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AbstractÐGenerative artificial intelligence (AI), particularly
Large Language Models (LLMs), are envisioned to be a core
enabler for Sixth Generation (6G) wireless networks, power-
ing use cases such as autonomous troubleshooting, intelligent
configuration, and real-time decision support. Open Radio
Access Network (O-RAN), with its modular and disaggregated
architecture, offers the most suitable platform for embedding
these AI capabilities. However, the integration of LLMs into
O-RAN is constrained by their high inference latency, lack of
domain grounding, and resource-intensive retrieval workflows.
To address these limitations, this paper proposes a cache-
augmented Retrieval-Augmented Generation (RAG) and Graph-
RAG framework specifically designed for O-RAN environments.
The framework leverages semantic caching at the User Plane
Function (UPF) and centralized model orchestration to sup-
port low-latency, high-throughput, and contextually accurate
responses. The system is evaluated using the ORAN-Bench 13K
benchmark, consisting of 13,952 domain-specific queries derived
from official specification documents. Results show that cache-
enhanced RAG reduces average latency by 35.8%, increases
cache utilization to 76.38%, and achieves a cache hit rate of up
to 42.5%, significantly outperforming baseline LLM and Graph-
RAG configurations in responsiveness. Graph-RAG achieves the
highest factual correctness at 71.2%, followed by RAG at 70.5%
and LLM at 64.8%. These results demonstrate that semantic
caching not only mitigates the performance bottlenecks of LLM-
based reasoning in O-RAN, but also paves the way for scalable,
AI-native telecommunication infrastructures aligned with the
demands of next-generation networks.

Index TermsÐOpen Radio Access Network (O-RAN), Large
Language Model (LLM), Retrieval-Augmented Generation
(RAG), Graph-RAG, Resource utilization, Semantic Cache.

I. INTRODUCTION

A. Motivation

O
RAN architecture provides a streamlined approach to-

wards network disaggregation, offering modularity, in-

teroperability, and vendor neutrality [1] for radio access

networks (RANs). The ORAN architecture natively supports

both running: i) Artificial Intelligence (AI)-for-RAN within

components like the Near-Real time Radio Intelligence Con-

troller (Near-RT RIC), Central Unit (CU), Distributed Unit

(DU), or Service Manager and Orchestrator (SMO); and ii)

AI-on-RAN within the distributed implementation of user-

plane functions (UPFs) [2]. These components serve as key

enablers for edge AI, allowing real-time decision making,

adaptive policy enforcement, and localized intelligence closer

to the data source (be it RAN performance data or user-

application data), thereby reducing latency and improving

responsiveness. Within this emerging AI-native architectural

framework, generative AI, particularly Large Language Mod-

els (LLMs), presents a transformative capability for intent-

based management of these networks. These models can

facilitate sophisticated, context-aware reasoning, enabling

functions such as real-time troubleshooting, knowledge-based

query answering (for RAN co-pilots, for instance), and the

generation of adaptive control logic [3]±[5]. In the specific

context of O-RAN, LLMs can be leveraged to automate

the interpretation of complex network specifications, en-

hance anomaly detection, and generate dynamic configuration

recommendations. Furthermore, they can act as intelligent

agents, responding to operational queries from both human

and software entities.

However, general-purpose LLMs are limited by their lack

of factual grounding and domain-specific knowledge, ren-

dering them inadequate for the stringent accuracy and low-

latency requirements of decision-making within an O-RAN.

While techniques such as Retrieval-Augmented Generation

(RAG) and Graph-RAG enhance LLM outputs by integrating

structured data retrieval and semantic graph traversal [6],

[7], they introduce substantial computational and latency

overheads [8]. Fundamentally, publicly available implemen-

tations or systematic evaluation of RAG and Graph-RAG

applied specifically to the O-RAN domain are still in their

infancy, limiting their practical adoption [9]. Moreover, the

high computational demands and strict latency requirements

of these AI workloads pose major challenges, especially at

the network edge, within Near-RT RIC and distributed UPFs

[10]. This balance between performance and accuracy is

further strained by the need to handle numerous simultane-

ous requests across geographically distributed edge locations

and fluctuating network conditions in O-RAN’s decentralized

framework.

