

Deposited via The University of Leeds.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/237222/>

Version: Accepted Version

Article:

Santos, I.A., Fontes, J.V., Rodrigues, G.C. et al. (2025) Cu(I)-N-Heterocyclic carbenes as potent inhibitors of SARS-CoV-2 replication. *BioMetals*. ISSN: 0966-0844

<https://doi.org/10.1007/s10534-025-00775-6>

This is an author produced version of an article published in *BioMetals*, made available via the University of Leeds Research Outputs Policy under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
<https://creativecommons.org/licenses/>

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1 **Cu(I)-N-HETEROCYCLIC CARBENES AS POTENT INHIBITORS OF SARS-**
2 **COV-2 REPLICATION**

3 Igor Andrade Santos ^{a,b}, Josielle V. Fontes ^c, Gustavo C. Rodrigues ^c, Mariana Ortiz de
4 Godoy^d, Glaucius Oliva^d, Rafael V. C. Guido^d, Andres Merits ^e, Camilla Abbehausen ^c,
5 Mark Harris ^{b,*} and Ana Carolina Gomes Jardim ^{a,f,*}

6 ^a Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil

7 ^b School of Molecular and Cellular Biology, Faculty of Biological Sciences, University
8 of Leeds, UK

9 ^c Institute of Chemistry, University of Campinas, Brazil

10 ^d Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil

11 ^e Institute of Bioengineering, University of Tartu, Tartu, Estonia.

12 ^f Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University,
13 Brazil

14 *Corresponding authors

16 **Corresponding authors**

17 Professor Ana Carolina Gomes Jardim, Institute of Biomedical Science (ICBIM), Federal
18 University of Uberlandia (UFU), Avenida Amazonas, 4C- Room 216, Umuarama,
19 Uberlândia, Minas Gerais, Brazil, CEP: 38405-302

20 Tel: +55 (34) 3225-8682

21 E-mail: jardim@ufu.br

22 Professor Mark Harris, Faculty of Biological Sciences and Centre for Structural
23 Molecular Biology, University of Leeds, Leeds, United Kingdom, LS2 9JT

24 Tel: +44(0)113 343 5632

25 E-mail: m.harris@leeds.ac.uk

26 **ABSTRACT**

27 SARS-CoV-2 still poses as a threat to health systems despite the vaccination and
28 the use of emergency repurposed drugs. Therefore, the development of novel anti-SARS-
29 CoV-2 compounds is still needed. Organometallic copper(I)-N-heterocyclic carbenes
30 [$\text{Cu}(\text{NHC})$] are a class of metallodrugs that hold promise for drug development due to
31 their variety of geometries, charges, and ligand design. Here we evaluated the activity of
32 $\text{Cu}(\text{IPr})\text{Cl}$, $\text{Cu}(\text{IMes})\text{Cl}$, and $[\text{Cu}(\text{IMes})_2]\text{BF}_4$ molecules against SARS-CoV-2 infection.
33 Through a dose-response assay using A549-AT cells and the SARS-CoV-2-Wuhan
34 infectious clone expressing mNeonGreen (SARS-CoV-2-mNeonGreen), $\text{Cu}(\text{IPr})\text{Cl}$,
35 $\text{Cu}(\text{IMes})\text{Cl}$, and $[\text{Cu}(\text{IMes})_2]\text{BF}_4$ inhibited SARS-CoV-2 replication with a selectivity
36 index (SI) of 11.23, 10.84, and 5.94, respectively. The complexes $\text{Cu}(\text{IMes})\text{Cl}$ and
37 $[\text{Cu}(\text{IMes})_2]\text{BF}_4$ inhibited all stages of viral replication (pretreatment: 99.9% and 87.7%,
38 entry: 99.6% and 74%, post-entry steps: 99.6% and 87.6%, respectively), while $\text{Cu}(\text{IPr})\text{Cl}$
39 impaired only entry (48%) and post-entry steps (95%). In addition, $\text{Cu}(\text{IMes})\text{Cl}$ and
40 $[\text{Cu}(\text{IMes})_2]\text{BF}_4$ complexes decreased the titres of both Delta and Omicron variants, while
41 $\text{Cu}(\text{IPr})\text{Cl}$ only inhibited Omicron. In addition, $[\text{Cu}(\text{IMes})_2]\text{BF}_4$ was able to decrease cell
42 to cell spread of SARS-CoV-2; and for $\text{Cu}(\text{IMes})\text{Cl}$ a strong interaction with PL^{pro} was
43 revealed. Based on this data further investigations of Cu(I) based organometallics are
44 warranted and $\text{Cu}(\text{IPr})\text{Cl}$ and $\text{Cu}(\text{IMes})\text{Cl}$ may be considered for utilization in pre-clinical
45 assays.

46 **Keywords:** Antivirals, Copper complexes, Organometallic compounds, SARS-CoV-2

48 **1. INTRODUCTION**

49 The Coronavirus Disease 2019 (COVID-19) pandemic, caused by *Severe Acute*
50 *Respiratory Syndrome Coronavirus 2* (SARS-CoV-2), a positive single-stranded RNA
51 virus from the *Coronaviridae*, highlighted the urgency of developing antiviral agents
52 against current and future viral outbreaks (Zhang et al. 2020; Shi et al. 2020; von Delft et
53 al. 2023). Notably, as other RNA viruses, SARS-CoV-2 has displayed high potential to
54 genetic variability, contributing to the rapid emergence of global variants, including the
55 Variants of Concern (VOCs) such as Alpha, Beta, Gamma, Delta, and Omicron (Duffy
56 2018; Montagutelli et al. 2021; Wang et al. 2021; Thakur and Ratho 2021; Johnson et al.
57 2022).

58 SARS-CoV-2 has a higher transmission rate than other respiratory viruses, which
59 facilitated its worldwide spread (Grasselli et al. 2020; Lamers and Haagmans 2022). In
60 humans, SARS-CoV-2 infection can cause moderate to severe illness, related to upper
61 and lower respiratory tract infection, that can develop into a severe acute respiratory
62 syndrome (SARS) and lead to death. Additionally, even after vaccination, COVID-19
63 patients can develop long-lasting chronic symptoms described as the Post-COVID
64 Syndrome or Long-COVID, directly impacting their quality of life (Oronsky et al. 2021;
65 Maltezou et al. 2021a, b; Augustin et al. 2021; Yong 2021).

66 So far, there are only a few drugs licenced for the treatment of COVID-19, such
67 as remdesivir, molnupiravir, and Paxlovid® (nirmatrelvir, ritonavir) (Saúde. 2022; Jayk
68 Bernal et al. 2022; Liu et al. 2023; Pantazis et al. 2023). The shortage of approved drugs
69 against SARS-CoV-2 associated with the rapid resistance of omicron variants against
70 Paxlovid and molnupiravir emphasizes the necessity for a diverse array of therapeutic
71 approaches capable of abrogating viral infection (Sanderson et al. 2023). Therefore, the
72 development of new molecules that are effective against RNA viruses can provide novel
73 important insights to combat these viruses and prepare health researchers for future
74 outbreaks caused by emerging viruses.

75 The coordination or organometallic compounds are organic or inorganic
76 molecules bound with a metal ion (Messerschmidt et al. 2004; de Paiva et al. 2020; Boros
77 et al. 2020), and possess chemical and structural attributes that cannot be solely replicated
78 by organic motifs, making them a promising and versatile avenue for drug development
79 (Karlin 1993; Shahabadi et al. 2012; Zoroddu et al. 2019; de Paiva et al. 2020; Boros et

80 al. 2020). Among the metal ions, copper (Cu) is an essential element in mammals cells,
81 and therefore is regulated in homeostatic way (Karlin 1993; Zoroddu et al. 2019). In cells,
82 Cu ions are coordinated to proteins to be transported, absorbed, or exert their usual
83 catalytic functions. Importantly, in synthetic compounds Cu(I) and Cu(II) can also be
84 coordinated to organic or inorganic groups with different geometries, becoming attractive
85 for medicinal purposes (Linder 1991; Sagripanti et al. 1997a; Haas and Franz 2009;
86 Alvarez et al. 2018).

87 N-heterocyclic carbene (NHC) complexes are a particular class of interest due to
88 their biological activity against different pathogens as well as human cancer cell lines (de
89 Frémont et al. 2009; Hussaini et al. 2019). Their stability, steric effects and structural
90 diversity are attractive to organometallic chemistry with transition metals (Hussaini et al.
91 2019; Mariconda et al. 2022), especially for drug design. Among the diverse NHC
92 molecules, silver-based NHCs (Ag-NHCs) have shown activity against bacterial species
93 such as *Salmonella Typhimurium*, *Listeria monocytogenes*, and *Micrococcus luteus*
94 (Hussaini et al. 2019; Mariconda et al. 2022), and the virus Influenza A/Puerto Rico/8/34
95 H1N1 (PR8) virus. Similarly, gold-based NHCs (Au-NHCs) have demonstrated activity
96 against the same influenza virus and the *Plasmodium falciparum* parasite (Hussaini et al.
97 2019; Mariconda et al. 2022).

98 Recently, our group has reported the biological properties of organometallic
99 Cu(I)-N-heterocyclic carbenes (Cu(I)(NHC)), which are Cu(I) based compounds with a
100 linear geometry, stabilized by the binding of the NHC bearing different N-groups (Fontes
101 et al. 2022). In this context, we can highlight Cu(I)(NHC) based on the symmetric 2,6-
102 diisopropylphenylimidazol-2-ylidene (IPr) and dimesytilimidazol-2-ylidene (IMes). Both
103 were formulated as neutral heteroleptic [Cu(I)(NHC)Cl] and the last one (IMes) was also
104 formulated as the cationic bis-carbene [Cu(I)(IMes)₂]BF₄ (**Figure 1**). In addition to
105 previously known anti-leishmanicidal activity, these compounds also presented
106 noteworthy anti-*Chikungunya virus* (CHIKV) activity being the first Cu-NHC complexes
107 effective against RNA viruses (Fontes et al. 2022). Interestingly, the NHCs possess low
108 toxicity in biological systems and are easily modulated to achieve drug-like properties,
109 such as lipophilicity, water stability, and reactivity (Teyssot et al. 2009; Fontes et al. 2022;
110 Al Nasr et al. 2023).

111 Considering the data described previously and the potential of these metal
112 complexes to be used as a broad-spectrum antiviral, here we evaluated the effects of

113 Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄ on the SARS-CoV-2 replication cycle.
114 Further, the effect against Delta and Omicron VoC were characterized and their possible
115 mode of action was suggested.

116

117 2. METHODS

118 2.1. Cell culture and compounds

119 Human A549 adenocarcinomic alveolar basal epithelial cells expressing the
120 receptors ACE2 and TRPMSS2 (A549-AT, National Institute for Biological Standards
121 and Control – NIBSC, UK, #101004) and Vero African green monkey kidney cells
122 expressing ACE2 (VERO-E6-ACE2, NIBSC, UK, #101001) were cultivated as previous
123 described (dos Santos Oliveira et al. 2023), using Dulbecco's modified Eagle's medium
124 (DMEM; Sigma–Aldrich, UK) supplemented with 100 U/mL penicillin (Gibco Life
125 Technologies, Thermo-Fisher, UK), 100 mg/mL streptomycin (Gibco Life
126 Technologies), 1% (v/v) non-essential amino acids (Gibco Life Technologies, Thermo-
127 Fisher, UK) and 10% (v/v) fetal bovine serum (FBS; Hyclone, Logan, UT, USA) at 37
128 °C in a humidified 5% CO₂ incubator. The cells were cultivated in the presence of
129 geneticin (G418, Invitrogen, UK) and Hygromycin B (Sigma-Aldrich, UK) at 1 mg/mL
130 and 200 µg/mL, respectively.

131 The compounds Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄ were synthesized as
132 previously described (Fontes et al. 2022) and their structures are presented in **Figure 1**.
133 All the compounds were dissolved in DMSO and stored in -20°C for maximum of two
134 days. Dilutions in cell culture media were made immediately prior the assays to achieve
135 DMSO 0.1% (v/v). Molnupiravir (β-D-N4-hydroxycytidine) was purchased from Sigma-
136 Aldrich (EIDD-1931, SML2872-5MG), and used at 10 µM as the positive control since
137 it is widely described as coronavirus inhibitor (Teli et al., 2023).

138

139 2.2. Wild-type SARS-CoV-2 variants

140 All work with infectious viruses were conducted in biosafety level 3 laboratories
141 at the University of Leeds. The viruses used in this study were obtained and characterized
142 by The Francis Crick Institute The variants include B.1.617.2 - Delta (MS066352H –
143 GISAID accession number EPI_ISL_1731019) and BA.2 – Omicron
144 (hCoV/England/FCI-179/2022, (Shawe-Taylor et al. 2024)). To amplify these viruses,
145 Vero E6-ACE2 cells cultured in 175 cm² flasks were infected with each variant and

146 incubated until approximately 80% cytopathic effect was observed. At this time point,
147 cell culture supernatant was collected, and the infectious titre was determined using the
148 50% tissue culture infectious dose (TCID₅₀) method. The calculation of the titre was
149 performed using the Spearman & Kärber algorithm, as outlined (Killington and
150 Hierholzer 1996).

151 **2.3. Rescue of recombinant SARS-CoV-2 harboring mNeonGreen marker**

152 The rescue of the SARS-CoV-2 reporter virus (SARS-CoV-2-mNeongreen),
153 based on the NCBI sequence NC_045512.2, was conducted following a previously
154 established protocol (dos Santos Oliveira et al. 2023). Briefly, a total of 1 μ g pCCI-4K-
155 SARS-CoV-2-mNeonGreen plasmid, containing infectious cDNA under the control of
156 the CMV promoter (Rihn et al. 2021) was transfected into BHK-21 cells (3x10⁵ cells/well
157 in a 6-well plate) using Lipofectamine 2000 (Thermo-Fisher Scientific, UK) following
158 the manufacturers protocol. After 3 days post transfection the cell culture supernatant was
159 collected and subsequently transferred to A549-AT cells cultured in a 75 cm² flask until
160 complete cell lysis occurred at which point the supernatant was harvested. The infectious
161 titre of recombinant virus was determined as described above.

