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Tabular datasets are pervasive across biomedical research, powering applications from genomics to
clinical prediction. Despite recent advances in neural architectures for tabular learning, there remains
noconsensusonmodels that balanceperformance, interpretability, and efficiency.Here,we introduce
sTabNet, a meta-generative framework that automatically constructs sparse, interpretable neural
architectures tailored to tabular data. The model integrates two key components. First, automated
architecture generation leverages unsupervised, feature-centric Node2Vec random walks to define
network connectivity, introducing a priori sparsity and improving generalisation while mitigating
overfitting. Second, a dedicated attention layer jointly learns feature importance with model
parameters during training, providing intrinsic interpretability. Evaluated across diverse biomedical
tasks-including RNA-Seq classification, single-cell profiling, and survival prediction, sTabNet
achieves performance on par with, or exceeding, leading tree-based models such as XGBoost, while
remaining computationally efficient and CPU-trainable. Our experiments show that sTabNet
generalises effectively across in-domain and out-of-domain datasets, yielding biologically consistent
insights and surpassing post-hoc explainability methods such as SHAP in stability and clarity.
Together, these results establish sTabNet as a foundational and versatile framework for data-efficient,
interpretable neural learning on tabular data.

Although tabular data are among the most prevalent data types in
scientific and industrial domains, recent advances in artificial intelli-
gence have largely concentrated on images, text and multimodal tasks,
with comparatively less emphasis on tabular learning1,2. Within bio-
medicine, however, machine learning has been extensively applied
across diverse modalities, including gene expression, protein sequence
post-translational modification prediction, disease risk modelling and
mental health outcomes. In these areas, models such as gradient-
boosted trees (e.g. Random Forest, XGBoost, LightGBM) have con-
sistently delivered strong performance3–6. This has reinforced the
position of tree-based methods as robust baselines for tabular pro-
blems, particularly in small- to medium-sized datasets where they
frequently outperform conventional neural architectures7.

At the same time, deep learning approaches for tabular data are
increasingly being explored. A natural advantage of neural networks is
their ability to transfer knowledge across tasks viafine-tuning, an attribute
that has transformed progress in computer vision and natural language

processing. In the tabular domain, two major directions have emerged.
The first seeks to design tabular-native architectures that operate directly
on raw feature spaces; while several largemodels have beenproposed, they
often incur high computational costswithout consistently surpassing tree-
based ensembles7,8. The second approach pursues tabular-to-image
transformations, where feature similarity layouts (e.g. PCA, UMAP, t-
SNE) enable the application of convolutional neural networks (CNNs) or
ViTs to transformed tabular data. This strategy has demonstrated com-
petitive or superior performance in specific domains, notably biomedi-
cine, albeit at the expense of additional embedding steps. Together, these
developments highlight both the promise and the limitations of current
neural approaches, and underscore the need for simpler, efficient and
high-performing neural network models that advance direct tabular
learning while remaining complementary to representation-driven
pipelines. In this work, we address this need by proposing a simple, effi-
cient and high-performing neural network model tailored for direct
learning from tabular data.
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For neural models to represent a viable alternative in the tabular
domain, they must not only perform competitively with tree-based
ensembles but also provide interpretable outputs that are meaningful in
biomedical settings. Interpretability is particularly important in domains
such as genomics, proteomics and clinical prediction, where model deci-
sions can influence biomarker discovery, risk assessment and therapeutic
strategies9,10. In current practice, post-hoc attribution methods such as
SHAP or Grad-CAM are widely used and have proven valuable, often
producing intuitive visualisations. However, these are not the only options:
attention-based mechanisms represent an alternative strategy, embedding
feature weighting directly within the model architecture. While we
acknowledge that attention should not be viewed as a definitive measure of
feature importance, we employ it here as an architecture-level design that
offers inherent transparencywithout the need for separate attribution steps.

At the same time,many existingneural approaches for tabular data rely
on densely connected networks with large parameter counts. These archi-
tectures can model complex functions but also carry a heightened risk of
overfitting, particularly in small- to medium-sized biomedical datasets2,11,12.
Dense models can capture spurious correlations and memorise outliers or
noise, resulting in poor generalisation. This motivates the exploration of
alternative neural designs that integrate efficiency and a degree of inter-
pretability at the architecture level, offering a different pathway than post-
hoc explanations toward building more trustworthy tabular models.

Widelyused convolutional architectures suchasResNet,MobileNet and
VGG were designed for vision tasks, while large-scale foundational models
like GPT and BERT target language and multimodal data. Neither class of
models is well-suited for tabular problems: medium-sized CNNs rely on
spatial priors absent in tabular feature spaces, and large foundational models
carry parameter counts and training requirements far exceeding what is
feasible for typical tabular datasets13.Although tabular-to-imagepipelines can
repurposeCNNs through feature similarity layouts, these approaches depend
on additional embedding transformations and are therefore conceptually
distinct from efforts to design tabular-native architectures.

Whether we are dealing with large or compact architectures, sparsity
represents another promising direction, as highlighted by the lottery ticket
hypothesis. The hypothesis suggests that many network weights can be
prunedwithout compromisingperformance14. In practice, sparsity is usually
induced post-training through pruning or relatedmethods15. TabNetworks,
for example, have leveraged sparsity guided by prior biological knowledge
for genomics applications16, yet such strategies remain domain-specific and
difficult to generalise. Moreover, while sparsity may reduce model com-
plexity, it does not address the broader challenge of interpretability. These
limitations underscore the need for tabular-native neural architectures that
jointly optimise efficiency, generalisability and interpretability.

Interpretability is especially critical in applications such as biology,
banking and insurance,where algorithmicpredictions directly affect human
quality of life17. In biomedical settings, model transparency underpins
biomarker discovery, drug target identification and risk factor analysis; in
finance and insurance, it underlies fairness, compliance and accountability.
Moreover, as governmental institutions consider regulations for AI-driven
decision systems, the demand for interpretable tabular models is both a
scientific and a societal imperative. This underscores the need for neural
architectures that not only achieve competitive performance but also pro-
vide clarity in their decision-making processes.

In this paper, we introduce a foundational neural architecture designed
to address key shortcomings of existing approaches for tabular data by
combining efficiency, sparsity and built-in interpretability. This is particu-
larly relevant for biomedical applications, where high dimensionality and
limited sample sizes are common, and model transparency is essential for
deriving actionable biological or clinical insight. Our model, sTabNet,
enforces sparsity prior to training by defining feature-neuron connections
through either domain knowledge or unsupervised feature graph explora-
tion, thereby avoiding reliance on post-hoc pruning. It further incorporates
an attention mechanism that yields feature weighting directly during
training, supporting model transparency at the architectural level. Our

contributions are threefold: (1) we introduce a principledmethod to impose
sparsity using either external knowledge or graph-based randomwalks, (2)
we develop a built-in attention mechanism to support tabular interpret-
ability and (3) we demonstrate the model’s transferability and performance
on challenging biomedical tasks, including single-cell classification, multi-
omics data fusion and survival analysis.

