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Abstract

When modelling photon emission, we often assume that the emitter experiences a random
quantum jump. When a quantum jump occurs, the emitter transitions suddenly into a lower
energy level, while spontaneously generating a single photon. However, this point of view is mis-
leading when modelling quantum optical systems which rely on far-field interference effects for
applications like distributed quantum computing and non-invasive photonic quantum sensing. In
this paper, we highlight that the dynamics of an emitter in the free radiation field can be described
by simply solving a Schrédinger equation based on a locally-acting Hamiltonian without invoking
the notion of quantum jumps. Our approach is nevertheless consistent with quantum optical mas-
ter equations.

1. Introduction

The common view of an individual, initially excited emitter is that it is capable of spontaneously releas-
ing its energy while generating a single photon. This process seems inherently probabilistic and is often
referred to as a quantum jump [1—4]. Since it was initially incredibly difficult to observe an individual
jump in the dynamics of an emitter, carefully designed ion trap experiments have instead been used to
demonstrate the existence of so-called macroscopic quantum jumps [5-7]. These occur in the fluores-
cence of an emitter with a strongly-driven, rapidly decaying excited state and a weakly-driven, metastable
state and manifest themselves as a random telegraph signal of long light and dark periods [8—10]. Once
the emitter transitions into the metastable state, it cannot emit light and might remain dark for a sig-
nificant amount of time. In contrast to this, the continuous emission of light indicates that the meta-
stable energy level is not populated. In this case, the metastable state is known to be unpopulated and
might remain so for a very long time due to the quantum Zeno effect [11]. The experimental obser-
vation of these macroscopic light and dark periods in the 1980s, despite some initial criticism of this
interpretation [12, 13], eventually manifested the belief that spontaneous photon emission and quantum
jumps are two closely related phenomena.

There are, however, other experiments that contradict this point of view and suggest that a quantum
jump only occurs when a photon arrives at a detector. An example is the famous two-atom double-slit
experiment [14, 15] which demonstrates that the light coming from atomic emitters is capable of inter-
fering in the far-field, i.e. long after it has been created. Such far-field interference is only possible if
the collapse of the state of a quantum system only occurs when a measurement is performed and the
quantum state needs updating according to the information that has been gained [16, 17]. On a coarse
grained time scale, the individual trajectories of an emitter with macroscopic quantum jumps can be
seen as a series of individual quantum jumps due to the presence of an observer who performs actual
fluorescence measurements [11]. In general more care is needed when modelling the generation of indi-
vidual photons in order to incorporate far-field interference effects with the ability to generate atomic
long-range interactions [18].
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Figure 1. Schematic illustration of the generation of a single photon by an initially excited emitter with two internal electronic
states. Suppose the excited state |1g) of the emitter corresponds to an alive cat, while |0g) denotes its ground state and corres-
ponds to a dead cat. Utilising an analogy with Schrédinger’s cat, the ability to treat the emitter and its surrounding radiation field
as a closed quantum system which can be analysed with the help of a Schrodinger equation implies that the cat is in general both
dead and alive and can transition continuously from being alive to being dead. This is in contrast to the common view which
suggests that the cat is always either alive or dead.

In quantum optics, we usually describe the dynamics of quantum systems with spontaneous photon
emission by so-called master equations [19, 20]. These describe the time evolution of the density mat-
rix of the emitter and can be used to predict the expectation values of measurements. Quantum optical
master equations are, however, not very intuitive and their derivation usually requires several ad hoc
assumptions and approximations, such as the rotating wave, the Born and the dipole approximations
[21]. In addition, master equations do not tell us how to unravel the dynamics of the atomic dens-
ity matrix into the quantum trajectories seen in experiments with individual quantum systems [2—4].

In this paper, we therefore have a fresh look at a single emitter inside a free radiation field. Inspired

by [22] and as illustrated in figure 1, we liken the generation of a single photon in the following to a
Schrédinger’s cat [23] which transitions continuously from being alive (emitter excited and no photon
present in the surrounding free radiation field) to being ill (emitter and field both excited) until it even-
tually becomes dead (emitter in the ground state and excitation present in the field) instead of jumping
spontaneously from one quantum state into another.

Experiments have shown that the internal dynamics of a single-photon emitter with only two
internal energy eigenstates is relatively simple: the excited state population simply decreases exponentially
in time. This suggests that it should be possible to model photon emission in a much more straightfor-
ward way than using master equations [19-21]. As we shall see below, a single-photon emitter is essen-
tially a closed quantum system with a Hamiltonian of the form

H = Hg + Hr + Hiy (1)

where Hy and Hr denote the Hamiltonian of the emitter and the surrounding free radiation field,
respectively, and Hjn captures their interaction. By simply solving the corresponding Schrodinger
equation, we find that single-photon emitters essentially resemble classical antennae [24] connected to
finite-sized batteries. The energy of the circuit is continuously released into the free radiation field with
an intensity that is proportional to the energy left in the battery. The re-absorption of released photons
does not occur, since, once emitted, local excitations of the electromagnetic field move away from their
source at the speed of light.