B. Research Gap and Contributions

A promising solution to this problem lies in the use

of cache memory for faster access to frequently retrieved

data [11], [12] and reduced computational load. However, a

systematic framework outlining such cache-assisted retrieval

in O-RAN is not well-researched in the current literature.

Consequently, the central challenge is to engineer a cache-

enhanced RAG and Graph-RAG framework for O-RAN ca-

pable of delivering accurate, low-latency, and context-specific

responses for critical O-RAN use cases while operating

efficiently within the decentralized and resource-constrained

environment characteristic of next-generation telecommunica-

tion networks. In this context, the main contributions of this

research can be summarized as follows.

1) We propose an O-RAN framework that integrates LLMs

with RAG and Graph-RAG, enhanced through a se-

mantic caching mechanism deployed at the edge. This

framework supports low-latency, context-aware query

response by reducing redundant retrieval operations and
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Fig. 1. System model illustrating the integration of the proposed framework in the O-RAN architecture. Notice that Generative AI can be deployed in UPF
for user applications, but equally can also be deployed in the Near-RT RIC with caching when it is employed for optimization of RAN.

computational overhead, thereby aligning with the per-

formance and scalability requirements of edge-deployed

AI in O-RAN systems.

2) We conduct a comprehensive evaluation of the proposed

framework across key performance metrics such as fac-

tual correctness, latency, throughput, and cache hit rate,

by employing a purpose-built ORAN-Bench benchmark

dataset. Our results demonstrate that cache-augmented

RAG significantly outperforms standard LLM inference

and Graph-RAG in latency and cache utilization, while

Graph-RAG exhibits greater accuracy under high query

volume conditions, validating the framework’s effec-

tiveness in different operational scenarios of AI-native

telecommunication networks.

C. Organization
This paper is organized as follows. Section II discusses

the related work, followed by the discussion of the system

architecture and workflow of the proposed framework in

Section III. The evaluation parameters and their settings are

elaborated on in Sections IV and V, respectively. The results

are discussed in Section VI, and the paper is concluded in

Section VI.

II. RELATED WORK

RAG and Graph-RAG augment LLMs with external knowl-

edge during inference, thereby improving factual accuracy

and contextual relevance [13]. Graph-RAG extends this

paradigm by leveraging semantic graphs to enhance reasoning

over structured relationships, with applications in technical

and domain-specific NLP [14]. Yuan et al. [10] proposed

a framework that combines knowledge graphs with RAG

to improve context-specific reasoning for telecommunication

data. Ahmad et al. [9] provided the first systematic benchmark

of vector, graph, and hybrid RAG pipelines for O-RAN,

demonstrating improvements in factual grounding and re-

trieval quality. While these methods demonstrate enhanced ac-

curacy and controllability, they often incur high latency due to

additional graph traversal or document lookup stepsÐposing

a challenge for real-time O-RAN integration. Furthermore,

their evaluation in telecom-specific contexts remains limited.

Moreover, none of the approaches incorporates caching strate-

gies that are critical for latency-sensitive inference in edge-

based network environments.

Recent advances in caching mechanisms have shown sig-

nificant improvements in LLM response time and resource

efficiency. Jin et al. [11] introduced RAGCache, a system

that caches retrieved knowledge snippets to reduce redundant

retrieval and improve throughput. Li et al. [15] developed

SCALM, a semantic caching framework for chatbot appli-

cations, which enhances hit rate using embedding similarity.

Ye et al. Despite these innovations, caching has yet to be

explored in the context of O-RAN-specific RAG pipelines. In

[16], Mohandoss introduces an LLM that leverages user iden-

tity and contextual information to enhance cache efficiency,

achieving an 80% reduction in average response time and

improving quality for both context-sensitive and context-free

queries. Semantic-based caching technique proposed by Li

et al. [15] improves cache hit rates by 63% and reduces

token usage by 7%. SGLang, developed by Zheng et al.

[17], further boosts throughput (up to 6.4x) by employing
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Fig. 2. Workflow of the proposed framework

a Key-Value (KV) cache. Similarly, Ye et al. [18] proposed

a prefix-aware caching system utilizing a tree structure to

lower latency, outperforming current state-of-the-art methods.