Results
In ref. 16, biologically constrained neural networks were introduced for
biomedical applications as feed-forward neural networks (FFNNs) with
sparsity imposed prior to training. Sparsity was achieved by using external
biological databases to define the network architecture. Similarly,18

employed the Reactome database to encode dependencies between genes by
specifying their known interactions. In this framework, the data can be
represented as a matrix of overlapping feature clusters (biological ‘path-
ways’, Fig. 1A). A binary adjacency matrix is then used to control feature
interactions in the modified linear layer: entries are set to 1 if two features
belong to the same pathway, and 0 otherwise. This binary matrix is applied
element-wise to the FFNN weight matrix, constraining the network to
respect known biological relationships (Fig. 1B).

The strength of this approach lies in its explicit integration of domain
knowledge, which enhances model transparency16. However, post-hoc
attribution methods such as SHAP are still required to identify important
features, and the approach is inherently limited to domains with curated
external knowledge bases. For datasets lacking such prior information, these
biologically guided architectures cannot be straightforwardly applied.

Motivated by these limitations and inspired by the success of atten-
tion mechanisms, we propose a simple, tabular-native mechanism
designed to be more amenable to interpretability. Our model, sTabNet,
integrates sparsity before training and includes an attention module that
provides direct feature weighting during learning.We show that sTabNet
achieves competitive or superior performance compared to tree-based
models on biomedical datasets, while offering clearer insights into rele-
vant features than post-hoc approaches. Furthermore, by introducing a
general algorithm, sTabAlgo, we extend these benefits beyond biomedical
datasets, enabling the construction of sparse, interpretable tabular models
in domains where external knowledge is unavailable. Remarkably, sTab-
Net, derived from sTabAlgo, remains competitive with tree-basedmodels
even without extensive hyperparameter tuning.

sTabNet: a sparse model for tabular data
We aim to develop a neural network architecture for tabular data that is
high-performing, efficient and interpretable. Performance and efficiency are
addressed through sparsity, while interpretability is achieved via an inte-
grated attention mechanism, as described in the following sections.

To impose sparsity, we constrain the connectivity of the neurons in the
architecture a priori, thereby reducing the number of trainable parameters
and limiting the need for extensive tuning. This restriction helps prevent
overfitting, lowers computational cost and enables different subsets of the
network to specialise more effectively for different patterns in the data.
Concretely, sparsity is introduced by grouping features according to shared
innate properties and allowing them to connect only to neurons in sub-
sequent layers that represent their group. This structured connectivity is
illustrated in Fig. 1 and Supplementary Fig. 1. We can uncover the innate
properties of features either by employing unsupervised learning methods,
such as clusteringor randomwalk, or by exploitingprior domainknowledge
when it is available. In either case, we are grouping the features, not the data
points. In other words, the intrinsic groups corresponding to neurons in the
model are specified by the similarity of features, not the similarity of data
points. A feature point consists of a vector; its components are the feature
readings for all the data points in the dataset. Later, we present a comparison
between using unsupervised learning and domain knowledge to construct
the sTabNet model, demonstrating that, in general, models built using
unsupervised learning perform comparably to those built using domain
knowledge.
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IfX 2 Rm× n is a tabular dataset, wherem denotes the number of data
points (rows) and n the number of features (columns), we define a design
matrix A 2 Rn× n that encodes the relationships among features. Our
grouping algorithmsoperate along the feature dimension (n) to forma setof
K < n clusters, where each cluster corresponds to a group of related features.
This contrasts with conventional clustering methods, which are typically
applied along the sample dimension (m) to group data points rather than
features. This grouping process dictates the number of neurons in the
model, specifying the connectivities between the input layer and the first
hidden layer. Features connected to the neurons are only those that belong
to the group/cluster represented by this neuron.

Whenprior information about the features is available, it canbeused to
construct a binary matrix that controls the structure of the neural network
(Fig. 1A). For instance, in RNA expression datasets, pathway databases can
define which features are grouped together. This binary matrix is then
applied as a mask to the weight matrix of the neural network, thereby
enforcing sparsity (Fig. 1B).

In the absence of specific domain knowledge, the matrix can be derived
through data-driven grouping. Considering feature similarity (e.g. cosine
similarity), we either apply standard clustering algorithms or construct a

featuregraphanduse randomwalks togenerate thebinarymask.Thisprocess
enables the exploration of global or local feature interactions, depending on
the chosen hyperparameters (Fig. 1C, D and Supplementary Fig. 1).

Supplementary Fig. 2 shows that this approach substantially reduces
the parameter count. In Supplementary Fig. 3, we benchmark sTabNet
against XGBoost across increasing feature dimensionalities (100–50,000)
using synthetic datasets (N = 6000). sTabNet demonstrates superior scal-
ability, particularly in terms of wall-clock time and peak training memory.
Collectively, these results indicate that sTabNet achieves stable compute
costs, fixed parameterisation and lower memory demands, making it well-
suited to high-dimensional feature spaces. Finally, an ablation study
(Supplementary Fig. 4) demonstrates that induced sparsity serves as a form
of regularisation, and not performing conventional regularisation techni-
ques, such as dropout, has only a minimal effect on performance.

sTabNet interpretability for tabular data
Next, we introduced a lightweight attentionmechanism tailored for tabular
data to derive feature importance directly during training, thereby elim-
inating the need for post-hoc attribution methods. In this formulation, the
model learns feature relevance as part of the optimisationprocess, providing