As we highlight below, there are no quantum jumps unless an actual measurement is performed
either on the emitter or on the free radiation field. Hence, until they are eventually detected, emitted
photons can interfere [17]. This observation has potential applications in quantum technology that range
from distributed quantum computing [25, 26] to non-invasive photonic quantum sensing [18]. Indeed
the observation that the generation of a single photon is a coherent process is not new. Fedorov et al [27]
and more recently Longhi [28] showed that Hamiltonians of the same general form as H in equation (1)
are consistent with an exponential decrease of the excited-state population of a two-level emitter. The
main difference between our paper and previous papers, like [27, 28], is that we describe the quantised
electromagnetic field in the following in position and not in momentum space.

In general, it is assumed that the quantum state of an individual photon, which is the element-
ary particle of the electromagnetic field, is a superposition of monochromatic single field-excitation
states. A complementary approach is to decompose the wave packet of a single photon into local excit-
ations which have a unique position at any given instance in time [29-31]. In the past, it has been
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widely believed that a local description of the quantised electromagnetic field is not possible, since local
electric field observables do not commute with each other even when referring to different positions.
However, previous no-go theorems [32] can be overcome by distinguishing between electromagnetic field
observables and local carriers of light. The annihilation and creation operators of these local carriers are
bosonic and commute when referring to different positions [29]. As we shall see below, considering local
photons allows us to avoid many approximations and ad hoc assumptions of standard approaches to the
modelling of quantum optical systems with photon emission [2—4, 19-21].

In addition to locality, the construction of the interaction Hamiltonian Hj,, takes the experimental
observation into account that the transition of an emitter from one energy level into another results in
the generation of exactly one photon [33]. Hence the interaction Hamiltonian of a point-like emitter
with two internal states must be of the form

Hypy = hgaJr (0)c~ +H.c. (2)

Here g represents a coupling constant, o~ denotes the atomic lowering operator, and a'(0) is the cre-
ation operator of a local excitation of the electromagnetic field at the position of the emitter. In other
words, we assume that the emitter does not couple in a certain way to the observables of the quantised
electromagnetic field but generates the local building blocks of a single photon, so-called blips (bosons
localised in position). Imposing locality and considering the above interaction Hamiltonian, we are able
to avoid the usual dipole approximation [34-36]. The above interaction Hamiltonian ensures causality in
Fermi’s famous two-atom problem [37, 38]. Moreover, as long as local blip excitations are only generated
sufficiently slowly, the electromagnetic field can surround blips in a similar non-local way as a gravita-
tional field surrounds a massive object without violating non-locality, i.e. without spreading faster than
allowed by the speed of light.

Equation (2) also takes into account that our quantum description of emitter and field is consistent
with the second law of thermodynamics which forbids the flow of energy from a ‘colder’ to a ‘hotter’
subsystem. As shown in [39, 40], quantum subsystems need to be defined such that their interaction
Hamiltonian commutes with the interaction-free Hamiltonian,

[Hg + Hg, Hine) = 0. (3)

Indeed there is an ambiguity regarding the identification of quantum subsystems, i.e. what we call
the emitter and what we call the surrounding quantised electromagnetic field. This applies, since any
Hamiltonian H’ which relates to H in equation (2) via a unitary transformation U such that H' =
UHU' is unitarily equivalent and has the same energy spectrum. However, introducing U changes the
interaction Hamiltonian Hiy into H/,, = UH, U'. For example, H/, might contain a counter-rotating
term of the form af(0)oc™ which can result in the emission of a photon, even when the emitter and

the free radiation field are initially both in their respective ground states. This does not seem to be the
case in actual quantum optics experiments [41]. Usually, this problem is avoided with the help of the so-
called rotating wave approximation which removes all counter-rotating terms and subsequently leads to
an interaction Hamiltonian similar to the one in equation (2).

A further approximation that is usually required when analysing the dynamics of a point-like
two-level system with photon emission is the so-called Wigner-Weisskopf approximation [42—44].

This approximation too is avoided here, since Hy,, in equation (2) is different from the interaction
Hamiltonian that quantum opticians usually consider when modelling photon emission. Due to locality,
its coupling constant ¢ is not frequency-dependent. Moreover, obtaining a local description of the quant-
ised electromagnetic field requires a doubling of its Hilbert space. Using a physically-motivated approach
to quantisation [29-31], it is noticed that the configuration space of light must support monochromatic
waves with positive and with negative frequencies in order to accommodate localised wave packets of any
shape and with any possible direction of propagation [45]. This means, that if we were to perform our
calculations in momentum and not in position space, we would arrive at frequency integrals whose lim-
its extend automatically from minus to plus infinity and can be solved analytically in a straightforward
way. Our only assumption in this paper is the identification of the emitter with a point-like two-level
system.

