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Abstract—Generative artificial intelligence (AI), particularly
Large Language Models (LLMs), are envisioned to be a core
enabler for Sixth Generation (6G) wireless networks, power-
ing use cases such as autonomous troubleshooting, intelligent
configuration, and real-time decision support. Open Radio
Access Network (O-RAN), with its modular and disaggregated
architecture, offers the most suitable platform for embedding
these AI capabilities. However, the integration of LLMs into
O-RAN is constrained by their high inference latency, lack of
domain grounding, and resource-intensive retrieval workflows.
To address these limitations, this paper proposes a cache-
augmented Retrieval-Augmented Generation (RAG) and Graph-
RAG framework specifically designed for O-RAN environments.
The framework leverages semantic caching at the User Plane
Function (UPF) and centralized model orchestration to sup-
port low-latency, high-throughput, and contextually accurate
responses. The system is evaluated using the ORAN-Bench 13K
benchmark, consisting of 13,952 domain-specific queries derived
from official specification documents. Results show that cache-
enhanced RAG reduces average latency by 35.8%, increases
cache utilization to 76.38%, and achieves a cache hit rate of up
to 42.5%, significantly outperforming baseline LLM and Graph-
RAG configurations in responsiveness. Graph-RAG achieves the
highest factual correctness at 71.2%, followed by RAG at 70.5%
and LLM at 64.8%. These results demonstrate that semantic
caching not only mitigates the performance bottlenecks of LLM-
based reasoning in O-RAN, but also paves the way for scalable,
Al-native telecommunication infrastructures aligned with the
demands of next-generation networks.

Index Terms—Open Radio Access Network (O-RAN), Large
Language Model (LLM), Retrieval-Augmented Generation
(RAG), Graph-RAG, Resource utilization, Semantic Cache.

I. INTRODUCTION
A. Motivation

RAN architecture provides a streamlined approach to-

wards network disaggregation, offering modularity, in-
teroperability, and vendor neutrality [1] for radio access
networks (RANs). The ORAN architecture natively supports
both running: i) Artificial Intelligence (AI)-for-RAN within
components like the Near-Real time Radio Intelligence Con-
troller (Near-RT RIC), Central Unit (CU), Distributed Unit
(DU), or Service Manager and Orchestrator (SMO); and 1ii)
Al-on-RAN within the distributed implementation of user-
plane functions (UPFs) [2]. These components serve as key
enablers for edge Al, allowing real-time decision making,
adaptive policy enforcement, and localized intelligence closer
to the data source (be it RAN performance data or user-
application data), thereby reducing latency and improving
responsiveness. Within this emerging Al-native architectural
framework, generative Al, particularly Large Language Mod-
els (LLMs), presents a transformative capability for intent-
based management of these networks. These models can
facilitate sophisticated, context-aware reasoning, enabling

functions such as real-time troubleshooting, knowledge-based
query answering (for RAN co-pilots, for instance), and the
generation of adaptive control logic [3]-[5]. In the specific
context of O-RAN, LLMs can be leveraged to automate
the interpretation of complex network specifications, en-
hance anomaly detection, and generate dynamic configuration
recommendations. Furthermore, they can act as intelligent
agents, responding to operational queries from both human
and software entities.

However, general-purpose LLMs are limited by their lack
of factual grounding and domain-specific knowledge, ren-
dering them inadequate for the stringent accuracy and low-
latency requirements of decision-making within an O-RAN.
While techniques such as Retrieval-Augmented Generation
(RAG) and Graph-RAG enhance LLM outputs by integrating
structured data retrieval and semantic graph traversal [6],
[7], they introduce substantial computational and latency
overheads [8]. Fundamentally, publicly available implemen-
tations or systematic evaluation of RAG and Graph-RAG
applied specifically to the O-RAN domain are still in their
infancy, limiting their practical adoption [9]. Moreover, the
high computational demands and strict latency requirements
of these AI workloads pose major challenges, especially at
the network edge, within Near-RT RIC and distributed UPFs
[10]. This balance between performance and accuracy is
further strained by the need to handle numerous simultane-
ous requests across geographically distributed edge locations
and fluctuating network conditions in O-RAN’s decentralized
framework.