Fig. 1 | A sparse and interpretable neural network.
A sTabNet Architecture: Features can be grouped
according to prior knowledge or by using unsu-
pervised learning (clustering or random walk) to
build a matrix A where rows are features and col-
umns are clusters (neurons). In this sparse model, a
feature is connected to a neuron (which represents a
cluster) only if it is a member of the cluster.
B sTabNet Sparsity: The representation and the
definition of the classical dense layer (left) and of the
proposed sparse layer (right). The sparse layer is
identical to the dense layer except for the Hadamard
product between the weight matrix W and the
matrix A. C sTabNet Grouping: (left) The matrix A
can be intended as a compressed view of an adja-
cency matrix of the feature graph. The neuron can
also be defined as a random walk in the feature
graph, thus learning a local approximation of the
neighbourhood of a feature. Alternatively, one can
use clustering (not shown in the figure). (right)
Unrolling of the process on the left: When infor-
mation about features in a dataset is not present, we
calculate the cosine similarity matrix of the features.
We assigned an edge between two features if their
similarity is higher than 0.5. We performed random
walks on the obtained graph and used the obtained
random walks to build the sparse matrix in the
modified layer. D sTAbNet as a Tabular Founda-
tional Model: A scheme of sTabNet used for differ-
ent tasks and data types. The same architecture can
be used for common and challenging biological tasks
(binary/multiclass classification, censored regres-
sion) and complex data (RNA-seq, single-cell and
multi-omics data). sTabNet has been tested with
real-world datasets for all these tasks. On the left, we
are showing that the model can be trained on a
dataset, and then the trained model can be used for
other datasets and tasks through fine-tuning or
feature extraction.
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transparency without additional interpretability steps. We evaluated
sTabNet to confirm that the attention mechanism accurately captures the
contribution of individual features across both simulated and real datasets.
Furthermore, we assessed sTabNet on a range of complex biomedical tasks
—including multi-omics integration, single-cell analysis, multiclass classi-
fication and survival regression—and compared its performance with that
of tree-based models (Fig. 1D).

Interpretability, attention and feature importance
As highlighted by ref. 1, interpretability measurements are complicated
because we do not have a dataset where the importance of the features is

known inadvance (a ground truth).Therefore, to test the effectiveness of our
interpretability approach, we used a set of synthetic datasets with various
difficulties. In this evaluation framework, the ground truth of feature
importance and the level of complexity can be controlled a priori via
redundancy and separation coefficients, respectively. Figure 2 shows this set
of experiments.

First, from a classification perspective, we observed an expected linear
decrease in XGBoost accuracy with the increase in the difficulty of themulti-
classification task (Fig. 2A),where the classes areharder to separate.Whenthe
classes are poorly separated (separation coefficient 0.1), we observed a
reduction in the weight assigned to important features, making it harder to

Fig. 2 | Attention mechanisms are a measure of feature importance. A–F Each
boxplot represents a 100-fold hold-out validation; a lower coefficient represents a
harder multi-classification task.AMulti-classification accuracy in XGBoost with an
increase in separation difficulty. B Separation between the average importance
weight (XGBoost’s feature importance) assigned to real informative and non-
informative features. C Separation between the average importance weight (SHAP
value) assigned to informative and non-informative features.DMulti-classification
accuracy in sTabNet with an increase in separation difficulty. E Separation between

the average importance weight (feature attention weight) assigned to real infor-
mative and non-informative features. F, G Accuracy is plotted for each different
model (XGBoost and sTabNet). The shade represents the standard deviation (10
different models for each removed feature). F MoRF analysis. G LeRF analysis.
H, I The shade represents the standard deviation (10 different models trained).
H Feature importance for XGBoost when increasing the number of non-informative
features. I Feature importance for the sTabNet with an increase in the number of
non-informative features.
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separate them from noisy features (Fig. 2B), and the models were almost
performing random guessing. The SHAP value follows the same pattern for
the feature importance, not allowing better identification of important fea-
tures (Fig. 2C). Thus, SHAP explanations in a sense are the expression of the
prediction abilities of XGBoost, they are dependent on its accuracy, but they
do not improve the ability of the model in capturing the feature importance
(and to separate informative and noisy features). We incorporate a tabular
attention mechanism (defined in the Methods section) to automatically
determine the importance of the input features. While we also observed a
decrease in sTabNet performance with increasing difficulty in the multi-
classification task, the reduction is less dramatic (Fig. 2D and Supplementary
Fig. 5A–C). Moreover, the separation between important features and noisy
features is more pronounced (Fig. 2E). Interestingly, when the classification
task is more complex, sTabNet needs more training epochs to reach better
performance and better separation (Supplementary Fig. 6A, B).

We conducted a feature ablation study to evaluate the relationship
between attention weights and feature importance. Our hypothesis is that
attention weights can serve as proxies for the true importance of individual
features. The Most Relevant First (MoRF) analysis revealed a sharp per-
formancedecreasewhen featureswithhighattentionweightswere removed,
indicating that the attention mechanism effectively identifies the most
discriminative features (Fig. 2F). While acknowledging that attention
should not be regarded as a definitive explanation ofmodel behaviour, these
findings suggest that it offers a quantitative and empirically verifiable
measure of feature relevance.

The Least Relevant First (LeRF) analysis indicates that attention
scores effectively identify noisy features (Fig. 2G). As the number of
noisy features increases, the corresponding feature importance esti-
mated by XGBoost declines markedly (Fig. 2H). In contrast, the
attention-based feature importance in our proposed sTabNet model
remains stable, enabling a clearer distinction between informative and
noisy features (Fig. 2I).

Finally, we compared our approachwith other commonly used feature
importance methods and observed a general concordance (Supplementary
Table 1). These results indicate that the attention weight can serve as a
reliable feature importance score and acts as a stronger discriminator
between informative and noisy features than both XGBoost feature
importance and SHAP values (Fig. 2C). Moreover, the attention-based
scores exhibit greater stability in distinguishing significant from noisy fea-
tures across different datasets.

sTabNet on complex real-world datasets
We evaluated our model on complex multi-omics datasets, which pose
unique challenges for machine learning models19–22. Our sTabNet archi-
tecture was constructed using the METABRIC multi-omics dataset, as
described earlier. Because there is no consensus in the literature regarding
the most suitable activation function for biologically constrained
networks18,23, we systematically tested several activation functions during
training. However, no significant differences in performance were observed
across activation choices (Supplementary Fig. 7A).

More importantly, we observed that a standard FFNN trained on
this dataset predominantly predicted the majority class, indicating a
severe sensitivity to class imbalance. Consequently, we did not include
further experiments with fully connected architectures in this study.
Similarly, CNNs did not achieve satisfactory performance on this
dataset (Fig. 3A).

sTabNet yields results comparable to those of XGBoost (Fig. 3A).
Furthermore, prepending an attention layer results in a slight performance
increase (Supplementary Fig. 7B and Supplementary Table 2). Since we do
not have the ground truth for feature importance for this dataset, we have
selected the 100 features with the highest attention weights, and we con-
ducted a gene-set enrichment24 for diseases on this feature subset. The
results show that the features with the highest attention weights are
attributed to cancer-related genes (Fig. 3E, F and supplementary Table 3),
which is consistent with the results from the synthetic dataset.

sTabNet generalisation and transfer learning
Since one advantage of neural networks is their ability to be fine-tuned for
new tasks, we investigated whether a model trained on METABRIC (mul-
ticlass classification) could be adapted to a binary classification task using
the TCGA-BRCA dataset. The fine-tuned model successfully adapted to
both a different objective and an in-domain dataset, demonstrating effective
in-domain transfer (Fig. 3B). Moreover, a frozen sTabNet model extracted
meaningful representations that could be used to train a linear classifier,
further supporting its representational capacity (Fig. 3B). We also observed
promising out-of-domain adaptation on TCGA-LUAD, where both fine-
tuning and feature extraction yielded good performance (Fig. 3B).

