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Abstract 1 

Dockless bike-sharing (DBS) is an important sustainable urban transportation mode in many cities but 2 

faces challenges with disorderly parking management. This study aims to explore the presence of taste 3 

heterogeneity and substitution patterns in DBS users’ parking preferences and to determine how 4 

interpersonal variations, alternative-specific attributes, and socio-demographic characteristics affect 5 

parking choices. Based on stated-preference data collected in China, a mixed nested logit (Mixed NL) 6 

model is employed to account for both inter-alternative correlation and random taste heterogeneity. The 7 

results indicate that reducing the distance to parking and increasing monetary fines are more effective in 8 

discouraging disorderly parking than offering incentives for orderly parking or adjusting parking fees. 9 

Social influence also plays a critical role, as users are more likely to park disorderly when they observe 10 

others doing so. Meanwhile, the research also reveals that users are willing to pay an average of 0.8 CNY 11 

to reduce the distance to parking by 100 metres, and are willing to accept on average an additional 58 12 

metres of the distance to parking in exchange for 10 minutes of free riding time. These insights into DBS 13 

users’ parking behaviour enhance the understanding of the effectiveness of possible policy interventions 14 

and offer a valuable reference for developing future management strategies. 15 

Keywords dockless bike-sharing; parking behaviour; mixed GEV model; taste heterogeneity; inter-16 

alternative correlations; stated choice experiment  17 



Zhang, Hancock, Hess, and Jia  

3 
 

1. Introduction  1 

Given the global drive towards a low-carbon future, sustainable transportation has become essential for 2 

reducing emissions and improving air quality. One prominent solution for promoting low-emission urban 3 

travel is the development of cycling systems, which provide an eco-friendly and efficient alternative to 4 

motorised transport. Notably, dockless bike-sharing (DBS), also known as free-floating bike-sharing, has 5 

rapidly expanded worldwide in recent years. By offering users the flexibility to pick up and drop off bikes 6 

anywhere without relying on fixed docking stations (Zhang et al., 2019), DBS presents significant 7 

advantages over traditional station-based public bicycle systems. 8 

China, as one of the pioneers of DBS systems, operated approximately 15 million bicycles with an 9 

average of 47 million daily orders nationwide by the end of 2021 (China Road Transport Association, 10 

2023). DBS has played an important role in easing urban traffic congestion and addressing the ‘last mile’ 11 

challenge in public transportation. However, it has also introduced a new challenge. Due to the limited 12 

parking resources that cannot quickly adapt to the expansion of DBS deployment, disorderly parking has 13 

become a widespread issue in China (Su et al., 2020; Zhang et al., 2019). In high-demand locations such 14 

as subway stations, office areas and commercial complexes, insufficient parking capacity often leads to an 15 

accumulation of bicycles, resulting in problems such as encroaching on pedestrian and cycling spaces and 16 

occupying restricted areas (Wang et al., 2021a, 2021b; Tang et al., 2024), as shown in Fig. 1.  17 

   

(a) Parking blocking sidewalks (b) Parking occupying pedestrian crossing (c) Parking in restricted area 

Fig. 1. Examples of disorderly parked DBS in Beijing, China (Photos: author) 18 

Similar problems have also emerged in other countries, such as Austria, Singapore, the UK, the US, and 19 

Australia, leading to negative public perception and increased regulatory interventions (Laa and 20 

Emberger, 2020; Cai et al., 2023; He and Zhang, 2024). In response to stricter regulations for DBS 21 

established in some cities, such as Singapore, Vienna, Oxford, and Melbourne, some operational 22 

companies chose to exit the market because of rising costs (Laa and Emberger, 2020). Amsterdam opted 23 

to impose a temporary ban on all DBS systems in 2017 specifically due to excessive use of private bike 24 

parking spaces (O'Sullivan, 2017). These phenomena illustrate that disorderly parking not only negatively 25 

affects cyclists, pedestrians as well as the city’s appearance, but also severely impacts the sustainability of 26 

shared-micromobility systems. 27 

Understanding users’ parking preferences is crucial for designing more effective interventions targeting 28 

the root causes of disorderly parking. Few studies have examined how users' socioeconomic 29 

characteristics, psychological factors, and environmental factors influence the decision between 30 

disorderly and orderly parking (Wang et al., 2021a, 2021b; Huang et al., 2023; Wang et al., 2023). 31 

Several policy interventions have been suggested, such as offering rewards for orderly parking behaviour, 32 

imposing penalties for disorderly parking behaviour, and enhancing public awareness regarding orderly 33 
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parking practices (Su et al., 2020; Gao L. et al., 2021; Tang et al., 2024). However, due to limitations in 1 

research methods, most studies have only highlighted the effect of incentives in promoting orderly 2 

parking behaviour, but few have investigated what the most efficient level of incentives is. Identifying the 3 

optimal incentive is crucial for achieving the desired behavioural guidance while ensuring efficient 4 

resource use and maximizing impact. Additionally, there has been a lack of in-depth exploration into the 5 

possibility of taste heterogeneity among different individuals. In the context of car parking, taste 6 

heterogeneity has been shown to be a major factor in parking type choice, influencing the impact of 7 

substantive factors such as access, search, and egress time, as well as attitudes toward potential fines for 8 

illegal parking (Hess and Polak, 2004). Accordingly, exploring taste heterogeneity in the influences of 9 

different factors and policy interventions on parking preferences among DBS users would be valuable in 10 

obtaining a more accurate understanding of user behaviour. 11 

This paper aims to fill the research gap by examining the presence of deterministic and random taste 12 

heterogeneity in users’ preferences and quantifying the distribution of the values users place upon 13 

different utility factors influencing parking choices. To achieve this, we first conducted a stated 14 

preference experiment, enabling the analysis of various attributes that might impact users’ behaviour, and 15 

then employed a mixed nested logit model, which allows for both interpersonal random taste 16 

heterogeneity and inter-alternative correlations, to explore the extent to which individual characteristics 17 

and alternative-specific attributes influence users’ parking decisions and how this varies among 18 

individuals.  19 

The study contributes to the literature in two key ways: (1) Our results reveal the presence of 20 
deterministic and random taste heterogeneity in DBS users’ parking preferences and quantify the impact 21 
of the random variation on coefficient estimates for specific attributes (e.g., proximity to designated 22 
parking areas, perceived behaviour of other users, potential rewards, fines, and parking fees). (2) By 23 
evaluating the effectiveness of policy interventions and estimating the marginal rate of substitution (e.g., 24 
willingness to pay for reduced distance to parking, the trade-off between rewards and the distance to 25 
parking), this study generates insights for policymakers and operators seeking to promote orderly parking. 26 
Although the present paper focuses solely on the DBS system, we strongly believe that the observations 27 
are also applicable to other dockless shared-micromobility systems, such as shared e-scooters and shared 28 
e-bikes, which experience similar disorderly parking problems (Liazo et al., 2022; Meng et al., 2024). 29 
The remainder of this paper is organised as follows. Section 2 provides a review of existing studies on 30 

DBS parking challenges and management. Section 3 introduces the stated choice experiment design and 31 

data collection process. Section 4 describes the applied modelling framework. Section 5 presents and 32 

discusses the estimation results and the marginal rate of substitution, such as willingness to pay and value 33 

of time. Section 6 discusses the implications and limitations of our work and presents the conclusions. 34 

2. Literature review  35 

2.1. Parking management strategies for DBS  36 

Existing literature has proposed various parking management strategies for dockless bike-sharing (DBS) 37 

systems, which are summarised in Table 1. Considering that DBS parking problems are largely driven by 38 

insufficient parking supply, previous studies have primarily addressed these challenges from planning and 39 

operational perspectives, which can be regarded as a supply-side approach. Establishing parking spots 40 

that match demand is a critical management strategy that has been widely studied (Zhang et al., 2019; 41 

Hua et al., 2020; Arif and Margellos, 2022). Hua et al. (2020) used trip data from Mobike and the 42 

dockless bike-sharing survey in Nanjing to estimate parking demand, then applied clustering methods to 43 

identify virtual stations where bikes tend to congregate. Arif and Margellos (2022) developed a scenario 44 
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optimization model to jointly determine the capacities and locations of parking spots, accounting for 1 

uncertainties in parking demand and points of interest within the area. Electric fence technology is 2 

considered an effective method to regulate users’ parking behaviour. Zhang et al. (2019), Liazo et al. 3 

(2022) and Cai et al. (2023) propose methodological frameworks to optimize electric fence planning, with 4 

the aim of maximizing parking demand coverage. However, demand-based parking spot optimization 5 

strategy has some limitations. For example, inaccurate predictions of parking demand can lead to failures 6 

in matching supply with actual needs (Meng et al., 2024). Furthermore, this approach largely overlooks 7 

parking compliance, i.e., even with sufficient parking facilities, users may still choose to park disorderly 8 

due to inconvenience or the absence of mandatory enforcement (Si et al., 2024). While geo-fencing 9 

techniques can promote orderly parking by preventing users from locking bicycles outside designated 10 

parking areas, the high infrastructure costs (Cai et al., 2023) limit broad adoption, and issues with position 11 

recognition accuracy may still allow disorderly parking (Wang et al., 2019). 12 

Another key strategy to promote the balance between parking supply and demand is the repositioning of 13 

DBS systems. There is a considerable amount of current research on this topic, which can be divided into 14 

two types: static bicycle repositioning problems (SBRP) and dynamic bicycle repositioning problems 15 

(DBRP) (Liang et al., 2024). SBRP typically rebalances stations overnight and cannot explicitly respond 16 

to demand fluctuations that occur during the day (Pal and Zhang, 2017; Du et al., 2020). DBRP is used to 17 

match travelers’ dynamic parking and pick-up demand fluctuations during the daytime (Tian et al., 2020; 18 

Cheng et al., 2021; Zhou et al., 2023; Liang et al., 2024). Tian et al. (2020) developed a flow-type task 19 

window to fit the strong time-sensitive demand fluctuation, which could help complete each rebalancing 20 

within an average of 4 minutes. Liang et al. (2024) proposed a general mixed-integer programming model 21 

for multi-period rebalancing problems and simulated 1-minute time-slots (a level of detail fine enough to 22 

approximate real-time demand) to evaluate the performance of the proposed method. Although previous 23 

studies have done a lot of work to enable the supply to match real-time demand via rebalancing strategies, 24 

there is still a lot of demand lost (Tian et al., 2020; Liang et al., 2024). Additionally, rebalancing measures 25 

are often constrained by DBS companies’ operational cost controls and the limited availability of labor 26 

