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Abstract

Dockless bike-sharing (DBS) is an important sustainable urban transportation mode in many cities but
faces challenges with disorderly parking management. This study aims to explore the presence of taste
heterogeneity and substitution patterns in DBS users’ parking preferences and to determine how
interpersonal variations, alternative-specific attributes, and socio-demographic characteristics affect
parking choices. Based on stated-preference data collected in China, a mixed nested logit (Mixed NL)
model is employed to account for both inter-alternative correlation and random taste heterogeneity. The
results indicate that reducing the distance to parking and increasing monetary fines are more effective in
discouraging disorderly parking than offering incentives for orderly parking or adjusting parking fees.
Social influence also plays a critical role, as users are more likely to park disorderly when they observe
others doing so. Meanwhile, the research also reveals that users are willing to pay an average of 0.8 CNY
to reduce the distance to parking by 100 metres, and are willing to accept on average an additional 58
metres of the distance to parking in exchange for 10 minutes of free riding time. These insights into DBS
users’ parking behaviour enhance the understanding of the effectiveness of possible policy interventions
and offer a valuable reference for developing future management strategies.

Keywords dockless bike-sharing; parking behaviour; mixed GEV model; taste heterogeneity; inter-
alternative correlations; stated choice experiment
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1. Introduction

Given the global drive towards a low-carbon future, sustainable transportation has become essential for
reducing emissions and improving air quality. One prominent solution for promoting low-emission urban
travel is the development of cycling systems, which provide an eco-friendly and efficient alternative to
motorised transport. Notably, dockless bike-sharing (DBS), also known as free-floating bike-sharing, has
rapidly expanded worldwide in recent years. By offering users the flexibility to pick up and drop off bikes
anywhere without relying on fixed docking stations (Zhang et al., 2019), DBS presents significant
advantages over traditional station-based public bicycle systems.

China, as one of the pioneers of DBS systems, operated approximately 15 million bicycles with an
average of 47 million daily orders nationwide by the end of 2021 (China Road Transport Association,
2023). DBS has played an important role in easing urban traffic congestion and addressing the ‘last mile’
challenge in public transportation. However, it has also introduced a new challenge. Due to the limited
parking resources that cannot quickly adapt to the expansion of DBS deployment, disorderly parking has
become a widespread issue in China (Su et al., 2020; Zhang et al., 2019). In high-demand locations such
as subway stations, office areas and commercial complexes, insufficient parking capacity often leads to an
accumulation of bicycles, resulting in problems such as encroaching on pedestrian and cycling spaces and
occupying restricted areas (Wang et al., 2021a, 2021b; Tang et al., 2024), as shown in Fig. 1.

3 Ty Al

(a) Parking blocking sidewalks  (b) Parking occupying pedestrian crossing (c) Parking in restricted area
Fig. 1. Examples of disorderly parked DBS in Beijing, China (Photos: author)

Similar problems have also emerged in other countries, such as Austria, Singapore, the UK, the US, and
Australia, leading to negative public perception and increased regulatory interventions (Laa and
Emberger, 2020; Cai et al., 2023; He and Zhang, 2024). In response to stricter regulations for DBS
established in some cities, such as Singapore, Vienna, Oxford, and Melbourne, some operational
companies chose to exit the market because of rising costs (Laa and Emberger, 2020). Amsterdam opted
to impose a temporary ban on all DBS systems in 2017 specifically due to excessive use of private bike
parking spaces (O'Sullivan, 2017). These phenomena illustrate that disorderly parking not only negatively
affects cyclists, pedestrians as well as the city’s appearance, but also severely impacts the sustainability of
shared-micromobility systems.