The main purpose of this paper is to obtain a more intuitive picture of the emission process. To
achieve this, we highlight that quantum optical systems with photon emission are essentially closed
quantum systems and that their dynamics can be predicted analytically by solving a Schrédinger
equation based on a locally-acting interaction Hamiltonian. Nevertheless, our calculations can be used to
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obtain a master equation for the dynamics of the density matrix of the emitter by tracing out the field.
Here this is justified by only being interested in the properties of the emitter, while the field degrees of
freedom are ignored. However, taking a closed system approach, we can also ask about the properties of
the emitted light. As an example, we calculate in the following the spectrum of the emitted light by per-
forming a Fourier analysis on the state of the photon after it has become disentangled from its source.
In good agreement with experimental observations [46—48], we obtain a Lorentzian spectrum.

In the absence of emitter-field interactions, the excited state of the emitter accumulates a phase factor
exp(—iwpt) due to its free evolution, where w, denotes the atomic transition frequency. When a blip is
generated, this phase factor is transferred onto the corresponding term in the state vector of the emitter-
field system and subsequently remains the same. This means, the blips carry the phase factors of the
emitter at the time of their creation. Hence the emitted photon seems to ‘oscillate’ at the transition fre-
quency of the emitter. Hence the spectrum of the emitted light is centred around wy. Its broadening is
due to an exponentially decreasing amplitude of the photonic wave function.

Most importantly, the methodology presented in this paper opens the path to modelling photon
emission in more complex scenarios, like atomic emitters in dielectric and plasmonic sub-wavelength
cavities and emitters in the presence of two-sided partially transparent mirror interfaces [18, 49].
Especially delays and far-field interference effects can be taken into account more directly without rely-
ing, at least in principle, on classical response functions and other semi-classical approximations. In
addition, our manuscript suggests new methods to preserve the state of emitters without the need for
quantum feedback control. If the quantum state of the emitter is known at all times, is becomes in prin-
ciple possible to apply laser driving to correct for any unwanted changes [50]. In addition, our approach
can be used to describe experiments which control the shape of photonic wave packets [51].

This paper is organised as follows. The Results section shows that the excited-state population of
the emitter decreases exponentially while it transfers its energy coherently into the surrounding field.
Moreover, we find that the spectrum of the emitted light has a Lorentzian structure. Afterwards, we
discuss the relation between our approach to modelling photon emission without quantum jumps and
standard quantum optics models, like the quantum jump approach [2-4] and master equations [19-21],
and summarise our findings. Finally, in the Methods section, we quantise the electromagnetic field ori-
ginating from a single point-like source.

2. Results

2.1. Dynamics of emitter and field

To analyse the dynamics associated with the Hamiltonian H in equation (1), we introduce the single-
excitation states |rg) of the quantised electromagnetic field with |rg) = a(r) |0g). Here |0¢) denotes the
vacuum state and a' () is a bosonic creation operator of field excitations which originated from a point-
like source and radially travelled a fixed distance r away from it, as described in Methods. In addition,
we write the time evolution operator U(t,0) of the emitter and the surrounding free radiation field as a
Dyson series expansion (see equation (40) in Methods). Suppose the initial state of emitter and field is
of the general form |¢(0)) = «|0g,0g) 4+ 3|0g, 1g). Then we find that their state equals

9(0) =B 1) [or.15)+.6 | " dre (1) re.08) + [0, Og) @)

at all later times t. As equations (46) and (50) in the Methods section show, the complex coefficients
¢o(t) and ¢,(t) in this equation equal

¢ (t) — (F/C)l/z e(%l‘ﬂwn)(r/cft) .G (t) _ ef(%l“+iwo)t 5)

for 0 < r < ¢t and with wy denoting the transition frequency of the emitter and with the spontaneous
decay rate I" defined such that I' = g% /c. For r <0 or t <0, we have ¢,(tf) = 0 and ¢o(t) = 1. Moreover,
¢/(t) = 0 when r > ct. The state vector |1)(¢)) denotes the pure state of the emitter and the surrounding
free radiation field at any time ¢ > 0 under the condition that no measurement took place in (0,t) which
revealed any information about the emitter or the field.