(Wang et al., 2023).  27 

TABLE 1 28 

Summary of parking management strategies for DBS 29 

Research category Approaches Literature 

Parking spots 

planning 

Parking facility planning Hua et al., 2020; Arif and Margellos, 2022 

Electric fence planning  Zhang et al., 2019; Liazo et al., 2022; Cai et al., 2023 

Bicycle repositioning Static bicycle repositioning Pal and Zhang, 2017; Du et al., 2020 

Dynamic bicycle 

repositioning  

Tian et al., 2020; Cheng et al., 2021; Zhou et al., 2023; 

Liang et al., 2024 

User-based strategies Incentive-based approaches Chiariotti, 2020; Cheng et al., 2021; Fukushige et al., 

2022 

 Penalty-based approaches Bao et al., 2023 

Parking spots planning and bicycle repositioning strategies can balance parking supply and demand to 30 

some extent, helping to mitigate disorderly parking caused by insufficient parking spaces. However, it 31 

does not directly regulate users’ parking behaviour. Some studies have explored incentive-based 32 

approaches (Chiariotti, 2020; Cheng et al., 2021; Fukushige et al., 2022), using incentive measures to 33 

encourage DBS users to rent bicycles in surplus stations or return bikes to deficient stations. Fukushige et 34 

al. (2022) proposed a potentially cost-effective strategy for rebalancing DBS by offering incentives to 35 

users, either to walk farther to access a bicycle (origin-based incentives) or to bring a bicycle to an 36 
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undersupplied area (destination-based incentives). Their findings suggest that users are willing to walk an 1 

additional 3.8 minutes per dollar (around 0.52 minutes per CNY) at origins and 4.2 minutes per dollar 2 

(around 0.58 minutes per CNY) at destinations in response to such incentives. Bao et al. (2023) suggested 3 

a strategy that integrates parking infrastructure and penalties, and evaluated the impact of punitive 4 

measures on promoting standard parking. 5 

TABLE 2 6 

Previous work on DBS users’ parking behaviour or intention 7 

Research Methods Literature Analysis Methods Key findings 

Rating scale survey 

(intentions) 

 

Zhao and 

Wang (2019) 

Hierarchical 

regression analysis 

⚫ Attitude, subjective norm, social norms and perceived 

behavioural control influence DBS users’ parking 

intention. 

Wang et al. 

(2021a) 

Ordered logit model  ⚫ Social norms, reciprocity, communication 

responsibility, and institutional environment influence 

proper DBS parking intention. 

Wang et al. 

(2021b) 

Ordinary Least 

Squares  

⚫ Descriptive social norms influence disorderly parking 

intention. 

Wang, M. et 

al. (2023) 

Partial least squares 

(PLS-SEM)  

⚫ Perceived invulnerability promotes disorderly parking 

intention. 

Rating scale survey 

(behaviours) 

Jiang et al. 

(2019) 

Factor analysis ⚫ Factors such as user self-discipline and parking space 

influence DBS disorderly parking behaviour. 

Wei et al. 

(2022) 

Principal component 

analysis 

⚫ Measures such as co-enhanced standardised parking or 

the improvement of parking facilities can help relieve 

disorderly parking. 

Huang et al. 

(2023) 

Process macro model ⚫ Rewards are more effective than punishments in 

promoting orderly parking. 

⚫ Injunctive norms show a stronger influence than 

descriptive norms.  

Tang et al. 

(2024) 

Structural equation 

model (SEM) 

⚫ Punishment, personal norm, and descriptive norm 

positively influence users’ orderly parking behaviour. 

Si et al. 

(2024) 

Bootstrap and 

regression analyses 

⚫ Both economic incentives and punitive measures 

increased DBS users’ willingness to park correctly. 

⚫ Punitive measures were marginally more effective than 

incentives. 

Stated preference 

(SP) survey 

 

Gao L. et al. 

(2021) 

Mixed Logit model ⚫ Both positive and negative incentives can encourage 

DBS users to park legally.  

⚫ Users’ heterogeneous characteristics could exert 

influences on the effect of policy compliance.  

Bao et al. 

(2023) 

Binary logistic model ⚫ Factors predicting parking compliance included   

gender, age, occupation, usage behaviour, and travel 

preferences.  

Field experiments Su et al. 

(2020) 

Logistic and probit 

models 

⚫ Warning messages and monetary incentives shifted 

users’ parking behaviour more than social norm 

interventions.  

Revealed preference 

(RP) method 

Wang, Y. et 

al. (2023) 

Spatial clustering and 

decision trees methods 

⚫ There is significant spatiotemporal heterogeneity in 

inconsiderate parking.  

⚫ Inconsiderate parking behaviour is influenced by riding 

distance, as well as the density of surrounding catering 

service places, lifestyle services, sports and leisure 

places, hotels and hostels. 

2.2. User parking behaviour in DBS system 8 

Studying users’ parking behaviours is essential for developing effective parking management policies to 9 

address DBS parking problems. Table 2 provides insights into the related studies on users’ parking 10 

behaviours and intentions. Most of them have examined the factors influencing users’ choices and 11 
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preferences between disorderly and orderly parking (Wang et al., 2021a, 2021b; Wang, M. et al., 2023; 1 

Wang, Y. et al., 2023; Bao et al., 2023; Huang et al., 2023; Tang et al., 2024). For example, Wang et al. 2 

(2021a) identified the lack of a shared definition of ‘orderly parking’ as the most significant factor 3 

affecting DBS parking, alongside social norms, reciprocity, communication responsibility, and the 4 

institutional environment. Wang et al. (2021b) further demonstrated that descriptive social norms shape 5 

users’ attitudes toward orderly parking directly and indirectly, and then influence the orderly parking 6 

intention. Tang et al. (2024) proposed that the severity and certainty of punishment, along with personal 7 

and descriptive norms, positively affect users’ attitudes toward orderly parking, which, in turn, influence 8 

their parking behaviour. Other factors, such as past parking behaviour (Wang, M. et al., 2023a), 9 

socioeconomic characteristics (Wang et al., 2021a, 2021b; Bao et al., 2023; Wang, M. et al., 2023), DBS 10 

usage patterns (Bao et al., 2023), and the built environment (Wang, Y. et al., 2023) have also been shown 11 

to significantly influence parking behaviour.  12 

Additionally, few studies have evaluated the influence of behaviour interventions aimed at addressing 13 

disorderly parking (Su et al., 2020; Gao L. et al., 2021; Si et al., 2024). Su et al. (2020) used a randomised 14 

field experiment to assess the effectiveness of warning messages and monetary incentives in promoting 15 

orderly parking behaviour, finding that both interventions improved compliance. Similarly, Si et al. 16 

(2024) explored the impact of penalties and incentives on user compliance, showing that penalties were 17 

more effective in encouraging orderly parking within designated electronic fences. Gao L. et al. (2021) 18 

established a mixed logit model to determine how positive and negative incentive measures affect parking 19 

behaviour, demonstrating that monetary rewards are more effective at promoting orderly parking than 20 

financial penalties.  21 

2.3. Research gap 22 

Understanding parking behaviour is essential for DBS parking management, since users’ compliance with 23 

parking regulations directly impacts the effectiveness of planning and operational measures. However, 24 

research focusing on DBS usage from a behavioural perspective has received relatively limited attention, 25 

leaving notable gaps that call for further exploration. 26 

Firstly, the possibility of explained and unexplained taste heterogeneity among users has been widely 27 

ignored in previous studies on DBS parking behaviour. Similar to other decision-making behaviour, 28 

individuals show significant differences in their responses to changes in various attributes of a given 29 

alternative within the specific parking context, and neglecting these differences may lead to bias and 30 

poorer model fit (Hess and Polak, 2004). Only one study by Gao L. et al. (2021) has considered random 31 

taste heterogeneity in the model, indicating that the impact of factors such as travel purpose, gender, 32 

number of companions, and willingness to incur penalties or accept rewards varies among individuals. 33 

However, the deterministic and random taste heterogeneity in initial preferences for specific parking 34 

alternatives, as well as in responses to alternative-specific attributes, have not been adequately explored. 35 

Secondly, past studies were mainly based on rating scale survey to identify the factors influencing parking 36 

intention or behaviour, and to analyse the relationships between them (Huang et al., 2019; Jiang et al., 37 

2019; Zhao and Wang, 2019; Wang et al., 2021a, 2021b; Wei et al., 2022; Wang, M. et al., 2023; Si et al., 38 

2024; Tang et al., 2024). However, this method have certain limitations. For instance, it collects 39 

respondents’ attitudes or preferences toward specific items, but it lacks contextualization and the process 40 

of choice trade-offs. Regarding other methods, field experiments (Su et al., 2020) allow for the direct 41 

observation of behaviour in controlled settings but cannot fully account for variations in attributes. The 42 

RP method (Wang, Y. et al., 2023) relies on respondents’ observed choices or previous behaviour, 43 

limiting the ability to explore attributes or alternatives that do not exist (Helveston et al., 2018). Few 44 
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studies have employed the SP survey. There is a lack of sufficient understanding of users’ responses to 1 

new parking alternatives or attributes that emerge under policy interventions. 2 

Thirdly, as proposed by Su et al. (2020), exploring the relationship between the value of the reward and 3 

the distance people are willing to walk or the time they are willing to spend would be valuable for setting 4 

appropriate incentive prices. However, no research has been conducted in this area to date. 5 

3. Survey and data  6 

3.1. The definition of orderly and disorderly parking for DBS and its current status in China 7 

As of now, there is no standardised definition of orderly and disorderly parking for DBS in both academic 8 

and operational fields (Wang et al., 2021a; Heinen and Buehler, 2019). Jiang et al. (2019) and Wang et al. 9 

(2021a) provided a broader definition of disorderly parking as parking outside the designated areas, while 10 

Gao L. et al. (2021) defined it more specifically as occupying a bicycle lane, sidewalk, or walkway for the 11 

blind, as well as overcrowded parking when legal parking spaces are fully occupied. Su et al. (2021) and 12 

Si et al. (2024) further considered whether bicycles within designated areas were properly placed, taking 13 

into account their positioning and alignment. Different cities or districts in China have established 14 

specific definitions of disorderly parking based on their unique conditions and management objectives. 15 

For example, some places have implemented geo-fencing technology, using GPS to restrict users to end 16 

rides only in designated areas to promote orderly parking, with parking outside the geo-fenced boundaries 17 

considered disorderly (Zhang et al., 2019). In contrast, in places lacking designated parking areas, the 18 

definition of disorderly parking is more ambiguous (Wang et al., 2021a).  19 

In typical scenarios, bicycle parking resources are limited and dispersed. The nearest parking areas to 20 

high-traffic destinations, such as busy public transportation stations and work, educational or residental 21 

locations, are often insufficient to meet demand (Van der Spek and Scheltema, 2015; Heinen and Buehler, 22 

