sufficiently large constant. In Sections 5 and 7 we prove an upper bound and
a lower bound on the number of small cycles in the random graph, respectively. The
limit distribution of unicyclic subgraphs is investigated in Section 8. Finally, Section 9
proves Lemma 9.1 and Lemma 9.2 and therefore completes the proof of Theorem 1.3 by
describing the winning strategy of Duplicator.

2 Stochastic approximation
Let us consider an r-dimensional process Z(n), with filtration 7,,, which is defined in

the following way (see [3] for more details on stochastic approximations)

1

Cn41

where FE,,, R, and the function F satisfy the following conditions. There exists U C R"
such that Z,, € U for all n almost surely (a.s. for brevity) and

Z(n+1)—Z(n)

(F(Z(n)) 4+ Epnt1 + Rpy1), 2.1

Al The function F': R — R" is continuous and bounded in some neighbourhood of U,
has a unique root 6 in U, such that in some neighbourhood of the root (which may
have some elements outside of U),

Flz)=H(x—-0)+ 0 (Jz —0]")

6A connected graph with exactly one cycle.
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for some a > 1, where the matrix H is stable, i.e. the real parts of the eigenvalues
of H are strictly negative. The smallest of the absolute values of these real parts is
bigger than 1/2.
A2 For any € > 0
sup  F'(z)(z—0) <0.
lt—0|>e,x€U

Note that for condition A2 to hold it is enough for the derivative matrix of F(z) to
exist and to be stable in U. We also note that the matrix H in the condition Al is
the derivative of F' at x = 6.

A3 E,, is a martingale difference with respect to F,, (recall that a process F,, is a
martingale difference process with respect to a filtration 7, if E(E, 1 | F,) =0
for all n) and for some § € (0,1/2), R, = O(n?) a.s. (i.e. there exists a non-random
constant C, such that limsup,,_, Bl < C as.), and

ne >

oo
E,
g < oo a.s.
nl="o
n=1

Note that due to convergence theorems for martingale differences (see [3, Ap-
pendix B]) for the last condition to hold it is enough that sup,, E(|E,+1|? | Fn) < 00
a.s.

We need the following result (see the proofin [3, Theorem 3.1.11]):
Theorem 2.1. Under the above conditions, Z(n) — 0 a.s. with the convergence rate

1Z(n) — 0] = o(n~%) a.s. (i.e. WJ# 0 a.s.) .

3 Number of vertices of fixed degree

In our model, at step n + 1, the probability to draw an edge to a given existing vertex
equals to

. (n—N(;r(ln)—l) . n— Nd(n) —m B m (3 1)
(H*Nd(”)> o n — Ng(n) n— Nd(n)’ ’
where Ni(n) is the number of vertices with degree k at time n for k € {m,...,d}. In order

to use this formula, we study an asymptotical behaviour of Nj(n). Let Xy (n) := Ni(n)/n,
m < k < d. Let us consider the equation

d—m
m
_ =z. 3.2
(m—i—l—x) v (3-2)
Recall that d > 2m. Since

0 d— 1 d— 1H)—-m-—1
9 (demyn—" pg) = tom L _aldomi ) om
Ox m+1—x m+l—z =z z(m+1—2z)

m—+1
d—m+41"

is negative on (O, d:n:;il) and is positive on (

1) and since the equation (3.2) has
m—+1

root z = 1, it also has a unique root x = p; on (0, 1), which is strictly less than

d—m-+1"’
which is, in turn, less than 27*.
Let us define 5
(I —pg)m™™

= k=m,...,d—1. 3.3
Pk (m—+1— pg)k—m+1’ m (3.3)

Lemma 3.1. X;(n) — py with rate | Xy (n) — pi| = o(n='/?*%) for any § > 0 a.s.
EJP 30 (2025), paper 164. https://www.imstat.org/ejp
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Proof. Let F,, be the filtration that corresponds to the graphs G,,. Let v(l) e ,v,(Lm) be
the vertices that the vertex added at step n + 1 sends the edges to. In what follows, we
denote by deg,, (v) the degree of a vertex v in the graph G,,. We get

E (N (n+1) = Nyu(n) | F) = 1 — i]? (deg, (0 =m | 7o) =1~ n_#d(n)Nm(n),
E (Np(n+1) — Np(n) | Fo) = i[ (deg,(0f7) = k= 1] F,) = P (deg, (") = k| 7, )]

::_%(Nkl(n)—Nk(n)), k=m+1,...,d—1,
E (Na(n + 1) — Na(n) | Fp) = iIP (degn(u,(j)) —d—1] ]—'n> = #}Wm,l(n).

Since the total number of edges in G, is strictly less than mn and is twice less than the
sum of all degrees in the graph, we get that the number of vertices of degree d does not
exceed 22 Therefore, if d > 2m we get that X4(n) < 22 < 1. Note that for X;(n) we
get

1

E(Xk(n+1) = Xu(n) | Fa) = -—

(E (Np(n+1) — Np(n) | Fo) — Xp(n)).  (3.4)

Hence, if we define functions (on [0,1)4=™ x [0, 27))

fm(xma-n,xd) =1- (1_xd +1) T,

Fe(@oms vy Td) = —— gy — 1) e, k=m+1,...,d—1, (3.5)
1fl‘d ]-*fL'd
m

fd(l‘m7"-axd) - 17xdxd71 — Td,

we would get that for all k € {m,...,d},

E (Xp(n+ 1) — Xp(n) | Fo) = — i (X (), Xa(n). 3.6)

For the vector Z(n) := (X,,(n), ..., Xq4(n)) we have the following representation

Zn+1) - Z(n) = — <F(Z(n)) A D(Z 1) —B(Zn+1) | fn))),

n+1
where F(Zpm, .., %a) = (fo(@my -5 Td)s -+ fa(Zm, - -, xq))t. Set

Buir = (n+ 1)(Z(n+1) = E(Z(n+1) | F), Rapr =0.