If a measurement is performed at any time f, then the state of emitter and field needs updating
according to the information that is gained in the process. For example, the probability density of
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Figure 2. (a) Probability density p,(¢) in equation (7) to detect a photon at time t a distance r away from an initially excited emit-
ter (|8]> = 1) as a function of r for three different times #; < #, < 3. The figure shows that the generated photonic wave packet
has an exponentially increasing amplitude and travels at the speed of light, ¢, away from the emitter. (b) The same probability
density p(t) as a function of the time t for three different distances r; < r, < r3. An observer placed at r sees the wave packet
arriving after some time r/c; afterwards its amplitude decreases exponentially in time.

finding the photon emitter still in its excited state upon measurement at a given time ¢ is given by
po(t) = |co(t)]>. As we can see from equation (5),

po(t) =laf* + |8 e (6)

and its second term decreases exponentially and tends to zero as t becomes much larger than 1/I'. This
is as one would expect, since an initially excited emitter decays eventually. Moreover, suppose the emitter
is fully surrounded by perfect photon detectors which are all a fixed distance r away from the source.
Having again a closer look at equations (4) and (5), we see that the probability density for any of the
detectors to click at a given time ¢ equals p,(t) = |c,(t)|* with

pr (1) = (T/c) B[} 0770 (7)

for 0 < r < ¢t and p,(¢) = 0 otherwise. The factor 1/c is needed here, since p,(t) is a density per dis-
tance at a given time ¢ (see equation (4)). When integrated over r, we find that po(t) + foctdrpr(t) =1.
As illustrated in figure 2, the emitter generates a single photon with an exponentially decreasing amp-
litude which moves outwards, away from its source, at constant speed.

Despite not considering actual measurements, our approach is consistent with the quantum jump
approach which introduces a conditional non-Hermitian Hamiltonian H,o,g describing the dynamics of
the emitter under the condition of no photon emission [2—4]. Usually, this Hamiltonian is obtained by
considering environment-induced measurements on a coarse grained time scale At which reveal inform-
ation whether or not a photon has been generated. It was believed that At needs to be chosen small
enough to avoid the possible re-absorption of light by the emitter. Moreover, At needs to be big enough
to avoid the so-called quantum Zeno regime which would freeze the dynamics of the emitter. However,
having a closer look at equations (4) and (5), we see that the conditional Hamiltonian Hong of [2—4],

Hcond =h (WO - %F) ‘1E><1E| 5 (8)

can be obtained without the assumption of environment-induced measurements which is in agreement
with other authors, who argued that the dynamics of the emitter should not depend on the presence or
absence of a distant observer [12, 13, 52]. Indeed it does not matter whether the free radiation field is
observed continuously, i.e. on a coarse grained time scale At, or only once at a time . The emitted light
simply moves away from its source and therefore cannot be re-absorbed.

Moreover, the predicted no-photon probability po(#) in equation (6) is the same in the presence and
in the absence of environment-induced measurements. In addition, the quantum jump approach tells
us that the state of the emitter is in its ground state if a photon is observed, which is also in agreement
with the state vector given in equation (4). However, there are also some differences. The quantum jump
approach approximates the time t— r/c by ¢ (cf e.g. equation (5)), thereby neglecting the small amount
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Figure 3. Probability density p., in equation (11) of the eventually emitted photon having the frequency w for different decay
rates I'j < I'; < I's. Our calculations confirm in a relatively straightforward way that the spectrum of the emitted light is
Lorentzian in agreement with experiments [46—48].

of time it takes a photon to travel the distance r from the source to the detector [3]. Notice also that
our approach yields different predictions for quantum optical systems in which the emitted light can
interfere before reaching the detector [18, 49].

2.2. The spectrum of the emitted light

To verify that our calculations are consistent with experimental observations, we now have a closer look
at the spectrum of the emitted light [46—48]. From equation (4), we see that the state of the emitter and
the field at time ¢ can also be written as

¥ () = Beo (t) [Op, 1) +5/oo dkcr (1) [ke, Og) + a|Og, Og) ©9)

with the single-excitation monochromatic state |kg) defined such that |kg) = a' (k) |Og). The coeffi-
cients ¢ (t) relate to the ¢,(#) coefficients via a Fourier transform. Taking this into account and using
equations (5) and (33) in Methods, we find that

. _ i(CF/ZTl’)I/z — (AT +iwe )t —ickt
(0= 15 e | (3T iwo)t_ gickt| (10)

The probability density that the emitted photon has the frequency w = ck is given by p,, () = [c(¢)|*/c
and is time dependent until all light has left the emitter and ¢>> 1/T". Hence p,, = lim;—, o0 po, (¢)
becomes

1 r

P = o T (o)

(11)

This shows that the spectrum of the emitted light is indeed Lorentzian [46—48], as illustrated in figure 3.
The dominant frequency is the transition frequency w, of the emitter, as one would expect. In addition,
the standard deviation of this spectrum is proportional to the spontaneous decay rate I'. However, notice
that this result has been obtained here by simply solving the Schrodinger equation of emitter and field
which is based on a locally-acting Hermitian interaction Hamiltonian without the need for approxima-
tions and ad hoc assumptions, like the assumption of complex eigenvalues or the need for continuous
environment-induced measurements.