Understanding users’ parking preferences is crucial for designing more effective interventions targeting
the root causes of disorderly parking. Few studies have examined how users' socioeconomic
characteristics, psychological factors, and environmental factors influence the decision between
disorderly and orderly parking (Wang et al., 2021a, 2021b; Huang et al., 2023; Wang et al., 2023).
Several policy interventions have been suggested, such as offering rewards for orderly parking behaviour,
imposing penalties for disorderly parking behaviour, and enhancing public awareness regarding orderly
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parking practices (Su et al., 2020; Gao L. et al., 2021; Tang et al., 2024). However, due to limitations in
research methods, most studies have only highlighted the effect of incentives in promoting orderly
parking behaviour, but few have investigated what the most efficient level of incentives is. Identifying the
optimal incentive is crucial for achieving the desired behavioural guidance while ensuring efficient
resource use and maximizing impact. Additionally, there has been a lack of in-depth exploration into the
possibility of taste heterogeneity among different individuals. In the context of car parking, taste
heterogeneity has been shown to be a major factor in parking type choice, influencing the impact of
substantive factors such as access, search, and egress time, as well as attitudes toward potential fines for
illegal parking (Hess and Polak, 2004). Accordingly, exploring taste heterogeneity in the influences of
different factors and policy interventions on parking preferences among DBS users would be valuable in
obtaining a more accurate understanding of user behaviour.

This paper aims to fill the research gap by examining the presence of deterministic and random taste
heterogeneity in users’ preferences and quantifying the distribution of the values users place upon
different utility factors influencing parking choices. To achieve this, we first conducted a stated
preference experiment, enabling the analysis of various attributes that might impact users’ behaviour, and
then employed a mixed nested logit model, which allows for both interpersonal random taste
heterogeneity and inter-alternative correlations, to explore the extent to which individual characteristics
and alternative-specific attributes influence users’ parking decisions and how this varies among
individuals.

The study contributes to the literature in two key ways: (1) Our results reveal the presence of
deterministic and random taste heterogeneity in DBS users’ parking preferences and quantify the impact
of the random variation on coefficient estimates for specific attributes (e.g., proximity to designated
parking areas, perceived behaviour of other users, potential rewards, fines, and parking fees). (2) By
evaluating the effectiveness of policy interventions and estimating the marginal rate of substitution (e.g.,
willingness to pay for reduced distance to parking, the trade-off between rewards and the distance to
parking), this study generates insights for policymakers and operators seeking to promote orderly parking.
Although the present paper focuses solely on the DBS system, we strongly believe that the observations
are also applicable to other dockless shared-micromobility systems, such as shared e-scooters and shared
e-bikes, which experience similar disorderly parking problems (Liazo et al., 2022; Meng et al., 2024).
The remainder of this paper is organised as follows. Section 2 provides a review of existing studies on
DBS parking challenges and management. Section 3 introduces the stated choice experiment design and
data collection process. Section 4 describes the applied modelling framework. Section 5 presents and
discusses the estimation results and the marginal rate of substitution, such as willingness to pay and value
of time. Section 6 discusses the implications and limitations of our work and presents the conclusions.

2. Literature review
2.1. Parking management strategies for DBS

Existing literature has proposed various parking management strategies for dockless bike-sharing (DBS)
systems, which are summarised in Table 1. Considering that DBS parking problems are largely driven by
insufficient parking supply, previous studies have primarily addressed these challenges from planning and
operational perspectives, which can be regarded as a supply-side approach. Establishing parking spots
that match demand is a critical management strategy that has been widely studied (Zhang et al., 2019;
Hua et al., 2020; Arif and Margellos, 2022). Hua et al. (2020) used trip data from Mobike and the
dockless bike-sharing survey in Nanjing to estimate parking demand, then applied clustering methods to
identify virtual stations where bikes tend to congregate. Arif and Margellos (2022) developed a scenario

4
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optimization model to jointly determine the capacities and locations of parking spots, accounting for
uncertainties in parking demand and points of interest within the area. Electric fence technology is
considered an effective method to regulate users’ parking behaviour. Zhang et al. (2019), Liazo et al.
(2022) and Cai et al. (2023) propose methodological frameworks to optimize electric fence planning, with
the aim of maximizing parking demand coverage. However, demand-based parking spot optimization
strategy has some limitations. For example, inaccurate predictions of parking demand can lead to failures
in matching supply with actual needs (Meng et al., 2024). Furthermore, this approach largely overlooks
parking compliance, i.e., even with sufficient parking facilities, users may still choose to park disorderly
due to inconvenience or the absence of mandatory enforcement (Si et al., 2024). While geo-fencing
techniques can promote orderly parking by preventing users from locking bicycles outside designated
parking areas, the high infrastructure costs (Cai et al., 2023) limit broad adoption, and issues with position
recognition accuracy may still allow disorderly parking (Wang et al., 2019).