B. Research Gap and Contributions

A promising solution to this problem lies in the use
of cache memory for faster access to frequently retrieved
data [11], [12] and reduced computational load. However, a
systematic framework outlining such cache-assisted retrieval
in O-RAN is not well-researched in the current literature.
Consequently, the central challenge is to engineer a cache-
enhanced RAG and Graph-RAG framework for O-RAN ca-
pable of delivering accurate, low-latency, and context-specific
responses for critical O-RAN use cases while operating
efficiently within the decentralized and resource-constrained
environment characteristic of next-generation telecommunica-
tion networks. In this context, the main contributions of this
research can be summarized as follows.

1) We propose an O-RAN framework that integrates LLMs
with RAG and Graph-RAG, enhanced through a se-
mantic caching mechanism deployed at the edge. This
framework supports low-latency, context-aware query
response by reducing redundant retrieval operations and
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Fig. 1. System model illustrating the integration of the proposed framework in the O-RAN architecture. Notice that Generative Al can be deployed in UPF
for user applications, but equally can also be deployed in the Near-RT RIC with caching when it is employed for optimization of RAN.

computational overhead, thereby aligning with the per-
formance and scalability requirements of edge-deployed
Al in O-RAN systems.

2) We conduct a comprehensive evaluation of the proposed
framework across key performance metrics such as fac-
tual correctness, latency, throughput, and cache hit rate,
by employing a purpose-built ORAN-Bench benchmark
dataset. Our results demonstrate that cache-augmented
RAG significantly outperforms standard LLM inference
and Graph-RAG in latency and cache utilization, while
Graph-RAG exhibits greater accuracy under high query
volume conditions, validating the framework’s effec-
tiveness in different operational scenarios of Al-native
telecommunication networks.

C. Organization
This paper is organized as follows. Section II discusses

the related work, followed by the discussion of the system
architecture and workflow of the proposed framework in
Section III. The evaluation parameters and their settings are
elaborated on in Sections IV and V, respectively. The results
are discussed in Section VI, and the paper is concluded in
Section VI.

II. RELATED WORK

RAG and Graph-RAG augment LLMs with external knowl-
edge during inference, thereby improving factual accuracy
and contextual relevance [13]. Graph-RAG extends this
paradigm by leveraging semantic graphs to enhance reasoning
over structured relationships, with applications in technical
and domain-specific NLP [14]. Yuan et al. [10] proposed

a framework that combines knowledge graphs with RAG
to improve context-specific reasoning for telecommunication
data. Ahmad et al. [9] provided the first systematic benchmark
of vector, graph, and hybrid RAG pipelines for O-RAN,
demonstrating improvements in factual grounding and re-
trieval quality. While these methods demonstrate enhanced ac-
curacy and controllability, they often incur high latency due to
additional graph traversal or document lookup steps—posing
a challenge for real-time O-RAN integration. Furthermore,
their evaluation in telecom-specific contexts remains limited.
Moreover, none of the approaches incorporates caching strate-
gies that are critical for latency-sensitive inference in edge-
based network environments.

Recent advances in caching mechanisms have shown sig-
nificant improvements in LLM response time and resource
efficiency. Jin et al. [11] introduced RAGCache, a system
that caches retrieved knowledge snippets to reduce redundant
retrieval and improve throughput. Li et al. [15] developed
SCALM, a semantic caching framework for chatbot appli-
cations, which enhances hit rate using embedding similarity.
Ye et al. Despite these innovations, caching has yet to be
explored in the context of O-RAN-specific RAG pipelines. In
[16], Mohandoss introduces an LLM that leverages user iden-
tity and contextual information to enhance cache efficiency,
achieving an 80% reduction in average response time and
improving quality for both context-sensitive and context-free
queries. Semantic-based caching technique proposed by Li
et al. [15] improves cache hit rates by 63% and reduces
token usage by 7%. SGLang, developed by Zheng et al.
[17], further boosts throughput (up to 6.4x) by employing
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Fig. 2. Workflow of the proposed framework

a Key-Value (KV) cache. Similarly, Ye et al. [18] proposed
a prefix-aware caching system utilizing a tree structure to
lower latency, outperforming current state-of-the-art methods.
Retrieval-augmented Language Models [19] integrate local
cache systems to reduce the frequency of retrieval steps,
resulting in faster and more accurate outcomes. On the
other hand, Chan et al. [20] proposed a Cache-Augmented
Generation (CAG) for faster response time using a simplistic
architecture, and deduced that the performance of CAG was
better in comparison to the dense RAG.