2019). Without enforced requirements, DBS users want to park their bicycles as close as possible to the 23 

destination and lack adequate motivation to park bicycles in more distant parking areas, leading to the 24 

accumulation of bicycles near the destinations. This results in bicycles overflowing onto sidewalks, 25 

bicycle lanes, and even motor lanes. Accordingly, this research is focused on addressing this critical issue. 26 

We proceeded under the assumption that clearly designated parking areas exist, and define orderly 27 

parking as parking within designated parking areas, focusing specifically on the situation where the 28 

nearest designated parking area to the destination is saturated. 29 

3.2. Survey design 30 

The survey was divided into four components, collecting data on: 1) current DBS usage and parking 31 

information, such as riding frequency, average riding time, past parking behaviour, past penalty 32 

experiences for disorderly parking, and reasons for past disorderly parking; 2) responses to stated choice 33 

(SC) tasks; 3) responses to self-report scale statements; and 4) respondents’ socio-demographic 34 

characteristics, including gender, age, education, income, occupation, and bike ownership. Based on the 35 

objectives here, only stated preference (SP) data and socio-demographic information were employed in 36 

the modeling process. The following section outlines the process involved in designing the SC 37 

components. 38 

3.2.1. SP scenario design 39 

We used SC tasks in the survey to understand how people react to different parking options and 40 

management methods that do not currently exist in real parking scenarios. In the questionnaire, we 41 

presented respondents with hypothetical decision-making scenarios, which were based on a typical DBS 42 
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travel situation. Detailed explanations and a graphical illustration were provided, as shown in Fig. 2. The 1 

text was originally written in Chinese for data collection and then translated into English for illustration in 2 

this paper. Different from previous studies, the designated paid parking area was also included as one of 3 

the parking options. Although paid parking areas are currently uncommon in practice and primarily used 4 

for private bicycle storage, it remains valuable to explore as a potential management strategy for DBS and 5 

allows us to evaluate how users trade off between cost and convenience. Fig. 3 gives an example of the 6 

SC tasks.    7 

 8 
Fig. 2. Illustration of the choice scenario in SP survey. 9 

 10 
Fig. 3. Example of SC tasks in the questionnaire. 11 

3.2.2. Experiment design 12 

The SC experimental design was developed using the Ngene software (ChoiceMetrics, 2018). SC tasks 13 

include three parking alternatives: 1) free parking area, 2) paid parking area, and 3) disorderly parking, 14 

which individuals were asked to choose between. All three alternatives were labeled in the experiment, 15 
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meaning that the label itself conveys information to respondents, allowing for the estimation of label-1 

specific preference parameters and constants (Louviere et al., 2000). 2 

Based on a systematic review of the literature (Fukuda and Morichi, 2007; Wang et al., 2021a; Gao et al., 3 

2021b), as well as the specific objectives and scope of this research, five attributes were ultimately 4 

included, which are summarised in Table 3. Not every attribute applies to all three alternatives. 5 

Specifically, “distance to parking” serves as a general attribute for the two orderly parking alternatives. 6 

“Reward” is linked to the free parking area, while the “parking fee” attribute pertains to the paid parking 7 

area. Additionally, the “fine” and the “other people” attributes are associated with the disorderly parking 8 

alternative.  9 

Increasing the number of levels leads to greater design complexity and a higher number of choice tasks 10 

(Louviere et al., 2000). To balance statistical efficiency with respondents’ cognitive burden, three levels 11 

were assigned to attributes such as distance to parking, parking fee, and the number of other people 12 

parking disorderly. For the reward and fine attributes, an explicit zero level was included to enable the 13 

estimation of presence-versus-absence effects on choice behaviour. All of the attribute levels were 14 

determined such that they extended beyond current observed real-world levels while varying within 15 

reasonable ranges, providing sufficient variation needed to estimate the attribute’s sensitivity, while also 16 

ensuring feasibility and realism for respondents in the survey (Song et al., 2018). To better reflect 17 

practical conditions and avoid dominated alternatives, two constraints were applied to the attribute levels 18 

in the experiment design: (1) the parking cost in the paid parking area must be lower than the fine for 19 

disorderly parking when the fine is non-zero, and (2) the distance to the free parking area must exceed the 20 

distance to the paid parking area. 21 

TABLE 3 22 

Overview of attributes and their levels  23 

Attributes  Attribute Descriptions 
Another designated 

free parking area 

Designated paid 

parking area 
Disorderly parking 

Reward The free riding coupon for parking in 

a more distant free parking area (min) 

0/ 10/ 20/ 30 - - 

Distance to 

parking 

Additional distance needed to park in 

another designated free or paid 

parking area (m) 

200/ 500/ 800 100/ 200/ 300 - 

Parking fee Charges imposed by the designated 

paid parking area (CNY) 

- 0.5/ 1/ 2 - 

Fine Monetary penalties automatically 

deducted for disorderly parking bikes 

(CNY) 

- - 0/ 1/ 3/ 5 

Other people Number of other users who disorderly 

park bikes outside designated parking 

areas. 

- - No others/ 

Low (≤10 people)/ 

High (＞10people) 

Note: CNY/USD≈0.138 during survey period 24 

It is important to note that this research adopts the free riding time coupon as the reward to encourage 25 

users to park bicycles in designated parking areas, rather than relying on the monetary reward frequently 26 

used in previous studies (Su et al., 2020; Wang et al., 2021a, 2021b; Gao et al., 2021b). In practical 27 

situations, various factors impacting the financial sustainability of monetary incentives, such as cost 28 

implications and budget constraints, could significantly influence DBS companies’ willingness and ability 29 

to implement monetary rewards for orderly parking. In contrast, non-monetary incentive types, such as 30 

free riding time coupons, appear to be easier to implement and have been increasingly explored by DBS 31 
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companies (Beijing News, 2024) and in some academic studies regarding DBS users’ choices in recent 1 

years (Shen et al., 2018; Li et al., 2019; Kirkman, 2019; Si et al., 2024). In the SC tasks, we presented 2 

respondents with both the distance to parking and the corresponding round-trip time to the destination, 3 

calculated based on average speeds. It is assumed that cycling from the destination to the designated 4 

parking area would be at an average speed of 10 km/h (see Long and Zhao, 2020 for the statistical 5 

average cycling speed of bike-sharing in Chinese cities), while the return to the destination would be on 6 

foot at an average speed of 4 km/h (see Romanillos and Gutierrez, 2019; Jia et al., 2022).  7 

A D-efficient design (Bliemer and Rose, 2024) was used to achieve a low D-error, corresponding to a 8 

higher level for the Fisher information, which facilitates more precise parameter estimates. A swapping 9 

algorithm (ChoiceMetrics, 2018) was applied to minimize D-error and maximize attribute level balance. 10 

Due to the absence of prior information on the coefficients, we initially conducted a pilot study using non-11 

informative priors (small positive or negative values) (Rose and Bliemer, 2009; Bliemer and Collins, 12 

2016). A total of 50 samples were collected in the pilot study, which was conducted in June 2024. The 13 

final experimental design was subsequently generated based on the information obtained from the pilot 14 

survey, resulting in the design of 12 SC tasks for each respondent. The S-estimate, which indicates the 15 

smallest sample size needed for all parameters to be statistically significant, was calculated to be 200 in 16 

the final D-efficient design, suggesting that a sample size above 200 is likely adequate to draw 17 

meaningful conclusions (Rose and Bliemer, 2013). 18 

3.3. Data collection  19 

The survey was implemented using an online questionnaire developed using the online tool Credamo 20 

(https://www.credamo.world/#/) in July 2024. Credamo is a professional survey platform in China with a 21 

commercial panel of over 3 million members (Credamo, 2022), covering all provinces and administrative 22 

regions. It has been widely used in numerous studies (Tang et al., 2023; Si et al., 2024). We imposed a 23 

strict constraint on the recruited samples, restricting them to individuals who had previously used DBS. 24 

Participants could receive a bonus of CNY 2 (approximately USD 0.27), which would be credited to their 25 

electronic accounts. The average response time for all respondents is about 8 minutes. In total, 703 26 

participants completed the survey. After reviewing the survey responses, the final analysis included 600 27 

valid responses, following the manual exclusion of 103 respondents with dubious survey responses, 28 

which were excluded based on specific criteria, such as instructed response items (Meade and Craig, 29 

2012), response time (Huang et al., 2012) and long strings of the same response category (Johnson, 2005). 30 

The effective response rate was 85%.  31 

3.4. Descriptive statistics 32 

A detailed summary of the respondents’ socio-demographic (e.g., gender, age, income, education level, 33 

occupation, bike ownership) and DBS usage characteristics (e.g., usage frequency, average riding 34 

duration, city of residence), including income distribution, is provided in Appendix 1. Among those who 35 

provided valid responses, 58% were female. Young people made up the majority of respondents, with 36 

60% aged 21-30 and 23% aged 31-40, which is similar to the user profile of DBS reported by iiMedia 37 

Research (2022), where 81% of users are aged between 22 and 40. The sample displayed a relatively high 38 

level of academic achievement, with 70% holding a bachelor's degree and an additional 19% having a 39 

master's degree or higher, aligning with the educational characteristics of shared mobility users reported 40 

in the Green Development Report on Shared Mobility (2017). The majority of respondents (72%) were 41 

employed full-time, while 22% were students. Monthly income levels among respondents were relatively 42 

evenly distributed across the sample.  43 
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Regarding DBS usage, 85% of respondents used DBS at least once per week. Most respondents (61%) 1 

reported an average riding duration of 11-20 minutes, which was consistent with the observations from 2 

WRI (2020). Additionally, CAUPD (2024) shows that the average duration of a single bike ride is 3 

approximately 12.1 minutes in 2024. Overall, the demographic and usage characteristics of the sample in 4 

this survey matched the user profile of China’s DBS market as described in existing reports, indicating 5 

the representativeness of the sample. 6 

Although approximately 22% of respondents are located in cities where geo-fencing technology has been 7 
implemented, its potential influence on their acceptance of and responses to the choice scenario, which 8 
was designed without considering geo-fencing, is expected to be limited. This is because geo-fencing in 9 
these cities has typically been implemented only in a small portion of the city area, while free-floating 10 
parking remains permitted in most parts of the city. In addition, some cities have simultaneously adopted 11 
an incentive-based approach as part of their parking management strategy, alongside geo-fencing. Given 12 
the clearly described scenarios in the SP survey, the perceived impact of geo-fencing on the findings is 13 
considered negligible in this study. The choice proportions for free parking, paid parking and disorderly 14 
parking in the survey were 41%, 39%, and 20%, respectively. Despite being a hypothetical option not 15 
currently existing in real-world settings, paid parking exhibited a relatively high selection rate, suggesting 16 
that respondents regarded it as a valid alternative. 17 