Another key strategy to promote the balance between parking supply and demand is the repositioning of
DBS systems. There is a considerable amount of current research on this topic, which can be divided into
two types: static bicycle repositioning problems (SBRP) and dynamic bicycle repositioning problems
(DBRP) (Liang et al., 2024). SBRP typically rebalances stations overnight and cannot explicitly respond
to demand fluctuations that occur during the day (Pal and Zhang, 2017; Du et al., 2020). DBRP is used to
match travelers’ dynamic parking and pick-up demand fluctuations during the daytime (Tian et al., 2020;
Cheng et al., 2021; Zhou et al., 2023; Liang et al., 2024). Tian et al. (2020) developed a flow-type task
window to fit the strong time-sensitive demand fluctuation, which could help complete each rebalancing
within an average of 4 minutes. Liang et al. (2024) proposed a general mixed-integer programming model
for multi-period rebalancing problems and simulated 1-minute time-slots (a level of detail fine enough to
approximate real-time demand) to evaluate the performance of the proposed method. Although previous
studies have done a lot of work to enable the supply to match real-time demand via rebalancing strategies,
there is still a lot of demand lost (Tian et al., 2020; Liang et al., 2024). Additionally, rebalancing measures
are often constrained by DBS companies’ operational cost controls and the limited availability of labor
(Wang et al., 2023).

TABLE 1
Summary of parking management strategies for DBS

Research category Approaches Literature
Parking spots Parking facility planning Hua et al., 2020; Arif and Margellos, 2022
planning Electric fence planning Zhang et al., 2019; Liazo et al., 2022; Cai et al., 2023
Bicycle repositioning  Static bicycle repositioning Pal and Zhang, 2017; Du et al., 2020
Dynamic bicycle Tian et al., 2020; Cheng et al., 2021; Zhou et al., 2023;
repositioning Liang et al., 2024
User-based strategies  Incentive-based approaches Chiariotti, 2020; Cheng et al., 2021; Fukushige et al.,
2022
Penalty-based approaches Bao et al., 2023

Parking spots planning and bicycle repositioning strategies can balance parking supply and demand to
some extent, helping to mitigate disorderly parking caused by insufficient parking spaces. However, it
does not directly regulate users’ parking behaviour. Some studies have explored incentive-based
approaches (Chiariotti, 2020; Cheng et al., 2021; Fukushige et al., 2022), using incentive measures to
encourage DBS users to rent bicycles in surplus stations or return bikes to deficient stations. Fukushige et
al. (2022) proposed a potentially cost-effective strategy for rebalancing DBS by offering incentives to
users, either to walk farther to access a bicycle (origin-based incentives) or to bring a bicycle to an

5
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undersupplied area (destination-based incentives). Their findings suggest that users are willing to walk an
additional 3.8 minutes per dollar (around 0.52 minutes per CNY) at origins and 4.2 minutes per dollar
(around 0.58 minutes per CNY) at destinations in response to such incentives. Bao et al. (2023) suggested

a strategy that integrates parking infrastructure and penalties, and evaluated the impact of punitive
measures on promoting standard parking.