Learning-curve analyses revealed that sTabNet maintains high per-
formance even with limited training data. Classification accuracy and
precision-recall metrics remained stable across varying dataset fractions,
achieving over 90 % AUROC and AUPRC using only 10 % of the available
data (Supplementary Fig. 8). These results indicate that sTabNet is highly
data-efficient, achieving strong generalisation from small samples with
limited variability across random seeds.

We further evaluated cross-dataset generalisation under a Leave-One-
Dataset-Out (LODO) protocol using five independent gene expression
datasets (Lung GSE19804, Lung GSE18842, Leukaemia GSE63270, Throat
GSE42743). Models were trained on each dataset and evaluated both on the
held-out test partition anddirectly on the remainingdatasets (Supplementary
Fig. 9A, B). The aggregated results indicate that sTabNet learns transferable
representations across related biological domains. Transfers between similar
tissues (e.g. lung-to-lung) yielded the highest performance, while transfers
betweenbiologically dissimilar tissues (e.g. solid-to-blood cancers) resulted in
lower accuracy, reflecting underlying biological heterogeneity. In the pooled-
source LODO setting, performance remained robust for lung datasets,
moderate for throat and lower for leukaemia (Supplementary Fig. 10), sug-
gesting that transfer success correlates with tumour-type similarity.

Comparison with previous tabular models
Gene expression datasets remain a major challenge for machine learning
models because they typically contain thousands of features but only a few
dozen samples. Such datasets represent an extreme case of the tabular
domain, characterised by high dimensionality, noisy and unbalanced fea-
tures, and complex decision boundaries. Several neural architectures,
including TabNet and NODE25–27, have demonstrated competitive perfor-
mance on tabular benchmarks. Other strategies have focused on feature
selection or neuroevolution methods to address the extreme feature-to-
sample ratio28–33. A complementary line of research transforms tabular data
into images, enabling the application of convolutional models such as
DeepInsight and its derivatives34–36.

Our approach differs from these models in three key aspects: (1) it
enables the integration of domain knowledge-such as curated biological
pathways-directly into the network structure; (2) it introduces sparsity a
priori in the architecture, rather than learning it post-hoc or through evo-
lutionary search; and (3) it provides native interpretability via built-in
attentionmechanisms, eliminating the need for separate explanationmodels.

We benchmarked sTabNet against seven classification approaches
(XGBoost, TabNet, NODE, DeepInsight-PCA, DeepInsight-tSNE and
others) using a subset of the Cumida benchmark expression dataset.
sTabNet achieved statistically superior performance across ten independent
expression datasets (Supplementary Fig. 11). Furthermore, as reflected by
F1 scores, models such as TabNet and NODE struggled with class
imbalance-a common characteristic of expression datasets-whereas sTab-
Net maintained consistently higher performance.

To evaluate interpretability and biological relevance, we compared
sTabNet andDeepInsight feature attributions (Supplementary Fig. 12). Gene
relevance was quantified using two complementarymeasures: the number of
PubMed articles mentioning each gene in the context of ‘liver cancer’ or
‘HCC’, and scores assigned by a large language model (LLM) assessing gene
relevance based on expression statistics, Gene Ontology (GO) pathways and
representative abstracts. Both the PubMed and LLM analyses indicate that
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sTabNet attention scores and integrated gradients (IG) align more closely
withknownbiological evidence thanDeepInsight-CAM(SupplementaryFig.
13). sTabNet achieved the highest median LLM relevance score and the
largestproportionofgenes scoring≥4, supporting the conclusion that it yields
morebiologicallyplausible gene rankings than image-basedapproacheswhile
maintaining strong predictive accuracy (Supplementary Fig. 14).

sTabNet on single-cell technology
Single-cell technologies have profoundly advanced our understanding of
development, cell identity and disease mechanisms. However, single-cell
datasets present unique computational challenges, typically featuring far
more variables than samples and lacking consensus strategies for effective
modelling37–39. To evaluate sTabNet in this setting, we used single-cell RNA-
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seq data from the Tumour Immune Single-cell Hub 2 (TISCH2;
GSE161529) for breast cancer. sTabNet was applied to both binary classi-
fication (tumour versus normal cells) andmulticlass classification (cell type
prediction). Ten-fold cross-validation was performed for each model, and
average accuracies were reported.

After freezing the trained model, we extracted the learned representa-
tions and visualised them using UMAP. sTabNet demonstrated strong per-
formance across both binary and multiclass tasks (Fig. 3D and
Supplementary Table 4). Moreover, the learned embeddings showed clear
separation of cell populations (Supplementary Fig. 15), consistent with the
hypothesis that reduced connectivity enables different subnetworks to spe-
cialise in distinct data patterns. These results indicate that sTabNet captures
biologically meaningful features that can be leveraged for downstream ana-
lyses. Importantly, given the high dimensionality of genomic data40, sTabNet
canalso serveasaneffective feature selection tool, reducingboth feature count
and model complexity within analysis pipelines (Supplementary Fig. 16).

sTabNet and survival analysis
Survival analysis is a branch ofmachine learning concerned withmodelling
the relationship between the time to an event (such as death or system
failure) and predictive features41,42. Although it can be framed as a subcase of
a regressionproblem, traditional regressionmethodsoften fail to capture the
underlying temporal and nonlinear dependencies43. Given the complexity
and biological importance of survival data, several models have been
developed for this task, such as the Cox proportional hazards model44,45.
However, these approaches struggle to model nonlinear effects and to scale
effectively with large datasets.

To address these challenges, we compared sTabNet with state-of-the-
art methods from the Scikit-survival library, which includes several
ensemble and kernel-based algorithms46. sTabNet consistently out-
performed these baselines, including ensemble tree-based and support
vector machine-based models (Fig. 3D). In addition, the attention
mechanism in sTabNet enabled identification of the most influential pre-
dictors of survival (Supplementary Fig. 17).

Overall, these results demonstrate that sTabNet with integrated
attention mechanisms not only surpasses tree-based models on genomic
survival datasets but also offers interpretability through feature-level attri-
bution. By learning meaningful latent representations, sTabNet supports
both in-domain and out-of-domain adaptation in a unified framework.
Moreover, its versatility extends to a range of complex biological tasks,
including multi-omics classification, single-cell analysis and survival
regression, as illustrated in Fig. 3.