4. Modelling framework  18 

4.1. Utility specification 19 

In our work, discrete choice models were estimated based on the principles of random utility 20 

maximization (McFadden, 1973), assuming that an individual will select the alternative that provides the 21 

highest utility. The random utility function Uni for alternative i for respondent n, consisting of a 22 

deterministic component Vni and a random component εni, is specified as shown in Eq. (1) 23 

nininnininini xVU  ++=+= ,                       
 

   (1) 24 

where δni represents the alternative specific constants (ASCs) capturing the average effect on utility of all 25 

factors not included in the model, xni are attributes associated with alternatives i as faced by respondent n, 26 

βn represents the weight or importance that respondent n attaches to the corresponding attribute in the 27 

choice process and can be positive or negative depending on the attribute. Relaxing the assumption of 28 

homogeneity across individuals, we can incorporate deterministic taste heterogeneity into the models by 29 

allowing for interactions between estimated parameters and individual socio-demographic characteristics. 30 

For example, δni can be written as a deterministic function of an observed vector 
nz  of individual 31 

characteristics (  nizini z+= , , where ωz,i represents the extent to which each individual characteristic 32 

influences the overall perception for different alternatives) (Bhat, 2000). In the case of a continuous 33 

interaction (see for example Hess et al., 2007; Axhausen et al., 2008), the interaction term could be 34 

expressed as 35 
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where 
nz  is the observed value for a given socio-demographic variable such as income for respondent 37 

n, z  gives the mean value across the sample population. The estimate of ηz,x gives the elasticity of the 38 

sensitivity to xi with respect to changes in zβ; if ηz,x is negative, an increase in zβ will lead to a decrease in 39 
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sensitivity towards xi, with the opposite applying in the case of positive values for ηz,x. βx captures the 1 

marginal utility of changes in attribute xi at the average value of zβ in the same population.  2 

4.2 MNL and NL model 3 

Assuming the random error terms εni to be identically and independently distributed (i.i.d.) across 4 

alternatives and respondents with a type I extreme value (or Gumbel) distribution, we developed a 5 

multinomial logit (MNL) model (McFadden, 1973) as the base. The probability of respondent n choosing 6 

alternative i from the set of alternatives J is then given by 7 

 

 

=

Jj
V

V

ni
nj

ni

e

e
P                                   (3) 8 

The restriction imposed by the MNL model on the distribution of random error terms leads to the 9 

independence from irrelevant alternatives (IIA) property, resulting in identical cross-elasticities between 10 

all pairs of alternatives (Wen and Koppelman, 2001). To address these limitations, we developed the 11 

nested logit (NL) model (Williams, 1997) within the closed-form generalised extreme value (GEV) 12 

framework (McFadden, 1978), which expands the MNL by offering more flexible specifications of error 13 

terms εni to handle correlations between alternatives. In the NL model, alternatives are divided into 14 

different nests (B1, B2…BK), and λk is used to measure the degree of independence in unobserved utility 15 

among alternatives within nest Bk. We would then have 0＜λk≤1, while a higher value of λk indicates 16 

greater independence and lower correlation among these alternatives (Train, 2009). The choice 17 

probability of respondent n choosing alternative i within nest Bk is given by Eq. (4), which can be 18 

decomposed into a marginal probability 
knBP  and a conditional probability 

kBniP | . 19 
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where 23 
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4.3. Mixed GEV models 25 

In order to capture potential random variations in respondents’ preferences, we developed mixed 26 

multinomial logit (MMNL) models (McFadden and Train, 2000). The most widely used formulation of 27 

the MMNL is based on random coefficients, which is referred to as the random-coefficients logit (RCL) 28 

model (Train, 2009). In our research, we considered three types of distributions for coefficients: normal, 29 

log-normal, and negative log-normal distributions. We assumed that ASCs follow a normal distribution, 30 

based on the a priori assumption that different individuals may perceive parking alternatives as either 31 

advantageous or disadvantageous, as expressed in Eq. (8), where θδ is a vector of parameters (including 32 

mean
i and standard deviation

i ) characterizing the distribution and ni  are the draws from the 33 

selected distribution for each respondent n. Similarly, we assumed the coefficient of the reward attribute 34 
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to follow a log-normal distribution, while those of distance to parking, parking fee, and fine to follow 1 

negative log-normal distributions, ensuring the positive or negative effects of these attributes, as shown in 2 

Eq. (9).  3 

  ( ) )1,0(~,| Nf ninii ii
  +=                        

 
   (8) 4 

( ) )1,0(~),exp(| Nf nxnxx xx
  +=                       (9) 5 

While the RCL model introduces random taste heterogeneity, it does not accommodate potential 6 

correlation among alternatives. Another formulation of the MMNL model is the error-components logit 7 

(ECL), which is conceptually different, yet mathematically equivalent to the RCL model (Ben-Akiva and 8 

Bierlaire, 2003, Hess et al., 2004; Train, 2009). Instead of assuming inter-individual variations in taste 9 

parameters, the ECL model introduces inter-alternative correlations by allowing certain alternatives to 10 

share common error components in their utility. The ECL can be implemented by assigning a dummy 11 

variable to each nest of alternatives. With K non-overlapping nests, the error component term can be 12 

expressed as 13 

𝜏′𝑛𝜑 = ∑ 𝜏𝑛𝑘𝑑𝑖𝑘
𝐾
𝑘=1 ,                              (10) 14 

where 𝜏𝑛𝑘~𝑁(0, 𝜎𝜏) is a random term with zero mean, shared by all alternatives in the nest k, and στ 15 

captures the magnitude of the correlation. dik=1 if the alternative i belongs to the nest k, and 0 otherwise. 16 
The terms in φ represent error components associated with each nest, defining the stochastic portion of 17 
utility along with εni.   18 

Although the MMNL model allows for both random taste heterogeneity and flexible substitution patterns, 19 
it still suffers from important issues of identification (Walker, 2001). Mixed GEV models have been 20 
shown to avoid the identification issues associated with MMNL models and offer advantages in 21 
computational efficiency (Hess et al., 2004; Haghani et al., 2015). Additionally, the Mixed NL model 22 
offers a computational advantage by reducing the number of random coefficients, while the ECL model 23 
requires an additional random terms to represent each separate nests (Hess et al., 2004; Haghani et al., 24 
2015). Accordingly, we developed a mixed nested logit (Mixed NL) model, which incorporates a 25 
correlation structure, enabling the evaluation of choice probabilities within the NL framework and 26 
calculating unconditional probabilities by integrating over the probability distribution of the coefficients. 27 
The unconditional probability for choosing alternative i is obtained by integrating Eq. (4) over the 28 
possible values of β weighted by its function Eq. (11). 29 
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          (11) 30 

5. Empirical analysis  31 

5.1. Specification procedure 32 

Five models were established using a step-wise approach. The MNL model was initially created as the 33 

basis for comparison, assuming that no correlation existed between the alternatives. We then estimated a 34 

NL model, incorporating a nesting parameter to account for potential heightened correlations among the 35 

two orderly parking alternatives. Following that, the model was extended to a RCL model, which 36 

included random parameters to accommodate interpersonal random taste heterogeneity. A MMNL 37 

incorporating random coefficients and error components, and a Mixed NL model, were finally estimated 38 

to simultaneously account for both inter-alternative correlations and random taste heterogeneity. It should 39 
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be noted that the MMNL model with both random coefficients and error components is referred to as the 1 

ECL model in this paper to distinguish it from the RCL model.  2 

For model identification purposes, the free parking area alternative was assumed as the base alternative 3 

for all models, with the corresponding alternative-specific constants (ASC) parameter fixed at 0. The 4 

attribute for the effect of the number of other people parking disorderly was dummy-coded and entered 5 

the utility functions as categorical variables to describe whether others were parking disorderly, with ‘no 6 

others’ set as the reference category (fixed at 0). Other attributes entered the utility function linearly. To 7 

identify sources of heterogeneity, possible deterministic taste heterogeneity in the parameters was tested 8 

by incorporating interaction terms. It was observed that accommodating deterministic heterogeneity found 9 

an improvement of model fit, as evidenced by all the selection criteria considered (Likelihood Ratio test, 10 

p < 0.001). Higher model fit indicators were found when interacting respondents’ gender and age with the 11 

ASC for the disorderly parking alternative, and respondents’ income with parking fee as a continuous 12 

interaction. Although incorporating riding frequency and duration covariates could offer meaningful 13 

insights, these variables did not yield statistically significant effects (see Appendix 2). Therefore, they 14 

were excluded from the final model in favor of model parsimony. Rather than exploring the interactions 15 

between the income characteristic and ASC for alternatives, we specified a continuous interaction term 16 

between income and parking fee to capture how sensitivity to parking fees varies across income. A 17 

negative value of the interaction parameter indicates that respondents with higher income are less 18 

sensitive to parking fees, and vice versa. It should be noted that the midpoint approach (Bhat, 1994; Von 19 

Fintel, 2007) was used to handle grouped and missing income data, enabling the estimation of the 20 

continuous interaction. Additionally, to account for potential correlation in unobserved utility 21 

components, we tested all theoretically valid nesting structures among the three alternatives. As shown in 22 

Appendix 3, the specification that grouped the free parking area and the paid parking area into an "orderly 23 

parking" nest exhibited the strongest substitution pattern between alternatives, so this nesting structure 24 

was adopted in the final NL and Mixed NL models.  25 

5.2 Estimation results 26 

All models in this paper were estimated in R using Apollo (Hess and Palma, 2019), with 500 MLHS 27 

draws (Hess et al., 2006) for numerical approximation of the MMNL integrals. The model selection 28 

criteria and estimation results for five models are presented in Table 4 and Table 5, respectively. Moving 29 

from left to right, goodness-of-fit gradually improves, as seen from the values of final LL, AIC, BIC, and 30 