TABLE 2

Previous work on DBS users’ parking behaviour or intention
Research Methods Literature Analysis Methods Key findings
Rating scale survey Zhao and Hierarchical e Attitude, subjective norm, social norms and perceived
(intentions) Wang (2019)  regression analysis behavioural control influence DBS users’ parking

Rating scale survey
(behaviours)

Stated preference
(SP) survey

Field experiments

Revealed preference
(RP) method

Wang et al.
(2021a)

Wang et al.
(2021b)
Wang, M. et
al. (2023)
Jiang et al.
(2019)

Wei et al.
(2022)

Huang et al.
(2023)

Tang et al.
(2024)
Si et al.
(2024)

Gao L. et al.
(2021)

Bao et al.
(2023)

Su et al.
(2020)

Wang, Y. et
al. (2023)

Ordered logit model

Ordinary Least
Squares

Partial least squares
(PLS-SEM)

Factor analysis

Principal component
analysis

Process macro model

Structural equation
model (SEM)
Bootstrap and
regression analyses

Mixed Logit model

Binary logistic model
Logistic and probit
models

Spatial clustering and
decision trees methods

intention.

Social norms, reciprocity, communication
responsibility, and institutional environment influence
proper DBS parking intention.

Descriptive social norms influence disorderly parking
intention.

Perceived invulnerability promotes disorderly parking
intention.

Factors such as user self-discipline and parking space
influence DBS disorderly parking behaviour.
Measures such as co-enhanced standardised parking or
the improvement of parking facilities can help relieve
disorderly parking.

Rewards are more effective than punishments in
promoting orderly parking.

Injunctive norms show a stronger influence than
descriptive norms.

Punishment, personal norm, and descriptive norm
positively influence users’ orderly parking behaviour.
Both economic incentives and punitive measures
increased DBS users’ willingness to park correctly.
Punitive measures were marginally more effective than
incentives.

Both positive and negative incentives can encourage
DBS users to park legally.

Users’ heterogeneous characteristics could exert
influences on the effect of policy compliance.

Factors predicting parking compliance included
gender, age, occupation, usage behaviour, and travel
preferences.

Warning messages and monetary incentives shifted
users’ parking behaviour more than social norm
interventions.

There is significant spatiotemporal heterogeneity in
inconsiderate parking.

Inconsiderate parking behaviour is influenced by riding
distance, as well as the density of surrounding catering
service places, lifestyle services, sports and leisure
places, hotels and hostels.

2.2. User parking behaviour in DBS system

Studying users’ parking behaviours is essential for developing effective parking management policies to
address DBS parking problems. Table 2 provides insights into the related studies on users’ parking

behaviours and intentions. Most of them have examined the factors influencing users’ choices and

6
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preferences between disorderly and orderly parking (Wang et al., 2021a, 2021b; Wang, M. et al., 2023;
Wang, Y. et al., 2023; Bao et al., 2023; Huang et al., 2023; Tang et al., 2024). For example, Wang et al.
(2021a) identified the lack of a shared definition of ‘orderly parking’ as the most significant factor
affecting DBS parking, alongside social norms, reciprocity, communication responsibility, and the
institutional environment. Wang et al. (2021b) further demonstrated that descriptive social norms shape
users’ attitudes toward orderly parking directly and indirectly, and then influence the orderly parking
intention. Tang et al. (2024) proposed that the severity and certainty of punishment, along with personal
and descriptive norms, positively affect users’ attitudes toward orderly parking, which, in turn, influence
their parking behaviour. Other factors, such as past parking behaviour (Wang, M. et al., 2023a),
socioeconomic characteristics (Wang et al., 2021a, 2021b; Bao et al., 2023; Wang, M. et al., 2023), DBS
usage patterns (Bao et al., 2023), and the built environment (Wang, Y. et al., 2023) have also been shown
to significantly influence parking behaviour.

Additionally, few studies have evaluated the influence of behaviour interventions aimed at addressing
disorderly parking (Su et al., 2020; Gao L. et al., 2021; Si et al., 2024). Su et al. (2020) used a randomised
field experiment to assess the effectiveness of warning messages and monetary incentives in promoting
orderly parking behaviour, finding that both interventions improved compliance. Similarly, Si et al.
(2024) explored the impact of penalties and incentives on user compliance, showing that penalties were
more effective in encouraging orderly parking within designated electronic fences. Gao L. et al. (2021)
established a mixed logit model to determine how positive and negative incentive measures affect parking
behaviour, demonstrating that monetary rewards are more effective at promoting orderly parking than
financial penalties.