Currently, there exists no optimized framework that simul-
taneously meets the low-latency, high-throughput, and factual
correctness requirements of Al-assisted reasoning in O-RAN
deployments. The lack of intelligent caching mechanisms
in existing RAG and Graph-RAG implementations leads to
redundant retrieval and processing, degrading system respon-
siveness under high query volumes. Therefore, the central
problem is to design and evaluate a cache-augmented RAG
and Graph-RAG framework capable of supporting efficient,
context-aware, and factually correct response generation for
O-RAN domain-specific tasks, while operating within the
stringent latency and resource constraints of edge-based net-
work infrastructure. This requires solving trade-offs between
inference latency, cache hit rate, and response accuracy in a
dynamically changing network environment.

III. CACHE-ENHANCED RETRIEVAL IN O-RAN

The proposed system architecture, illustrated in Fig. 1, in-
tegrates a semantic caching framework with RAG and Graph-
RAG pipelines to enable low-latency, context-aware reasoning
over O-RAN specification documents. The architecture is
deeply embedded into the O-RAN system stack, interacting
with components such as the Near-RT RIC, Open-Central
Unit-User Plane (O-CU-UP), and SMO through standardized
interfaces (A1, E2, N2/N3, etc.). This integration allows the

Al reasoning pipeline to dynamically adapt to current network
conditions, user demand, and policy requirements.

A. System Architecture

The system consists of two main components: the central-
ized cloud platform and the edge-based UPF. The centralized
cloud platforms house AI models that can be used to generate
the response for document-based question answering, includ-
ing the LLM, the embedding model for dense vector represen-
tations, and a knowledge graph for Graph-RAG processing.
These models are preloaded with domain-specific knowledge
derived from O-RAN specification documents. Dimensional-
ity reduction techniques are applied to embeddings to enable
efficient semantic comparisons and graph traversal.

The integration with 5G core network functions like Access
and mobility Management Function (AMF), Session Man-
agement Function (SMF), and UPF facilitates smart traffic
routing and efficient resource allocation by considering cache
hit rates and Al workload features. Meanwhile, the connection
via the RAN’s Near-RT RIC supports real-time adjustments to
caching strategies in response to current network conditions
and user demand trends, which primarily include latency and
resource utility optimization.

The cache memory is deployed at the local UPF, enabling
edge-based caching to further reduce the latency to fetch
data from the cloud platform. The cache can either store
semantically aware embeddings from the Al models, or key-
value pairs, based on the type of cache being deployed. In this
research, a semantic cache is deployed on the edge server.
By embedding caching logic at the UPF and executing high-
compute tasks in the cloud, this system achieves a balance
between low-latency edge inference and high-accuracy, graph-
augmented reasoning, addressing a critical gap in deploying
generative Al within O-RAN environments.



B. Workflow

Fig. 2 depicts how the response for any query is
generated in the O-RAN pipeline. When a user query is
received—originating from a human operator or network
function—the system follows a multi-stage process. First,
embeddings for the query are generated. If the cosine sim-
ilarity score between the new query and existing cached
entries at the local UPF exceeds a threshold (e.g., 0.85),
a relevant cached response is retrieved from the semantic
cache (size: 200 entries). Otherwise, the query is routed to
the cloud for processing via RAG or Graph-RAG. The RAG
module performs vector-based retrieval over pre-embedded
documents, while the Graph-RAG module leverages Neo4j
traversal paths to retrieve structured, semantically connected
information. In both cases, the retrieved context is appended
to the LLM prompt to generate a grounded and context-aware
response.