Adjusted ρ2, indicating that the explanatory power of the models progressively increases with the rising 31 

specification complexity, while maintaining a good balance between model fit and complexity. The better 32 

performance of the Mixed NL model compared to the MNL, NL and RCL models could also be 33 

confirmed by likelihood ratio (LR) tests. For example, the LR test yields a value of 54.64 with a 34 

corresponding p-value of < 0.01 when comparing the Mixed NL and RCL models, indicating that the 35 

improvement in model fit is statistically significant. Specifically, the Mixed NL model outperforms the 36 

other models by allowing for both interpersonal variations in DBS parking preferences while also 37 

allowing for correlation between the orderly parking alternatives (Hess, 2004). Notably, the Mixed NL 38 

model achieves a goodness-of-fit nearly equivalent to (and marginally better than) that of the ECL model, 39 

which is consistent with the findings of Haghani et al. (2015). Moreover, the Mixed NL model 40 

demonstrated better performance in capturing the effects of key variables. In particular, it was able to 41 

reveal a significant difference between the coefficients for βother people low and βother people high, whereas the ECL 42 



Zhang, Hancock, Hess, and Jia  

16 
 

model failed to do so. Therefore, the following analysis will focus on the estimation results of the Mixed 1 

NL model. 2 

TABLE 4   3 

Model selection criteria of the DBS parking choice models 4 

Goodness–of–fit 

measures 

Multinomial 

logit 

Nested 

logit 

Random-coefficients 

logit 

Error-components 

logit 

Mixed nested 

logit 

Number of choice 

observations 
7200 7200 7200 7200 7200 

Number of estimated 

parameters 
10 11 16 18 18 

LL (final) -5591.88 -5572.85 -4667.5 -4641.59 -4640.18 

AIC 11203.75 11167.69 9367.01 9319.17 9316.35 

BIC 11272.57 11243.39 9477.12 9443.04 9440.23 

Adj. ρ2 0.2918 0.2941 0.4079 0.4109 0.4111 

Fig. 4 presents a graphical representation of the probability distributions of utility coefficients. Significant 5 

random interpersonal taste heterogeneity was identified for six coefficients: ASC for paid parking area 6 

alternative, ASC for disorderly parking alternative, reward, distance to parking, parking fee, and fine 7 

parameters. We assume that the ASCs follow a normal distribution. The mean estimates for ASCs of the 8 

paid parking area and disorderly parking alternatives are significantly negative, while disorderly parking 9 

ASC shows the lowest mean, suggesting a general preference for the free parking area over the paid one 10 

and disorderly parking is perceived most negatively. The standard deviation of the ASC for the disorderly 11 

parking alternative is relatively high, indicating the significant variability in respondents’ preferences for 12 

disorderly parking. Interaction terms further reveal that females and older individuals have an even 13 

stronger aversion to disorderly parking, which is consistent with Wang et al. (2021a) and Su et al. (2020), 14 

suggesting that socio-demographic characteristics significantly influence the overall perception of parking 15 

alternatives. 16 

The coefficient of reward is assumed to be log-normally distributed, while the estimated mean and 17 

standard deviation are both statistically significant. The sign of the coefficient is arbitrary when 18 

interpreting the direction of the effect, but it does influence the magnitude of the effect. Specifically, the 19 

more negative the mean parameter, the smaller the magnitude of the marginal utility, indicating lower 20 

sensitivity to the reward attribute. Given that previous research primarily evaluated monetary rewards as 21 

an incentive measure (Gao L. et al., 2021; Wang et al., 2021a, 2021b), this research demonstrates that 22 

offering free riding time coupons as rewards also significantly encourages users to park at more distant 23 

locations, although the effect is relatively modest. 24 

A negative log-normal distribution is employed for the coefficients of distance to parking, parking fee and 25 

fine. The mean and standard deviation of the three coefficients are all significant. As seen from the 26 

interaction term, individuals with higher incomes show lower sensitivity to parking fees. However, the 27 

significance of the ηincome, parking fee declines as model complexity increases, and becomes statistically 28 

insignificant in the Mixed NL model, which suggests that the taste heterogeneity for parking fees is 29 

mainly captured by the random component instead of the interacting covariate.30 
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TABLE 5   1 

Model estimation results for MNL, NL, RCL, ECL and Mixed NL models  2 

Parameters 
Multinomial logit Nested logit Random-coefficients logit Error-components logit Mixed nested logit 

Est. Rob. t_rat. Est. Rob. t_rat. Est. Rob. t_rat. Est. Rob. t_rat. Est. Rob. t_rat. 

Means of utility coefficients           

δfree parking area 0 — 0 — 0 — 0 — 0 — 

δpaid parking area -0.643  -8.08***  -0.557  -9.12***  -1.113  -8.75***  -1.116  -9.10***  -0.883  -8.98***  

δdisorderly parking -1.444  -5.38***  -1.187  -4.70***  -2.262  -4.52***  -2.095  -4.02***  -1.765  -4.16***  

ωfemale, disorderly parking -0.339  -2.70***  -0.319  -2.69***  -0.544  -1.84*  -0.602  -2.42**  -0.617  -2.73***  

ωage, disorderly parking -0.191  -2.31**  -0.187  -2.38**  -0.525  -3.05***  -0.599  -3.31***  -0.422  -2.96***  

βreward 0.030  14.93***  0.024  12.85***        

βdistance to parking  -5.583  -26.34***  -4.401  -16.00***        

βparking fee -0.898  -18.42***  -0.666  -12.25***        

ηincome, parking fee -0.144  -3.43***  -0.144  -3.38***  -0.104  -2.26**  -0.094  -2.23**  -0.083  -1.59  

βfine -1.341  -24.57***  -1.260  -24.18***        

βno others 0 — 0 — 0 — 0  — 0 — 

βother people 0.546  7.63***  0.560 8.47***  0.813  5.61***        

βother people low       0.846  5.45***  0.650  5.02***  

βother people high       0.831  4.81***  0.901  6.39***  

Standard deviations of utility coefficients           

𝜎𝛿paid parking area
     0.576  3.53 *** 0.537  3.14***  0.512  4.84***  

𝜎𝛿disorderly parking
     2.392  12.54***  -2.084  -12.20***  2.046  11.94***  

τorderly parking       1.124  3.64***    

Location parameters on log-scale           

𝜇𝛽reward
     -3.131^  -38.81***  -3.168^  -38.74***  -3.478^  -33.12***  

𝜇𝛽distance to parking
     2.287^^  53.14***  2.328^^  53.56***  2.025^^  29.52***  

𝜇𝛽parking fee
     0.456^^  7.70***  0.448^^  7.65***  0.165^^  1.96**  

𝜇𝛽fine
     1.260^^  13.49***  1.310^^  20.00***  1.075^^  13.44***  

Log-scale standard deviations           

𝜎𝛽reward
     -0.467^  -3.49***  -0.610^  -6.91***  0.690^  6.55***  

𝜎𝛽distance to parking
     -0.493^^  -9.95***  -0.491^^  -19.65***  -0.489^^  -16.44***  

𝜎𝛽parking fee
     

 

 

 

 

0.517^^  5.02***  -0.548^^  -9.09***  0.472^^  4.04***  
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𝜎𝛽fine
     -0.665^^  -7.00***  0.693^^  9.36***  -0.642^^  -9.33***  

Nesting coefficient           

λorderly parking   0.706  15.79***      0.657  13.31***  

Note: 1 
* Signify confidence at 90%, ** Signify confidence at 95%, *** Signify confidence at 99%. 2 
^ means the coefficient is log-normally distributed by assumption, ^^ means the coefficient is negative log-normally distributed by assumption. 3 
For coefficients assumed to follow a log-normal or negative log-normal distribution, the estimated parameters correspond to the location parameter on log-scale and log-scale 4 
standard deviation for the log-transformed coefficients (i.e., log(β) or log(-β)). These parameters define the log-normal probability density function, but do not represent the mean 5 
and standard deviation of the coefficients (i.e., β) themselves. 6 
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 1 

Fig. 4. Probability distribution for random utility coefficients estimated based on the Mixed NL model. 2 

The positive coefficient for the dummy variable representing other people’s behaviour implies that when 3 

others park disorderly, respondents are more likely to do the same. This can be explained by the theory of 4 

descriptive norms proposed by Cialdini et al. (1990), which suggests that individuals’ behaviour is guided 5 

by the perception of how other people behave in a given context. While many users believe that orderly 6 

parking is better for the environment and society, they may still park disorderly when observing others 7 

doing so (Fukuda and Morichi, 2007; Wang et al., 2021b). Compared with the other three models, the 8 

Mixed NL model revealed a significant difference between the coefficients for βother people high and  9 

βother people low, indicating that a higher number of people parking disorderly increases the utility of choosing 10 

disorderly parking more than a lower number does. It implies that, compared with low-perceived 11 

descriptive norms, high-perceived descriptive norms can lead to a greater level of moral disengagement, 12 

which has been supported by findings in other literature (Rinker and Neighbors, 2013; Zhao et al., 2017). 13 

The nesting parameter (λorderly parking) is significant at the 99% level of confidence and takes a value of 14 

0.657, implying a high correlation between the unobserved utilities of the free parking area and paid 15 

parking area alternatives. This correlation pattern is further supported by the significant variance of the 16 

error component term associated with these two alternatives in the ECL model. 17 

5.3. Analysis of policy intervention effectiveness 18 

For assessing the impact of changes in policy interventions, model predictions were conducted in Apollo 19 

(Hess and Palma, 2019), with the prediction algorithm set to perform 500 runs. We first generated 20 

forecasts based on the base values of the explanatory variables as specified in the SC experiment and 21 

subsequently predicted the new choice probabilities of each alternative at the observation level resulting 22 

from the percentage change in the values of five explanatory variables. The predicted probabilities of 23 

choosing specific alternatives under several policy interventions can be observed clearly, as shown in Fig. 24 
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5. It should be noted that no single base value is reported for each attribute in Fig. 5, as the relative 1 

changes are derived from all choice tasks, each of which is assigned different attribute values. The base 2 

values and their corresponding adjusted values after applying relative changes are provided in Appendix 3 

4. For example, in choice task 1, the distance to the free parking area is 800m, and a 30% reduction 4 

corresponds to a decrease of 240m. In contrast, in choice task 4, where the distance to the free parking 5 

area is 500 m, a 30% reduction corresponds to a decrease of 150m. In Fig. 5, relative changes ranging 6 

from −30% to +30% were applied to all choice tasks, and the choice probabilities represent the overall 7 

predicted changes aggregated across all tasks. 8 

 9 
Fig. 5. Choice probability under policy interventions based on the Mixed NL model. 10 

Reducing the distance to designated parking areas, whether paid or free, has been shown to reduce 11 

disorderly parking rates. Under the original scenario, the choice probabilities for the free parking area, paid 12 

parking area, and disorderly parking are 41%, 38%, and 21%, respectively. A 30% reduction in the distance 13 

to the free parking area results in a 3% decrease in the probability of choosing disorderly parking, while a 14 