Retrieval-augmented Language Models [19] integrate local

cache systems to reduce the frequency of retrieval steps,

resulting in faster and more accurate outcomes. On the

other hand, Chan et al. [20] proposed a Cache-Augmented

Generation (CAG) for faster response time using a simplistic

architecture, and deduced that the performance of CAG was

better in comparison to the dense RAG.

Currently, there exists no optimized framework that simul-

taneously meets the low-latency, high-throughput, and factual

correctness requirements of AI-assisted reasoning in O-RAN

deployments. The lack of intelligent caching mechanisms

in existing RAG and Graph-RAG implementations leads to

redundant retrieval and processing, degrading system respon-

siveness under high query volumes. Therefore, the central

problem is to design and evaluate a cache-augmented RAG

and Graph-RAG framework capable of supporting efficient,

context-aware, and factually correct response generation for

O-RAN domain-specific tasks, while operating within the

stringent latency and resource constraints of edge-based net-

work infrastructure. This requires solving trade-offs between

inference latency, cache hit rate, and response accuracy in a

dynamically changing network environment.

III. CACHE-ENHANCED RETRIEVAL IN O-RAN

The proposed system architecture, illustrated in Fig. 1, in-

tegrates a semantic caching framework with RAG and Graph-

RAG pipelines to enable low-latency, context-aware reasoning

over O-RAN specification documents. The architecture is

deeply embedded into the O-RAN system stack, interacting

with components such as the Near-RT RIC, Open-Central

Unit-User Plane (O-CU-UP), and SMO through standardized

interfaces (A1, E2, N2/N3, etc.). This integration allows the

AI reasoning pipeline to dynamically adapt to current network

conditions, user demand, and policy requirements.

A. System Architecture

The system consists of two main components: the central-

ized cloud platform and the edge-based UPF. The centralized

cloud platforms house AI models that can be used to generate

the response for document-based question answering, includ-

ing the LLM, the embedding model for dense vector represen-

tations, and a knowledge graph for Graph-RAG processing.

These models are preloaded with domain-specific knowledge

derived from O-RAN specification documents. Dimensional-

ity reduction techniques are applied to embeddings to enable

efficient semantic comparisons and graph traversal.

The integration with 5G core network functions like Access

and mobility Management Function (AMF), Session Man-

agement Function (SMF), and UPF facilitates smart traffic

routing and efficient resource allocation by considering cache

hit rates and AI workload features. Meanwhile, the connection

via the RAN’s Near-RT RIC supports real-time adjustments to

caching strategies in response to current network conditions

and user demand trends, which primarily include latency and

resource utility optimization.

The cache memory is deployed at the local UPF, enabling

edge-based caching to further reduce the latency to fetch

data from the cloud platform. The cache can either store

semantically aware embeddings from the AI models, or key-

value pairs, based on the type of cache being deployed. In this

research, a semantic cache is deployed on the edge server.

By embedding caching logic at the UPF and executing high-

compute tasks in the cloud, this system achieves a balance

between low-latency edge inference and high-accuracy, graph-

augmented reasoning, addressing a critical gap in deploying

generative AI within O-RAN environments.
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B. Workflow

Fig. 2 depicts how the response for any query is

generated in the O-RAN pipeline. When a user query is

receivedÐoriginating from a human operator or network

functionÐthe system follows a multi-stage process. First,

embeddings for the query are generated. If the cosine sim-

ilarity score between the new query and existing cached

entries at the local UPF exceeds a threshold (e.g., 0.85),

a relevant cached response is retrieved from the semantic

cache (size: 200 entries). Otherwise, the query is routed to

the cloud for processing via RAG or Graph-RAG. The RAG

module performs vector-based retrieval over pre-embedded

documents, while the Graph-RAG module leverages Neo4j

traversal paths to retrieve structured, semantically connected

information. In both cases, the retrieved context is appended

to the LLM prompt to generate a grounded and context-aware

response.