2.3. Energy conservation
The observable for the energy of the single-photon emitter is given by Hg. Moreover, the energy observ-
able Hpg of the free radiation field equals

HFE:/OO dkhiclk|a (k)T a (k) . (12)

— 00
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This operator has the same eigenvectors as the field Hamiltonian Hy but only positive eigenvalues [31].
However, for sufficiently large spontaneous decay rates I', the emission rate p,, for negative frequencies
w becomes negligible and Hpg = Hg. Since Hg + Hr commutes with the Hamiltonian H in equation (1),
the time evolution in equation (4) conserves the free energy of emitter and field. For sufficiently large
times f, the energy of the emitted photon therefore coincides with the initial energy fiw, of the excited
state of the emitter.

3. Discussion

Quantum opticians usually consider an emitter with spontaneous photon emission to be an open
quantum system. While the state vectors of closed quantum systems evolve unitarily according to the
Schrodinger equation, open quantum systems need to be described by density matrices and evolve
according to master equations. These can be derived phenomenologically or using second order per-
turbation theory, involving a variety of approximations and assumptions [19-21]. Over the last decades,
master equations have been widely used in the analysis of devices with quantum technology applications
and their predictions have been found to be in good agreement with experiments. However, they often
do not align well with our physical intuition, especially when emitters are placed in structured envir-
onments and far-field interference effects need to be taken into account. The analysis of more complex
quantum optical systems can become very convoluted [18].

Motivated by these observations, this paper takes a more direct approach and demonstrates that an
emitter placed inside the free radiation field is essentially a closed quantum system which remains at all
times in a pure state |1 (¢)) (see equations (4) and (9) and [27, 28]). Our analysis highlights that the
emitter constantly creates local excitations, so-called blips which stands for bosons localised in position
[29-31], in the free radiation field. These cannot be re-absorbed by the emitter since they move away
from the source at the speed of light. Each blip carries the phase of the emitter at the time of its cre-
ation. Hence the real parts of the electric and magnetic field amplitudes of the emitted light oscillate at
the transition frequency wy of the emitter. Our predictions are in good agreement with the predictions
obtained using alternative methods. For example, we observe that the emitter loses its initial excitation
in an exponential fashion at a constant rate I', as illustrated in figure 2(a). The generation of a single
photon is a coherent process, i.e. not spontaneous.

If we are only interested in the dynamics of the emitter, then the field degrees of freedom of the state
|1 (t)) can be ignored. Using the equations in the previous section, we find that the atomic density mat-
rix pg(t) = Tre(|¢ (1)) (¢ (¢)|) of the emitter equals

pe (1) = (a|0g) + Beo (1) [1£)) (" (Og] + 8o (1) (1e]) + 5|2/OOO drle, (1) |*0g) (Og| (13)

at time t, where Try indicates that the trace over the states of the free radiation field is taken. Calculating
the time derivative of pg(t) with the help of the above equation, one can check that

pE = |:Hc0ndpE - pEHIond:| + FU—pEU+ (14)

with Heong given in equation (8). This equation is the standard quantum optical master equation of
a single-photon emitter [19-21]. However, notice that the above master equation has been obtained
without approximations and ad hoc assumptions. The only assumption made in this paper is that the
emitter resembles a point-like two-level system.

In addition, our Hamiltonian approach to quantum optical systems with photon emission reveals
information about the quantum state of the emitted light. Suppose the emitter was initially excited and
we only consider times ¢ that are much larger than 1/T'. In this case, the emitter and the field have
already become disentangled and there is exactly one photon in the free radiation field. More concretely,
the state vector |4 (¢)) equals |1g(t),05) with

e (1) = / “dre, (1) ) = / k() Jke) (15)

— 00

Not unlike a classical antennae connected to a finite-sized battery, the emitter transfers its energy
continuously into the field until all its energy is depleted. During this process, a single-photon wave
packet is generated which travels away from the ‘antennae’ at the speed of light. The Fourier analysis
of the above quantum state of the photon reveals that the light coming from a two-level system has a
Lorentzian spectrum (see figure 2(b)) in good agreement with experiments [46—48].
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Using the analogy of the infamous Schrodinger’s cat [22, 23] and identifying an excited and a ground
state emitter with an alive and a dead cat, respectively, we find that an initially alive cat becomes slowly
ill until it eventually dies (see figure 1). Our calculations show that, unless someone performs a meas-
urement to determine whether a photon is present or not, the emitter and the field are in general in
a superposition state. This is in contrast to how photon emission is usually described; most people
assume that the cat is either alive or dead with the transition happening spontaneously at a random
time. Indeed, there are many different ways of unravelling the dynamics generated by quantum optical
master equations into individual trajectories. Which unravelling is relevant depends on the experimental
circumstances. For example, in the case of continuous environment-induced measurements [2—4], the
first term in equation (13) describes the conditional dynamics of an emitter without photon emission,
while the second term can be attributed to the detection of a photon. However, this paper also demon-
strates that the dynamics of the emitter are independent of the presence or absence of an observer, as it
should be.