30% increase in distance leads to a 2% rise. In comparison, reducing the distance to the paid parking area 15 

by 30% yields a 5% decrease in the probability of disorderly parking, whereas a 30% increase leads to a 1% 16 

rise. These results suggest establishing high-density DBS parking facilities, which enable users to access 17 

designated parking areas within a relatively short distance when the parking areas near the destination are 18 

fully occupied, have the potential to discourage disorderly parking behaviour. This finding aligns with 19 

Meng et al. (2024), which demonstrated a potential non-linear relationship between the density of shared 20 

scooter parking corrals and parking non-compliance rates. To further examine behavioural sensitivity, we 21 

calculated direct and cross choice elasticities in response to a 1% increase in each attribute, as shown in 22 

Table 6. The choice elasticities of the disorderly parking alternative in response to a 1% increase in the 23 

distance to the free and paid parking areas are 0.40 and 0.30, respectively, both lower than that of the free 24 

and paid parking alternatives. This indicates that while reductions in the distance to parking do help lower 25 

disorderly parking rates, the main shift in choice occurs between the free and paid parking alternatives. 26 
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Implementing monetary punitive measures can also help reduce parking non-compliance, which is 1 

consistent with Gao et al. (2021). More specifically, a 30% reduction in fines for disorderly parking 2 

increases the probability of such behaviour by 3%, while a 30% increase in fines results in a 2% decrease. 3 

The choice elasticity of disorderly parking with respect to a 1% increase in the fine is 0.36. In comparison, 4 

a 30% increase or decrease in rewards only leads to a 1% shift in the probability of disorderly parking, 5 

indicating a limited behavioural response to free riding reward changes. Among all the policy interventions 6 

examined, the choice elasticity of disorderly parking in response to changes in the reward is the lowest. 7 

TABLE 6 8 

Choice elasticities in response to a 1% increase in attribute values 9 

 distance to parking (free) reward distance to parking (paid) parking fee fine 

free parking area -1.40 0.18 0.50 0.35 0.04 

paid parking area 1.26 -0.14 -0.69 -0.45 0.14 

disorderly parking 0.40 -0.11 0.31 0.16 -0.36 

Furthermore, adjustments to parking fees exhibit the potential in influencing the probabilities of choosing 10 

free or paid parking alternatives, demonstrating the effectiveness of pricing mechanisms in influencing 11 

parking behaviour. However, they have weak impact on disorderly parking behaviour. The choice 12 

elasticity of disorderly parking with respect to a 1% increase in the parking fee is 0.16. 13 

Overall, only the choice elasticities of the free and paid parking alternatives in response to a 1% increase 14 

in the distance to the free parking area exceed 1, which can be considered relatively elastic. This suggests 15 

that users are sensitive to changes in the distance to free parking areas. In contrast, the choice elasticities 16 

associated with a 1% increase in other attributes fall below 1, indicating relatively inelastic responses 17 

(Hensher et al., 2015). This finding demonstrates that relying on a single policy intervention may be 18 

insufficient to address the problem of disorderly parking. A combination of policy interventions may be 19 

necessary to achieve more effective parking management outcomes. 20 

5.4. Willingness to pay interpretation 21 

Willingness to pay (WTP) values were calculated based on parameter estimates for each model, as 22 

presented in Table 6. During the survey period, the exchange rate was CNY/USD = 0.138. For models 23 

with fixed coefficients, the mean values and robust standard errors of WTPs were computed using the 24 

Delta method (Train, 2009), while WTP distributions were derived through a simulation approach for the 25 

random coefficient models (Hensher and Greene, 2003; Daly et al., 2011). Specifically, the random 26 

coefficients were simulated at the individual level. To illustrate this intermediate step, we provide in 27 

Appendix 5 the transformed estimates of coefficients with log-normal and negative log-normal 28 

distributions. The empirical distribution of WTP was then derived from the distribution of the ratio of 29 

these individual coefficients. Since all random coefficients for attributes follow either a positive or 30 

negative log-normal distribution, this ensures that moments of the WTP distributions (e.g., mean and 31 

variance) can be calculated (Daly et al., 2012). The WTPs produced by the four models are similar in 32 

magnitude. However, an overall increase in the mean value and wider quartiles can be observed as model 33 

complexity increases, which is consistent with findings in empirical discrete choice studies (Hess et al., 34 

2004; van den Berg, 2010; Teye, 2014). This indicates that ignoring random taste heterogeneity and 35 

substitution patterns can lead to a risk of biased results. The broad range of WTP values also confirms 36 

that individuals place different values on distance to parking and time to/from parking. The subsequent 37 

analysis thus mainly focuses on the Mixed NL model. The following analysis mainly focuses on the 38 

Mixed NL model. 39 
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Starting with the WTP for the reduced distance to parking, we first derived the distributions of the 1 

marginal utilities for the distance to parking and parking fee attributes. Then, we generated 500 random 2 

draws and calculated the ratio of the marginal utility of distance to parking to the marginal utility of 3 

parking fee for each sample in this set. Given that both distance to parking and parking fee follow a 4 

negative log-normal distribution, the WTP for distance to parking also follows a log-normal distribution, 5 

with an estimated mean of CNY 0.81 per 100 metres saved. This result could not be found directly in 6 

other research, but similar analysis can be found in Guo et al.’s (2023) study, in which the WTP for a 7 

reduction of 100 metres in the picking up distance of DBS was calculated as CNY 0.45 using the NL 8 

model. Some studies also focused on the WTP for private bicycle parking (Van Lierop et al., 2018; 9 

Kohlrautz and Kuhnimhof, 2025). Kohlrautz and Kuhnimhof (2025) estimated the WTP of cyclists at 10 

RWTH Aachen University for various types of bicycle parking facilities and found that the average WTP 11 

for reducing the walking distance by 100 metres exceeds 0.20 euros (around CNY 1.58) per day. Van 12 

Lierop et al. (2018) observed that 43% of cyclists in Montreal, Canada, were willing to pay over 0.50 13 

dollars (around CNY 3.63) per day for secured bicycle parking. 14 

TABLE 7   15 

WTP calculations for MNL, NL, RCL, ECL and Mixed NL models 16 

Models Mean and percentiles of distribution Changes against Mixed NL 

 mean robust s.e. s.d. 
interquartile 

range 
mean s.d. 

interquartile 

range 

Multinomial 

logit 

WTP (CNY/100 m)parking fee distance to parking 0.62 0.03   -23%   

VoT (CNY/1 h)parking fee time to/from parking 20 1.02   -24%   

MRS (m/10 min)distance to parking reward -54 4.00   -7%   

MRS (min/10 min)time to/from parking reward -1.12 0.08   -15%   

Nested logit WTP (CNY/100 m)parking fee distance to parking 0.66 0.03   -19%   

VoT (CNY/1 h)parking fee time to/from parking 21.05 1.07   -20%   

MRS (m/10 min)distance to parking reward -55 3.77   -5%   

MRS (min/10 min)time to/from parking reward -1.15 0.07   -13%   

Random 

-coefficient 

logit 

WTP (CNY/100 m)parking fee distance to parking 0.81  0.66 0.63 0% 6% 3% 

VoT (CNY/1 h)parking fee time to/from parking 25.8  19.4 19.3 -2% -8% -5% 

MRS (m/10 min)distance to parking reward -56  42.8 42.0 -3% -29% -14% 

MRS (min/10 min)time to/from parking reward -1.23  1.10 1.00 -7% -24% -12% 

Error 

-components 

logit 

WTP (CNY/100 m)parking fee distance to parking 0.86  0.73 0.67 6% 18% 10% 

VoT (CNY/1 h)parking fee time to/from parking 27.3  25.2 22.2 3% 19% 9% 

MRS (m/10 min)distance to parking reward -56  51.4 45.5 -3% -15% -7% 

MRS (min/10 min)time to/from parking reward -1.20  0.94 0.95 -9% -35% -17% 

Mixed 

nested logit 

WTP (CNY/100 m)parking fee distance to parking 0.81  0.62 0.61    

VoT (CNY/1 h)parking fee time to/from parking 26.4  21.1 20.3    

MRS (m/10 min)distance to parking reward -58  60.1 49.0    

MRS (min/10 min)time to/from parking reward -1.32  1.44 1.14    

We also show value of time (VoT) in addition to WTP. Specifically, we replaced the distance to parking 17 

attribute with parking time in the model under the assumption that all respondents travel at an average and 18 

constant speed, and then re-estimated the parameters. The VoT was derived from the ratio of the marginal 19 

utility of parking time to the marginal utility of the parking fee, with the mean value of the VoT 20 

distribution estimated at 26.4 CNY per hour. It is important to note that the VoT estimated in this study 21 
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reflects the overall value of time to/from parking, including both the time required to access the parking 1 

area and the walking time from there to the final destination. VoT-related research in China is relatively 2 

limited, and there is a lack of official statistical data (Song et al., 2018). Gao K, et al. (2021) estimated the 3 

value of travel time for DBS trips in Shanghai to be CNY 30.2 per hour. Kou et al. (2017) obtained the 4 

average value of commuting times for public transport and car travel as CNY 11.34 per hour and CNY 5 

17.81 per hour, respectively in Beijing. The VoT estimates obtained in this study are broadly of the same 6 

order of magnitude as those reported in the relevant literature. 7 

Additionally, the marginal rate of substitution (MRS) values for the trade-offs between the distance to 8 

parking and reward were calculated by dividing the coefficient of the reward attribute by the coefficient 9 

of distance to parking, reflecting how individuals trade off increased the distance to parking against the 10 

rewards offered. The estimated mean of the MRS distribution for each 10-minute free riding reward is 58 11 

metres, indicating that respondents are willing to accept an additional 58 metres of the distance to parking 12 

in exchange for receiving a 10-minute free riding reward. According to the Standards for the Provision of 13 