Let us find solutions of F(z,,,...,z4) =0, i.e. of the system of equations
1-— (1 Id)mm = Tm,
1_$d(xk_1_$k) = T, k=m+1,...,d—1, (3.7)
%xd,l = Iq.
We get
1—x4
o
T m41—xy
m
x Tp_1, k=m+1 d—1
L P
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Hencefork=m+1,...,d -1
k—m

(1 —zq)m
(m+1—zg)k—mt1’

T =

For z4 we get that
m (1 —xg)md-t-m

1—zg(m+1—gg)d-1-m+l

d—m
m
S — = x4.
<m—|— 1 —md)

This equation has a unique root z4 = pq in (0,2m/d), which results in the existence of a

7Id:0,

which is equivalent to

unique solution xx = px, k = m,...,d — 1. Note that the system (3.7) is equivalent (by
summing all rows) to the system
1-—- (ﬁ) Tm = LTy
11’;d(xk,1 —xE) = Tk, k=m+1,...,d—1, (3.8)
1 = Ty +...+ 24

Let us check the conditions of Theorem 2.1. For non-zero partial derivatives of functions
fe, k=m,... d, we would get:

%éz’; (T -y 2q) = flzd -1,

o (Tms s xa) = T —zgz¥ms

g2l (2, wa) = s k=m+1,...,d—1,

O (L. xa) = - -1, k=m+1,....,d—1, (3.9)
%(zm,...,rd) = ﬁ(zk_lka), k=m+1,...,d—1,
62%1(%,...,%) = l%d,

67(1(567”,...,1‘(1) = —1—|—mxd_1.

Hence, the characteristic polynomial of the derivative matrix is

« 8 e (725) 7 () e

k=m+1

d—m
m m
- 1o B I L
+( 1 -4 ) ( +(1—9«"d)2xd ' )

d m d—k m k—m m
=(-1)4m™ 1+ A P E———
( ) Z <1—:I:d> <1—$d+ + > (1—xd)2$k !

k=m+1

d—1 m d—k m k—m m
— (=1)dm 14\ —
-y k_m(1—$d> <1—xd+ " ) (122"
m

— (=1)d=m (1—33d +1+)\>d_m (1+X)

—1 m d—k—1 m k—m m
_ (_1\d—m
= (=" (1_xd> (1_xd+1+A> 7(1_xd)2xk(1+x)

k=m

m

d—m
—(=1)d=m +1+)\> (14+X).

1—.7}d
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Letusdenotet =1+ )\, c= ﬁ Then
P(A) = (=) ThQ(t),

where

d—1
Qt) == d m ch k c+t L
Pl 1ffL'd

ol —m k—m
t) = d—m— Ltl d—k k m— zﬁz
an=3 ("7")e > Z -
=0 k=m
d—m d—m d—m—1 d—1 kE—m z
_ —m— ztz d—m— ztz k
("7 > o Z,(i)ud
=0 k=m+1i
d—m—1 d—m d—1 E—m T
:tdfm dfmfiti o k .
"y ((i) > (7))
=0 k=m+1
Note that

d—m _ § k—m\ xp S d—m—1 1 Zk 2 k=m+i Tk
) Ml ) 1—xz4 — 7 1—x4

since (d_im) = %(d_’f_l) > (d_T_l) and (k_zm) < (d m= 1) forall k < d — 1. There-
fore, if Zzzm zr < 1 (in particular, when z; = p;), Q(¢) has non-negative coefficients
and, therefore, does not have roots with positive real parts. Note that P(—1) = 0. As a
result, we get that the largest real part of eigenvalues of the derivative matrix equals
—1if Zizm xr < 1. Note that Zzzm Xi(n) = 1. Therefore the process Z(n) satisfies the

conditions Al, A2 of Theorem 2.1 on the set

2
U{xm+...+xd1,xk20,km, dzd<;n}.
To check condition A3 we first recall that R, ;1 = 0. At each step we draw m edges,
so we change degrees of exactly m vertices, while adding one new vertex. Hence,
|Ni(n+1) = Ng(n)| < m+1and [Xy(n+1) — Xy(n)| < ™. Therefore, for E, 1 we get

|Epi1] < (n+1)(1Z(n+1) — Z(n)| + [E(Z(n + 1) — Z(n) | Fu)|)

§2(n—&-1)(m—|—1)(d—m—&-1)7

which results in condition A3. By Theorem 2.1, we get the conclusion of Lemma 3.1. O

4 Probability to have degree less than d

We will need the following variant of the Chernoff bound.

Lemma 4.1 ([22, Theorem 4.4]). Let X;, i > k, k > 1, be independent Bernoulli random
variables with EX,; = p for some p > 0. Let S,, = 27 x Xi, n > k. Then, for any 6 > 0,

52

IP(Sn < (1-&)p(n(n+1) —1nk)> < (”Z 1)

—§2p

]P(Sn > (14 8)p(nn —In(k - 1))> < (kﬁl) o
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Note that Lemma 4.1 indeed follows immediately from the standard Chernoff bound
[22, Theorem 4.4] since ES,, = p}_"", + is greater than In(n + 1) — Ink and less than
Inn —In(k—1)foralln >k > 1.

Let us consider the evolution of the degree of a given vertex. Fix a time s and consider
the vertex s that appears at this time. It appears with the degree m. If its degree at time
t > s is less than d the probability to draw an edge to it (from the vertex ¢ + 1) equals
to ;- Foraz e (0,1), let X;(z), i > s, be independent Bernoulli random variables
with EX;(z) = x and let each process (X;(x), x € (0,1)) be independent of GG;. Set

X, = X; (W) for i > s. Clearly, there are independent Bernoulli X/, i > s, such
that EX] = % and X < X; for all i > s. Then, due to Lemma 4.1, the probability that

the vertex s has degree less than d at time n > s does not exceed

n—1 n—1 n 7m/2
IP(ZXj,gd—m—1> §P<§X{§d—m—1> gc(;)

1=s

for some positive constant c. By repeating this estimate to vertices that appear at the
beginning of our graph process, we would get the following result.