In addition to providing new insights into photon emission, our approach has immediate implic-
ations for quantum technology applications. For example, it allows us to model far-field interference
effects which are essential to quantum computing schemes like the ones described in [25, 26]. Moreover,
our analysis suggests that it is possible to apply quantum control to the state of individual emitters and
to apply an antidote to an ill cat to keep it alive without the need for quantum feedback control [22].
Our approach also allows for a stronger focus on the properties of the emitted light, including the theor-
etical modelling of pulse shaping of emitted photons [51]. More importantly, this paper provides novel
tools for the description of more complex quantum optical systems, like atoms on opposite sides of a
partially-transparent mirror surface with applications in non-invasive quantum sensing [18].

4. Methods

4.1. Light radiating from a point source

To quantise photonic wave packets originating from a point-like source, we proceed as in [29-31] and
start by noticing that they can be decomposed into so-called blips which stands for bosons localised in
position. Each blip is a localised carrier of light, travels along a one-dimensional axis and has a well
defined direction of propagation s € S and a well-defined polarisation A =H,V. Here S denotes the set
of all possible unit vectors in three dimensions. Suppose moreover that r € (—o0,00) characterises the
distance of the blip from the source, with r being negative and positive for light travelling towards and
away from the source, respectively. Using this notation, we can characterise each blip at any given time ¢
by a set (s, \,r) of three independent parameters. This allows us to associate each blip with an annihila-
tion operator gy (r). Since blips with different (s, \,r) parameters are distinguishable, their annihilation
operators must obey the bosonic commutator relations

[as,\(r),ai,k,(r') =8 (s—s) o 6(r—r1'). (16)

The above commutator relation ensures that the single excitation states a:/\(r) |0p) are pairwise ortho-
gonal and therefore distinguishable [29]. The as)(r) operators can be used to represent the quantum
states of all possible photonic wave packets originating from the same point-like source. Moreover, notice
the inverse unit of the blip annihilation operators is distance multiplied with a solid angle segment.

Next we have a closer look at the complex magnetic and electric field vectors By(r) and E,(r) at a
position r in each solid angle segment. Taking the specific symmetries of light originating from a single
point source into account and comparing the field observables with the observables of light propagating
in one dimension, we conclude that these can be written as

Bs(r)zﬁ Z /Ocdr/R(r,r/) asA(r/)sxes,\, Es(r):ri‘ Z /Oodr/R(r,r/) asA(r/) en. (17)

A=H,V’' ™ A=H, VY ™

The e, in the above equation are polarisation vectors that are orthogonal to each other and to s. The
factor 1/|r| accounts for energy conservation which causes electric field amplitudes to decrease as the
distance |r| from the source and the surface area that they occupy increase. As we shall see below, the
regularisation function R(r,r’) in the above equations equals

he \ '/ 1
R(’a”):—( ) PR (18)

4me
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to ensure that each photon coming from an emitter with transition frequency wy has the energy hwy,
i.e. the initial energy of its source.

Before we demonstrate that the expectation values of the above field observables evolve as predicted
by Maxwell’s equations of classical electrodynamics, let us verify the correctness of equation (18). As
shown in [31], the energy of the electromagnetic field travelling along a given axis in one dimension can
be obtained by integrating over electric and magnetic field contributions. Since energy is additive, the
energy observable Hgg of light originating from a point source can be obtained by integrating over the
energy contributions of light with a well defined direction s. At a distance r from the source, the light
covers the area 1% d”s. Hence

HFE:/dZSHFE(S) (19)
S

with the individual s contributions given by

Hyg (s) = /7 O:O drg {z—: EN -E.(n) + i B! (1) - B, (r)] (20)

in analogy to equation (9) in [31]. When substituting equation (17) into the above expression, we see
that the energy observable Hgg(s) is formally the same as the energy observable for light travelling along
a single axis specified by s. In particular,

Hyg (s Z/ dr/ dr/ dr’’

)\ H,VY ™
X R (r,rYR* (r,r"") aly (') asy (') 1)

which suggests that R(r,7’) and R(x —x’) in equation (27) in [31] are the same after replacing r with x
and r" with x’. This is indeed the case for the regularisation function R(r,r’) in equation (18).

To illustrate the consistency of equation (18) with standard quantum electrodynamics approaches
more explicitly, we now calculate Hpg(s) in momentum space. In momentum space, the annihilation
operators as) (k) are the Fourier representations of the blip operators asy(r),

asy (k) = (27:)1/2 /_Oodrefikrask (r). (22)

Taking into account that the regularisation distribution in equation (18) can also be written as
(cf Fourier transform of equation (37) in [31])

Rinr) = <zﬂz) / dk k|2 e*(=r"), (23)

and combining equations (21)—(23) leads us to the energy observable

Hie(s)= > / dkiclk|aly (k) ag (k) - (24)

A=H,V

This equation demonstrates that photons with wave vector s|k| have the energy fic|k|, as expected.