2.3. Research gap

Understanding parking behaviour is essential for DBS parking management, since users’ compliance with
parking regulations directly impacts the effectiveness of planning and operational measures. However,
research focusing on DBS usage from a behavioural perspective has received relatively limited attention,
leaving notable gaps that call for further exploration.

Firstly, the possibility of explained and unexplained taste heterogeneity among users has been widely
ignored in previous studies on DBS parking behaviour. Similar to other decision-making behaviour,
individuals show significant differences in their responses to changes in various attributes of a given
alternative within the specific parking context, and neglecting these differences may lead to bias and
poorer model fit (Hess and Polak, 2004). Only one study by Gao L. et al. (2021) has considered random
taste heterogeneity in the model, indicating that the impact of factors such as travel purpose, gender,
number of companions, and willingness to incur penalties or accept rewards varies among individuals.
However, the deterministic and random taste heterogeneity in initial preferences for specific parking
alternatives, as well as in responses to alternative-specific attributes, have not been adequately explored.
Secondly, past studies were mainly based on rating scale survey to identify the factors influencing parking
intention or behaviour, and to analyse the relationships between them (Huang et al., 2019; Jiang et al.,
2019; Zhao and Wang, 2019; Wang et al., 2021a, 2021b; Wei et al., 2022; Wang, M. et al., 2023; Si et al.,
2024; Tang et al., 2024). However, this method have certain limitations. For instance, it collects
respondents’ attitudes or preferences toward specific items, but it lacks contextualization and the process
of choice trade-offs. Regarding other methods, field experiments (Su et al., 2020) allow for the direct
observation of behaviour in controlled settings but cannot fully account for variations in attributes. The
RP method (Wang, Y. et al., 2023) relies on respondents’ observed choices or previous behaviour,
limiting the ability to explore attributes or alternatives that do not exist (Helveston et al., 2018). Few

7
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studies have employed the SP survey. There is a lack of sufficient understanding of users’ responses to
new parking alternatives or attributes that emerge under policy interventions.

Thirdly, as proposed by Su et al. (2020), exploring the relationship between the value of the reward and
the distance people are willing to walk or the time they are willing to spend would be valuable for setting
appropriate incentive prices. However, no research has been conducted in this area to date.

3. Survey and data
3.1. The definition of orderly and disorderly parking for DBS and its current status in China

As of now, there is no standardised definition of orderly and disorderly parking for DBS in both academic
and operational fields (Wang et al., 2021a; Heinen and Buehler, 2019). Jiang et al. (2019) and Wang et al.
(2021a) provided a broader definition of disorderly parking as parking outside the designated areas, while
Gao L. et al. (2021) defined it more specifically as occupying a bicycle lane, sidewalk, or walkway for the
blind, as well as overcrowded parking when legal parking spaces are fully occupied. Su et al. (2021) and
Si et al. (2024) further considered whether bicycles within designated areas were properly placed, taking
into account their positioning and alignment. Different cities or districts in China have established
specific definitions of disorderly parking based on their unique conditions and management objectives.
For example, some places have implemented geo-fencing technology, using GPS to restrict users to end
rides only in designated areas to promote orderly parking, with parking outside the geo-fenced boundaries
considered disorderly (Zhang et al., 2019). In contrast, in places lacking designated parking areas, the
definition of disorderly parking is more ambiguous (Wang et al., 2021a).

In typical scenarios, bicycle parking resources are limited and dispersed. The nearest parking areas to
high-traffic destinations, such as busy public transportation stations and work, educational or residental
locations, are often insufficient to meet demand (Van der Spek and Scheltema, 2015; Heinen and Buehler,
2019). Without enforced requirements, DBS users want to park their bicycles as close as possible to the
destination and lack adequate motivation to park bicycles in more distant parking areas, leading to the
accumulation of bicycles near the destinations. This results in bicycles overflowing onto sidewalks,
bicycle lanes, and even motor lanes. Accordingly, this research is focused on addressing this critical issue.
We proceeded under the assumption that clearly designated parking areas exist, and define orderly
parking as parking within designated parking areas, focusing specifically on the situation where the
nearest designated parking area to the destination is saturated.