Lemma 4.2. For any fixed s, with high probability (hereinafter we write ‘w.h.p.” for
brevity, i.e. with probability tending to 1 as n — oo) the degree of s in G,, equals d. In
particular, for any fixed ng and a, w.h.p., the degree of each vertex in the a-neighbourhood
of the first ng vertices has degree equal to d.

5 Number of cycles: Upper bound

Let us estimate the probability that a new cycle of length r is formed at time n + 1.
To form a cycle of length » we have to connect a new vertex with two vertices joined by
a path of length r — 2 that are open to attachment (there are n — N;(n) such vertices).
There are at most (d"~2 — 1)(n — N4(n)) ordered pairs (v, u) of vertices that are open to
attachment and joined by an (r — 2)-path. Indeed, there at most n — Ng(n) ways to choose
the first vertex v in the pair. Since v has degree at most d — 1 and every other vertex
has degree at most d, the ball around v of radius r — 2 has at most (d — 1)d" 3 < d"72 — 1
vertices (excluding v). Thus, there are at most d"~2 — 1 ways to choose the vertex u.

Recall that the number of vertices of degree d, denoted by N,(n), does not exceed
2m

=7n. Hence, the probability to form a new cycle of length r does not exceed

(@2~ 1)(n = Now)) __ mlm = 1)d"* _ m(m — )i

(n—Na(n))(n — Na(n) =1) = n—Ng(n) ~— (1- 27’”) n

m(m — 1) (5.1)

Let n > m(m — 1)d"~!. Let C™* be the maximum possible number of r-cycles on first
m(m — 1)d"~1 + 1 vertices. Fori € {m(m — 1)d"~! +1,...,n}, let X; be the indicator
random variable of the event that a new r-cycle appears with the introduction of the i-th
vertex in GG;. As we have just proved, there exist independent Bernoulli random variable
X! such that, foralli € {m(m—1)d""1+1,...,n}, EX! = p/i, where p = ’”(“11:7%”4 and
X! > X;. Clearly, the total number of r-cycles in G,, is at most Cﬁ“ax—&—zzl:m(mfl)m,lﬂ Y.,
where Y; is the number of r-cycles created at step :. We have that Y; = 0 whenever
X; = 0. Moreover, Y; < d"3m(m — 1)/2 for all i almost surely, since any cycle that
appears at step ¢ involves two edges {i,v} and {i,u} (out of m) that contain the vertex
i and a path between v and u in G;_; of length r — 2. Any such path consists of r — 3
vertices other than v and v. So there are at most d"~2 ways to choose the path, since
all vertices in G;_; have degrees at most d. We conclude that the number of r-cycles
in Gy, is at most O, + 370, 1)4r—141 X;d""*m(m — 1)/2. Due to Lemma 4.1 there are
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constants C, ¢ > 0, such that

dr=3 —1 -
P % | Z X/ >Clnn| <en™2 (5.2)
i=m(m—1)d"—1+1
The total number of r-cycles that contain at least one vertex i € {m(m—1)d"~'+1,...,n}
equals
" d" 3m(m —1) d"3m(m — 1)
3. _ . N . -~ 7 4
ey wefimmle g dnn gy

i=m(m—1)dr—141

Due to (5.2), we get 3277 . 1y4—1,.1 P(Yy > Clnn) < oo. Since the total number
of r-cycles in G,, is at most O(1)-far from Y,”, due to the Borel-Cantelli lemma’, the
probability that there are more than C'lnn cycles in G,, for some n > N tends to 0 as
N — 00, i.e. we proved the following result.

Lemma 5.1. For any r > 2, the number of cycles of length r in G,, is O(Inn) a.s.

Note that w.h.p. there are at most C'Ilnn vertices in the a-neighbourhood of the union
of all r-cycles. Therefore the probability to draw an edge to this neighbourhood at time
n does not exceed % (for some constant ), and to draw two edges does not exceed

C%”. Therefore, by the Borel-Cantelli lemma, we get the following result.

Lemma 5.2. For any € > 0 and /¢ there is s such that with probability at least 1 — ¢ in
[n]\[s] there are no connected subgraphs with at most ¢ vertices and at least 2 cycles.

6 Number of rooted trees

For a rooted tree T, let Ny (n) be the number of vertices that are roots of maximal
subtrees of GG,, (a subtree is maximal in G,, if all its non-leaf vertices are adjacent only
to vertices of that tree) isomorphic to 7. Note that the set of all isomorphism classes
of rooted trees with degrees at most d of a given depth is finite. We would refer to a
maximal subtree of GG,, isomorphic to a tree T from that set as having the type T (i.e.
when we talk about the type of a tree in G,, we assume it is rooted and maximal). Also,
we call a tree T' max-admissible, if with positive probability its isomorphic copy is a
maximal subtree of G,, for large enough n. In the current section, we prove the following
statement:

Lemma 6.1. For any max-admissible tree T there is a constant pr € (0,1), such that for
any d > 0
Nr(n) = prn+o(n*/*%) as.

In particular, for all s € IN and any max-admissible tree T' w.h.p. there are at least s
vertices in GG,, that are roots of maximal subtrees of (z,, that are isomorphic to T'.