IV. EVALUATION

The proposed framework is evaluated on the basis of the
following parameters: factual correctness, latency, throughput,
and hit rate of the cache. Factual correctness is used to
determine the quality of the answers, where the questions
asked have a concrete answer. Contextually similar questions
are used to determine the performance of the framework using
cache, for the parameters of latency, throughput, and hit rate.
Throughput is calculated as the total number of tokens, which
includes the input and output tokens, divided by the latency
of the query. Hit rate is calculated as the ratio of token hits
found in the cache and the total number of requested tokens.

A. Experimental Setup

A graph is generated using Neo4j Graph Builder using
the O-RAN Alliance Specification documents [21], with the
configuration settings being 200 tokens per chunk, chunk
overlap of 20, and 3 chunks to combine, with these settings
being more optimal for large text based datasets [22]. Context
is extracted from the graph data, and used to retrieve answers
from it using RAG and Graph-RAG. Google’s embedding
model, “embedding-001" is used by RAG and Graph-RAG,
for entity extraction. "Gemini 1.5 pro” LLM model is used
for the generation of a comprehensive response. The number
of output tokens is fixed to be 300 to ensure the comparability
of results and mitigate inconsistencies, that may occur by the
number of output tokens varying by a huge margin for each
query. The whole pipeline is executed 3 times using the same
datasets to validate the consistency of the performance.

B. Datasets

ORAN-Bench 13K is the first in-depth benchmark specifi-
cally created to assess how well LLMs perform in the context
of O-RAN. It includes 13,952 carefully constructed multiple-
choice questions, generated through a novel three-stage LLM
process, and derived from 116 O-RAN specification docu-
ments. The questions are divided into three difficulty levels-
Easy, Medium, and Difficult, to ensure broad coverage of
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O-RAN:-related topics, such as network analytics, anomaly
detection, and code generation.

For latency, throughput, and cache hit-rate evaluation,
O-RAN Alliance-specific questions are generated using
Google’s Gemini. The questions are generated in sets of 25,
50, 75, and 100, with 60% of the questions being unique and
the rest varied in context, but the answer being similar. This
dataset is generated so that the measure of throughput and hit
rate can be calculated correctly, as the framework is expected
to retrieve the answers from cache if the same documents
are requested under different contextual queries. A semantic
cache of size 200 is used with the embeddings model, since
the framework is using external LLM of Gemini, and it can
not work with local cache memory.

V. RESULTS AND DISCUSSION

The experimental results present a comparative evaluation
of LLM, RAG, and Graph-RAG pipelines, both with and
without semantic caching, across key performance metrics:
factual correctness, latency, throughput, and cache hit rate.

A. Factual correctness

The factual correctness is determined on the basis of how
accurately the LLM answers any question. Fig. 3 shows
the comparison of factual correctness between LLM, RAG,
and Graph-RAG. All three pipelines show more than 70%
accuracy for the easy questions, but the performance declines
slightly when the difficulty level of the questions increases,
due to the limitation of any LLM to answer complex domain
specific questions. These results show that the proposed
framework outperforms the existing context-based models
with an average accuracy of 64.8% for LLM, 70.5% for RAG,
and 71.2% for the Graph-RAG, and that is caused due to the
optimized configuration of Neo4j graph builder as mentioned
in the experimental setup.

B. Latency

The results show that the latency is significantly lower for
LLM and RAG, for all the sets of questions, in comparison
to the Graph-RAG, as it traverses through the graph nodes
and also the embeddings to generate the answer. Cache
reduces the latency for all the frameworks; the most consistent
improvement is seen to be in the case of Graph-RAG, as seen
in the Fig. 4, for all the sets of questions. The latency is lesser
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Fig. 4. Latency performance with respect to the number of prompts.

in the case of RAG, with the cache further reducing it for the
set of 25, 50, and 75 questions, with an average improvement
of 50%, but the performance declines when more prompts
are to be processed, making the average latency improvement
using RAG to be 35.8%. On the other hand, Graph-RAG has
more latency but it’s performance is more consistent with
the changes in the number of questions, with an average of
40.68%. This shows that for a larger number of prompts,
Graph-RAG is prone to perform better than RAG and vice
versa, as for a smaller number of prompts, RAG can retrieve
the context efficiently, while Graph-RAG’s ability to retrieve
additional entities and relationships allows it to better handle
a larger number of prompts.