162 **2.4. Dose-response assay**

163 To assess the impact of Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄ on both cell
164 viability and viral replication, A549-AT cells were plated at a density of 1x10⁴ cells/well
165 in 96-well plates 24 hours prior to the viral infection. Subsequently, the cells were
166 subjected to treatment with each compound in concentrations ranging from 0.58 to
167 300 μ M, employing a two-fold serial dilution scheme. This treatment was conducted in
168 the presence or absence of SARS-CoV-2-mNeonGreen, with a multiplicity of infection
169 (MOI) of 0.1 (Rihn et al. 2021). Cell viability was analysed after 24h by removing the
170 compound-containing media from cells and adding MTT solution at 1mg/mL to each
171 well. After 30 minutes incubation, media was removed and replaced with 100 μ L of
172 DMSO to solubilize the formazan crystals. The absorbance was measured at 570nm on
173 FLUOstar OPTIMA microplate reader (BMGLabTech). Viral inhibition was analysed
174 after 24h by placing the plates in the IncuCyte® S3 Live-Cell Analysis System (Sartorius)
175 and the green fluorescence signal was recorded at 10x objective. The photos were
176 analysed employing the basic analyser from the IncuCyte S3 system and the total
177 integrated intensity of the fluorescence (GCU x μ m²/well) was collected. Cell viability
178 and viral replication were calculated according to the equation (T/C) × 100%, which T

179 and C represented the optical density of the treated/integrated intensity of fluorescence of
180 compound treated wells and control groups, respectively. DMSO was used as vehicle
181 control. The effective concentration of 50% (EC_{50}) and cytotoxic concentration of 50%
182 (CC_{50}) were calculate as described in the statistical analysis section. The selectivity index
183 (SI) was calculated by dividing the CC_{50} value by the EC_{50} ($SI = CC_{50} / EC_{50}$).

184 **2.5. Time of addition assays**

185 For all time of drug addition assays, A549-AT cells at the density of 1×10^4 cells
186 per well were seeded in 96 well plates 24h before infection, treatment was performed with
187 $Cu(Pr)_2Cl$ (10 μM), $Cu(IMes)_2Cl$ (2 μM), or $[Cu(IMes)_2]BF_4$ (2 μM), and virus replication
188 was assessed by the green fluorescence signal in 10x objective. The photos were analysed
189 employing the basic analyser from the IncuCyte S3 system by the collection of total
190 integrated intensity of the fluorescence ($GCU \times \mu m^2/well$). For all assays, DMSO 0.1%
191 (v/v) was used as negative control and Molnupiravir at 10 μM was used a positive control.

192 In pretreatment assay, cells were initially treated for 1h with each compound, then
193 washed 3x with PBS and added of SARS-CoV-2-mNeonGreen (MOI of 0.1). After 1 h,
194 cells were again washed with PBS, and fresh medium was added for a 24-hour incubation
195 period.

196 In entry inhibition assay, cells were infected with a combination of each
197 compound and the virus (MOI of 1) for a 1h, washed 3x with PBS, and incubated with
198 fresh medium for 24h. To assess virucidal activity, a similar setup was employed, with
199 the exception that the inoculum, containing both the compound and the virus (amount
200 corresponding to MOI of 5), was incubated for 1h before the introduction to the cells.

201 Alternatively, the impact of each compound on the attachment step was
202 investigated using the same conditions as the entry inhibition assay, except that the cells
203 were infected with the virus (MOI of 1) in the presence of the compound at a temperature
204 of 4°C. A variation of this assay involved an initial incubation at 4°C, followed by a
205 subsequent 30-minute incubation at 37°C to examine the compound's effect on virus
206 internalization.

207 In the post-entry assay, cells were infected with SARS-CoV-2-mNeonGreen
208 (MOI of 1) for 1h. Subsequently, the cells underwent washing 3x with PBS and were then
209 incubated in a compound-containing media for 24h. Additionally, a variation of this assay
210 was performed by infecting cells with SARS-CoV-2-mNeonGreen (MOI of 1) for 6 h,
211 followed by incubation with the compound for the remaining duration of the experiment,

212 allowing the assessment of the compound's effect after the establishment of viral
213 replication.

214 **2.6. Measuring activity against SARS-CoV-2 VoCs**

215 To assess the effect of the metal compounds against the delta and omicron
216 variants, the SARS-CoV-2 infectious clone based on Wuhan strain carrying the mCherry
217 reporter gene (**Figure 6A-1**) was modified by replacing the spike gene derivative from
218 the variants B.1.617.2 (delta) or BA.2 (omicron) (**Figure 6A, 2 and 3**). The rescue of the
219 virus was conducted as described above. In the antiviral assay, screening were performed
220 with media containing Cu(IPr)Cl (10 μ M), Cu(IMes)Cl (2 μ M) and [Cu(IMes)₂]BF₄ (2
221 μ M), in the presence of the chimeric Wuhan-B.1.617.2-Spike or Wuhan-BA.2-Spike
222 viruses at a MOI of 0.1. These compound-virus solutions were then added to the cells and
223 incubated for 24 h. Subsequently, the total integrated intensity of fluorescence (measured
224 in RCU x μ m² per well) was assessed using the IncuCyte S3 microscope.

225 For the antiviral assays involving the wild-type VoCs, B.1.617.2 - delta
226 (MS066352H) and BA.2 - omicron (hCoV/England/FCI-179/2022), A549-AT cells were
227 seeded at a concentration of 8x10⁵ cells/well in 12-well plates. These cells were then
228 infected with each virus at an MOI of 0.1 in the presence of Cu(IPr)Cl (10 μ M),
229 Cu(IMes)Cl (2 μ M), and [Cu(IMes)₂]BF₄ (2 μ M) for an incubation of 24 h. Following
230 incubation, the supernatant was collected, and the infectious titre was determined using
231 the TCID₅₀ method. For all assays, DMSO 0.1% (v/v) was used as negative control and
232 Molnupiravir at 10 μ M was used a positive control.

233 **2.7. Cell to cell spread assay**

234 To evaluate the effect of the compound in focus formation and cell to cell spread,
235 5x10⁴ cells were plated in each well of 48 well plates for 24h. Then, cells were infected
236 with SARS-CoV-2-mNeonGreen at an MOI of 0.05 for 1 h, washed with PBS and added
237 of media containing methylcellulose 0.8% and the Cu(IPr)Cl (10 μ M), Cu(IMes)Cl (2
238 μ M), or [Cu(IMes)₂]BF₄ (2 μ M). After 48h, the wells were photographed using the
239 IncuCyte S3 microscope and the quantity of green foci and their size were analysed in
240 each image using ImageJ software and GraphPad Prism 9.

241 **2.8. Effect on SARS-CoV-2 proteases PL^{PRO} and M^{PRO}**

242 To obtain both pure proteins, M^{pro} (coding region residues 3264-3569) and PL^{pro}
243 (coding region residues 1564-1879), the methodologies of cloning, expression, and
244 purification were conducted as previously described (Fernandes et al. 2021; Freire et al.
245 2022). Enzymatic inhibition assays were conducted using peptide-based substrates
246 employing FRET (Fluorescence Resonance Energy Transfer). Specific substrates and
247 experimental conditions for each protein were used as described elsewhere (Freire et al.
248 2022; Noske et al. 2023). In an initial assessment, inhibitor candidates were diluted in
249 DMSO and added to the reaction at a final concentration of 100 μ M. Enzymatic activity
250 was monitored by fluorescence using the SpectraMax Gemini EM microplate reader (λ
251 excitation/ λ emission 320/420 nm for PL^{pro}, and 360/460 nm for M^{pro}) at 30s intervals
252 over 30 min. Relative activity was determined by comparison with a control reaction
253 containing an equivalent concentration of DMSO. The inhibition concentration of 50%
254 (IC₅₀) values were determined by generating concentration-response curves ranging from
255 0.98 to 500 μ M for each compound, employing a serial dilution factor 2. Curve inflection
256 points and IC₅₀ values were determined using the nonlinear regression model [Inhibitor]
257 vs. Response (three parameters) with GraphPad Prism 8 software. Background
258 fluorescence was subtracted using reaction controls devoid of protein. The determined
259 IC₅₀ values represent the mean value of three independent experiments.

260 **2.9. Molecular docking**

261 Cu(IMes)Cl, Cu(IPr)Cl and [Cu(IMes)₂]⁺ structures were optimized by DFT,
262 using the ORCA software version 5.0.1 (NEESE, 2012), employing the PBE0 functional
263 (Ernzerhof and Scuseria 1999), def2-TZVP basis function (Weigend and Ahlrichs 2005),
264 def2/J auxiliary basis, RIJCOSX approximation (KOSSMANN; NEESE, 2010), CPCM
265 for implicit DMSO solvation (Tomasi et al. 2005), and a convergence criterion of 1.0 .
266 10-8 a.u. Minimal verification of the geometry optimizations was made via frequency
267 calculations performed at the same level of theory.

268 The interaction of these complexes was studied via molecular docking of their
269 optimized structures against the structures of the papain-like (PL^{pro}, PDB: 7JIW)
270 (OSIPIUK et al., 2021) and main (M^{pro}, PDB: 6LU7) SARS-CoV-2 protease enzymes
271 (Jin et al. 2020). Discovery Studio Visualizer was also utilized for analysing the
272 proteases.

273 The GOLD software was employed for the docking calculations, utilizing the
274 genetic algorithm (GA) and the ChemPL scoring function. 10 GA runs were carried for

275 each ligand. The docking binding sites for both enzymes were determined according to
276 the position of the co-crystallized ligands in their respective structures: PLP_Snyder530
277 for PL^{pro} and N3 for M^{pro}, with exact coordinates x: 51.120186, y: 31.882481, z: -
278 0.302333 for PL^{pro}, and x: -10.79204, y: 12.417653, z: 68.8122 for M^{pro}. The search
279 window was adjusted to 2.857 x Rg8 (the radius of gyration of the complexes, calculated
280 using VMD software), resulting in approximately 20 Å for both.

281 **2.10. Statistical analysis**

282 Antiviral assays were performed a minimum of three technical repeats in
283 quadruplicate to confirm the reproducibility of the results. Differences between means of
284 readings were compared using analysis of variance (One-way ANOVA) for the following
285 assays: time of drug addition, wild-type variants, cell-cell spread. *p* values of <0.05
286 (indicated by asterisks) were considered statistically significant. For the establishment of
287 EC₅₀ and CC₅₀ values, the data were transformed into Log(X), where X is the
288 concentration, and submitted into a non-linear regression log(inhibitor) vs. response with
289 four parameters in variable slope. All analyses were performed using GraphPad Prism 9.

290 **3. RESULTS**

291 **3.1. Cu(NHC) complexes selectively inhibits SAR-CoV-2 replication in A549-AT**

292 To investigate the anti-SARS-CoV-2 activity of Cu(IPr)Cl, Cu(IMes)Cl, and
293 [Cu(IMes)₂]BF₄ compounds, A549-AT cells were infected with SARS-CoV-2-
294 mNeongreen and treated with each metal complex in a two-fold serial dilution. As a result,
295 Cu(IPr)Cl had an CC₅₀ and EC₅₀ of 60.68 ± 3.95 μM and 5.40 ± 2.20 μM, respectively,
296 while Cu(IMes)Cl had an CC₅₀ and EC₅₀ of 12.26 ± 5.75 μM and 1.13 ± 0.08 μM
297 respectively (**Figure 2A, 2B and 2D**). For [Cu(IMes)₂]BF₄ the CC₅₀ and EC₅₀ were 6.48
298 ± 0.56 μM and 1.09 ± 0.11 μM (**Figure 2C and 2D**). The calculated SI for Cu(IPr)Cl,
299 Cu(IMes)Cl, and [Cu(IMes)₂]BF₄ were 11.23, 10.84, and 5.94, respectively (**Figure 2D**).

300 **3.2. Pre-treatment with Cu(IMes)Cl and [Cu(IMes)₂]BF₄ protects A549-AT**
301 **cells against SARS-CoV-2 infection**

302 To elucidate the effect of the complexes on the SARS-CoV-2 replicative cycle, a
303 time of addition assay was performed employing Cu(IPr)Cl at 10 μM, while Cu(IMes)Cl
304 and [Cu(IMes)₂]BF₄ were used at 2 μM. First the cells were pre-treated for 1 h with each
305 complex, followed by PBS washing and infection with the SARS-CoV-2-mNeonGreen
306 (MOI of 0.1) for additional 1h (**Figure 3A**). Then cells were washed 3x with PBS to

remove unbound virus and fresh media was added to the cells. The results showed that Cu(IMes)Cl and [Cu(IMes)₂]BF₄ pretreatment decreased SARS-CoV-2-mNeonGreen infection by 99.9% and 87.7% (p<0.0001) respectively (**Figure 3B**). However, Cu(IPr)Cl did not show any protection effect (**Figure 3B**). Molnupiravir, the positive control, on the other hand, inhibited 25% of SARS-CoV-2 replication in the same assay.

3.3. Cu(I)(NHC) complexes impair several stages of SARS-CoV-2 entry to the host cell

To evaluate the effects of Cu(I)(NHC) on SARS-CoV-2-mNeonGreen entry, virus (MOI of 1) and each complex were simultaneously added to A549-AT cells for 1 h at 37°C, and inoculum was replaced with fresh media (**Figure 4A**). Cu(IPr)Cl inhibited virus entry by 48.1%, while Cu(IMes)Cl and [Cu(IMes)₂]BF₄ had a more prominent effect: 99.6% and 74% (p < 0.0001) inhibition was observed, respectively (**Figure 4B**). A modification of this protocol by including 1 h pre-incubation of the inoculum containing each complex and virus (MOI of 5) at 37 °C, prior to the infection and treatment of the cells (**Figure 4C**), decreased fluorescence intensity by 58.5%, 100%, and 90.7% for Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄, (p < 0.0001) respectively, indicating that these complexes also possess virucidal activity (**Figure 4D**).