4.2. Consistency with Maxwell’s equations
Since light in classical electrodynamics travels along straight lines, i.e. in the respective s direction, at the
speed of light ¢, we assume in the following that the same is true for the blip excitations and that

agy (r,1) = agy (r — ct,0) = az) (r—ct) (25)

in the Heisenberg picture. As we shall see below, this equation of motion guarantees that the expecta-
tion values of the electromagnetic field observables in equation (17) evolve as predicted by Maxwell’s
equations. We can show that Maxwell’s equations apply because the orientation of the polarisation vec-
tors ey with respect to the direction of propagation s has been chosen such that electric and mag-
netic field vectors are oriented according to the right hand rule of classical electrodynamics. In addi-
tion, we know that any wave packet travelling at the speed of light along a straight line is a solution of
Maxwell’s equations [29-31]. Moreover, Maxwell’s equations are linear and any superposition of solu-
tions of Maxwell’s equations is therefore also a solution.

9
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To show this more explicitly, suppose E(r,t) and B(r,t) are the observables of the complex electric
and magnetic field vectors of light originating from a point-like source in the Heisenberg picture. Their
expressions are the same as in equation (17) but with the a)(r) operators replaced by the as(r,?) in
equation (25). Given that the field vectors are always tangential to the sphere of radius |r| centred on the
emitter, Maxwell’s equations in spherical coordinates imply that

10 0B(r) 20

OE(r,1)
HEOHSXSS(?’J)) 81’ 5 |1’|E —_—

ot (26)

(|r]s x Bs (r,1))
where s is a constant unit vector directed away from the source. Both the electric and magnetic fields are
automatically divergence-less, as they should be in free space, because e;y is orthogonal to s. By substi-
tuting the field observables in equation (17) into equation (26) above, one therefore finds that Maxwell’s
equations are satisfied when

0
[8r+c<9tf]/ dr' R (r,r") as\ (r',1) = 0. (27)
By taking into account that R(r,r") = R(r—r’) due to the symmetries of the considered scenario and
performing a partial integration over 1/, we may see that this equation holds when

o 10
|:81’ + - p {“)J as\ (7‘7 l’) = 0, (28)

which has the solution (25).

4.3. The emitter-field Hamiltonian
Suppose |0g) and |1g) denote the ground and the excited states of the emitter with transition frequency
wy, respectively. Then the Hamiltonian Hg of the emitter in equation (1) can be written as

Hg = hwyo o~ (29)

with the atomic raising and lowering operators o= defined as 0" = |1£)(0g| and o~ = |0g) (1.

The only assumption that we make in the following calculations is that the dimensions of the emit-
ter are much smaller than its transition wavelength )\;. Demanding locality and consistency with
thermodynamics [39, 40], the interaction Hamiltonian Hiy, between emitter and field can be written as

Hyy = /dshgs)\as)\( Jo~ +H.c. (30)
A=H,V

with g\ denoting (complex) emitter-field coupling constants. The dependence of g on s and A depends
on the type of emitter that is being considered. Indeed, many different types of multi-polar transitions
are possible [34-36]. For example, in the case of a dipole transition, no light is emitted in the direction
of the dipole; most light escapes the emitter in the directions that are orthogonal to its dipole moment.
Since the coupling constants g» that we consider here can assume any value, our approach avoids stand-
ard approximations, like the usual dipole approximation.

Having a closer look at Hiy, we see that a single two-level system couples effectively only to a single
field annihilation operator a(0). This annihilation operator is a superposition of local blip annihilation
operators asy(0). In the following, we therefore define annihilation operators a(r) such that

a /d sgSAaSA (31)

g)\ H,V

with [g? =37,y v [ d*s|ge|?. Using this notation, Hyy in equation (31) simplifies to the interaction
Hamiltonian in equation (2) with g representing an effective (red) emitter-field coupling constant. With
the help of equation (16), we can check that the a(r) are bosonic operators with

[a(r),(fr (r]=6(r—r"). (32)

The same applies to the corresponding annihilation operators a(k) with

~ 1 > —ikr
a(k)= W/_mdre a(r) (33)

of monochromatic photons in momentum space.