Unsupervised sTabNet and expression data
While the use of biological knowledge (e.g. Gene Ontology) to define net-
work connectivity enhances interpretability and biological plausibility, such
databases aremanually curated andmay be incomplete, outdated, or biased
toward well-studied genes. Moreover, not all genes are annotated, and
inclusion criteria vary across resources, limiting both coverage and gen-
eralisability. To address these limitations,we also evaluated an unsupervised
alternative that automatically determines the connectivity of sTabNet based
on feature-similarity graphs combined with random walks, thereby
removing dependency on prior knowledge and enabling application to any
tabular dataset.When applied to complex genomic data, the random-walk-
based approach yielded performance comparable to the Gene Ontology-

based configuration, demonstrating its scalability and broad applicability
(Fig. 3F, Supplementary Fig. 18 and Supplementary Table 6).

sTabNet vs. tree-based models for tabular data
Although different transformer-based models have been tested, different
researchers suggest that the high capacity of neural networks hinders their
applicability to tabular tasks47. Since information about the features is often
not available, we described a method to leverage sTabNet to address pro-
blems in arbitrary tabular datasets. In fact, the aim was to identify a simple
method to impose sparsity before training while being competitive with
tree-based models (Fig. 4A). Despite not conducting a hyperparameter
search and using a simple architecture, the sTabNet is shown to outperform
the tree-based model: median accuracy 0.71 versus 0.70 (Fig. 4B and sup-
plementary Table 5 and Supplementary Figs. 19 and 20).

Within a sparse neural network layer, each neuron’s connections are
determined by a randomwalk across a feature graph. This process ensures
that the neuron establishes connections only within a localised, harmo-
niously related subset of features (i.e. its neighbourhood) on the graph.We
noticed that the top random walk (selected using an additional attention
layer) always represents the same neighbourhood (Fig. 4C, D). We con-
ducted an ablation study on the features by removing the top 5 features to
verify and study the effect of these features (in connection with their
neurons). Figure 4E shows that removing the involved feature impacts
accuracy. Interestingly, removing these features increases the number of
false positives compared to random feature removal (Fig. 4F).We did not
observe an increase in false negativeswith feature ablation (Fig. 4G). These
results suggest that local patterns in the feature graphs can be associated
with a particular class, thereby contributing to the emergence of mod-
ularity. The recall ability of a model is dependent on the interconnectivity
of its features collectively, while the precision is dependent on the exis-
tence or absence of a certain set of features in a pattern. Our results
consistently show that the model is able to identify these features that are
important for the ability to precisely classify a pattern, which contributes
to better precision.

Discussion
Tabular data are among the most prevalent data types across scientific and
industrial domains, underpinning applications in medicine, psychology,
finance, cybersecurity and user modelling1,48–52. While recent years have seen
growing interest in applying neural networks to tabular problems—including
transformer-based and tabular-to-image approaches—the field still lacks
consensus on architectures that balance performance, interpretability and
computational efficiency1,53. In this work, we argue that the challenge lies not
in the absence of neural approaches but in their tendency toward over-
parameterisation and suboptimal scaling for small ormedium-sized datasets.
Toaddress this,we introduceda simpleyet effectivearchitecture that leverages
intrinsic feature relationships—or domain knowledge when available—to
impose sparsity a prioriwithin thenetwork structure, thereby reducingmodel
complexity while preserving both accuracy and interpretability. In this work,
we employed attention mechanisms to quantify feature importance within
neural networks.The role of attentionas an explanatory tool remains a subject
of active debate, with several studies questioning whether attention weights
reliably reflect model reasoning54–56. Aware of these concerns, we designed a
specialised attention mechanism tailored to tabular data and systematically
evaluated it using both synthetic and real-world datasets.

Fig. 3 | sTabNet provides a foundational model to perform in-domain and out-
of-domain fine-tuning, it is interpretable and outperforms tree-based models in
general. AComparative table betweenXGBoost, sTabNet andCNNon theMETABRIC
multi-omics dataset (multiclass classification). Performance comparison across models.
Statistical significance between model performances was assessed using pairwise Wil-
coxon signed-rank tests. Reported p values comparison: sTabNet with XGBoost
(p= 0.035) and with CNNmodel (p < 1e-84). B in-domain (breast cancer) and out-of-
domain (lung cancer) adaptation. The model was trained on the Metabric dataset, then
fine-tuned on other datasets. Accuracy on TCGA-BRCA (same domain as the

METABRICdataset) andTCGA-LUAD (different domain from the original dataset) for
fine-tuning or feature extraction. C Binary and multiclass classification accuracy for
sTabNet and XGBoost on single-cell data (breast cancer (GSE161529)).DConcordance
index for METABRIC survival analysis. Statistical significance between model perfor-
mances was assessed using pairwise Wilcoxon signed-rank tests. Reported p values
comparison: sTabNet with Component boosting (p= 0.029), with Survival SVM
(p= 0.011), with Cox Boost (p < 0.01) E Disease enrichment for the 100 top genes
according to attention importance.FDisease enrichment for the 100 top genes according
to attention importance fromMETABRIC.
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Using a synthetic dataset with predefined feature importance as
ground truth, we demonstrated that attention-derived importance scores
effectively distinguish informative features from noise. In patient datasets,
the top-ranked features identified by attention values corresponded to
biologically and clinically relevant variables, further supporting the viewthat
attention can serve as a meaningful explanatory signal. When applied to
real-world datasets with domain knowledge (such as cancer datasets), this
approach enables the identification of key features and facilitates explora-
tory insights into the data. This capability is broadly valuable across
domains-frombiomedicine tofinance-where understandingwhich features
drive predictions is essential. Furthermore, we showed that sTabNet can be
effectively constructed even in the absence of prior knowledge, and that this
data-driven variant consistently produces reliable and competitive results
across multiple benchmarks.

In addition, we showed that it is essential to evaluate interpretability
using datasets where the ground truth of feature importance is known. Our
findings highlight that even established attribution methods may be unre-
liable, particularly for complex tasks involving a large number of features.
Furthermore, attention weights can be leveraged for feature selection to
remove non-informative variables, improving both model efficiency and
robustness. This capability is especially valuable for real-world datasets,
which are often noisy and contain redundant features.

Most previous comparisons between tree-based models and neural
networks have focused on relatively simple datasetswith limited numbers of
features7. Such datasets are not representative of real-world conditions,
particularly in biologically complex domains. In contrast, we demonstrated
that when modelling tasks require learning rich, high-dimensional data
representations, sTabNet performs competitively with tree-based models.