To analyse the effect of Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄ on SARS-CoV-2 attachment, virus (MOI of 1) and complexes were first incubated with the cells at 4 °C for 1 h. At this temperature, virus particles were able to attach to the cellular receptors, but not enter the host cells. Cells were then washed with PBS, fresh media was added, and cultures incubated at 37 °C for 24h (**Figure 4E**). Data obtained from this assay also showed strong inhibition of SARS-CoV-2-mNeonGreen attachment by Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄, reducing virus entry by 67%, 99.4%, and 72.5% respectively (p < 0.0001) (**Figure 4F**). Further, post-attachment was evaluated by including an additional incubation of 30 min at 37°C to the previous protocol (**Figure 4G**). The additional inhibition step had no prominent effect on virus inhibition which was 53.3%, 99.9%, and 79.2%, for Cu(IPr)Cl, Cu(IMes)Cl and [Cu(IMes)₂]BF₄, respectively (p < 0.0001) (**Figure 4H**). In all entry assays evaluated, Molnupiravir inhibit SARS-CoV-2 fluorescence in entry, attachment, and post-attachment around ≤ 50%, while was not active in virucidal assay (**Figure 4A-H**).

3.4. Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄ potently impair post-entry stages of SARS-CoV-2 replication

340 To assess the effect of the complexes on post-entry steps of SARS-CoV-2
341 infection, the cells were infected with SARS-CoV-2-mNeonGreen (MOI of 1) for 1 h, or
342 6 h, and fresh media containing each complex was added (**Figure 5A and 5B**). Analysis
343 performed after 24h, revealed that all complexes inhibited the viral replication in over
344 98% when added after 1h infection ($p < 0.0001$) (**Figure 5A and 5C**). Interestingly, when
345 added 6h after viral infection (**Figure 5B**), the complexes were still able to suppress
346 SARS-CoV-2-mNeonGreen replication, Cu(IPr)Cl, Cu(IMes)Cl, and $[\text{Cu}(\text{IMes})_2]\text{BF}_4$
347 decreased fluorescence by 95%, 99.9%, and 87.6%, respectively ($p < 0.0001$) (**Figure**
348 **5D**). Molnupiravir strongest effect was also observed in post-entry assays, inhibiting
349 more than 95% of SARS-CoV-2 replication (**Figure 5B and 5D**).

350 **3.5. Cu(I)(NHC) complexes possess a broad-spectrum activity against Delta**
351 **(B.1.17.2) and Omicron (BA.2) variants**

352 As Cu(IPr)Cl, Cu(IMes)Cl, and $[\text{Cu}(\text{IMes})_2]\text{BF}_4$ potently inhibited infection of
353 the Wuhan strain of SARS-CoV-2 we also evaluated their impact on the two recent VoCs,
354 B.1.617.2 (delta) and BA.2 (omicron). First the assay was performed using chimeras
355 where the spike (S) protein region of the Wuhan strain infectious clone was replaced by
356 its counterpart from Delta or Omicron; all clones also contained the mCherry reporter
357 (**Figure 6A**). Infectious viruses were rescued and used to infect A539-AT cells in the
358 presence or absence of Cu(IPr)Cl (10 μM), Cu(IMes)Cl (2 μM), and $[\text{Cu}(\text{IMes})_2]\text{BF}_4$ (2
359 μM) for 24h. The results show that Cu(IPr)Cl, Cu(IMes)Cl, and $[\text{Cu}(\text{IMes})_2]\text{BF}_4$
360 decreased viral replication by 61%, 94.6%, and 92.1% ($p < 0.0001$), respectively, when
361 assayed against the SARS-CoV-2 Wuhan-B.1.617.2-Spike (**Figure 6B**). Similarly,
362 against SARS-CoV-2 Wuhan-BA.2-Spike these complexes inhibited 69.8%, 99.7%, and
363 97.3% ($p < 0.0001$) respectively (**Figure 6C**). Similarly, Molnupiravir was able to
364 decrease both chimera variants in more than 98% (**Figure 6B and 6C**).

365 Moreover, we evaluated the effect of Cu(IPr)Cl, Cu(IMes)Cl, and $[\text{Cu}(\text{IMes})_2]\text{BF}_4$
366 against the patient-derivative variants B.1.617.2 (Delta) or BA.2 (Omicron).
367 Reassuringly, when the complexes were added to cells in the presence of each variant,
368 the inhibitory profile of those viruses was similar to that observed using recombinant
369 viruses. Against the B.1.617.2 (Delta) variant, Cu(IPr)Cl decreased the viral titre by 0.5
370 Log_{10} , but with no statistical significance, while Cu(IMes)Cl and $[\text{Cu}(\text{IMes})_2]\text{BF}_4$
371 significantly decreased titres by 3 Log_{10} ($p < 0.001$) and 1 Log_{10} ($p < 0.01$), respectively

372 (**Figure 7A**). In contrast, all compounds when evaluated against the BA.2 (Omicron)
373 demonstrated significant effect on viral titres: 1.2 Log₁₀, 2.1 Log₁₀, and 2 Log₁₀ for
374 Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄, respectively (**Figure 7B**). Interestingly,
375 Molnupiravir decreased viral titre in 4 Log₁₀ in comparison to the control in against both
376 Delta and Omicron wild-type variants (**Figure 7A and 7B**).

377 **3.6. Cu(IMes)Cl and [Cu(IMes)₂]BF₄ inhibit SARS-CoV-2 proteases at low
378 concentrations**

379 The copper(II) complexes containing tridentate Schiff Base ligands were found to
380 be an inhibitor of papain-like protease (PL^{pro}) activity in SARS-CoV replication as well
381 as binding to coronaviruses main protease (M^{pro}) (ALBALAWI et al., 2024; GARZA-
382 LOPEZ; KOZAK; GRAY, 2020). As the strongest effect of our Cu(I)(NHC) compounds
383 on post-entry stages of SARS-CoV-2 replication implies that these compounds may target
384 viral enzymes, we analysed activities of these compounds against the PL^{pro} and M^{pro}. It
385 was observed that Cu(IMes)Cl complex inhibit the protease activity of PL^{pro} with a half
386 maximal inhibitory concentration (IC₅₀) of 6.1 μM (**Figure 8A**). At concentrations ≥ 25
387 μM Cu(IMes)Cl also inhibited activity of M^{pro} but the degree of inhibition was modest:
388 even at the highest concentration (200 μM) approximately 35% inhibition was observed
389 (**Figure 8B**). These findings suggest that Cu(IMes)Cl main target is the PL^{pro}, even
390 though, it might also impair M^{pro} protease activity in nonspecific effect. On the other
391 hand, [Cu(IMes)₂]BF₄ only inhibited M^{pro}: up to 60% of inhibition of protease activity
392 was observed at concentrations ≥ 30 μM (**Figure 8B**), but did not inhibit PL^{pro} activity.
393 In contrast, Cu(IPr)Cl did not inhibit any of the proteases evaluated.

394 Next, the Cu(I)(NHC) compounds were docked into the structures of PL^{pro} (PDB
395 7JIW) and M^{pro} (PDB 6LU7), both of which were co-crystallized with inhibitors
396 Snyder530 and N3 respectively (JIN et al., 2020; OSIPIUK et al., 2021). Snyder530 is a
397 non-covalent inhibitor of PL^{pro}, whereas N3 acts as a Michael acceptor inhibitor of M^{pro}
398 by forming a covalent bond with Cys145. Subsequently, the structures were processed to
399 remove inhibitors and salts, including the zinc ion from the zinc-binding domain of PL^{pro}.
400 The regions where the co-crystallized inhibitors interact with the active site were utilized
401 as a guide for docking the Cu(I)(NHC) compounds.

402 Analysis of the charge distribution in both PL^{pro} and M^{pro} revealed predominantly
403 neutral surfaces (**Figure S1**) in both proteins. The CHEMPLP Fitness scores for the
404 highest-scoring poses of each complex (**Table 1**) appear to partially mirror the

405 experimental results obtained. Specifically, the most potent compound against PL^{pro} ,
406 $\text{Cu}(\text{IMes})\text{Cl}$, exhibited the highest score (55.5123) (**Figure 8B**), followed by
407 $[\text{Cu}(\text{IMes})_2]\text{BF}_4$ (54.9629) and $\text{Cu}(\text{IPr})\text{Cl}$ (53.9465) (**Table 1**). Similarly, for M^{pro} ,
408 $[\text{Cu}(\text{IMes})_2]\text{BF}_4$, hereafter named as $[\text{Cu}(\text{IMes})_2]^+$ achieved the highest score (61.9902),
409 which notably surpassed the other compounds (52.2707; 50.1214) and correlates well
410 with experimental findings (**Figure 8D and Table 1**).

411 The active site of PL^{pro} predominantly comprises hydrophobic residues, with the
412 catalytic triad (Cys111-His272-Asp286) located at the terminal portion. Similar to
413 Snyder530, $\text{Cu}(\text{I})(\text{NHC})$ compounds can engage in comparable hydrophobic interactions
414 with Pro248, Tyr264, and Tyr268. Notably, the planarity and reduced bulkiness of
415 $\text{Cu}(\text{IMes})\text{Cl}$ appear to facilitate better accommodation for non-covalent interactions with
416 the hydrophobic region compared to other compounds that are more sterically demanding
417 (**Figure 8C, Figure S2-3**). In the case of M^{pro} , $\text{Cu}(\text{I})(\text{NHC})$ compounds interact non-
418 covalently with the catalytic dyad present in M^{pro} , particularly with residues His41,
419 Met49, Cys145, His154, and Met165 (**Figure 8D and Table 1, Figure S2-3**).

420 While we speculate that the most effective $\text{Cu}(\text{I})(\text{NHC})$ inhibitors may engage in
421 covalent binding after non-covalent recognition of the active site, such predictions are not
422 within the scope of docking analysis. Nonetheless, non-covalent interactions could still
423 play a crucial role in ligand recognition and interaction, as highlighted in this study.
424 Notably, the bulkier $[\text{Cu}(\text{IMes})_2]\text{BF}_4$ compound may efficiently interact with M^{pro} ,
425 potentially hindering subsequent covalent binding due to steric hindrance, suggesting the
426 reason for the experimental observation.

427 **Table 1. CHEMPLP Fitness score, and Interacting residues for the best poses obtained in**
428 **the Docking calculations for $\text{Cu}(\text{IMes})\text{Cl}$, $\text{Cu}(\text{IPr})\text{Cl}$ and $[\text{Cu}(\text{IMes})_2]^+$.**

PL^{pro}		
Compound	CHEMPLP Score	Interacting residues
$\text{Cu}(\text{IMes})\text{Cl}$	55.5123	Arg166, Tyr247, Pro248, Tyr264, Tyr268
$\text{Cu}(\text{IPr})\text{Cl}$	53.9465	Asp164, Ala246, Pro248, Tyr264, Tyr268
$[\text{Cu}(\text{IMes})_2]^+$	54.9629	Arg166, Pro248, Tyr264, Tyr268

M ^{pro}		
Compound	CHEMPLP Score	Interacting residues
Cu(IMes)Cl	52.2707	His41, Met49, Cys145, His164, Met165
Cu(IPr)Cl	50.1214	Met49, Cys145, His164, Glu166
[Cu(IMes) ₂] ⁺	61.9902	His41, Met49, His164, Met165

429 **3.7. [Cu(IMes)₂]BF₄ impairs SARS-CoV-2 cell to cell transmission *in vitro***

430 Cell-to-cell transmission has been described as an important feature of SARS-
 431 CoV-2 spread and pathogenesis, and compounds that can inhibit this transmission are
 432 widely required (Zeng et al. 2022). Here we evaluated SARS-CoV-2 cell to cell spread
 433 by measuring the size of fluorescence foci in the presence of each compound, employing
 434 SARS-CoV-2-mNeonGreen. In this experiment, A549-AT cells were infected with virus
 435 at an MOI of 0.05 for 1h and then treated with each complex in the presence of
 436 methylcellulose 0.8%. After treatment, only [Cu(IMes)₂]BF₄ decreased size focus of
 437 infected cells in 0.08 μm^2 (control 0.30 μm^2 , while [Cu(IMes)₂]BF₄ treated 0.22 μm^2)
 438 (**Figure 9A and 9B**).

439 **4. DISCUSSION**

440 The biological effects of Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄
 441 especially their antiviral activity against CHIKV were previously described by our group
 442 and they presented potent inhibition of CHIKV at 2 μM . Nevertheless, no assessment of
 443 anti-SARS-CoV-2 activity and mainly the potential mechanisms of antiviral effects were
 444 conducted (Fontes et al. 2022). In this context, through different assays we identified here
 445 different cytotoxic and antiviral profile among these complexes. The Cu(IPr)Cl,
 446 Cu(IMes)Cl, and [Cu(IMes)₂]BF₄ had selectivity indexes (SI) of 11.23, 10.84, and 5.94,
 447 respectively. The difference in SIs among these metallodrugs might be explained by the
 448 their lipophilicity (Berthod and Carda-Broch 2004; Giaginis et al. 2018; Fontes et al.
 449 2022), being the least lipophilic to the most lipophilic, Cu(IPr)Cl, followed by
 450 Cu(IMes)Cl, and [Cu(IMes)₂]BF₄, in this order (Fontes et al. 2022). In this case, for

451 Cu(IPr)Cl the lower lipophilicity and higher stability in solution can be the reason for
452 lower cytotoxicity. This might be due to the lower cell uptake in comparison to
453 compounds with higher lipophilicity (Giaginis et al. 2018; Fontes et al. 2022).
454 Alternatively, [Cu(IMes)₂]BF₄ high lipophilicity resulted in more active molecule (lowest
455 EC₅₀), but less selective due to the higher cytotoxicity to cells. Additionally,
456 [Cu(IMes)₂]BF₄ had a high cytotoxicity in BHK-21 cells and RAW macrophages,
457 agreeing with the results described here (Fontes et al. 2022). What is more interesting,
458 Cu(IMes)Cl was known to go under chemical speciation in solution, forming [Cu(IMes)]
459 in an chemical equilibrium (Berthod and Carda-Broch 2004; Meanwell 2018; Fontes et
460 al. 2022). The study on [Cu(IMes)₂]BF₄ confirmed the potent cytotoxic effects of the
461 [Cu(IMes)₂]⁺ cation, which also exhibits the lowest EC₅₀ against SARS-CoV-2. This
462 strongly suggests that the cation plays a key role in the overall biological activity of
463 Cu(IMes)Cl. To assess the contribution of the anionic species CuCl₂⁻, we attempted to
464 test commercial CuCl (cuprous chloride). However, the compound proved unstable in
465 aqueous solution, rapidly oxidizing to Cu²⁺ upon dissolution. But the results suggest that
466 these Cu(NHC) complexes possess a close relationship among structure-activity. This
467 fact is also reinforced by the remarkable activity on B.1.617.2 (delta) and (omicron)
468 variants, which probably are not related to the S glycoprotein, since the insertion of them
469 in the Wuhan strain infectious clone did not cause any decrease in inhibition.