IV. EVALUATION

The proposed framework is evaluated on the basis of the

following parameters: factual correctness, latency, throughput,

and hit rate of the cache. Factual correctness is used to

determine the quality of the answers, where the questions

asked have a concrete answer. Contextually similar questions

are used to determine the performance of the framework using

cache, for the parameters of latency, throughput, and hit rate.

Throughput is calculated as the total number of tokens, which

includes the input and output tokens, divided by the latency

of the query. Hit rate is calculated as the ratio of token hits

found in the cache and the total number of requested tokens.

A. Experimental Setup

A graph is generated using Neo4j Graph Builder using

the O-RAN Alliance Specification documents [21], with the

configuration settings being 200 tokens per chunk, chunk

overlap of 20, and 3 chunks to combine, with these settings

being more optimal for large text based datasets [22]. Context

is extracted from the graph data, and used to retrieve answers

from it using RAG and Graph-RAG. Google’s embedding

model, ºembedding-001º is used by RAG and Graph-RAG,

for entity extraction. ºGemini 1.5 proº LLM model is used

for the generation of a comprehensive response. The number

of output tokens is fixed to be 300 to ensure the comparability

of results and mitigate inconsistencies, that may occur by the

number of output tokens varying by a huge margin for each

query. The whole pipeline is executed 3 times using the same

datasets to validate the consistency of the performance.

B. Datasets

ORAN-Bench 13K is the first in-depth benchmark specifi-

cally created to assess how well LLMs perform in the context

of O-RAN. It includes 13,952 carefully constructed multiple-

choice questions, generated through a novel three-stage LLM

process, and derived from 116 O-RAN specification docu-

ments. The questions are divided into three difficulty levels-

Easy, Medium, and Difficult, to ensure broad coverage of

Fig. 3. Factual correctness with respect to different difficulty levels

O-RAN-related topics, such as network analytics, anomaly

detection, and code generation.

For latency, throughput, and cache hit-rate evaluation,

O-RAN Alliance-specific questions are generated using

Google’s Gemini. The questions are generated in sets of 25,

50, 75, and 100, with 60% of the questions being unique and

the rest varied in context, but the answer being similar. This

dataset is generated so that the measure of throughput and hit

rate can be calculated correctly, as the framework is expected

to retrieve the answers from cache if the same documents

are requested under different contextual queries. A semantic

cache of size 200 is used with the embeddings model, since

the framework is using external LLM of Gemini, and it can

not work with local cache memory.

V. RESULTS AND DISCUSSION

The experimental results present a comparative evaluation

of LLM, RAG, and Graph-RAG pipelines, both with and

without semantic caching, across key performance metrics:

factual correctness, latency, throughput, and cache hit rate.

A. Factual correctness

The factual correctness is determined on the basis of how

accurately the LLM answers any question. Fig. 3 shows

the comparison of factual correctness between LLM, RAG,

and Graph-RAG. All three pipelines show more than 70%

accuracy for the easy questions, but the performance declines

slightly when the difficulty level of the questions increases,

due to the limitation of any LLM to answer complex domain

specific questions. These results show that the proposed

framework outperforms the existing context-based models

with an average accuracy of 64.8% for LLM, 70.5% for RAG,

and 71.2% for the Graph-RAG, and that is caused due to the

optimized configuration of Neo4j graph builder as mentioned

in the experimental setup.

B. Latency

The results show that the latency is significantly lower for

LLM and RAG, for all the sets of questions, in comparison

to the Graph-RAG, as it traverses through the graph nodes

and also the embeddings to generate the answer. Cache

reduces the latency for all the frameworks; the most consistent

improvement is seen to be in the case of Graph-RAG, as seen

in the Fig. 4, for all the sets of questions. The latency is lesser
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Fig. 4. Latency performance with respect to the number of prompts.

in the case of RAG, with the cache further reducing it for the

set of 25, 50, and 75 questions, with an average improvement

of 50%, but the performance declines when more prompts

are to be processed, making the average latency improvement

using RAG to be 35.8%. On the other hand, Graph-RAG has

more latency but it’s performance is more consistent with

the changes in the number of questions, with an average of

40.68%. This shows that for a larger number of prompts,

Graph-RAG is prone to perform better than RAG and vice

versa, as for a smaller number of prompts, RAG can retrieve

the context efficiently, while Graph-RAG’s ability to retrieve

additional entities and relationships allows it to better handle

a larger number of prompts.