Proof. Let us fix b € IN and consider variables Xr(n) := Nr(n)/n and vector Zy(n) :=
(X1,(n)) over all max-admissible rooted trees 7; of depth b (there are only finitely many
such trees). Note that the case b = 1 refer to the number of stars and was already
considered in Section 3. Let b > 1. The order of the elements of Z,(n) (or, in other words,
the order on the set of all max-admissible trees of depth b) is defined in a way such that
an addition of new branches (that preserves the depth of the tree) increases the order.
It could be done by induction on b in the following way. If 7}, 7% are stars (i.e. b = 1),

7Let us recall that Borel-Cantelli lemma states the following. Let B,, n € IN, be a sequence of events such
that 35, cw P(Bn) < co. Then P(NF_; UF_,, Bn) = limy o0 P(UF_, Bn) = 0. In our case, B, = v, >
Clnn}.
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then 77 < T3 if and only if 77 has less leaves than 75. Assume that < on the set of all
max-admissible trees of depth b — 1 is defined. Let sq, s be the number of children of
roots of trees 11,7, of depth b respectively. If 51 < s9, then T} < T5. If 51 = 59 =: s,
then let le, ..., T7 be the subtrees of T; rooted at the children v}, ..., v; of the root of T}
comprising all descendants of these children and ordered in the decreasing order. Then
Ty < T if and only if (T1,...,TF) <s (T4,...,T5), where < is the lexicographical order
on the set of s-vectors of trees of depth b — 1 induced by the order <.
Note that

1

E(Xr(n+1) = Xr(n) | Fo) = =3

(]E(NT(n +1) = Nr(n) | Fn) — XT(n)>.
There are two ways to change Np(n) at time n+ 1. We could draw an edge to a maximum
tree isomorphic to 7" or we could create a new copy of T rooted at n + 1. Recall that due
to equation (3.1) for each given vertex of degree less than d the probability to draw an
edge to it is

m 1 m

n—Ng(n)  nq_ Na)”

In a rooted tree T, fix a non-leaf vertex u. Then the expected number (conditioned on
G,) of trees T” in G,, of type T such that an edge is drawn from n + 1 to a vertex v’ of T’
and there exists an isomorphism of rooted trees T' — T’ sending u to u’ equals

CmLTn(") _ mXr(n)
RO )

where the constant C' = C(T', u) corresponds to the number of vertices that belong to the
orbit of v under the action of the automorphism group of the rooted tree 7. We stress
that all automorphisms of 7" preserve the root R, so C(T, R) = 1. For instance, let us
consider a “regular” tree T' of depth 3 such that all leaves are at distance 3 from the root
and all non-leaf vertices have degree k. Then any vertex u at distance 1 from the root
has C(T,u) = k since the group of automorphisms of 7" induces the symmetric group
S on the k vertices adjacent to the root (any two branches adjacent to the root can be
permuted). Since, on the next layer, there are k(k — 1) vertices, any vertex v at distance
2 from the root has C(T,u) = k(k — 1) (clearly, for every two vertices at distance 2 from
the root there exists an automorphism that maps one to another).

Recall that X4(n) < %, and hence, due to the condition 2m < d, X4(n) is bounded
away from 1.

The type of the maximal tree T};, ; of depth b with root n + 1 would correspond to the
probability distribution induced by the numbers of maximal trees of depth b — 1 at time
n. It is defined by the types of trees of depth b — 1, to whose roots we draw m edges
from vertex n 4+ 1. For a max-admissible tree T of depth b such that its root has exactly
m children, let M(T') be the set of children of the root of 7" and let 7 (7') be the multiset
of types of the m subtrees of T rooted in v € M(T') and containing all descendants of w.
Fort € T(T), let v(¢) be the multiplicity of the type ¢ in the multiset 7(T). Let ¢y, ..., s
be all the different types from 7 (7). Note that, for ¢t € 7(T) and ¢ € [m], the probability
(subject to GG,,) that the i-th edge emanating from the vertex n + 1 meets the root of a

maximal subtree of G, of type ¢, equals ;= Nam) = T f)’(il”&) Then

m > [Goy Ne(n) o (N (n) —v(t) +1)
(t1), ..., v(ts)) (n— Na(n)) - ... (n — Na(n) —m + 1)

where P,y is the probability to create a cycle of length at most 2b 4 1 at step n + 1
which is O(1/n) due to the bound (5.1). Therefore, the conditional probability (subject

P =716 - < Peyte
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to G,,) to create a tree of type T rooted in the vertex n + 1 at step n + 1 is a polynomial
function of 1)_(;(27(?1) for every i € [s], up to O(%) error term.

In order to change the type of a given maximal tree in GG,, (to another given type) of
depth b we need to draw an edge from the vertex n + 1 to one of its vertices and draw
the rest of the edges to the roots of trees of depth at most b — 2 of given types (that
depends on the type of a tree we want to obtain). We also need to make sure that all
trees are disjoint — the probability of drawing edges to “intersecting” trees is of order
O (1). So, the probability of changing the type of the given tree in the described way
(subject to G,,) is a polynomial function of #d(n) and X7, (n), up to a term O(L), where
T; are max-admissible trees of depth b — 2.

Therefore®
E(Zy(n+1) — Zu(n) | Fa) = —— (AZu(n) = Zy(n) + Yy + O ( -
b(1 o) [ Fn) = 227 | AvZa(n b(1 b -
where A, = Ay(Z1(n),...,Zy—2(n)) is a lower-triangular matrix with negative elements

on the diagonal and non-negative under the diagonal and Y, = Y, (Z,-1(n), Xa(n)) is a
vector, such that the elements of both A; and Y}, are polynomials of #{i(n) and X, (n),
where T; are trees of depth at most b — 2 (for A;) or exactly b — 1 (for Y3). Let us consider
Fy(Zy,...,2) := ApZp(n) — Zp(n) + Y, (note that A, and Y, are functions of Z4, ..., 2,1

itself). Recall that Z; contains X, so F} is deterministic. We would use induction over