470 Furthermore, the metallodrug Cu(IPr)Cl did not protect the cells against SARS-
471 CoV-2 infection, but impaired SARS-CoV-2 entry (all steps over 65%), as well as its
472 replication. Differently, both Cu(IMes)Cl and [Cu(IMes)₂]BF₄ were able to strongly
473 impair all viral stages evaluated here, with an overall inhibition of over 70%, reaching the
474 complete knockdown of virus infection (100% inhibition) for some protocols, specially
475 under the treatment with Cu(IMes)Cl. The Cu ions are reactive oxygen species (ROS)
476 inducing molecules in mammalian cells (Novello and Stirpe 1969; Sagripanti et al. 1993,
477 1997a; Shionoiri et al. 2012; Erxleben 2018), and since other Cu(II) complexes where
478 characterized as capable of speciation in biological systems, probably releasing the Cu(II)
479 ions (dos Santos Oliveira et al. 2023), it is possible to hypothesize that the chemical
480 speciation might also be related to their activity on viral replication cycle. The presence
481 of ROS in infected cells could play important role in impairing RNA replication and viral
482 assemble and maturation, which are essential to generate new virions (Sagripanti et al.
483 1997b; Boas and Reches 2021; Sander et al. 2022; Jadaun et al. 2023). The decreased
484 capacity of chemical speciation of Cu(IPr)Cl, with more stable molecule does not provide

485 enough Cu(I) ions, that can result in ROS and/or other immune pathway activation,
486 therefore agrees with the lack of protective activity (Creaven et al. 2010; Schieber and
487 Chandel 2014; Cavicchioli et al. 2019). In contrast, both Cu(IMes)Cl and [Cu(IMes)₂]BF₄
488 might produce copper ions in biological milieu, resulting in a strong protective activity
489 through that mechanism. Furthermore, the potent entry inhibition of Cu(I)(NHC) might
490 also be related to the chemical speciation, since the coordination with Cu can result in
491 molecules that can disrupt the viral envelope (Sagripanti et al. 1993, 1997a; Grass et al.
492 2011).

493 The post-entry effect of all Cu(I)(NHC) also needs to be highlighted since they
494 were able to recover inhibition after SARS-CoV-2 replication complex was stablished
495 (Klein et al. 2020; V'kovski et al. 2021). Recently, silver coordinated to N-heterocyclic
496 carbenes (Ag(I)-NHC) were described as SARS-CoV-2 inhibitors with SI ranging
497 between 3 to 100, and with a direct interaction with the SARS-CoV-2 PL^{pro} (Gil-Moles et
498 al. 2023). Firstly, it is important to emphasize that the SARS-CoV-2 infection was
499 performed in an MOI 10-fold higher than the one used here on our dose response assay
500 (Gil-Moles et al. 2023). However, their data still supports the Ag(I)(NHC) strong effect
501 on viral post-entry, probably by impairing viral RNA replication.

502 Besides, our results suggest a multitarget nature of the compounds, where
503 [Cu(IMes)₂]BF₄ might be inhibiting SARS-CoV-2 replication by interacting with M^{pro},
504 but no other activity of this compound can be discarded. On the other hand, Cu(IPr)Cl did
505 not inhibit M^{pro} or PL^{pro} catalytic activities, therefore its antiviral activity might be on
506 other viral proteins or even in cell metabolism. Notably, Cu(IMes)Cl inhibited PL^{pro}
507 activity at a low micromolar range, thereby suggesting that the viral papain-like protease
508 is a target for this compound and a possible mechanism of action underlying the
509 replication inhibition. Recently, neutral and cationic Au(NHC) that impairs SARS-CoV-
510 2 replication effectively demonstrated to inhibit PL^{pro} in similar range of IC₅₀ that
511 Cu(IMes)Cl. The mechanism of a series of Au(NHC) was demonstrated to be not only
512 the binding to the cysteine in the active site, but also eject zinc from a zinc binding domain
513 responsible for correct folding and substrate approach (Gil-Moles et al. 2020). Our
514 research for long has been demonstrating the ability of metal-based compounds to target
515 zinc binding domains impairing the proteins and enzymes activity with some selectivity
516 depending on the coordination sphere (Abbehausen et al. 2018; Aðalsteinsson et al. 2020;
517 Galuppo et al. 2023). The docking analysis demonstrated that Cu(IMes)Cl can non-

518 covalently interact with hydrophobic residues of catalytic site. Further studies are needed
519 to evaluate covalent binding and or zinc ejection.

520 **5. CONCLUSION**

521 The data presented here advocates for the multiple antiviral effects of Cu(I)(NHC)
522 organometallic compounds against SARS-CoV-2 replication *in vitro*. The compounds
523 were effective not only against Wuhan strain, but also the B.1.617.2 and BA.2 variants.
524 [Cu(IMes)₂]BF₄ demonstrated its capacity of limiting SARS-CoV-2 cell to cell spread.
525 Cu(IMes)Cl was identified as a potent inhibitor of SARS-CoV-2 PL^{pro} protease activity.
526 Based on these results, we strongly encourage further investigations involving Cu(NHC)
527 compounds, deciphering their specific antiviral effects and potential off-target effect.
528 Furthermore, we propose that Cu(IMes)Cl to be considered for utilization in pre-clinical
529 assays as a promising alternative for the treatment of COVID-19.

530

531 **Author contributions: CRediT**

532 **Conceptualization:** Igor Andrade Santos; Camilla Abbehausen; Mark Harris; Ana
533 Carolina Gomes Jardim. **Data curation:** Igor Andrade Santos; Josielle V. Fontes;
534 Gustavo C. Rodrigues; Mariana Ortiz de Godoy. **Formal analysis:** Igor Andrade Santos;
535 Josielle V. Fontes. **Funding acquisition:** Camilla Abbehausen; Mark Harris; Ana
536 Carolina Gomes Jardim. **Investigation:** Igor Andrade Santos; Josielle V. Fontes.
537 **Methodology:** Igor Andrade Santos; Josielle V. Fontes; Gustavo C. Rodrigues, Mariana
538 Ortiz de Godoy, Glaucius Oliva, Rafael V. C. Guido; Andres Merits. **Project
539 administration:** Camilla Abbehausen; Mark Harris; Ana Carolina Gomes Jardim.
540 **Resources and Supervision:** Mark Harris; Ana Carolina Gomes Jardim. **Validation:**
541 Igor Andrade Santos. **Visualization:** Mark Harris; Ana Carolina Gomes Jardim. **Writing
542 – original draft:** Igor Andrade Santos; Josielle V. Fontes; Gustavo C. Rodrigues,
543 Mariana Ortiz de Godoy, Glaucius Oliva, Rafael V. C. Guido; Mark Harris; Ana Carolina
544 Gomes Jardim

545 **Declaration of competing interest**

546 The authors declare that they have no known competing financial interests or personal
547 relationships that could have appeared to influence the work reported in this paper.

548 **ACKNOWLEGEMENTS**

549 Work in the MH laboratory was funded by the Medical Research Council (grant numbers
550 MR/S001026/1 and MR/V036904/1). The Incucyte S3 purchase was funded by a
551 Wellcome Multi-User Equipment grant (221538/Z/20/Z). A. C. G. J. is grateful to
552 FAPEMIG (Minas Gerais Research Foundation APQ-01487-22 and APQ-04686-22) and

553 to CAPES (Prevention and Combat of Outbreaks, Endemics, Epidemics and Pandemics—
554 Finance Code #88881.506794/2020-01 and —Finance Code 001). I. A. S. thanks to
555 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CNPq), for scholarship
556 #142495/2020-4, CAPES.PrInt-UFU sandwich scholarship #88887.700246/2022-00, and
557 FAPEMIG postdoctoral scholarship # 67355. CA thanks the financial support from São
558 Paulo Research Foundation (FAPESP) Processes # 2022/02618-0, # 2020/04602-9, and
559 #2013/07600-3 and Brazilian National Council of Research (CNPq) 404668/2021-6.
560 GCR thanks FAPESP for the scholarship 2023/12657-6. JVf thanks FAPESP for the
561 scholarship 2022/06410-5. CA and GCR thanks CENAPAD for the computational
562 support Proj 168.

563 **REFERENCES**

564 Abbehausen C, de Paiva REF, Bjornsson R, et al (2018) X-ray Absorption Spectroscopy
565 Combined with Time-Dependent Density Functional Theory Elucidates Differential
566 Substitution Pathways of Au(I) and Au(III) with Zinc Fingers. *Inorg Chem* 57:.
567 <https://doi.org/10.1021/acs.inorgchem.7b02406>

568 Aðalsteinsson HM, Lima FA, Galuppo C, Abbehausen C (2020) Evaluation of cobalt complexes
569 with tripod ligands for zinc finger targeting. *Dalton Transactions* 49:.
570 <https://doi.org/10.1039/D0DT00067A>

571 Al Nasr IS, Koko WS, Khan TA, et al (2023) Evaluation of Ruthenium(II) N-Heterocyclic
572 Carbene Complexes as Enzymatic Inhibitory Agents with Antioxidant, Antimicrobial,
573 Antiparasitical and Antiproliferative Activity. *Molecules* 28:1359.
574 <https://doi.org/10.3390/molecules28031359>

575 Alvarez N, Kramer MG, Ellena J, et al (2018) Copper-diimine coordination compounds as
576 potential new tools in the treatment of cancer. *Cancer Rep Rev* 2:.
577 <https://doi.org/10.15761/CRR.1000161>

578 Augustin M, Schommers P, Stecher M, et al (2021) Post-COVID syndrome in non-hospitalised
579 patients with COVID-19: a longitudinal prospective cohort study. *The Lancet Regional
580 Health - Europe* 6:100122. <https://doi.org/10.1016/J.LANEPE.2021.100122>

581 Berthod A, Carda-Broch S (2004) Determination of liquid–liquid partition coefficients by
582 separation methods. *J Chromatogr A* 1037:3–14.
583 <https://doi.org/10.1016/j.chroma.2004.01.001>

584 Boas D, Reches M (2021) A Novel Copper-Binding Peptide That Self-Assembles Into a
585 Transparent Antibacterial and Antiviral Coating. *Front Bioeng Biotechnol* 9:.
586 <https://doi.org/10.3389/fbioe.2021.736679>

587 Boros E, Dyson PJ, Gasser G (2020) Classification of Metal-Based Drugs according to Their
588 Mechanisms of Action. *Chem* 6:41–60. <https://doi.org/10.1016/j.chempr.2019.10.013>

589 Cavigchioli M, Zaballa A, Paula Q, et al (2019) Oxidative Assets Toward Biomolecules and
590 Cytotoxicity of New Oxindolimine-Copper(II) and Zinc(II) Complexes. *Inorganics (Basel)*
591 7:12. <https://doi.org/10.3390/inorganics7020012>

592 Creaven BS, Duff B, Egan DA, et al (2010) Anticancer and antifungal activity of copper(II)
593 complexes of quinolin-2(1H)-one-derived Schiff bases. *Inorganica Chim Acta* 363:4048–
594 4058. <https://doi.org/10.1016/j.ica.2010.08.009>

595 de Frémont P, Marion N, Nolan SP (2009) Carbenes: Synthesis, properties, and organometallic
596 chemistry. *Coord Chem Rev* 253:. <https://doi.org/10.1016/j.ccr.2008.05.018>

597 de Paiva REF, Marçal Neto A, Santos IA, et al (2020) What is holding back the development of
598 antiviral metallodrugs? A literature overview and implications for SARS-CoV-2
599 therapeutics and future viral outbreaks. *Dalton Transactions* 49:16004–16033.
600 <https://doi.org/10.1039/D0DT02478C>

601 dos Santos Oliveira L, de Souza Guarda PH, Rosa LB, et al (2023) Exploring the copper(II)
602 coordination to 2'-hydroxy-4-benzoyloxychalcone analogues and their potential
603 pharmacological applications. *Inorganica Chim Acta* 121806.
604 <https://doi.org/10.1016/j.ica.2023.121806>

605 Duffy S (2018) Why are RNA virus mutation rates so damn high? *PLoS Biol* 16:e3000003.
606 <https://doi.org/10.1371/journal.pbio.3000003>

607 Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew–Burke–Ernzerhof exchange-
608 correlation functional. *J Chem Phys* 110:. <https://doi.org/10.1063/1.478401>

609 Erxleben A (2018) Interactions of copper complexes with nucleic acids. *Coord Chem Rev*
610 360:92–121. <https://doi.org/10.1016/j.ccr.2018.01.008>

611 Fernandes RS, de Godoy AS, Santos IA, et al (2021) Discovery of an imidazonaphthyridine and
612 a riminophenazine as potent anti-Zika virus agents through a replicon-based high-
613 throughput screening. *Virus Res* 299:198388.
614 <https://doi.org/10.1016/j.virusres.2021.198388>