10
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4.4. The dynamics of a(r) in free space

In the absence of any emitters, the blip excitations of the quantised electromagnetic field simply travel
along straight lines at the speed of light, ¢, as shown in equation (25). By comparing the dynamics of
blips travelling along the x axis with these dynamics [29-31], we conclude that the field Hamiltonian Hr
of light originating from a point-like source at the origin equals

. > 0
Hp = —ihc Z /Sdzs/Oo draj/\ (r) Easx(f)’ (34)

A=H,V

which is formally the same as the field Hamiltonian for the one-dimensional field [31]. In the following,
we are only interested in the dynamics of the a(r) operators, which allows us to write Hr as

Hg = —ihc/O<> draf (r) %a(r) . (35)

— 00

The analogy of light propagation along the x axis moreover suggests that the above field Hamiltonian
can be diagonalised. Using the bosonic annihilation operators a(k) in equation (33), Hy simplifies to the
more familiar form

Hp = / ~ dknickat (k)a(k) . (36)

— 00

This Hamiltonian has positive and negative eigenvalues and is the generator of the free-space dynam-
ics of the photons originating from a point-like emitter. For example, Uz (t,0)a(r)UL(t,0) = a(r + ct)
where Ug(t,0) denotes the free-space time evolution operator. Hence Hr must be closely linked to the
energy of these photons. Since energy is always positive, we assume in the following as in [31] that the
energy observable Heg of the photons equals Hy for positive k and —Hy for negative k which leads us to
equation (12).

4.5. Dyson series expansion

To simplify the following calculations, let us temporarily move into the interaction picture with respect
to =0 and the free Hamiltonian Hy = Hg + Hg. In this picture, the state vector |t(t)) of emitter

and field equals |1(r)) = U (£,0) |1/ (). Here |t (t)) is the state vector in the Schrodinger picture and
Uy(t,0) is the time evolution operator associated with Hy. Using the Schrodinger equation, we find
that |41(¢)) also evolves according to the Schrodinger equation but with the time-dependent interaction
Hamiltonian

H (£) = U (£,0) Hiy Up (£,0) . (37)

The corresponding time evolution operator Uj(t,0) in the interaction picture obeys the relation

Ui (1,0) = U(0,0) + /tdtl Ui (#,0)
0
:1—%/dt1H1<t1)Ul(t1,0). (38)
0

Iterating the above equation infinitely many times yields the Dyson series expansion

. t
Ul(t,O)zl—%/ dtyHi(n) + ...
0

N} t th—1

+<—1> /dtl.../ dt, Hy (t)... Hi (tn)
h) Jo 0

+....

Returning into the Schrédinger picture, we therefore find that U(#,0) can be written as

(39)

U(t,0) = i U, (t,0) (40)

n=0
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without any approximations and with the non-unitary (i.e. conditional) time evolution operators U,(t,0)

with n > 1 given by [31]
i n t th—1
U, (t,0) = <—> /dtl.../ de, Uy (8, 11)
h 0 0

XHintUO (tlatZ)-“Hint U() (t,,,O) . (41)

4.6. Calculation of the coefficients ¢y (#) and c,(t) in equation (4)
Let us first have a closer look at ¢;(t) which is the complex coefficient of the state vector |Og, 1). To cal-
culate this coefficient, we first notice that

Uy (1,0) |0g, 1g) = e 7" |0, 1g) . (42)

since Hy = Hg 4+ Hy. Taking this into account when calculating U,(t,0) |Og, 1), we find that

t f _
Uy (1,0) |oF,1E>:—%2 / dr, / dtr e (=142 5 (11— 1) [0, 1) (43)
0 0

where we have also used (rg|r}) = d(r — ') which results in the Delta function 6(r— '). A local field
excitation created by the emitter at a time #; can only be re-absorbed if the re-absorption occurs imme-
diately, i.e. at the position of the source. Performing the above time integrations yields

&t

Us (1,0) [0, 1g) = ==~ " 0p, 1) . (44)
Proceeding analogously and calculating the subsequent U,,,(t,0) |0, 1g) terms, we find that

1 " —iw
U2m (t,O) |0]:, 1E> = ﬁ (—) [§] 0t|0]:, 1E> (45)

for all integers m > 0. Adding up the above terms for all m, we find that the coefficient ¢,(#) in
equation (4) equals

W)= % (—g;f) et (46)

which coincides with ¢y() in equation (5).
To also obtain an expression for the coefficient ¢,(#) introduced in equation (4), we notice that

. t
i
Uz (£,0) |Op, 15) = _ﬁ/ dty Uy (t,t1) Hing Uz (11,0) |Op, 1g) (47)
0

for all integer numbers m with m > 0. Combining this equation with equations (2), (42) and (45), we
therefore find that

ig [* t\"
Uam+1(1,0) [OF, 1g) = _%/ dty (_gi;) e | (c(t—1))g,08) . (48)
"o

This applies since a local field excitation created at #; travels the distance c(¢— #;) away from its source
within a time interval (#,7). Next, we substitute r = c(f — ;) in the above equation to show that

. ct m
— g g2 r iwo (r/c—t)
U2m+1 (f,0> ‘0F71E> = _m!C 5 dT’ |:ZC <C_t):| e? ‘TF,OE>. (49)

After adding up all of the above terms, we find that

cr(t):_Lg 1 {gz (r_tﬂ elwo(r/e—1) (50)

c m! | 2¢c \¢
m=0

for r € (0,ct). For r > ct, the coefficients ¢, () are zero due to the speed of light being finite. The above
expression confirms equation (5).
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