Non-Motorised Vehicle Parking Facilities in Urban Road Spaces in Beijing (2023), for areas around the 14 

entrances and exits of public transportation with limited space, the establishment of non-motorised 15 

vehicle parking facilities is recommended within a range of 50 to 100 metres. Similarly, the MRS 16 

between parking time and reward was calculated by dividing the coefficient of the reward attribute by the 17 

coefficient of parking time. The results suggest that respondents are willing to spend an average of 1.32 18 

extra minutes proceeding to a designated parking area in exchange for receiving a 10-minute free riding 19 

reward. 20 

 21 
Fig. 6. Conceptual illustration of WTP and MRS variation with distance. 22 

A conceptual illustration of how mean values of WTP and MRS vary with changes in the distance to 23 

parking is presented in Fig. 6. The red solid line represents the required riding time reward to encourage 24 

users to park in the free parking area as the distance increases. The blue solid and dashed lines indicate 25 

the users’ willingness to pay for different locations of paid parking areas when the free parking area is 26 

located 300m and 200m from the destination, respectively. When the free parking area is located 300 27 
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metres from the destination, an average free-riding reward of 51.7 minutes is required to incentivize users 1 

to park there. Under this situation, if there is a paid parking area available at the destination, users would 2 

be willing to pay approximately CNY 2.4 to reduce the distance to parking. These insights, based on the 3 

mean values, may serve as a valuable reference for DBS companies in designing appropriate parking fees 4 

and reward levels. However, it is important to note that, at the individual level, the acceptable walking 5 

distance does not necessarily increase linearly with the reward. This subsection primarily focuses on the 6 

implementation of paid parking areas and incentive-based approaches to encourage the use of remote 7 

parking options. While the findings provide useful insights for designing parking management strategies, 8 

they have limited direct relevance to policy interventions specifically aimed at reducing disorderly 9 

parking.  10 

6. Discussion and conclusion  11 

Dockless bike-sharing has rapidly gained popularity in recent years, offering a sustainable and convenient 12 

mode of transportation. However, the accompanying disorderly parking has emerged as one of the most 13 

challenging problems for city administrators. This paper presents an in-depth investigation of users’ 14 

parking preferences in DBS trips, in order to provide a reference for developing targeted policy 15 

interventions that encourage orderly parking. 16 

6.1. Theoretical Implications 17 

The present research offers several theoretical implications for the literature on bicycle parking behaviour. 18 

Firstly, this study expands the literature on DBS parking management from the user-based perspective. 19 

While prior studies have primarily addressed parking problems through supply-side strategies, such as the 20 

planning of designated parking areas and bicycle rebalancing (Zhang et al., 2019; Tian et al., 2020), these 21 

approaches often face practical challenges in implementation (Wang et al., 2019; Si et al., 2024; Meng et 22 

al., 2024). By examining users’ parking preferences and evaluating the behavioural effects of different 23 

policy interventions, this study provides a behavioural foundation for the development of more direct 24 

parking management strategies to improve parking compliance. There is still a lack of in-depth empirical 25 

investigations on this topic. 26 

Secondly, this research improves the modelling of DBS user behaviour by employing a mixed nested 27 

logit model that simultaneously accounts for both random taste heterogeneity and inter-alternative 28 

correlations. While deterministic taste heterogeneity associated with socioeconomic demographics such 29 

as gender and age, has been widely acknowledged in existing studies (Su et al., 2021; Gao et al., 2021; Si 30 

et al., 2024), interpersonal random taste heterogeneity has received comparatively little attention (Gao et 31 

al., 2021). The present research confirms that different orderly parking alternatives are strongly 32 

correlated, and there is significant random taste variation in how users respond to alternative-specific 33 

attributes such as proximity to designated parking areas, parking fees, rewards, and fines. Incorporating 34 

random taste heterogeneity allows for more accurate estimation of key measures, including the WTP, 35 

VoT, and MRS, as ignoring such heterogeneity may lead to biased results (Hess et al., 2004; van den 36 

Berg, 2010; Teye, 2014). 37 

Thirdly, the findings of this study may be extended to other forms of micromobility, such as shared e-38 

scooters and private bicycle parking, which also face challenges related to disorderly parking. The 39 

behavioural characteristics identified through this study, particularly interpersonal random taste 40 

heterogeneity and the influence of the distance to parking, incentives, parking fees and descriptive norms 41 

on cyclist parking behaviour, may also be applicable to other forms of micromobility. However, it should 42 

be noted that unlike shared micromobility users, private bicycle cyclists are also influenced by factors 43 
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such as the risk of theft (van Lierop et al., 2018; Jonkeren and Kager, 2021; Kohlrautz and Kuhnimhof, 1 

2025) and the value of the bicycle (Kohlrautz and Kuhnimhof, 2025), which should be taken into account 2 

when designing parking management strategies for private bicycles. 3 

Finally, from a methodological perspective, this paper contributes to the limited application of mixed 4 

GEV models, which is underutilised in practice due to computational complexity and the lack of 5 

estimation options in most commercial econometric software. In the present research, we estimated the 6 

model using Apollo, which facilitates for the mixing of any underlying kernel model. 7 

6.2. Practical Implications 8 

The present research provided insights for DBS companies and local governments to improve parking 9 

compliance and reduce disorderly parking.  10 

First, the findings indicate that users tend to avoid disorderly parking, particularly female and older 11 

individuals. Therefore, it is essential to establish a clear and consistent definition of disorderly parking 12 

behaviour and to explicitly communicate it to users to avoid ambiguity. Confusing or inconsistent rules 13 

may undermine users’ understanding and hinder parking compliance. Furthermore, it is important to 14 

consider the taste heterogeneity when developing parking management strategies, as suggested by 15 

Kohlrautz and Kuhnimhof (2025). For example, educational and guidance messages could be more 16 

actively directed toward male and younger users via the DBS app to enhance parking compliance. 17 

Secondly, we discovered that reducing the distance to parking and imposing monetary penalties for 18 

disorderly parking are obviously effective in discouraging such behaviour. When parking spaces near the 19 

destination are saturated, users are less willing to proceed to other designated parking areas as the 20 

distance to parking increases. This highlights the need for planning high-density DBS parking facilities, 21 

especially around high-demand destinations (Meng et al., 2024). In addition, DBS companies should 22 

strive to implement technological solutions that enable the prompt identification of disorderly parking and 23 

the enforcement of penalties (Tang et al., 2024). Furthermore, this study found that DBS users are willing 24 

to accept an average of 58 additional metres of the distance to parking for a 10-minute free riding reward, 25 

which provides a practical reference for designing incentive measures to promote orderly parking. 26 

Thirdly, we found that descriptive norms significantly impact users’ utility when choosing parking 27 

behaviour. When users observe a greater number of others engaging in disorderly parking, they are more 28 

likely to exhibit similar behaviour. This suggests that timely detection and repositioning of disorderly 29 

parked bicycles are crucial for preventing the accumulation of bicycles. 30 

Finally, this study considers paid parking as a potential management strategy when the designated free 31 

parking area is located far from the destination. We found that users are willing to pay approximately 32 

CNY 0.81 to reduce the distance to parking by 100 metres. Paid bicycle parking has mainly been studied 33 

in relation to private bicycles, including cases in the Netherlands (Molin and Maat, 2015), Canada (van 34 

Lierop et al., 2018), and Germany (Kohlrautz and Kuhnimhof, 2025), but has not yet been considered in 35 

the context of DBS. Nevertheless, we believe that paid parking could still be explored as a viable strategy 36 

for managing DBS parking. Given that DBS companies often lack incentives to actively manage parking 37 

due to cost concerns, allowing them to operate paid parking spaces near high-demand locations such as 38 

metro stations or business districts under government authorization and charge parking fees directly 39 

through the app may offer a profitable model. This could encourage greater operator involvement in 40 

parking management and reduce the burden currently placed primarily on local governments. 41 

6.3. Limitations 42 
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One limitation of this study is the insufficient consideration of the ordering effect in the stated choice 1 

experiment design. The presentation order of alternatives within the choice set has been recognised to 2 

influence choice outcomes in some literature (Garbarski et al., 2016; Boxebeld, 2024). To improve the 3 

validity of stated preference data, future research should consider implementing mitigative measures, such 4 

as randomizing the positions of labeled alternatives in the choice set and then incorporating position 5 

indicators into the model specification to account for potential ordering effects. Another limitation of the 6 

experimental design lies in the presentation of both the distance to parking and the corresponding round-7 

trip time in the SC tasks. The intent was to assist respondents who may not have a clear perception of 8 

distance, as time is often a more intuitive reference in travel contexts. However, because time and 9 

distance are distinct concepts, and individuals may perceive or respond to them differently, this approach 10 

may have influenced how respondents evaluated the attribute, which was not fully accounted for in the 11 

experimental design. Moreover, the SC survey did not explicitly state that fines would be strictly 12 

enforced, which may have led some respondents to infer the likelihood of enforcement based on their 13 

prior experiences, potentially introducing bias. Nevertheless, this should not have substantial influence on 14 

the estimated direction of the fine coefficient. 15 

From a methodological perspective, this study relies solely on SP data, which is useful for examining 16 

hypothetical choices by hypothesizing alternatives and attributes, but it has potential limitations related to 17 

the veracity of individuals’ stated responses, which may lead to inconsistencies with users’ realistic 18 

parking preferences (Helveston et al., 2018). In addition, the assessment of the effectiveness of policy 19 

interventions derived based on the study sample and the SP scenario offers theoretical insights, but may 20 

have limited generalisability to real-world conditions. Combining RP and SP data in model estimation 21 

could overcome the weaknesses of each data source. It is recommended to use the pooled RP and SP data 22 

in the future to reduce bias from hypothetical choice situations. Additionally, some latent factors such as 23 

personal attitudes, ascription of responsibility, awareness of consequences, and personal norms have also 24 

been proven to influence users’ parking choices in previous studies (Wang et al., 2021b; Tang et al., 25 

2024). However, this type of data is not reflected in the data used to develop the present model. Future 26 

studies are encouraged to integrate latent variables into discrete choice models, to enhance the 27 

understanding of the impact of unobserved factors on DBS users’ decision-making processes. 28 

6.4. Conclusions 29 

This paper developed a mixed nested logit model to simultaneously account for both random taste 30 

heterogeneity and inter-alternative correlations in dockless bike-sharing parking preference. Based on the 31 

SP data collected in China, this study examined how DBS users’ parking choices are influenced by 32 

socioeconomic characteristics and alternative-specific factors, while also evaluating the effectiveness of 33 

various policy interventions. The findings confirm the existence of random taste heterogeneity in 34 

preferences for the distance to parking, rewards, fines, and parking fees, and demonstrate that reducing 35 

the distance to parking and imposing penalties are effective strategies for discouraging disorderly parking. 36 

Users’ willingness to accept additional distance to parking in exchange for free riding time rewards, as 37 

well as their willingness to pay to reduce the distance to parking, was also estimated. This study 38 

contributes to the literature on DBS parking management by extending the empirical understanding of 39 

parking behaviour. Moreover, the results offer empirical evidence for local governments and DBS 40 

operators in formulating more effective parking policies to mitigate disorderly parking. 41 
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Appendix 1. Demographics and usage characteristics of the survey respondents. 