615 Fontes J V., Santos IA, Rosa LB, et al (2022) Antileishmanial and Anti-Chikungunya Activity of
616 Cu(I)-N-Heterocyclic Carbenes. *ChemistrySelect* 7:.
617 <https://doi.org/10.1002/slct.202201560>

618 Freire MCLC, Basso LGM, Mendes LFS, et al (2022) Characterization of the RNA-dependent
619 RNA polymerase from Chikungunya virus and discovery of a novel ligand as a potential
620 drug candidate. *Sci Rep* 12:. <https://doi.org/10.1038/s41598-022-14790-x>

621 Galuppo C, Gomes de Oliveira Junior A, dos Santos Oliveira L, et al (2023) Reactivity of NiII,
622 PdII and PtII complexes bearing phosphine ligands towards ZnII displacement and
623 hydrolysis in Cis2His2 and Cis3His zinc-fingers domains. *J Inorg Biochem* 240:.
624 <https://doi.org/10.1016/j.jinorgbio.2022.112117>

625 Giaginis C, Tsopelas F, Tsantili-Kakoulidou A (2018) The Impact of Lipophilicity in Drug
626 Discovery: Rapid Measurements by Means of Reversed-Phase HPLC. pp 217–228

627 Gil-Moles M, Basu U, Büsing R, et al (2020) Gold Metallodrugs to Target Coronavirus Proteins:
628 Inhibitory Effects on the Spike-ACE2 Interaction and on PLpro Protease Activity by
629 Auronofin and Gold Organometallics**. *Chemistry – A European Journal* 26:.
630 <https://doi.org/10.1002/chem.202004112>

631 Gil-Moles M, O'Beirne C, Esarev I V., et al (2023) Silver N-heterocyclic carbene complexes are
632 potent uncompetitive inhibitors of the papain-like protease with antiviral activity against
633 SARS-CoV-2. *RSC Med Chem* 14:1260–1271. <https://doi.org/10.1039/D3MD00067B>

634 Grass G, Rensing C, Solioz M (2011) Metallic Copper as an Antimicrobial Surface. *Appl Environ*
635 *Microbiol* 77:1541–1547. <https://doi.org/10.1128/AEM.02766-10>

636 Grasselli G, Tonetti T, Protti A, et al (2020) Pathophysiology of COVID-19-associated acute
637 respiratory distress syndrome: a multicentre prospective observational study. *Lancet Respir*
638 *Med* 8:1201–1208. [https://doi.org/10.1016/S2213-2600\(20\)30370-2](https://doi.org/10.1016/S2213-2600(20)30370-2)

639 Haas KL, Franz KJ (2009) Application of Metal Coordination Chemistry To Explore and
640 Manipulate Cell Biology. *Chem Rev* 109:4921–4960. <https://doi.org/10.1021/cr900134a>

641 Hussaini SY, Haque RA, Razali MR (2019) Recent progress in silver(I)-, gold(I)/(III)- and
642 palladium(II)-N-heterocyclic carbene complexes: A review towards biological perspectives.
643 *J Organomet Chem* 882:.. <https://doi.org/10.1016/j.jorgchem.2019.01.003>

644 Jadaun P, Shah P, Harshithkumar R, et al (2023) Antiviral and ROS scavenging potential of
645 Carica papaya Linn and Psidium guajava leaves extract against HIV-1 infection. *BMC*
646 *Complement Med Ther* 23:.. <https://doi.org/10.1186/s12906-023-03916-x>

647 Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al (2022) Molnupiravir for Oral
648 Treatment of Covid-19 in Nonhospitalized Patients. *New England Journal of Medicine*
649 386:509–520. <https://doi.org/10.1056/NEJMoa2116044>

650 Jin Z, Du X, Xu Y, et al (2020) Structure of Mpro from SARS-CoV-2 and discovery of its
651 inhibitors. *Nature* 582:.. <https://doi.org/10.1038/s41586-020-2223-y>

652 Johnson AG, Amin AB, Ali AR, et al (2022) COVID-19 Incidence and Death Rates Among
653 Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods
654 of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25,
655 2021. *MMWR Morb Mortal Wkly Rep* 71:132–138.
656 <https://doi.org/10.15585/MMWR.MM7104E2>

657 Karlin KD (1993) Metalloenzymes, Structural Motifs, and Inorganic Models. *Science* (1979)
658 261:701–708. <https://doi.org/10.1126/science.7688141>

659 Killington, Hierholzer (1996) *Virology Methods Manual*

660 Klein S, Cortese M, Winter SL, et al (2020) SARS-CoV-2 structure and replication characterized
661 by in situ cryo-electron tomography. *Nat Commun* 11:5885.
662 <https://doi.org/10.1038/s41467-020-19619-7>

663 Lamers MM, Haagmans BL (2022) SARS-CoV-2 pathogenesis. *Nat Rev Microbiol* 20:270–284.
664 <https://doi.org/10.1038/s41579-022-00713-0>

665 Linder MC (1991) *Biochemistry of Copper*. Springer US, Boston, MA

666 Liu J, Pan X, Zhang S, et al (2023) Efficacy and safety of Paxlovid in severe adult patients with
667 SARS-CoV-2 infection: a multicenter randomized controlled study. *Lancet Reg Health West*
668 *Pac* 33:100694. <https://doi.org/10.1016/j.lanwpc.2023.100694>

669 Maltezou HC, Pavli A, Tsakris A (2021a) Post-COVID Syndrome: An Insight on Its
670 Pathogenesis. *Vaccines (Basel)* 9:497. <https://doi.org/10.3390/vaccines9050497>

671 Maltezou HC, Pavli A, Tsakris A (2021b) Post-COVID Syndrome: An Insight on Its
672 Pathogenesis. *Vaccines* 2021, Vol 9, Page 497 9:497.
673 <https://doi.org/10.3390/VACCINES9050497>

674 Mariconda A, Iacopetta D, Sirignano M, et al (2022) *N* -Heterocyclic Carbene (NHC) Silver
675 Complexes as Versatile Chemotherapeutic Agents Targeting Human Topoisomerases and
676 Actin. *ChemMedChem* 17:. <https://doi.org/10.1002/cmdc.202200345>

677 Messerschmidt A, Huber R, Poulas T, et al (eds) (2004) *Handbook of Metalloproteins*. Wiley

678 Montagutelli X, Prot M, Levillayer L, et al (2021) The B1.351 and P.1 variants extend SARS-
679 CoV-2 host range to mice. <https://doi.org/10.1101/2021.03.18.436013>

680 Noske GD, de Souza Silva E, de Godoy MO, et al (2023) Structural basis of nirmatrelvir and
681 ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 main
682 protease. *Journal of Biological Chemistry* 299:. <https://doi.org/10.1016/j.jbc.2023.103004>

683 Novello F, Stirpe F (1969) The effects of copper and other ions on the ribonucleic acid polymerase
684 activity of isolated rat liver nuclei. *Biochemical Journal* 111:115–119.
685 <https://doi.org/10.1042/bj1110115>

686 Oronskey B, Larson C, Hammond TC, et al (2021) A Review of Persistent Post-COVID Syndrome
687 (PPCS). *Clin Rev Allergy Immunol* 1:1–9. <https://doi.org/10.1007/S12016-021-08848-3/TABLES/3>

689 Pantazis N, Pechlivanidou E, Antoniadou A, et al (2023) Remdesivir: Effectiveness and Safety in
690 Hospitalized Patients with COVID-19 (ReEs-COVID-19)—Analysis of Data from Daily
691 Practice. *Microorganisms* 11:1998. <https://doi.org/10.3390/microorganisms11081998>

692 Rihn SJ, Merits A, Bakshi S, et al (2021) A plasmid DNA-launched SARS-CoV-2 reverse
693 genetics system and coronavirus toolkit for COVID-19 research. *PLoS Biol* 19:e3001091.
694 <https://doi.org/10.1371/journal.pbio.3001091>

695 Sagripanti JL, Routson LB, Bonifacino AC, Lytle CD (1997a) Mechanism of copper-mediated
696 inactivation of herpes simplex virus. *Antimicrob Agents Chemother* 41:812–817.
697 <https://doi.org/10.1128/AAC.41.4.812>

698 Sagripanti JL, Routson LB, Bonifacino AC, Lytle CD (1997b) Mechanism of copper-mediated
699 inactivation of herpes simplex virus. *Antimicrob Agents Chemother* 41:.
700 <https://doi.org/10.1128/AAC.41.4.812>

701 Sagripanti JL, Routson LB, Lytle CD (1993) Virus inactivation by copper or iron ions alone and
702 in the presence of peroxide. *Appl Environ Microbiol* 59:4374–4376.
703 <https://doi.org/10.1128/aem.59.12.4374-4376.1993>

704 Sander WJ, Fourie C, Sabiu S, et al (2022) Reactive oxygen species as potential antiviral targets.
705 *Rev Med Virol* 32:. <https://doi.org/10.1002/rmv.2240>

706 Sanderson T, Hisner R, Donovan-Banfield I, et al (2023) A molnupiravir-associated mutational
707 signature in global SARS-CoV-2 genomes. *Nature*. <https://doi.org/10.1038/s41586-023-06649-6>

709 Saúde. M da S de V à S (2022) Anvisa aprova uso emergencial do medicamento Paxlovid para
710 Covid-19. <https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2022/anvisa-aprova->
711 [uso-emergencial-do-medicamento-paxlovid-para-covid-19#:~:text=A](https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2022/anvisa-aprova-) Diretoria Colegiada
712 (Dicol) da, Pública da Dicol de 2022. Accessed 1 May 2022

713 Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. *Curr Biol*
714 24:R453-62. <https://doi.org/10.1016/j.cub.2014.03.034>

715 Shahabadi N, Mirzaei Kalar Z, Hosseinpour Moghadam N (2012) DNA interaction studies of a
716 platinum (II) complex containing an antiviral drug, ribavirin: The effect of metal on DNA
717 binding. *Spectrochim Acta A Mol Biomol Spectrosc* 96:723–728.
718 <https://doi.org/10.1016/j.saa.2012.07.020>

719 Shawe-Taylor M, Greenwood D, Hobbs A, et al (2024) Divergent performance of vaccines in the
720 UK autumn 2023 COVID-19 booster campaign. *The Lancet* 403:1133–1136.
721 [https://doi.org/10.1016/S0140-6736\(24\)00316-7](https://doi.org/10.1016/S0140-6736(24)00316-7)

722 Shi Y, Wang Y, Shao C, et al (2020) COVID-19 infection: the perspectives on immune responses.
723 *Cell Death Differ* 27:1451–1454

724 Shionoiri N, Sato T, Fujimori Y, et al (2012) Investigation of the antiviral properties of copper
725 iodide nanoparticles against feline calicivirus. *J Biosci Bioeng* 113:580–586.
726 <https://doi.org/10.1016/j.jbiosc.2011.12.006>

727 Teyssot M-L, Jarrousse A-S, Manin M, et al (2009) Metal-NHC complexes: a survey of anti-
728 cancer properties. *Dalton Transactions* 6894. <https://doi.org/10.1039/b906308k>

729 Thakur V, Ratho RK (2021)OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern
730 mounting worldwide fear. *J Med Virol*. <https://doi.org/10.1002/jmv.27541>

731 Tomasi J, Mennucci B, Cammi R (2005) Quantum Mechanical Continuum Solvation Models.
732 *Chem Rev* 105:2999–3094. <https://doi.org/10.1021/cr9904009>

733 V'kovski P, Kratzel A, Steiner S, et al (2021) Coronavirus biology and replication: implications
734 for SARS-CoV-2. *Nat Rev Microbiol* 19:155–170. <https://doi.org/10.1038/s41579-020-00468-6>

736 von Delft A, Hall MD, Kwong AD, et al (2023) Accelerating antiviral drug discovery: lessons
737 from COVID-19. *Nat Rev Drug Discov* 22:585–603. <https://doi.org/10.1038/s41573-023-00692-8>

739 Wang P, Wang M, Yu J, et al (2021) Increased Resistance of SARS-CoV-2 Variant P.1 to
740 Antibody Neutralization. *bioRxiv* 2021.03.01.433466.
741 <https://doi.org/10.1101/2021.03.01.433466>

742 Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and
743 quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Physical
744 Chemistry Chemical Physics* 7:3297. <https://doi.org/10.1039/b508541a>

745 Yong SJ (2021) Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk
746 factors, and treatments. *Infect Dis* 53:737–754.
747 <https://doi.org/10.1080/23744235.2021.1924397>

748 Zeng C, Evans JP, King T, et al (2022) SARS-CoV-2 spreads through cell-to-cell transmission.
749 *Proceedings of the National Academy of Sciences* 119:.
750 <https://doi.org/10.1073/pnas.2111400119>

751 Zhang T, Wu Q, Zhang Z (2020) Probable Pangolin Origin of SARS-CoV-2 Associated with the
752 COVID-19 Outbreak. *Current Biology* 30:1346-1351.e2.
753 <https://doi.org/10.1016/j.cub.2020.03.022>

754 Zoroddu MA, Aaseth J, Crisponi G, et al (2019) The essential metals for humans: a brief
755 overview. *J Inorg Biochem* 195:120–129. <https://doi.org/10.1016/j.jinorgbio.2019.03.013>

756

757

758

759 **FIGURE CAPTIONS**

760 **Figure 1: Chemical structure of Cu(IPr)Cl, Cu(IMes)Cl and, Cu(IMes)₂BF₄** (Fontes
761 et al. 2022)

762 **Figure 2. Dose-response curve for Cu(IPr)Cl (A), Cu(IMes)Cl (B), and**
763 **[Cu(IMes)₂]BF₄(C) treatment on A549-AT cells in the presence of absence of SARS-**
764 **CoV-2-mNeongreen.** A549-AT cells were treated with the Cu(IPr)Cl, Cu(IMes)Cl, or
765 [Cu(IMes)₂]BF₄ at concentrations ranging from 0.58 μ M to 300 μ M, in a two-fold serial
766 dilution in the presence of absence of SARS-CoV-2-mNeongreen at a MOI of 0.1. After
767 24h, the efficiency of infection was revealed by measurement of the total integrated
768 intensity of the fluorescence (GCU x μ m²/well) using the IncuCyte S3 microscope. Cell
769 viability was accessed by MTT assay. Mean values of two independent experiment each
770 measured in quadruplicate including the standard deviation are shown. **(D)** Cytotoxic
771 concentration at 50% (CC₅₀), effective concentration at 50% (EC₅₀) and Selective
772 Indexes of compounds are reported. All images were generated using GraphPad Prism 10
773 and Adobe Illustrator 2024 (version 28.5).