b to prove that there is a unique solution of the system Fj(z1,...,2;) =0,i=1,...,b (in
an appropriate area). We already established the existence of the unique (non-zero)
root for the case b = 1. Assume there are unique non-zero solutions z7,..., z;_; of the

systems Fi(zl, ey Zi) =0,1=1,..., b — 1. If we define Hb(zb) = Fb(zf, ey Zlffl’ Zb), then
Hy(zp) = 0 is a system of linear equations with the unique root z; since A, is lower-
triangular with negative elements on the diagonal. Now let us show that all components
of z; are positive. Recall that all elements under the diagonal of A, are non-negative and
each (except first) row has at least one positive element outside the diagonal (if a tree is
not the smallest possible, we could remove one vertex with its children from it to make
it smaller). All components of Y;(z;_,, pq) are non-negative as well. Hence it is enough
to show that the first element of Y, is positive. It follows from the fact that the smallest
max-admissible tree of depth b (which corresponds to the first coordinate of z;) could be
obtained by drawing edges from a new vertex to the smallest max-admissible trees of
depth b — 1 and the first coordinate of z;_, is positive by the induction hypothesis.
Let us consider the vector Wy(n) = (Z1(n), ..., Zy(n)). We get that

E(Wb(n—&-l)—Wb(nH]-'n):nj_l<F1+O<;>,...,Fb+0<i>>.

The derivative matrix of function (Fi, ..., Fy)(z1,...,2) is of the following form. Around
the diagonal, it has b blocks: the ¢-th block is the derivative matrix of F; with respect
to z;. For ¢ > 1, the i-th block is a lower-triangular matrix (since F; = A;z; — z; + Y;)
with diagonal elements at most —1. The block that corresponds to i = 1 was studied in
Section 3 and has characteristic polynomial P()) with the biggest root —1. Since each
F; depends only on z1, ..., z;, all elements above the blocks are 0. Therefore the highest
eigenvalue of the derivative matrix of (Fy,..., F,) is —1 (for all possible values of the
process). Hence W, (n) satisfies condition A2 of Theorem 2.1. Since functions (F4, ..., Fp)
have second-order derivatives, condition Al is satisfied as well. To check condition A3

8For a sequence of r-dimensional vectors a,, € R", n € IN, where r € IN does not depend on n, we
write an, = O(1/n), if there exists a constant C' > 0 such that, for all n, ||an| < C/n. Here, ||ax| is the
{o-norm of a,.
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note that if we take
En+1 = (n + 1) (Wb(n + 1) — E(Wb(n + 1) | ]:n)>7
then

Rn+1 L= (n + 1)(Wb(n + 1) — Wb(n)) — (Fl, N 7‘Fb) — En+1
1

= (n+ DEWy(n+1) — Wo(n) | F) — (Fr,...,Fy) = O <n> a.s.

and
[Ent1] < (n+1)[Wy(n+1) = Wy(n)| + (n+ 1)[EWy(n + 1) = Wy(n) | F,)| < C

for some constant C' since the number of trees of depth b that could be impacted by the
vertex n+1 is bounded from above by a constant, which results in condition A3. Therefore,
due to Theorem 2.1 W, (n) converges a.s. to (27, ..., 2;) with the rate o(n~'/2%9) for any
0> 0a.s. O

7 Number of cycles: Lower bound

By Lemma 6.1, recall that for any max-admissible rooted tree T of depth » — 1 there
exists pr > 0, such that
Nr(n) = prn + 0(n2/3) a.s. (7.1)

Let 7,_1 be the set of all max-admissible trees T of depth r — 1, such that the root of T’
and at least one vertex at distance » — 2 from the root have degrees less than d each.
Note that this set is not empty. For every tree T' € 7,._1, its root R and its vertex u of
degree less than d and at distance exactly r — 2 from R, the addition of edges {n + 1, R}
and {n + 1, u} creates an r-cycle. The number of such pairs {R,u} overall T € 7,_; is at
least § Y ;.7 Np(n) since each pair is counted at most twice. Then, since m > 2 and
due to (7.1), the probability to draw a cycle of length r at step n + 1 (subject to G,,) is at

least ( 0 )
m{m —
Z Nr(n)ogr—~55 > = Z pr —o(n™*?) as.
TeTr -1 2(n = Xa(n)) K TeT

Therefore, there exist p > 0, ng € IN, and independent Bernoulli random variables
¢n ~ Bern(p/n), n > ng, such that a.s., for all n > ng, the increase in the number of
cycles at step n + 1 is not less than (,,. For any ny due to Lemma 4.2 w.h.p. all vertices
in the r-neighbourhood of [ng] have degrees equal to d, and, hence, w.h.p. if a cycle
arises at step n + 1, then it entirely belongs to [n + 1] \ [n¢]. Due to Lemma 4.1 and the
approximation by Bernoulli random variables (,,, there are constants ¢, C,§ > 0, such
that the number of r-cycles in [n] \ [ng] exceeds cInn with probability at least 1 — Cn~°.
Therefore, we get the following result.

Lemma 7.1. For any s,r and ng w.h.p. there are at least s cycles of length r that are
entirely in [n]\[ng].

8 Number of unicyclic graphs

Let us recall that a graph U is unicyclic if it is connected and contains exactly one
cycle. In other words, a unicyclic graph comprises a cycle (of length ¢) with disjoint
trees growing from this cycle (we assume that all trees have the same depth k; ¢ and &
are fixed for the rest of the section). Let U be a max-admissible unicyclic (maximality
and max-admissibility in the case of unicyclic graphs are defined exactly in the same
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way as for trees) graph. We say that a maximal unicyclic subgraph of GG,, has type U if it
is isomorphic to U. We have one specific type Uy of unicyclic graphs with all non-leaf
vertices having degree d. Let us call such unicyclic graphs complete. As above, Ny (n)
is the number of maximal subgraphs in G,, isomorphic to U. Let us consider the vector
Z(n) = (Nu,(n))i=1,....x, where U; are all non-complete unicycle graphs of depth k (i.e.
the depth of trees growing from the cycle) comprising an ¢-cycle, ordered from the
smallest to the largest (the linear order on unicyclic graphs could be defined in the same
way as on rooted trees), and K = K (k,{) is the number of unicyclic graphs of such kind.
Process Z(n) takes values in Zf . Note that the complete unicyclic graph Uy could only
be obtained by adding a leaf (since the degree of a new vertex equals m) to a unique
non-leaf vertex of Ui with degree less than d. In this section, we prove that Z(n) has a
limiting probability distribution.