Fig. 4 |Generality of the proposed sTabNet architecture. sTabNets are competitive
with tree-based models for tabular data. A The algorithm that involves a random
walk process is used to adapt the model to any tabular dataset. We calculated the
similarity between the dataset’s features (cosine similarity matrix) and used the
obtained matrix to generate a feature graph. We conducted random walks on the
feature graphs to explore the local neighbourhood of each feature. We use that
knowledge to build the sparse matrix of the neural network B Binary classification
accuracy for the tabular benchmark (100 models for 3 techniques: we generated 10

models corresponding to 10 runs -each with a random training/testing split- for 10
datasets). C Feature presence in the top random walks (100 experiments on the pol
dataset with a random training/testing split) D Feature graph for the pol dataset
(isolated nodes are removed), the red-highlighted nodes represent the top 5 features
present in the top random walk. Ablation study: accuracy (E plot) or false positives
(F plot) or false negatives (G plot) performance for three datasets, removing five
random features vs. removing the 5 top features of the random walk process (10
experiments for each dataset).
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We selected biological datasets because they exemplify real-world data
characterised by intrinsic complexity, nonlinearity and noise, demanding
models capable of adaptive representation learning57. These datasets also
contain a large number of irrelevant or redundant features, posing sig-
nificant challenges for feature selection and model robustness58.

Moreover, in such complex tasks, neural networks offer unique
advantages: they can learn transferable representations, enable end-to-end
optimisation and integrate feature extraction and selection within a unified
framework. sTabNet embodies these capabilities, demonstrating founda-
tional adaptability across heterogeneous tabular problems. While our
experiments focused on biomedical data, the same principles extend natu-
rally to other domains—such as psychology and customer analytics—where
structured yet complex data are prevalent.

While several sparse models have been proposed for cases where
external domain knowledge is available, we introduced a generalisable
approach that enables the construction of sTabNet for any tabular dataset.
Our results show that sTabNet achieves superior performance compared to
tree-based models. As previously suggested in the literature, dense archi-
tectures often exhibit excessive capacity for small or low-dimensional
datasets, leading to overfitting. In contrast, systematically constraining the
network through sparsity—imposed in an unsupervised and data-driven
manner—proves effective in guiding themodel toward learningmeaningful
patterns. Furthermore, this sparse formulation encourages neurons to
specialise in local neighbourhoodswithin the feature graph, enhancing both
interpretability and robustness. Interpretability remains a critical factor for
the practical adoption of neural network models, particularly in domains
where transparency and trust are essential.

It is worth noting that, in recent years, a wide range ofmodels have been
developed for analysing gene expression data. Many of these approaches rely
on complex processing pipelines—such as transforming tabular data into
image representations—or on advanced architectures including pre-trained
CNNs, Transformers and Vision Transformers. While effective, these
methods often require substantial computational resources and specialised
infrastructure, such as high-performance GPUs59–62. In contrast, this work
focuses on a compact neural network that can be efficiently trained onCPUs,
offering computational efficiency within a single, end-to-end framework.

Importantly, our motivation extends beyond architectural efficiency to
address the core challenges of biomedical data science-namely, high
dimensionality, limited sample sizes and the imperative for interpretability. In
genomics and clinical contexts, identifying the features that drive predictions
is not merely desirable but essential for translational insight. sTabNet was
explicitly designedwith these constraints inmind: it enables the integrationof
prior knowledge when available, remains robust in purely data-driven set-
tings and provides native interpretability through attention weights aligned
with biologically meaningful features. This alignment between model design
and domain needs distinguishes sTabNet from generic sparse or attention-
based architectures not tailored to biomedical challenges.

While classical unsupervised approaches such as K-means clustering
or dimensionality reduction techniques (e.g. PCA, t-SNE) can reveal pat-
terns in tabular data, they are not designed to capture overlapping or
localised feature interactions. In contrast, random walks on a feature graph
facilitate a soft, overlapping grouping of features, whereby each neuron
(random walk) samples a local neighbourhood of related variables. This
approach mirrors the modular and redundant organisation commonly
observed in biological systems, where genes and pathways often participate
in multiple functional contexts. Moreover, unlike hard clustering methods,
random walks introduce controlled stochasticity, enabling natural ensem-
bling and the emergence of diverse architectural patterns. Such flexibility is
particularly valuable when prior biological knowledge is unavailable.

However, ourmethod also generates isolatednodes; in the future, other
alternatives to developing the feature graph could be explored. For example,
alternative distance measurements or a weighted Node2vec random walk
can be explored. In addition, L1 regularisation (or other regularisation
techniques) can be used to increase the network’s sparsity. In addition, we
conducted the benchmark on only a limited number of datasets and tasks,

and in the future, we plan to add a larger number of datasets (RNA-seq,
single-cell, multi-omics). In this direction, we would like to train STabNet
with a large number of different datasets and test its capabilities on unseen
diseases, tissue types, or noisy real-world data. Second, while the GO-based
masks provide structural interpretability, we did not perform in-depth
biological analysis of the learned pathway activations. In addition, future
studies should also consider the translationality of the features identified in
clinical settings and biological experiments.

Methods
Overall construction of the sTabNet approach
Our model, sTabNet, is generated via a meta-generative framework that
constructs the architecture based on feature relationships. Two modes are
supported: Knowledge-driven: If domain knowledge (e.g. Gene Ontology
pathways or other sources) is available, a binary matrix A encodes known
feature-group associations (i.e. connections between input features and
hidden layer neurons). Unsupervisedmode: If no such prior is available, we
apply unsupervised learning (e.g. cosine similarity and Node2vec random
walks) to build a feature graph, and sparsity is derived from local neigh-
bourhoods (i.e. learned clusters of features). Each hidden neuron corre-
sponds to a feature group or graph neighbourhood, and connections are
created only within these defined subsets, thereby generating a sparse and
interpretable connectivity map.

Sparsity is achieved a priori, before training, by defining a binary
maskingmatrixA (also interpreted as a feature graph adjacencymatrix). This
mask is used in aHadamard product with the neural network weightmatrix:

H1 ¼ σ X � ðA�WÞð Þ

This ensures that only feature connections defined in A contribute to
training. Compared to post-hoc pruning, this has several benefits: It reduces
the number of learnable parameters upfront. Itmitigates overfitting in high-
dimensional settings. It allows the model to focus on local feature
interactions, improving interpretability and robustness. We emphasise that
sparsity is enforced on the feature dimension, not the data samples,
distinguishing our approach from many compression techniques. We also
explored L1 regularisation for further sparsification, confirming its utility
for feature selection without degrading performance.