774

775 **Figure 3. Pre-treatment with Cu(IMes)Cl and Cu(IMes)₂BF₄ protects A549-AT cells**
776 **against SARS-CoV-2 infection.** (A) Schematic representation of each time-based assay
777 as indicated by A549-AT cells (blue arrows), compounds (chemical structure), and
778 SARS-CoV-2-mNeonGreen (green virus). (B) Virus inhibition was analysed as described
779 for Fig. 2. Mean values \pm SD of a minimum of three independent experiments each
780 measured in quadruplicate. Statistical comparison performed with One-way ANOVA -
781 Dunett test in which (ns) non-significant and (****) P < 0.001. All images were generated
782 using GraphPad Prism 10 and Adobe Illustrator 2024 (version 28.5).

783 **Figure 4. Cu(I) complexes impair several stages of SARS-CoV-2 entry.** (A and B)
784 A549-AT cells were infected with SARS-CoV-2-mNeonGreen (MOI 1) and
785 simultaneously treated Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄ for 1 h. Cells were
786 washed and replaced by fresh medium. (C and D) SARS-CoV-2-mNeonGreen (MOI 5)
787 and each compound was incubated for 1 h at 37 °C and then for one extra hour with the
788 cells. Then, virus and compound were removed, cells were washed with PBS, and added
789 fresh medium. (E and F) A549-AT cells were infected with the virus and simultaneously
790 treated with each compound for 1 h at 4 °C. The cells were washed to remove virus and
791 compound and replaced with fresh medium. (G and H) A549-AT cells were infected with
792 virus and simultaneously treated with the compounds for 1 h at 4 °C. For each of assay
793 the measurement of virus infection was performed as described for Fig. 2. Schematic
794 representation of each time-based assay as indicated by A549-AT cells (blue arrows),
795 compounds (chemical structure), and SARS-CoV-2-mNeonGreen (green virus), SARS-
796 CoV-2-mNeonGreen and compound inoculum (microtube), incubation at 4°C (ice
797 crystal) and incubation at 37°C (thermometer). Mean values \pm SD of a minimum of three
798 independent experiments each measured in quadruplicate. Statistical comparison
799 performed with One-way ANOVA - Dunett test in which (****) P < 0.0001. All images
800 were generated using GraphPad Prism 10 and Adobe Illustrator 2024 (version 28.5).

801 **Figure 5. Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄ potently impair post-entry**

802 stages of SARS-CoV-2 replication. A549-AT cells were infected with SARS-CoV-2-

803 mNeonGreen (MOI 0.1) for 1h (A) or for 6h (B), and then treated with each complex for

804 the remaining 24h. Schematic representation of each time-based assay as indicated by

805 A549-AT cells (blue arrows), compounds (chemical structure), and SARS-CoV-2-

806 mNeonGreen (green virus). For each treatment the measurement of virus infection was

807 performed as described for Fig. 2. Mean values \pm SD of a minimum of three independent

808 experiments each measured in triplicate. Statistical comparison performed with One-way

809 ANOVA - Dunett test in which (****) $P < 0.0001$. All images were generated using

810 GraphPad Prism 10 and Adobe Illustrator 2024 (version 28.5).

811 **Figure 6. Effect of Cu(IPr)Cl, Cu(IMes)Cl, and [Cu(IMes)₂]BF₄ against SARS-CoV-**

812 2-Wuhan-B.1.617.2-Spike and SARS-CoV-2-Wuhan-BA.2-Spike chimeras. (A)

813 Schematic representation of the icDNAs of the Wuhan strain (NCBI: NC_045512.2) (1)

814 and chimeric variants SARS-CoV-2-Wuhan-B.1.617.2-Spike (2) and SARS-CoV-2-

815 Wuhan-BA.2-Spike (3) that also carry mCherry reporter. (B, C). A549-AT cells were

816 infected with SARS-CoV-2-Wuhan-B.1.617.2-Spike (B) or SARS-CoV-2-Wuhan-BA.2-

817 Spike (C) at an MOI of 0.1 in the absence of presence of indicated compounds for 24h.

818 SARS-CoV-2 replication was measured by the total integrated intensity of the red

819 fluorescence (RCU \times $\mu\text{m}^2/\text{well}$). Statistical comparison performed with One-way

820 ANOVA - Dunett test in which (****) $P < 0.0001$. All images were generated using

821 GraphPad Prism 10 and Adobe Illustrator 2024 (version 28.5).

822 **Figure 7. Effect of the Cu(I)(NHC) against the patient-isolated SARS-CoV-2-**

823 B.1.617.2 and SARS-CoV-2-BA.2 replication. A549-AT cells were infected with

824 SARS-CoV-2-B.1.617.2 (A) or SARS-CoV-2-BA.2 (B) at an MOI of 0.1 in the presence

825 of each compound for 24h. Then, supernatant was collected and tittered by TCID₅₀.

826 Statistical comparison performed with One-way ANOVA - Dunett test in which (****)

827 $P < 0.0001$. All images were generated using GraphPad Prism 10 and Adobe Illustrator

828 2024 (version 28.5).

829 **Figure 8. Cu(I)(NHC) compounds interaction with SARS-CoV-2 proteases.** The

830 inhibition concentration of 50% (IC₅₀) of Cu(IMes)Cl against SARS-CoV-2 PL^{pro} (A) and

831 Cu(IMes)Cl and [Cu(IMes)₂]BF₄ against SARS-CoV-2 M^{pro} (B) is shown. Further, the

832 representation of the active site from PL^{pro} highlighting the main residues, drug binding

833 domain (square), the catalytic triad of hydrolysis(circle), residues interaction from the

834 best docking poses of Cu(IMes)Cl and PL^{pro} as well as Cu(IMes)Cl and [Cu(IMes)₂]BF₄

835 with SARS-CoV-2 M^{pro} is shown in C and D, respectively.

836

837 **Figure 9. [Cu(IMes)₂]BF₄ decreases SARS-CoV-2 cell to cell spread.** A549-AT cells

838 were infected with SARS-CoV-2-mNeonGreen (MOI 0.05) for 1h, cells were washed,

839 and replaced by fresh medium containing each compound and Methylcellulose 0.8% for

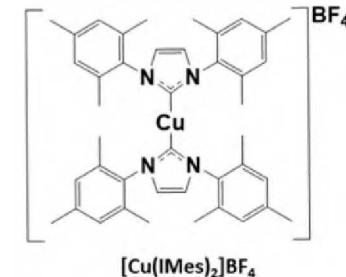
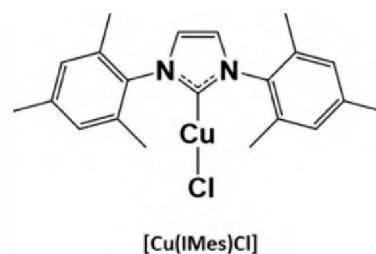
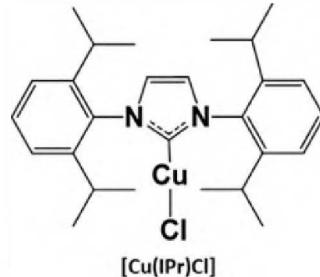
840 the remaining 48h. The photos were taken by the IncuCyte S3 microscope in the objective

841 10x under the green fluorescence light and focus size analysis were performed in ImageJ.

842 (A) Representative images of SARS-CoV-2-mNeonGreen infection in the presence of

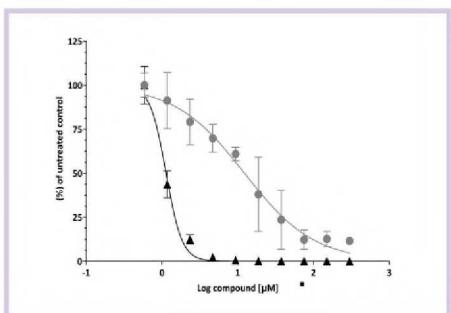
843 DMSO control, [Cu(IMes)₂]BF₄, and methylcellulose negative (MC⁻) control, in this

844 order. (B) The average focus area (in μM^2) of three technical repeats is shown. Statistical

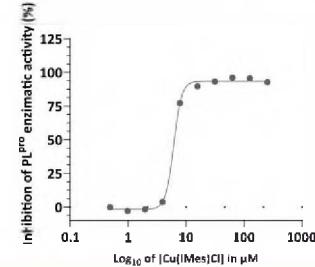



845 comparison performed with One-way ANOVA – Holm-Sidak test in which (**) $P < 0.01$.

846 All images were generated using GraphPad Prism 10 and Adobe Illustrator 2024 (version
847 28.5).

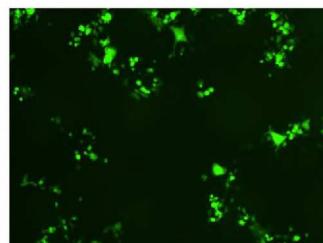
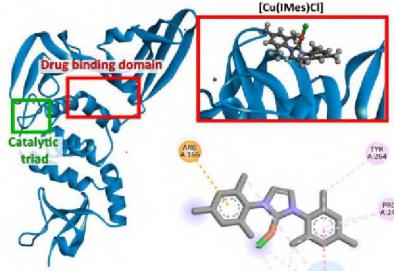
848

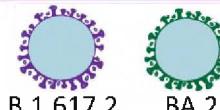

849

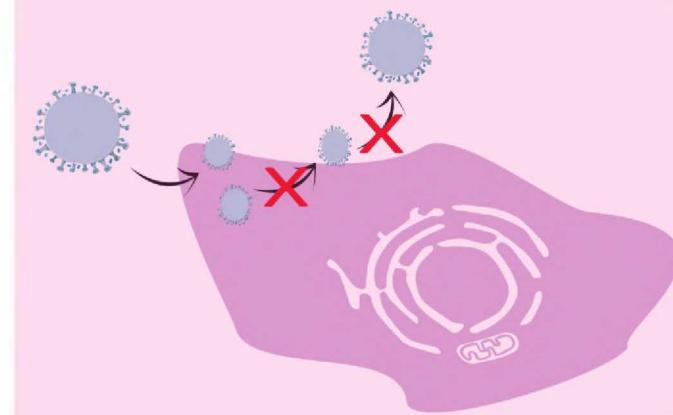
Cu(I)-N-HETEROCYCLIC CARBENES AS POTENT INHIBITORS OF SARS-COV-2 REPLICATION



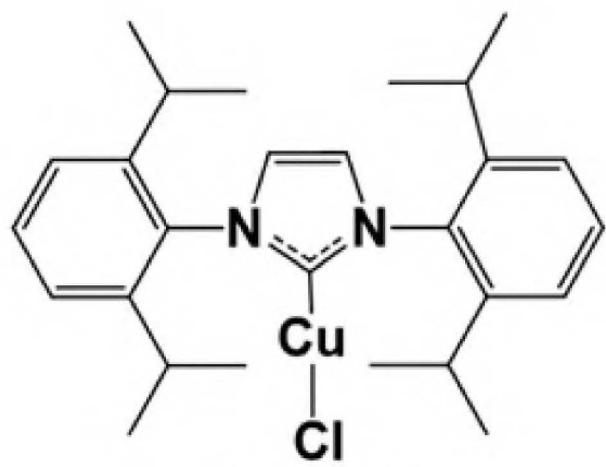
OUR MAIN FINDINGS



Selectivity indexes of 11.23, 10.84, and 5.94

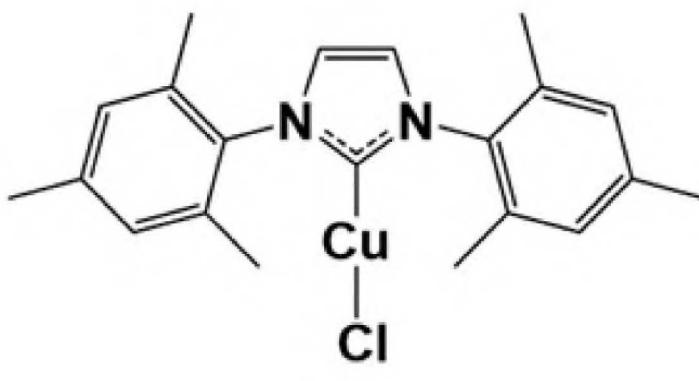

Cu(IMes)Cl inhibits PLpro protease activity


Molecular docking interaction with PLpro

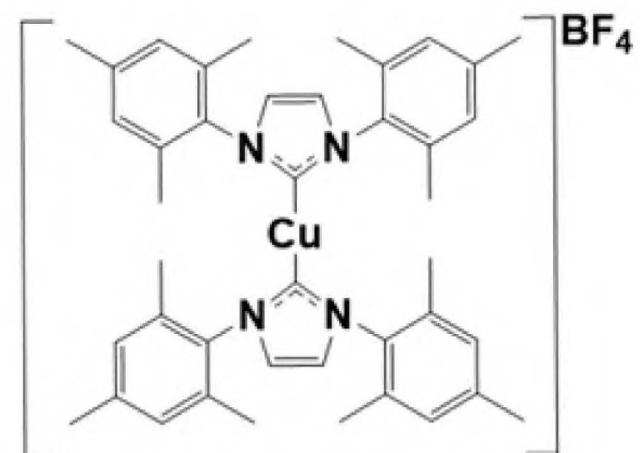
Cu(II)-N-Heterocyclic carbenes inhibits SARS-CoV-2 Delta and Omicron variants