Lemma 8.1. For any i1,...,ix there exists a constant ¢ = ¢(iy,...,ix) such that
IP(NUl(TI,) = il, C. ,NUK(n) = ZK) —c

asn—oo,and ), . oz c(ii,...,ix) = 1. Moreover for any ng

,,,,,

IP(NUO > no) —1
asn — oo.

Proof. For a fixed max-admissible unicyclic graph U, at time n + 1 the value of Ny may
change due to the following reasons (similar to the changing of the number of rooted
trees from the previous section).

* A new graph may be created by drawing 2 edges from the vertex n + 1 to a single
tree of a certain type (recall that by Lemma 3.1, the probability to draw an edge to
a given vertex (subject to G,,) equals m + o(n*4/3) a.s.), and the rest of the
edges to roots of “disjoint” (without common non-leaf vertices) trees of certain
types. By Lemma 6.1, for a max-admissible tree T, we have Ny = prn + 07(n)n?/3,
where, for every C, maxr. |y (1) <c 0r(n) — 0 a.s. Hence, in the same way as in the
previous section, the conditional probability of creating a unicyclic graph of type U
this way (given G,,) equals & + o(n=%/3) a.s. for some constant c;; > 0.

* A U-isomorphic graph may be created from a fixed smaller unicyclic subgraph H
of the type U’, if the vertex n + 1 sends an edge to a non-leaf vertex of H and the
rest of the edges to roots of “disjoint” trees of certain fixed types in a way that
H becomes of type U (i.e. the maximal subgraph comprising the same cycle and
having the same depth as H becomes of type U). The conditional probability of
creating a maximal subgraph of type U in this way (given H) equals CU# + o(n‘4/ 3)
for some constant cy/ y > 0.

If U has at least one non-leaf vertex of degree less than d, the previous procedure could
reduce Ny (n) by drawing an edge to a unicyclic graph of the type U. Once a maximal
unicyclic subgraph becomes complete, it never changes its type.

Note that the conditional probability (given G,,) to perform more than one of such
operations (maybe for different types of U) at the same time equals O (7712) a.s. We prove
the existence of a limiting probability distribution for Z(n) by considering an auxiliary
process which is defined below.

Let us consider a Markov chain S(n) = (Si(n),...,Sk(n)) on Z¥ (see, e.g., [8,
Chapter 6] for more details on Markov chains and corresponding terminology) with
transition probabilities (we denote c; := cy,, ¢;; := cy; v, for brevity)
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» fori € [K],
P(Sin+1) = Siln) + 1, S5(n+ 1) = $;(n),j £1) =

e for1 <j<i<K,

P(Si(n+1) = Si(n) + L, Sj(n+ 1) = §;(n) L, Skl +1) = Sul), b #4,) = 2,

* Cko0= 1/(1 — pd) and

P(Sk(n+1) — Sk(n)=—1, Sj(n+1) = S;(n),j # K) = 701(’25](;

. K ¢ ciiSi  cxoS
o o —1_N"G Cjivj _ CKO0PK
P(ViSi(n+1) =S;(n)) =1 E p m—

i=1 1<j<i<K

Since sums of error terms o (n~%/3) and O (-%) converge, such terms would not
impact process Z(n) after some random moment N, and hence the existence of the
limiting probability distribution for Z(n) follows from its existence for S(n) for any initial
distribution.

Note that ¢; # 0, Ck o # 0 and from the definition of ¢y - and the ordering, it follows

that for any ¢, j strictly between 1 and K, we get that

* thereare 1 =1i; <... <4 =i, suchthate; , , #0forallse [t—1],
* thereare j =j; <...<j, =K, suchthat¢; ;  , #0forallsc [p—1].

This implies that S(n) is aperiodic and irreducible. Note that S(n) is not time-homoge-
neous. Let us consider a random walk S’(¢) on Z% that reflects only those moves of S(n)
when it changes its state (i.e. for every ¢, S'(t) := S(n:), where n, is the ¢-th moment n
such that S(n) # S(n — 1)). Since £, ¢ # 0, forms a divergent series, by Borel-Cantelli
lemma, all coordinates of S change infinitely many times a.s., so S’ is well defined. Also,
since the conditional probability (given S(n —1) = ) to change the state at time n is <5,
where ¢ depends only on z, we get that the conditional probability that the state at time
n becomes y (for a fixed y # x), subject to S,, = = and the event that the state is changed,
does not depend on n, and only depends on x and y. Thus, S’(¢) is time-homogeneous
and its transition probabilities are given by