C. Throughput and Hit Rate

The average value of throughput has the least difference
in terms of performance for all the frameworks, as the
number of output tokens is set to be the same, and the same
prompt is used for the output generation. In case of uncached
performance, the throughput performance is not dependent on
the number of questions, but when cache memory is used, the
throughput significantly increases and also shows a decrease
with the increase in the number of questions. This pattern is
expected as the increase in the number of questions require
more tokens to be generated, but due to the cache memory
already containing those tokens, they are not generated again.
While in the case of uncached performance, all tokens are
to be generated for each query, regardless of whether the
questions are similar in context.

As observed in the Fig. 6, hit rate is the highest for the least
number of questions, and then decreases with the increase in
the number of questions for RAG and Graph-RAG. LLM does
not use embeddings to generate answers, hence the hit rate
in that case is zero. Results show that RAG uses the cache
memory more effectively than Graph-RAG.
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D. All Together

Fig. 6 shows an overall comparison of the algorithms,
in terms of cache utilization and hit rate for each set of
questions. RAG demonstrates better cache performance with
both higher utilization (76.38%) and better hit rate distribution
(42.5%), leading to more consistent response times. Graph-
RAG shows lower cache effectiveness across all metrics with
greater performance variability, but a more consistent cache
hit utilization median across all the sets of questions. Cache
Hit Rate Mean and Variance graph shows that the cache hit
rate decreases for both RAG (46.7% to 31.2%) and Graph-
RAG (45.4% to 32.1%) as the dataset size increases. Although
RAG generally has a slightly higher cache hit rate than Graph-
RAG, both methods show high variability and a decreasing
trend in hit rate as the dataset size grows.

These results depict slightly improved results in the case
of RAG, since there is a higher chance of data variability
and more time consumption in the case of Graph-RAG, as
it traverses through the embeddings and the graph nodes.
LLM does perform better in case of latency but it has
lesser factual correctness, and overall performance also lags
behind. These results depict that the performance of RAG and
Graph-RAG with semantics cache is very similar, with RAG
outperforming the Graph-RAG in terms of cache utilization
and latency improvement when lesser number of prompts
are to be processed, and Graph-RAG shows more consistent
performance even with a larger number of prompts. In case of
factual correctness, the Graph-RAG outperforms RAG with a
slight margin. The variance in cache utility depends on the
cache size and the size of output tokens, which in this case,
is more stable in the case of RAG. The stability of results in
this case is caused by the use of semantic cache, as it has
a higher chance of having similar embeddings, while in the
case of Graph-RAG, the probability of new semantics being
used is higher, since it also traverses the graph.

VI. CONCLUSION

These results show that there is a certain tradeoff be-
tween the different evaluation parameters, and depending on
the user’s requirements, both RAG and Graph-RAG can be
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deployed in the O-RAN architecture. Graph-RAG provides
a better quality of data, i.e., has better accuracy, with a
slight decline in the case of RAG. RAG provides a better
middle-ground, with the quality improvement over LLM, and
latency improvement over LLM and Graph-RAG both. Cache
utilization shows more stability in the case of RAG than
Graph-RAG, but the effectiveness of the cache is higher in
the case of Graph-RAG, which is also scalable and dependent
on the size of the cache. This proves that the Graph-RAG-
based cache framework, in comparison homes more reusable
cache entries. This research demonstrates that intelligent
caching can successfully balance AI capabilities with the
network performance, enabling scalable and intelligent O-
RAN deployments from edge-based inference to cloud-level
reasoning. It also highlights the trade-off between latency,
answer quality, and resource utilization, emphasizing the need
to optimize caching strategies to achieve the right balance
among these factors.
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