3.2. Survey design

The survey was divided into four components, collecting data on: 1) current DBS usage and parking
information, such as riding frequency, average riding time, past parking behaviour, past penalty
experiences for disorderly parking, and reasons for past disorderly parking; 2) responses to stated choice
(SC) tasks; 3) responses to self-report scale statements; and 4) respondents’ socio-demographic
characteristics, including gender, age, education, income, occupation, and bike ownership. Based on the
objectives here, only stated preference (SP) data and socio-demographic information were employed in
the modeling process. The following section outlines the process involved in designing the SC
components.

3.2.1. SP scenario design

We used SC tasks in the survey to understand how people react to different parking options and
management methods that do not currently exist in real parking scenarios. In the questionnaire, we
presented respondents with hypothetical decision-making scenarios, which were based on a typical DBS
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travel situation. Detailed explanations and a graphical illustration were provided, as shown in Fig. 2. The
text was originally written in Chinese for data collection and then translated into English for illustration in
this paper. Different from previous studies, the designated paid parking area was also included as one of
the parking options. Although paid parking areas are currently uncommon in practice and primarily used
for private bicycle storage, it remains valuable to explore as a potential management strategy for DBS and
allows us to evaluate how users trade off between cost and convenience. Fig. 3 gives an example of the
SC tasks.

Scenario

Suppose you ride a dockless bike-sharing to the subway station to catch the subway, but find that there is no parking space left in the nearest
designated free parking area (lined parking areas) next to the subway station. At this point, you have three parking options to choose from:

Another designated free parking area: Park in a designated free parking area located a certain distance away from the destination. After
parking, you will need to walk back to the subway station. You could receive a reward for parking here.

: Itis nearer to the subway station than the alternative designated free parking area but requires a parking fee.
Disorderly parking: Leave your bicycle near the subway station entrance (with a negligible walking distance), but this could result in a fine.

Please select the parking option that you prefer.
Note: The described scenario may differ from situations you have experienced in real life. However, we hope you can put yourself in the
scenario and respond thoughtfully and realistically about what you would choose to do in such situations.

Designated paid | @
parking area o
o

Subway Station @ :"g

Disorderly parking

@
&

Designated free parking area

- Desi d free parking e
area (no capacity) I_-oo‘cl

Road A

Altl: Parking in another designated free parking area
Al2: Parking in designated paid parkin
Alt3: Disorderly parking

Fig. 2. Illustration of the choice scenario in SP survey.

Anot_her designated free Designated paid parking Disorderly parking
parking area area
Distance from the destination ZQOm (The round trip takes 4 1(?0m (The round trip takes 2
min) min)
Reward 30 min free ride coupon
Parking fee ¥1
Fine S
Number of other people parking High (more than 10
disorderly people)
Choice question: (@] O ®)

Fig. 3. Example of SC tasks in the questionnaire.

3.2.2. Experiment design

The SC experimental design was developed using the Ngene software (ChoiceMetrics, 2018). SC tasks
include three parking alternatives: 1) free parking area, 2) paid parking area, and 3) disorderly parking,
which individuals were asked to choose between. All three alternatives were labeled in the experiment,
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meaning that the label itself conveys information to respondents, allowing for the estimation of label-
specific preference parameters and constants (Louviere et al., 2000).

Based on a systematic review of the literature (Fukuda and Morichi, 2007; Wang et al., 2021a; Gao et al.,
2021b), as well as the specific objectives and scope of this research, five attributes were ultimately
included, which are summarised in Table 3. Not every attribute applies to all three alternatives.
Specifically, “distance to parking” serves as a general attribute for the two orderly parking alternatives.
“Reward” is linked to the free parking area, while the “parking fee” attribute pertains to the paid parking
area. Additionally, the “fine” and the “other people” attributes are associated with the disorderly parking
alternative.