« P(SI(t+1) = Si(t) + 1, Si(t+1) = S5(t), ) £ 1) = 5
o P(SUt+1) = S(t) + 1, St 4+ 1) = S4(8) — L, Sp(t+1) = Su(t) b £, ) = arai?,
 P(S(t+1) = Selt) = =1, Sj(t+1) = S)(t),j # K) = D),

where

K
D' ()= ci+ Y. ciSjt) + cxoSk(t).
=1

1<j<i<K

Let us consider Si(t). There are constants c¢_ and c;, such that

S51(t)
P(S] D—Si(t)=—-1]8() >c. —t"—
(Si(6+1) = Si(0) = ~118'(0) 2 e 1y
P(Si(t+1)=8i(t) =1 {0 T —
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Hence, for large enough 57 (¢) (i.e. with S;(¢t) > N for some N € IN),
]E(S{(t—&— 1) = SU() | S'(t), Si(t) > N, Si(t+1) # s;@)) <C<0

for some constant C. Therefore Sj(t) is positively persistent. Consider W;(t) =
(S1(t),...,S8i(t)), i = 1,...,K. Let us assume that W;(¢) is positively persistent, and
prove that the same is true for W, ;1 (¢). Note that there are constants Cy,Cs > 0, such
that

! ! — / (Wig1(t)] +1
P(SEa(t+1) = SLa(t) = 11 5(0) < € LU
P(SLy(t 4 1) — Sy () = 1| S'(1)) > O o)

i+1 41 - 2 ‘S/(t)l n 1 .

LetN>%,N6]N.Weget

E(gw+m—5mngw,aaw>Nmawm;Hu+n¢$ﬂm)<c<o

for some constant C. Hence, the probability P(S; | (t +t') < N|Wip1(t +t')| | Si, () <
N|W;+1(t)|) is bounded away from 0 as ¢’ — oco. Since W;(t) is positively persistent, it
implies that W, (t) = (Wi(t), S;,(t)) is positively persistent as well.

As result, for each state s = (s1,...,sx) probabilities P(S'(t +t') = s | S'(t) = s)
(as t' — oo0) are bounded away from 0. Hence, the same is true for probabilities
P(S(niyy) = s | S(ny) = s) ast’ — oo, and for P(S(t +¢') = s | S(t) = s) as well.
Therefore, there exists a limiting distribution for S(n) (and for Z(n)).

The second part of Lemma 8.1 follows from Lemma 7.1 and the existence of the
limiting distribution for Z(n). O

9 Convergence laws

Fix R € N and set a = 3. For r € IN, let us call a unicyclic graph comprising a cycle
of length at most r and trees of depth exactly r» an r-graph. The cycle of a unicyclic
graph is called its kernel. An r-graph is complete if all its vertices have degrees either 1
or d, and all its trees are perfect and of the same depth.

Below we define graph properties Q1 and Q2 that imply the existence of a winning
strategy of Duplicator. Consider some integer numbers n > Ny > ng. We say that a
graph G with maximum degree d on [n] has property Q1, if

1. any two cycles of length at most a with vertices outside of [ng] are at distance at
least 3a from each other;

2. any vertex outside of [Ny] is at distance at least 3a from [ng];

w

any vertex from [Ny] has degree d;

4. for any max-admissible tree T' of depth at most a, there are at least R maximal
subgraphs in G isomorphic to T at distance at least a from [Ny] and each other, and
the same is true for any complete a-graph U.

Now, assume that n; > ns > Ny, and G', G? are graphs on [n] and [nz] respectively
such that G*|[,] = G*|;n,]. We say that the pair of graphs (G', G®) has property Q2, if
for any non-complete max-admissible a-graph U,

+ either the numbers of maximal subgraphs in G isomorphic to U are equal for
i€ {1,2},
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* or, in both graphs, there are at least R maximal copies of U that are distance at
least a from [Ny] and each other.

Note that, if G!,G? have maximum degree d, property Q1, and the pair (G, G?) has
property Q2, then, for any positive integer § < 2%, the numbers of maximal subgraphs
in G* isomorphic to a given non-complete max-admissible a-graph U with all vertices at
distance at least ¢ from [ng] are equal for i € {1, 2}.

Lemma 9.1. If both graphs G', G? have maximum degree d, have property Q1, and the
pair (G, G?) has property Q2, then Duplicator has a winning strategy in the Ehrenfeucht-
Fraissé game on graphs G', G? in R rounds.

Proof. Let us define the winning strategy of Duplicator. For a vertex v and r € NN, let
B, (v) be the r-neighbourhood of v (i.e., the closed ball in the graph metric of radius
r and the center at v). In the same way, for a set of vertices U, B,.(U) = Uyecy B, (v) is
the r-neighbourhood of U. Note that we omit a reference to a graph in the notation
for these balls — each time we use the notation, the host graph would be clear from
the context. For every round ¢ € [R], we denote by z1,...,z; and y1,...,y; the vertices
chosen in graphs where Spoiler and Duplicator made the i-th move respectively (say, G*
and G? respectively). For z; and y;, j € [i], let us denote by X, and Y; the unions of sets
of vertices of all kernels of non-complete 2%-graphs in G' and G2 respectively such that
these kernels are completely outside [ng], and are at distance at most 2#777! from z; and
y; respectively. Since G', G? have property Q1, each of the sets X j,Y; comprises at most
1 cycle. For a set A C V(G') and a set B C V(G?), we say that they are i-equivalent,
and write A =; B, if the following conditions are fulfilled:

* the sets of j € [i] such that the respective vertex x; (y;) belongs to A (B) are equal,

* there exists an isomorphism ¢ : G*|4 — G?|p of the induced subgraphs on A and
B that maps z; to y; for all j such that z; € A and preserves (in both directions) all
kernels that are outside [ng] of non-complete 27-graphs,

s if x; is at distance at most 2f~#*! from [ny], then ¢ can be extended to an isomor-
phism of G'| 4n,] and G?|pyn,) that maps every vertex of [No] to itself.

We define the strategy by induction on the number of rounds that have been just
played. Fix i € [R] and assume that, in round i, Spoiler makes a move in G; (without
loss of generality — if the move was done in G5, then the strategy is exactly the same),
and that for all j <i—1, Bor—j+1(X; U{x;}) =; Bar-s+1(Y; U{y;}). Note that, if i = 1,
then there are no additional requirements on the graphs. We also note that, due to the
assumption, the map sending x; to y;, j € [i — 1], is an isomorphism of G1|(z, ... 2.}
and Ga|(y,,....y,_,}- So if we succeed with the induction step, then we get the winning
strategy for Duplicator.