Characteristics Categories Number Percentage (%) 

Gender Male 252 42 

Female 348 58 

Age group ≤20 25 4.2 

21-30 362 60.3 

31-40 140 23.3 

41-50 51 8.5 

≥51 22 3.7 

Income per month (CNY) ≤2000 69 11.5 

2001–4000 104 17.3 

4001–6000 95 15.8 

6001-8000 94 15.7 

8001–10000 89 14.8 

≥10001 141 23.5 

I'd rather not to say. 8 1.3 

Education level High school/technical secondary school 20 3.3 

Junior college 45 7.5 

Undergraduate 422 70.3 

Master  106 17.7 

Ph.D. and above 7 1.2 

Occupation Employed full time 431 71.8 

Employed part time (less than 24 hours/week) 7 1.2 

Self-employed or unemployed 26 4.3 

Retired 2 0.3 

Student 134 22.3 

Bike ownership No 235 39.2 

Yes 365 60.8 

Use frequency Once every few months or less 34 5.7 

At least once a month 59 9.8 

1-2 times a week 244 40.7 

3-5 times a week 194 32.3 

Once a day or more 69 11.5 

Average riding duration(min) ≤10  57 9.5 

11–20 367 61.2 

21–30 148 24.7 

≥30 28 4.7 

City of residence Cities with geo-fencing implementation 129 21.5 

 Cities without geo-fencing implementation 471 78.5 

Note: CNY/USD≈0.138 during survey period  
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Appendix 2. Model estimation results for MNL, NL, MMNL, Mixed NL models incorporating riding frequency and duration covariates. 

Parameters 
Multinomial logit Nested logit Mixed multinomial logit Mixed nested logit 

Est. Rob. t_rat. Est. Rob. t_rat. Est. Rob. t_rat. Est. Rob. t_rat. 

Means of utility coefficients         

δfree parking area 0 — 0 — 0 — 0 — 

δpaid parking area -0.644  -8.08***  -0.558  -9.13***  -1.096  -8.84***  -0.859  -8.80***  

δdisorderly parking -1.446  -5.38***  -1.191  -4.72***  -2.15  -4.37***  -1.743  -4.04***  

ωfemale, disorderly parking -0.356  -2.84***  -0.332  -2.80***  -0.671  -2.55**  -0.575  -2.62***  

ωage, disorderly parking -0.189  -2.28**  -0.185  -2.36**  -0.545  -3.45***  -0.473  -3.40***  

βreward 0.043  4.62***  0.034  4.70***      

ωriding frequency, reward -5.9979e-04 -0.31 -6.0351e-04 -0.42 -7.7179e-04 -0.244 -4.4152e-04 -0.19 

ωriding duration, reward -0.005 -1.75* -0.003 1.63 -0.008 -1.82* -0.005 -1.65* 

βdistance to parking -7.045  -10.43***  -5.592  -8.94***      

ωriding frequency, distance to parking 0.155 1.18 0.138 1.28 0.282 1.17 0.156 0.79 

ωriding duration, distance to parking 0.414 2.244** 0.138 2.10** 0.592 1.87* 0.354 1.37 

βparking fee -0.899  -18.46***  -0.667  -12.21***      

ηincome, parking fee -0.148  -3.52***  -0.149  -3.50***  -0.111  -2.46**  -0.102  -2.21**  

βfine -1.343  -24.50***  -1.262  -24.07***      

βno others 0 — 0 — 0 — 0 — 

βother people 0.549  7.66***  0.562 8.49***  0.827  6.02***    

βother people low       0.666  5.25***  

βother people high       0.893  6.29***  

Standard deviations of utility coefficients         

𝜎𝛿paid parking area
     0.566 3.38 *** 0.423  3.32***  

𝜎𝛿disorderly parking
     2.304  12.92***  -1.96  -11.63***  

Location parameters on log-scale         

𝜇𝛽reward
     -2.749^  -11.42***  -3.043^  -12.23***  

𝜇𝛽distance to parking
     2.53^^  24.51***  2.232^^  17.14***  

𝜇𝛽parking fee
     0.447^^  7.59***  0.190^^  2.45**  

𝜇𝛽fine
     1.278^^  18.84***  1.097^^  15.16***  

Log-scale standard deviations         

𝜎𝛽reward
     -0.401^  -3.31***  -0.427^  -3.96***  

𝜎𝛽distance to parking
     -0.405^^  -8.87***  -0.443^^  -7.83***  

𝜎𝛽parking fee
     -0.538^^  -7.68***  -0.537^^  -8.114***  

𝜎𝛽fine
     -0.666^^  13.06***  -0.642^^  -9.33***  
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Nesting coefficient         

λorderly parking   0.706  15.57***    0.690  14.68***  

Note: 

* Signify confidence at 90%, ** Signify confidence at 95%, *** Signify confidence at 99%. 

^ means the coefficient is log-normally distributed by assumption, ^^ means the coefficient is negative log-normally distributed by assumption. 

For coefficients assumed to follow a log-normal distribution, the estimated means and standard deviations refer to the parameters that directly define the probability density 

function of the log-normal distribution; the same applies to negative log-normal distribution.
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Appendix 3. Estimate results of alternative nesting structures. 

Estimate results NLorderly_parking NLpaid_disorderly NLexisting 

λorderly parking 0.706   

λpaid disorderly  0.727  

λexisting   1.891 

Goodness-of-fit    

Number of estimated parameters 11 11 11 

LL (final) -5572.85 -5571.95 -5487.31 

Adj. ρ2 0.2941 0.2942 0.3049 

AIC 11167.69 11165.89 10996.63 

BIC 11243.39 11241.59 11072.33 

Likelihood ratio test (value) 38.06 39.86 209.14 

Likelihood ratio test (p value) 6.86×e-13 2.728×e-10 2.116×e-47 
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Appendix 4. Base values and corresponding adjusted attribute values used in the prediction. 

Attributes 
Relative 

changes  

Choice tasks 

1 2 3 4 5 6 7 8 9 10 11 12 

Distance 

to 

parking 

(free)/m 

-30% 560 560 560 350 350 350 350 140 560 140 350 560 

-20% 640 640 640 400 400 400 400 160 640 160 400 640 

-10% 720 720 720 450 450 450 450 180 720 180 450 720 

base 800 800 800 500 500 500 500 200 800 200 500 800 

10% 880 880 880 550 550 550 550 220 880 220 550 880 

20% 960 960 960 600 600 600 600 240 960 240 600 960 

30% 1040 1040 1040 650 650 650 650 260 1040 260 650 1040 

Rewards/

CNY 

-30% 7 14 7 0 21 14 0 21 7 14 0 21 

-20% 8 16 8 0 24 16 0 24 8 16 0 24 

-10% 9 18 9 0 27 18 0 27 9 18 0 27 

base 10 20 10 0 30 20 0 30 10 20 0 30 

10% 11 22 11 0 33 22 0 33 11 22 0 33 

20% 12 24 12 0 36 24 0 36 12 24 0 36 

30% 13 26 13 0 39 26 0 39 13 26 0 39 

Distance 

to 

parking 

(paid)/m 

-30% 210 70 140 70 140 140 210 70 140 70 210 210 

-20% 240 80 160 80 160 160 240 80 160 80 240 240 

-10% 270 90 180 90 180 180 270 90 180 90 270 270 

base 300 100 200 100 200 200 300 100 200 100 300 300 

10% 330 110 220 110 220 220 330 110 220 110 330 330 

20% 360 120 240 120 240 240 360 120 240 120 360 360 

30% 390 130 260 130 260 260 390 130 260 130 390 390 

Parking 

fee/CNY 

-30% 0.35 0.35 0.7 1.4 0.35 1.4 0.7 0.35 0.7 0.35 0.35 1.4 

-20% 0.4 0.4 0.8 1.6 0.4 1.6 0.8 0.4 0.8 0.4 0.4 1.6 

-10% 0.45 0.45 0.9 1.8 0.45 1.8 0.9 0.45 0.9 0.45 0.45 1.8 

base 0.5 0.5 1 2 0.5 2 1 0.5 1 0.5 0.5 2 

10% 0.55 0.55 1.1 2.2 0.55 2.2 1.1 0.55 1.1 0.55 0.55 2.2 

20% 0.6 0.6 1.2 2.4 0.6 2.4 1.2 0.6 1.2 0.6 0.6 2.4 

30% 0.65 0.65 1.3 2.6 0.65 2.6 1.3 0.65 1.3 0.65 0.65 2.6 

Fine/ 

CNY 

-30% 0.7 0.7 0 3.5 2.1 0 3.5 0 2.1 0 3.5 2.1 

-20% 0.8 0.8 0 4 2.4 0 4 0 2.4 0 4 2.4 

-10% 0.9 0.9 0 4.5 2.7 0 4.5 0 2.7 0 4.5 2.7 

base 1 1 0 5 3 0 5 0 3 0 5 3 

10% 1.1 1.1 0 5.5 3.3 0 5.5 0 3.3 0 5.5 3.3 

20% 1.2 1.2 0 6 3.6 0 6 0 3.6 0 6 3.6 

30% 1.3 1.3 0 6.5 3.9 0 6.5 0 3.9 0 6.5 3.9 

Number of other 

people parking 

disorderly 
0 2 2 2 1 2 0 0 1 1 0 1 
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Appendix 5. Transformed estimates of coefficients with log-normal and negative log-normal 

distributions. 

Models Parameters Distribution mean s.d. interquartile range 

Random 

-coefficient logit 

βreward log-normal distribution 0.049  0.02  0.03  

βdistance to parking  negative log-normal distribution -11.117  5.83  6.67  

βparking fee negative log-normal distribution -1.802  1.00  1.12  

βfine negative log-normal distribution -4.398  3.27  3.27  

Error 

-components logit 

βreward log-normal distribution 0.051  0.03  0.04  

βdistance to parking  negative log-normal distribution -11.574  6.05  6.92  

βparking fee negative log-normal distribution -1.819  1.08  1.18  

βfine negative log-normal distribution -4.716  3.71  3.60  

Mixed nest logit βreward log-normal distribution 0.039  0.03  0.03  

βdistance to parking  negative log-normal distribution -8.536  4.44  5.09  

βparking fee negative log-normal distribution -1.319  0.66  0.76  

βfine negative log-normal distribution -3.600  2.57  2.62  

 

 