We designed this architecture to differ fundamentally from traditional
dense networks and models that rely on post-training pruning. First, the
architecture itself is generated automatically, either from domain knowledge
or through unsupervised feature similarity, enabling a principled and data-
driven definition of connectivity. Second, sparsity is imposed a priori,
improvinggeneralisation, reducingoverfittingandenhancing interpretability.
Third, a dedicated attention layer is incorporated to learn a measure of fea-
tures importance jointly with model parameters, i.e during training, offering
intrinsic interpretability. Finally, each neuron learns a localised feature
interaction-analogous to modular graph representations-naturally aligning
the model with the structured relationships inherent in biological data.

In contrast to architectures that learn sparsity through attention alone
or rely heavily on post-hoc interpretability methods (e.g. SHAP), sTabNet
integrates attention directly into its architecture, providing feature-level
interpretability during trainingwhilemaintaining computational efficiency.

Tabular attention mechanism
To enable feature-level interpretability within our sparse architecture, we
introduce an attention mechanism adapted for tabular data. Unlike
sequence or image attention, whichmodels relationships across temporal or
spatial dimensions, tabular attention focuses on identifying the relative
importance of features for each data sample during training.

Let X 2 Rb× n denote a batch of data points from a tabular dataset,
where n is the number of features and b is the batch size. The attention layer
learns an attention weight vector ~w 2 Rn that modulates the contribution
of each featurewithin adatapoint. To enrich this representationandcapture
the holistic importance of a data point given its feature composition, we also
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define an attention score matrix ~W 2 Rn× n constructed additively via two
projection vectors, ~w1 2 Rn× 1 and ~w2 2 Rn, to operate across the feature
space:

~α ¼ ~w � softmax φðX; ~WÞ� �
;

where all operations act along the feature dimension n, leaving the batch
dimension b unchanged, and * denotes broadcasting. The function φ cor-
responds to a choice of attention scoring function63–66. In this work, we
evaluated four variants: (i) a Bahdanau-inspired form, tanhðX ~WÞ63; (ii) the
dot product, X ~W64; (iii) a cosine-similarity score, X ~W

kXk k ~Wk
65; and (iv) the

scaled dot product, X ~Wffiffi
n

p 66, where n is the feature dimensionality.
The resulting score matrix φðX; ~WÞ 2 Rb× n contains unnormalised

relevance estimates for each feature within every data point in the batch. A
row-wise softmax is then applied across the feature dimension to obtain
normalised attention coefficients, ~α, which reflect the relative importance of
each feature given the feature composition of that specific data point. The
attention weights are subsequently used to rescale the input features,
yielding an attention-weighted representation:

~X ¼ X � ~α;

where⊙ denotes element-wise (Hadamard) multiplication. This operation
amplifies the contribution of informative featureswhile attenuating noisy or
redundant ones. Importantly, because the attention weights are optimised
jointly with the network parameters, feature importance is inferred during
training rather than through post-hoc analysis.

Overall, the attention layer preserves the input dimensionality, allow-
ing seamless integration into fully connected or sparse architectures. When
combined with the sparse connectivity imposed by the binary mask A, this
mechanism enables the model to focus on meaningful local feature inter-
actions while providing a direct and interpretable measure of feature rele-
vance for each prediction.

Analysis of the interpretability of the sTabNetworks
To test whether the attentionmechanism score can capture the importance
of a feature in the dataset, we built simulated data for a multi-classification
task. Themulticlass dataset is built as in67 and using the scikit-learn package
implementation, where the difficulty of the classification task is regulated by
a hyperparameter (separation coefficient, range 0.1–1). Where 0.1 is the
most complex task for the model, and 1 is a trivial separation task. We
defined informative and non-informative features (random noise) in the
dataset. We used scikit-learn standard implementation (make classifica-
tion), resulting in a matrix X 2 Rb× n (where n is the sum of informative
and non-informative features). The sTabNet and XGBoost have been then
trained to optimise amulti-classification objective (6 classes), i.e. categorical
cross-entropy as a loss function.

For each separation coefficient, we trained ten different models (1000
exampleswith 100 features, ofwhich 10 informative and 90non-informative)
andmeasured the classificationaccuracyon the test set (0.2of thedataset).We
then examined whether a model can discriminate and separate informative
features from random noise. For this purpose, we analysed the importance
score (for XGBoost) or the attention weight assigned to each feature in the
sTabNet. For XGBoost, we also used the SHAP value to determine the fea-
tures’ importance68. For the sTabNet, we analysed whether the attention
weight can be considered a feature importancemeasure. As defined in ref. 69,
we conducted LeRF and MoRF studies to assess the fidelity of the feature
importance attribution. For XGBoost and SHAP, we used the standard
parameters as defined in the XGBoost package. For the sTabNet, we used a
simple architecture in Keras. The architecture has an input layer, an attention
mechanism, a sparse layer with 100 neurons, a linear layer with arbitrary 64
neurons (to test the effect of attention only, not the effect of domain knowl-
edge or unsupervised learning), and an output layer with softmax activation.
We used dropout regularisation, ADAM optimiser and categorical cross-
entropy as a loss. Since previous works focused on extensive hyperparameter

optimisation47 for the tabular neural networks, we intentionally did not
conduct it to show performance with simple settings. For each separation
coefficient, we randomly split 100 times (100 times cross-validation) and
calculated the multiclass accuracy (both for XGBoost and the sTabNet). We
extracted the feature importance attributed to each feature from the model.

For LeRF andMoRF analysis, we iteratively removed the most or least
important feature according to the mean importance (mean of 10 models)
and retrained on the reduced feature set. We also checked the stability for
XGBoost and sTabNet by progressively increasing the number of noisy
features (while keeping the number of important features constant to 10)
and analysing the importance attributed to the features (informative and
non-informative).

Application to multi-omics dataset, fine-tuning and feature
extraction
Multi-omics data are notoriously complex to handle: they are expensive to
collect, hetero-modals, and suffer the curse of dimensionality (for a dataset
X 2 Rm× n, we haven≫m)19.While designing an algorithm for this data is
challenging, identifying important features leads to direct important
utilisation19.

We used the following datasets: METABRIC70 (RNA-seq and muta-
tions), TCGA-BRCA and TCGA-LUAD71 (only RNA-seq data for both).
We initially trained our sTabNet model with the above-defined attention
mechanisms on METABRIC, testing different activation functions and
comparing it with XGBoost, a fully connected neural network model
(FCNN) and a CNN model. We then tested its in-domain and out-of-
domain capabilities with and without fine-tuning. For the METABRIC
dataset, we used XGBoost with a multiclass objective as suggested in the
official library. The sTabNet was built as before, but using Gene Ontology72

to define the sparse matrix A for the sparse layer. Given the more complex
nature of the dataset, we added an extra layer at the end to increase the
complexity of this sTabNet model.