1. If d(w;, [no]) < 2B~ then Duplicator chooses y; = x;. We need to check that
Bor—i+1(X; U{x;}) =5 Bor—i+1(Y; U{y;}). Due to property Q1, every cycle of length
at most a which is completely outside [Ny] is far from x; = y;, and so X; = Y; = .
Also, the balls Byr-i+1(2;) and Byr-i+1(y;) are equal and lie entirely in [Np]. If
there is j < i such that z; € Bjyr-i+1(x;), then, by the induction hypothesis,
Bor—j+1(xj) =; Bar-j+1(y;), implying that Byr-j+1(z;) = Bar-j+1(y;) due to the
third condition in the definition of the relation =;. Then z; = y; belongs to
Bor-it1(x;) = Bar-i+1(y;). The relation Bor-it1(X; U {z;}) =; Bor—it1 Y; u{y:})
follows. If there are no such j, then there is also no j such that y; € Bor-i+1(y;),
and the relation is immediate.
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2. Assume that d(z;, [no]) > 287+ and that there exists j < i such that z; €
Byr-i+1(X; U {z;}). Let j < i be the biggest such round. Then Byr-i+1(X; U
{x:}) C Bar-i+1(X; U {z;}), and either X; = X; or X; = @. Let J be the set
of all j/ < j such that z;; € Bor—j+1(X; U {z;}). Since Byr—j+1(X; U{z;}) =;
Byr—j+1(Y; U {y;}) by the induction hypothesis, we may find an isomorphism
L G1|32R—.7‘+1(X.7U{Ij}) - G2|BQR—_7’+1(YJ'U{yj}) such that o(z;/) = y; for all j' € 7,
there are no y;; € Byr—j+1(Y; U{y;}) for j' € [j — 1]\ J, and ¢(X;) = Y. Dupli-
cator chooses y; = ¢(z;). It is obvious that ¢’ := ¢|p_, ., (x,u{z;}) is the desired
isomorphism that insures that Bor—i+1 (Xi @] {l‘z}) =; Bor-i+1 (Y; @] {yz})

3. Finally, we assume that d(z;, [ng]) > 277! and there are no j < i such that
x; € Byr-i+1(X; U{z;}). If X; # &, then let U; be the unique maximal 2"-graph
with the kernel X;. Due to the observation after the definition of property Q2
and due to property Q1, in the other graph there exists a maximal 2/-graph U,
isomorphic to U; such that

« the kernel of U; is either at least at the same distance from [ng] as the kernel

of U; from [ng], or is at distance at least 2f from [ng];
« U, is at distance at least 2a from the cycle of length at most 2% that meets the

2fi=i+1_neighbourhood of y; for every j < i;
« if, for some j < i, the 2f~7*l.neighbourhood of y; does not meet a cycle of

length at most 2%, then the cycle of U, is at distance greater than 2%~7+! from
Yj-

Consider an isomorphism ¢ : U; — U,, that sends the vertex z; to a vertex
which is at distance more than 2%~i*! from [ng] and set y; = (z;). The relation
Bor—i+1(X; U{z;}) =; Bor-i+1(Y; U {y;}) is straightforward.

Finally, if X; = @, then the existence of a good choice of y; follows from property
Q1.(4). Indeed, there are only two options: 1) Byr—i+1 is a maximal subtree, and
then there is an isomorphic maximal subtree in the other graph which is at distance
at least a from the neighbourhoods of all y;, j < 4; 2) there is a complete maximal
unicyclic graph comprising a cycle of length at most R which is at distance at most
28=i+1 from x;, and then there is an isomorphic maximal unicyclic subgraph in the
other graph which is at distance at least a from the neighbourhoods of all y;, j < 1.
The choice of y; is straightforward. O

Theorem 1.3 follows from Corollary 1.2 and the following lemma.

Lemma 9.2. For any R € IN and any ¢ > 0 there are Ny > ng, graph families A;, i € [M],
and numbers p; > 0, i € [M], Zﬁl p; > 1 — ¢, such that

* all graphs in U;c(pAi have property Q1;

s ifny > ny > Ny and graphs G' D G? on [n;] and [ny] respectively belong to the
same family A;, then the pair (G', G?) has property Q2;

» foreveryi € [M], lim,— o P(G, € A;) = p;.

Proof. Fix R € IN and € > 0. By Lemmas 4.2, 5.2, 6.1, 8.1, there exist N > Ny > ng such
that with probability at least 1 —¢, for all n > N, GG,, has maximum degree d and property
Q1, and all its vertices that are at distance at most 4a from [Ny] have degree d. We let A
to be the union over all n > N of the families of graphs G on [n] such that the maximum
degree of G equals d, GG has property Q1, and all the vertices of G at distance at most 4a
from [Ny] have degree d. It remains to partition A = I_Ii]‘i1 A; in an appropriate way.

Let M be all K-tuples (we refer to Section 8 to recall the definition of K) of non-
negative integers that are at most R, and set M := | M|M,, where M is the number of
all admissible maximal subgraphs of G on [Ny]. For each i € [M], the respective tuple
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m; € M, and the respective admissible H on [Ny], let A; C A be the set of all graphs G
from A such that G|y, = H and Z(G) = m,;, where Z(G) consists of Z; = min{R, Ny, }.
By Lemma 8.1, for every i € [M], there exists p; := lim, - P(G, € A;). Note that, for
every graph from 4, every its maximal unicyclic subgraph with a cycle of length at most
a and depth a that is at distance at most a from [Ny], is complete (since all the vertices
at distance at most 4a from [Ny] have degree d). Property Q2 follows. O
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