C. Throughput and Hit Rate

The average value of throughput has the least difference

in terms of performance for all the frameworks, as the

number of output tokens is set to be the same, and the same

prompt is used for the output generation. In case of uncached

performance, the throughput performance is not dependent on

the number of questions, but when cache memory is used, the

throughput significantly increases and also shows a decrease

with the increase in the number of questions. This pattern is

expected as the increase in the number of questions require

more tokens to be generated, but due to the cache memory

already containing those tokens, they are not generated again.

While in the case of uncached performance, all tokens are

to be generated for each query, regardless of whether the

questions are similar in context.

As observed in the Fig. 6, hit rate is the highest for the least

number of questions, and then decreases with the increase in

the number of questions for RAG and Graph-RAG. LLM does

not use embeddings to generate answers, hence the hit rate

in that case is zero. Results show that RAG uses the cache

memory more effectively than Graph-RAG.

Fig. 5. Throughput performance for end-to-end tokens generation.

D. All Together

Fig. 6 shows an overall comparison of the algorithms,

in terms of cache utilization and hit rate for each set of

questions. RAG demonstrates better cache performance with

both higher utilization (76.38%) and better hit rate distribution

(42.5%), leading to more consistent response times. Graph-

RAG shows lower cache effectiveness across all metrics with

greater performance variability, but a more consistent cache

hit utilization median across all the sets of questions. Cache

Hit Rate Mean and Variance graph shows that the cache hit

rate decreases for both RAG (46.7% to 31.2%) and Graph-

RAG (45.4% to 32.1%) as the dataset size increases. Although

RAG generally has a slightly higher cache hit rate than Graph-

RAG, both methods show high variability and a decreasing

trend in hit rate as the dataset size grows.

These results depict slightly improved results in the case

of RAG, since there is a higher chance of data variability

and more time consumption in the case of Graph-RAG, as

it traverses through the embeddings and the graph nodes.

LLM does perform better in case of latency but it has

lesser factual correctness, and overall performance also lags

behind. These results depict that the performance of RAG and

Graph-RAG with semantics cache is very similar, with RAG

outperforming the Graph-RAG in terms of cache utilization

and latency improvement when lesser number of prompts

are to be processed, and Graph-RAG shows more consistent

performance even with a larger number of prompts. In case of

factual correctness, the Graph-RAG outperforms RAG with a

slight margin. The variance in cache utility depends on the

cache size and the size of output tokens, which in this case,

is more stable in the case of RAG. The stability of results in

this case is caused by the use of semantic cache, as it has

a higher chance of having similar embeddings, while in the

case of Graph-RAG, the probability of new semantics being

used is higher, since it also traverses the graph.

VI. CONCLUSION

These results show that there is a certain tradeoff be-

tween the different evaluation parameters, and depending on

the user’s requirements, both RAG and Graph-RAG can be

5



Fig. 6. Performance improvement. Left: Comparison of cache utilization & Right: Comparison of Cache Hit rate, between RAG and Graph-RAG, respectively.

deployed in the O-RAN architecture. Graph-RAG provides

a better quality of data, i.e., has better accuracy, with a

slight decline in the case of RAG. RAG provides a better

middle-ground, with the quality improvement over LLM, and

latency improvement over LLM and Graph-RAG both. Cache

utilization shows more stability in the case of RAG than

Graph-RAG, but the effectiveness of the cache is higher in

the case of Graph-RAG, which is also scalable and dependent

on the size of the cache. This proves that the Graph-RAG-

based cache framework, in comparison homes more reusable

cache entries. This research demonstrates that intelligent

caching can successfully balance AI capabilities with the

network performance, enabling scalable and intelligent O-

RAN deployments from edge-based inference to cloud-level

reasoning. It also highlights the trade-off between latency,

answer quality, and resource utilization, emphasizing the need

to optimize caching strategies to achieve the right balance

among these factors.
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