Weused dropout as regularisation. The sTabNetmodelwas trained for
20 epochs and a batch size of 1024. We then used a 100-fold split for
evaluation. Disease enrichment was conducted on the top 100 genes
according to attention importance (ranked average of the 100 experiments).
We used the GSEApy Python package andDisGeNet’s disease database. To
show the foundational capabilities of our sTabNet architecture, a sTabNet
model was pre-trained on the METABRIC dataset to be used with and
without fine-tuning. For feature extraction, we removed the last two layers
from the frozenmodels and extracted the features for theTCGA-BRCAand
TCGA-LUAD datasets. On the extracted features, we built a simple logistic
regression model for a binary classification task. For the fine-tuning pro-
tocol, we added two fully connected layers to the frozen model. The model
wasfine-tunedusing binary cross-entropy as a loss function. The plots show
the results for 10-fold cross-validation.

Sparse net application to single-cell RNA-seq dataset
We used single-cell data from the Tumour Immune Single-cell Hub 2
(TISCH2) of breast cancer (GSE161529). We used annotated data with
minimal preprocessing as suggested by ScanPy73. We used the sTabNet
architecture as above to train two fresh networks for binary classification
(tumour/normal cell) and multi-classification tasks (cellular type predic-
tion). sTabNet was built for theMETABRIC dataset, andwe used XGBoost,
as described above. The sTabNet model was trained for 20 epochs and a
batch size of 1024.We then used a 10-fold random split for evaluation (a 10-
fold split for evaluationwas alsoused forXGBoost).Weused a typical binary
and multiclass final layer, i.e. for binary classification, we used a sigmoid
final layer and binary cross-entropy as a loss, while for multiclass classifi-
cation, we used a softmax layer and categorical cross-entropy.

Sparse net application to survival analysis
For survival analysis, we used the METABRIC dataset as described above,
and we used the associated metadata for overall survival. We modified the
sTabNet to adapt to the survival prediction task. Specifically, we used the
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Breslow approximation as a loss function74 for the last layer and measured
the performance with a concordance index. We compare with the Scikit-
survival library46, which implements different algorithms for survival ana-
lysis. For this purpose, we selected two different gradient-boosted models
(Gradient Boost and Component Wise Gradient Boost) and the fast
extension of the support vector machine for survival analysis. For each
algorithm, we conducted a 10-fold random split validation.

Generalisation of sTabNet for tabular datasets with no domain
knowledge
In biological terms, a pathway is an approximation of locally connected
features that interact among themselves to fulfil a biological function16.
These couldbe seenas agroupof connectednodes in the feature graph (e.g. a
group of proteins in the protein-protein interaction graph). In this section,
we will deal with the more general case when we do not have external
knowledge of feature interactions, which is the case inmost tabular datasets
domains.Wewanted to extend sTabNet to other domainswherewe need to
enforce sparsity, but there is no knowledge available about the features or
their interactions. We, therefore, hypothesised that this structure could be
approximated as a random walk starting from each feature and walking in
the feature graph, usingNode2vec biased randomwalk75. In thisway,we can
explore the locality of each feature and its interactions.

LetX 2 Rm× n be an input dataset.We define the feature graphG and
its adjacency matrix M 2 Rn× n in the following way. The nodes in G
representX’s features, and the edges exist if there is a similarity between two
features i∈ {1,…,n} and j∈ {1,…,n}. In otherwords, if the cosine similarity
between the features i and j inX is higher than 0.5 or less than−0.5,Mij = 1,
otherwiseMij = 0.The cosine similarity between two features is calculatedby
treating each feature as a vector of its values across all data instances. We
thenperform rNode2vec randomwalks of t steps for eachnode in the graph
G (wedidaparametric search for r and t and found that three andfive are the
best values, respectively).Weconsidered amatrixA∈ {0, 1}n×r, wheren is the
dataset features and r is the numberof randomwalks. For the randomwalk j
if the node i is present in the random walk j, Aij = 1, otherwise Aij = 0. This
process is described in Fig. 1C, D and Algorithm 1.

Algorithm 1. Generate graph and perform random walks.

In a classical fully connected FFNN, each neuron can be considered a
walk that connects this neuron to each node in the feature graph (Fig. 1C),

thus learning a global approximation for the whole feature graph. Instead, a
node in the sparse layer of our sTabNet, obtained by a random walk, is
connected to relevant nodes and thus is learning a local approximation for the
feature graph. Moreover, since we are using Node2vec, we can tune and
control howbig its locality is andhowmuchof the locality of a featurewewant
to explore. Each neuron of the network specialises in a certain set of features
(locality of the feature graph). This process reduces the impact of noise and
irrelevant features. In fact, this enforced sparsity is making the model more
robust to learning spurious correlations, which is a main cause of overfitting.

We also note that, while simple similarity-based clustering (e.g.
cosine+ k-means) can identify first-order relationships among features, it
fails to capture multi-hop contextual dependencies that often underlie bio-
logical interactions. Node2Vec provides a principled way to encode these
higher-order associations through random walks, yielding feature embed-
dings that preserve both local and global structure. This richer representation
leads to more biologically coherent feature neighbourhoods and, conse-
quently, more meaningful sparse connectivity patterns. To test our hypoth-
esis that a random walk is a good approximation for domain knowledge
connectivity, we used the benchmark datasets described by ref. 7 and focused
on datasets with more than 20 features and fewer than 100 K examples. We
built the sparse matrix A as described above; we performed three random
walks of size 5 for each feature. We compared the sTabNet accuracy with
XGBoost and logistic regression. Figure 4 shows the result of the training.

We also performed an ablation study. We added another attention
layer after the sparse layer to study which neuron is more effective for our
architecture. We extracted the attention weight (associated with each neu-
ron) and conducted 100 different splits to account for the random walk
variability, tracking which nodes were associated with the highest attention
weight. We then removed these features, measured the performance and
compared it with the model performance when we removed five features at
random. The results are shown in Fig. 4E-G, where we can see that the
performance deterioratedmore when randomwalk features were removed,
demonstrating that these random walk-identified features are more
important than other features. In other words, our study shows that the
random walk process is effective in identifying the most important con-
nections betweennodes and features,making our architecturewell-suited to
the problem at hand without using domain knowledge.

Data availability
Nouniquedatawereused in this study.All thedatausedare eitherpublished
or generated by simulation. The process is based on a standard Python
library (scikit-learn) for simulated data and is described in detail in the
methods. For the other experiments, we used only published data, and the
data are publicly accessible from the provided references.

Code availability
We are providing the code for the sparse neural network. As new imple-
mentations of the sTabNet become available, we will include them in the
repository. Code can be accessed at: https://github.com/Tabular-Research-
Group/sTabNet.
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