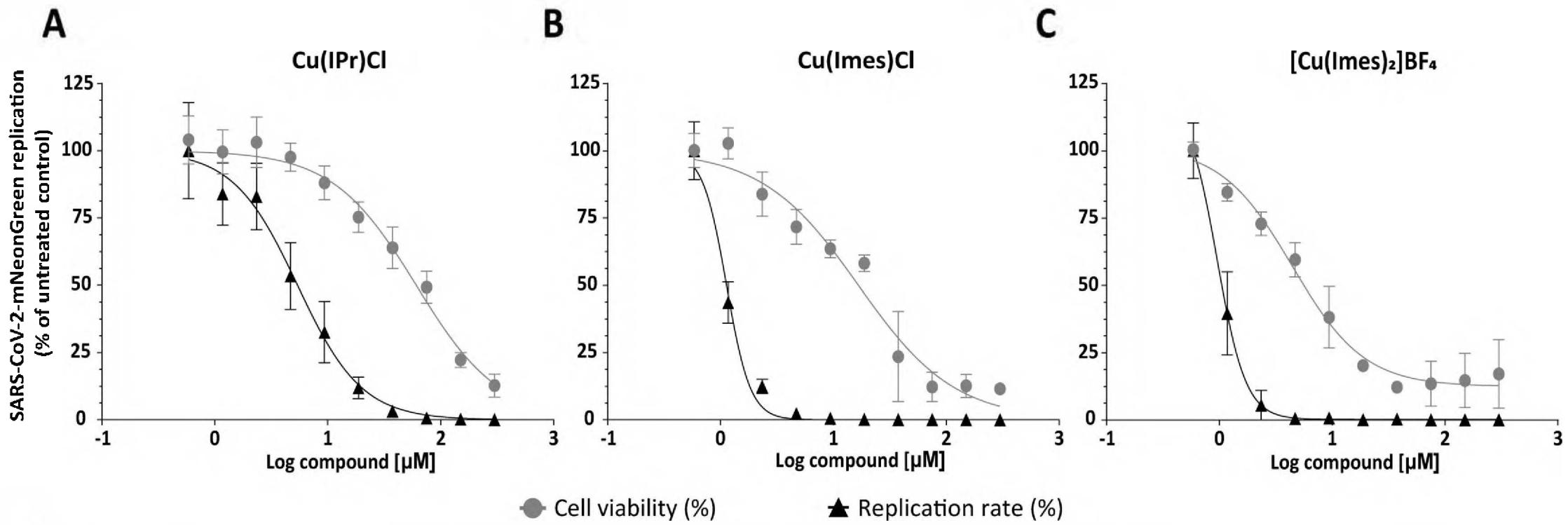


CONCLUSIONS

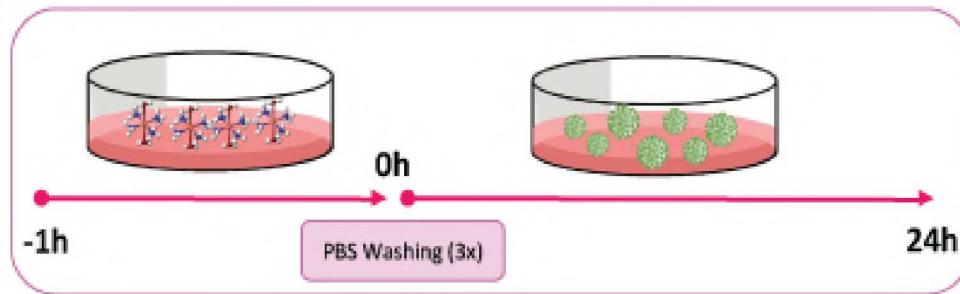
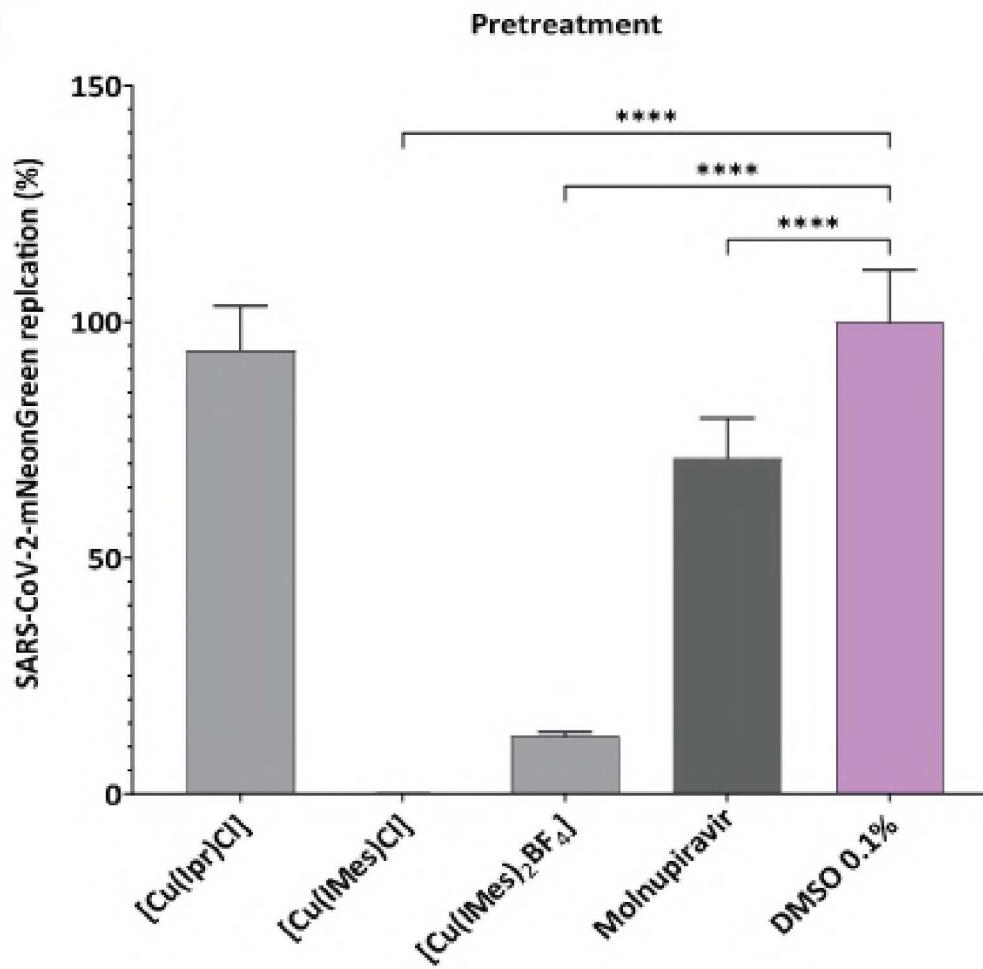


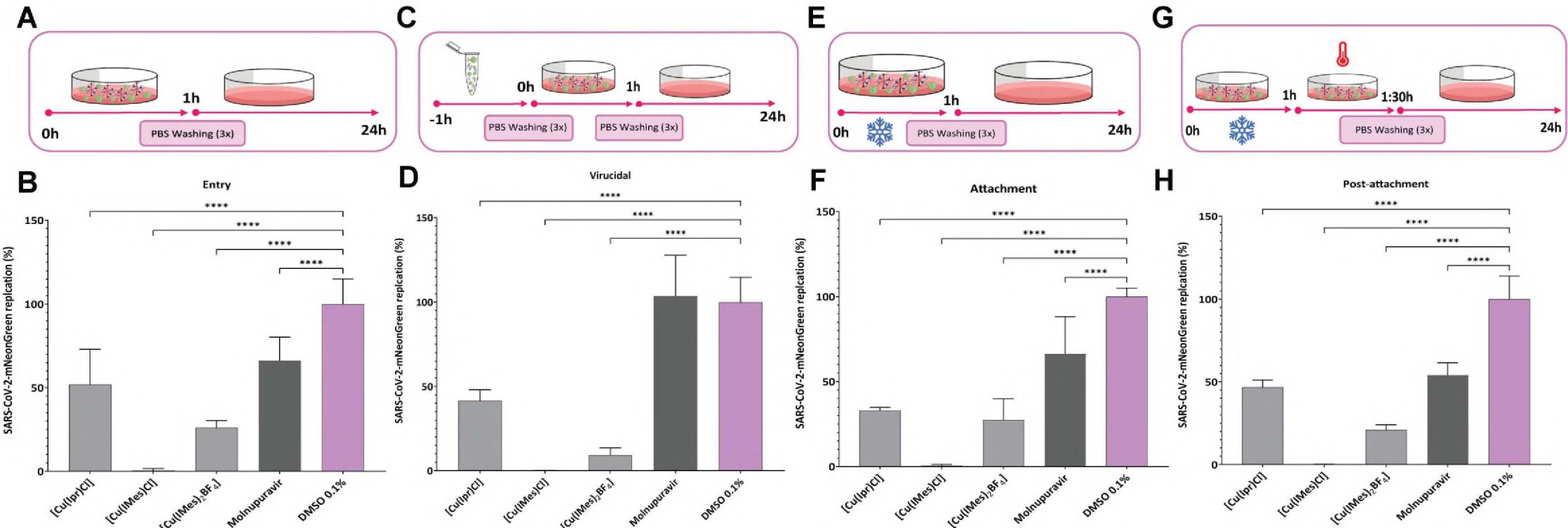
Cu(IMes)Cl and [Cu(IMes)2]BF4 show strong antiviral activity against SARS-CoV-2, including its variants B.1.617.2 and BA.2.

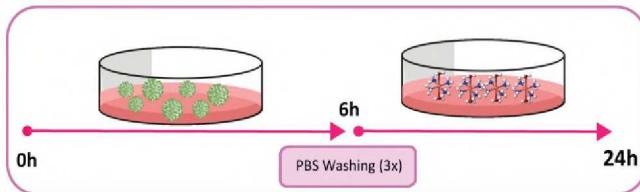
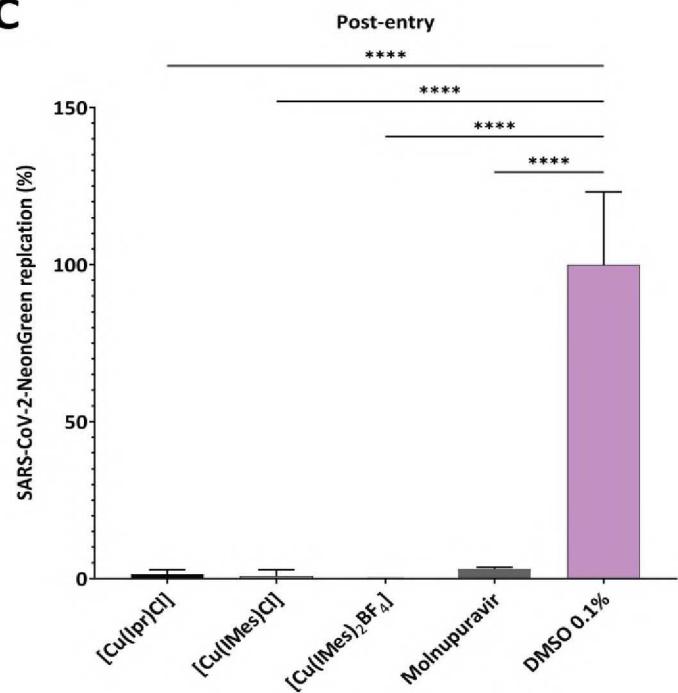
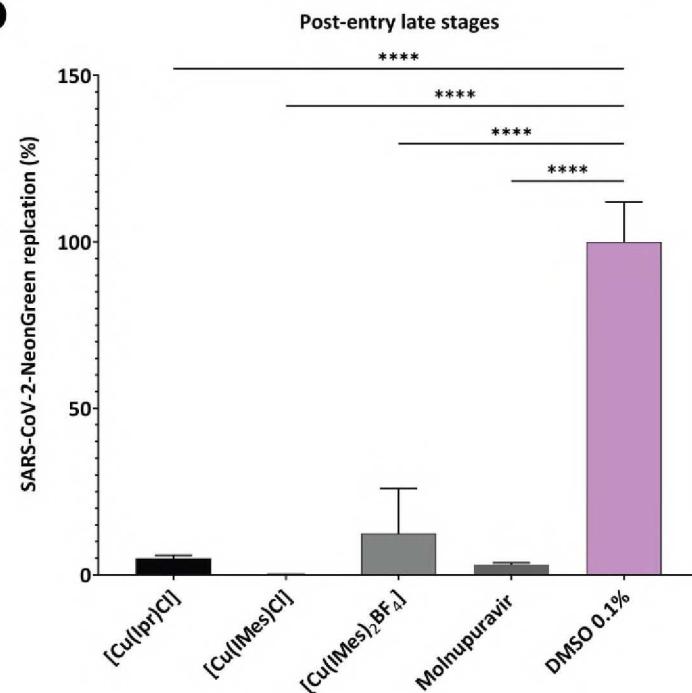

These findings highlight the potential of Cu(NHC) compounds for antiviral therapy and encourage further pre-clinical studies, particularly for Cu(IMes)Cl.

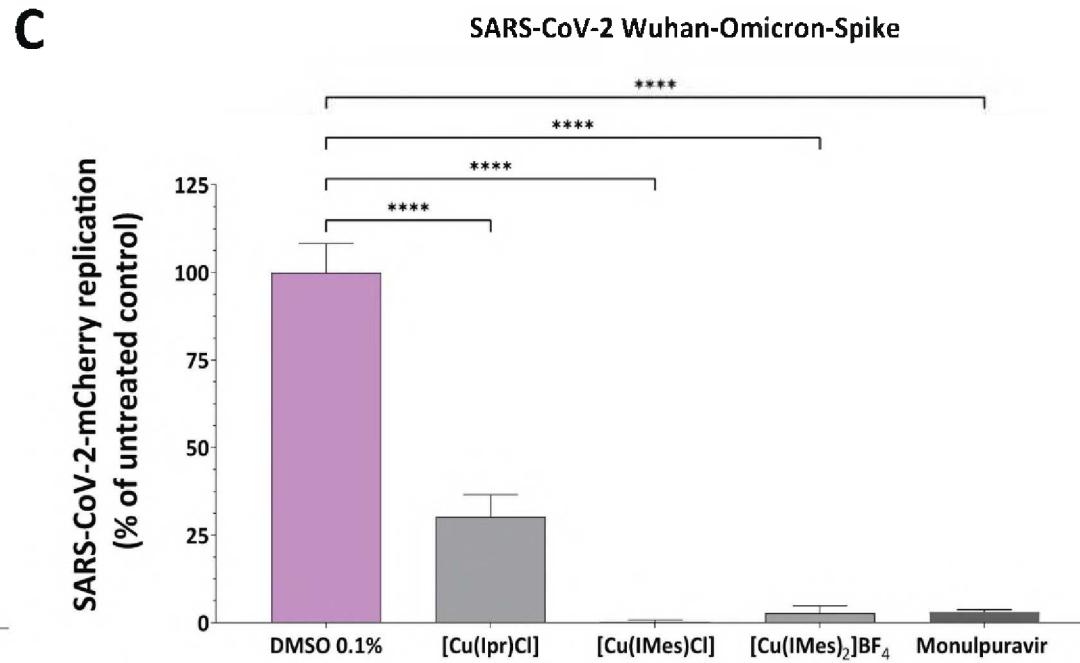
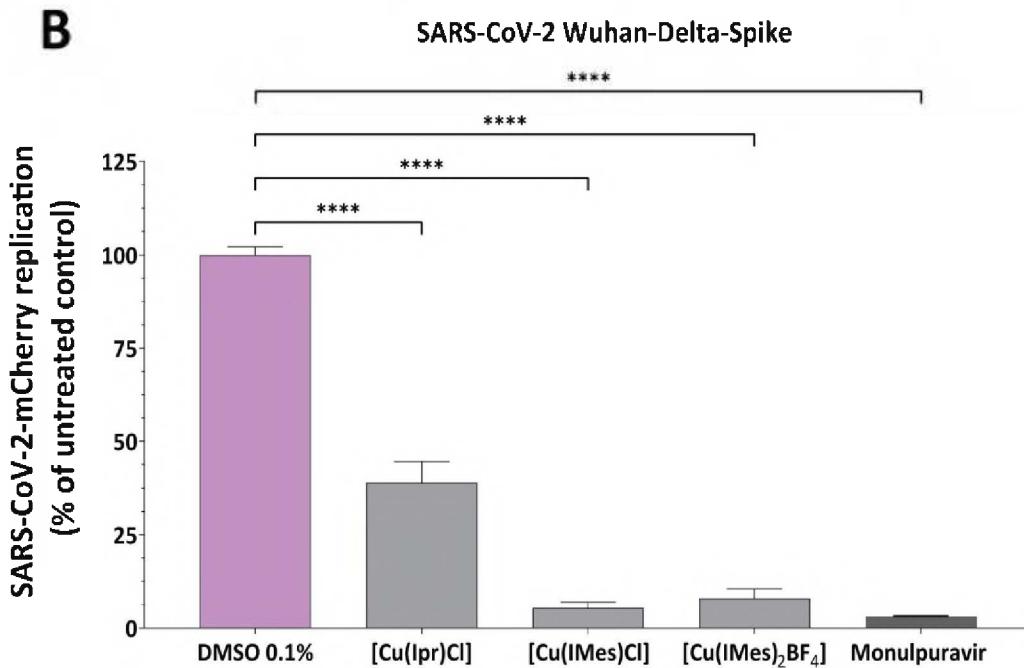
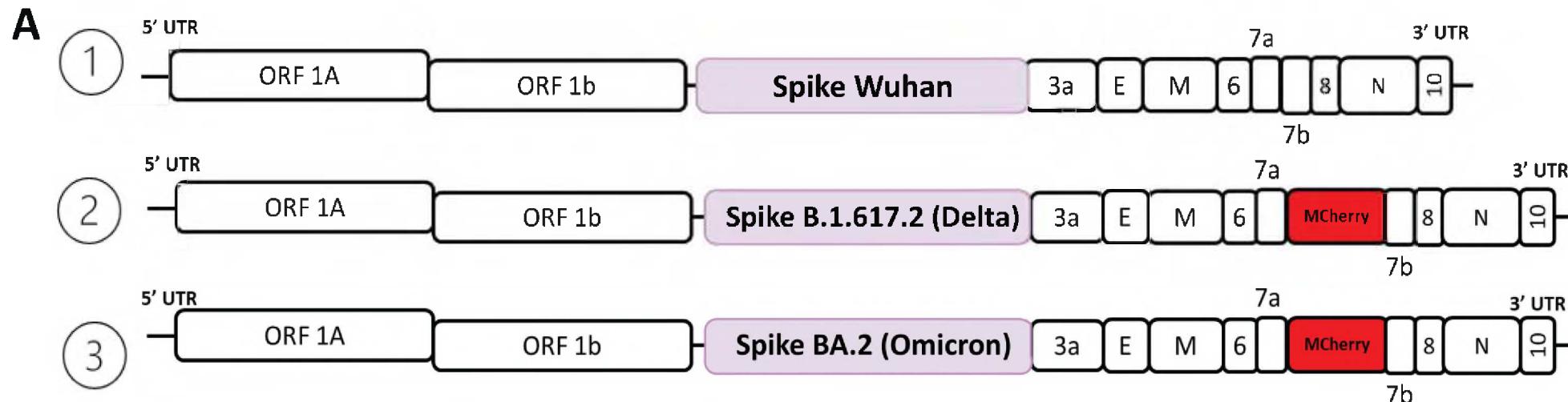

$[\text{Cu}(\text{IPr})\text{Cl}]$

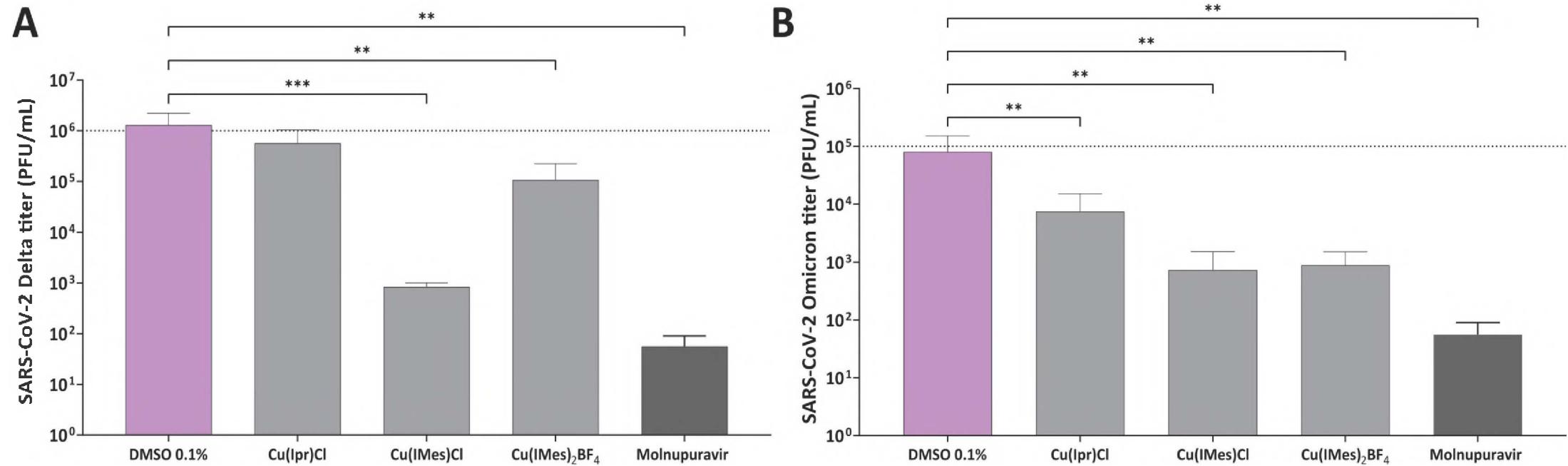
$[\text{Cu}(\text{IMes})\text{Cl}]$

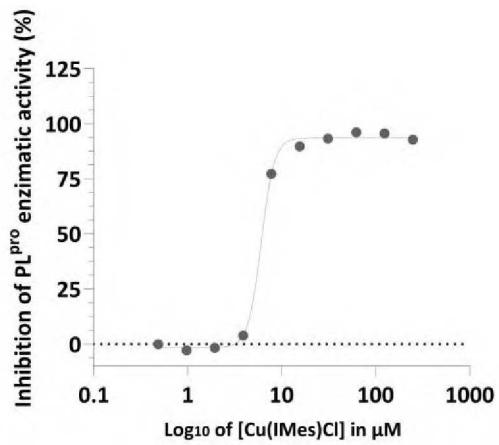
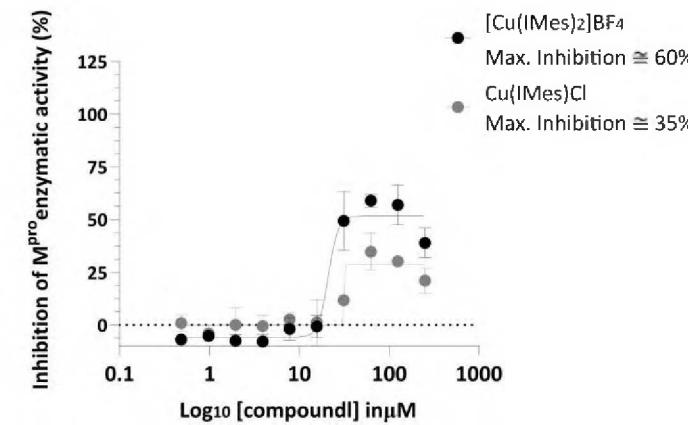
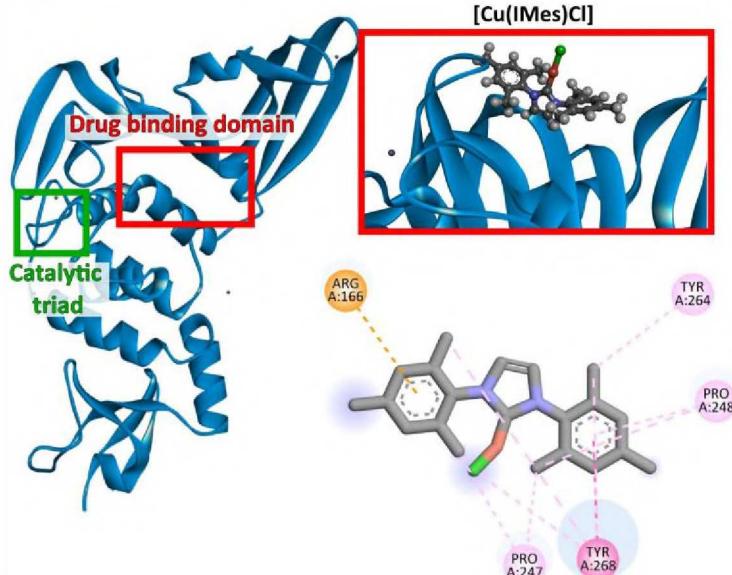



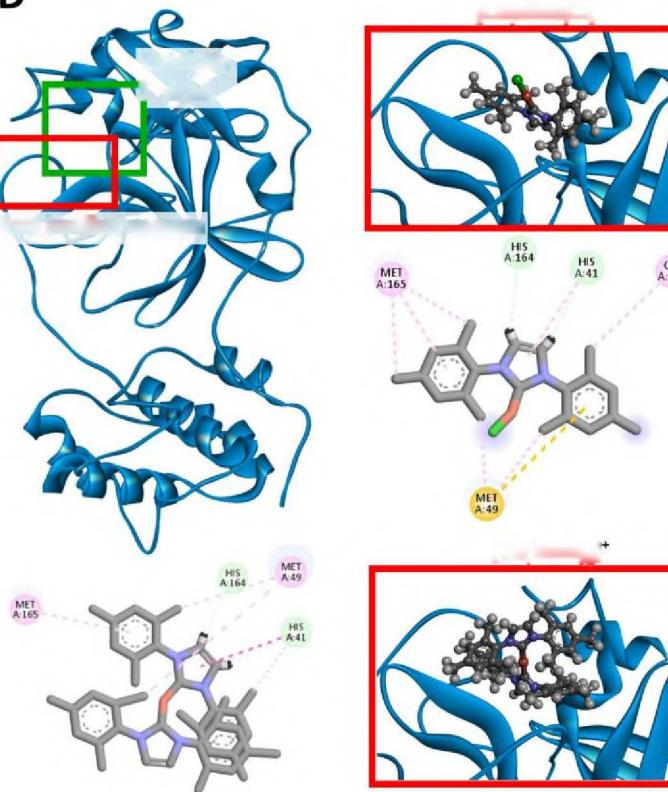

$[\text{Cu}(\text{IMes})_2]\text{BF}_4$




D


COMPOUND	CYTOTOXIC CONCENTRATION OF 50% (CC ₅₀ - μM)	EFFECTIVE CONCENTRATION OF 50% (EC ₅₀ - μM)	SELECTIVE INDEX (SI)
Cu(IPr)Cl	60.68 ± 3.95	5.40 ± 2.20	11.23
Cu(Imes)Cl	12.26 ± 5.75	1.13 ± 0.08	10.84
[Cu(Imes) ₂]BF ₄	6.48 ± 0.56	1.09 ± 0.11	5.94




A**B**


A**B****C****D**

A**B****C PL^{pro}****Interactions (Color-coded)**

Pi-Anion	Pi-Pi T-shaped
Pi-Donor Hydrogen Bond	Alkyl
Pi-Sigma	Pi-Alkyl
Pi-Pi Stacked	

D