Increasing the number of levels leads to greater design complexity and a higher number of choice tasks
(Louviere et al., 2000). To balance statistical efficiency with respondents’ cognitive burden, three levels
were assigned to attributes such as distance to parking, parking fee, and the number of other people
parking disorderly. For the reward and fine attributes, an explicit zero level was included to enable the
estimation of presence-versus-absence effects on choice behaviour. All of the attribute levels were
determined such that they extended beyond current observed real-world levels while varying within
reasonable ranges, providing sufficient variation needed to estimate the attribute’s sensitivity, while also
ensuring feasibility and realism for respondents in the survey (Song et al., 2018). To better reflect
practical conditions and avoid dominated alternatives, two constraints were applied to the attribute levels
in the experiment design: (1) the parking cost in the paid parking area must be lower than the fine for
disorderly parking when the fine is non-zero, and (2) the distance to the free parking area must exceed the
distance to the paid parking area.

TABLE 3
Overview of attributes and their levels

Another designated Designated paid

Attributes Attribute Descriptions free parking area parking area Disorderly parking
Reward The free riding coupon for parking in 0/ 10/20/ 30 - -
a more distant free parking area (min)
Distance to Additional distance needed to park in 200/ 500/ 800 100/ 200/ 300 -
parking another designated free or paid
parking area (m)
Parking fee Charges imposed by the designated - 0.5/1/2 -
paid parking area (CNY)
Fine Monetary penalties automatically - - 0/1/3/5
deducted for disorderly parking bikes
(CNY)
Other people =~ Number of other users who disorderly - - No others/
park bikes outside designated parking Low (<10 people)/
areas. High (>10people)

Note: CNY/USD =0.138 during survey period

It is important to note that this research adopts the free riding time coupon as the reward to encourage
users to park bicycles in designated parking areas, rather than relying on the monetary reward frequently
used in previous studies (Su et al., 2020; Wang et al., 2021a, 2021b; Gao et al., 2021b). In practical
situations, various factors impacting the financial sustainability of monetary incentives, such as cost
implications and budget constraints, could significantly influence DBS companies’ willingness and ability
to implement monetary rewards for orderly parking. In contrast, non-monetary incentive types, such as
free riding time coupons, appear to be easier to implement and have been increasingly explored by DBS

10
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companies (Beijing News, 2024) and in some academic studies regarding DBS users’ choices in recent
years (Shen et al., 2018; Li et al., 2019; Kirkman, 2019; Si et al., 2024). In the SC tasks, we presented
respondents with both the distance to parking and the corresponding round-trip time to the destination,
calculated based on average speeds. It is assumed that cycling from the destination to the designated
parking area would be at an average speed of 10 km/h (see Long and Zhao, 2020 for the statistical
average cycling speed of bike-sharing in Chinese cities), while the return to the destination would be on
foot at an average speed of 4 km/h (see Romanillos and Gutierrez, 2019; Jia et al., 2022).

A D-efficient design (Bliemer and Rose, 2024) was used to achieve a low D-error, corresponding to a
higher level for the Fisher information, which facilitates more precise parameter estimates. A swapping
algorithm (ChoiceMetrics, 2018) was applied to minimize D-error and maximize attribute level balance.
Due to the absence of prior information on the coefficients, we initially conducted a pilot study using non-
informative priors (small positive or negative values) (Rose and Bliemer, 2009; Bliemer and Collins,
2016). A total of 50 samples were collected in the pilot study, which was conducted in June 2024. The
final experimental design was subsequently generated based on the information obtained from the pilot
survey, resulting in the design of 12 SC tasks for each respondent. The S-estimate, which indicates the
smallest sample size needed for all parameters to be statistically significant, was calculated to be 200 in
the final D-efficient design, suggesting that a sample size above 200 is likely adequate to draw
meaningful conclusions (Rose and Bliemer, 2013).

3.3. Data collection

The survey was implemented using an online questionnaire developed using the online tool Credamo
(https://www.credamo.world/#/) in July 2024. Credamo is a professional survey platform in China with a
commercial panel of over 3 million members (Credamo, 2022), covering all provinces and administrative
regions. It has been widely used in numerous studies (Tang et al., 2023; Si et al., 2024). We imposed a
strict constraint on the recruited samples, restricting them to individuals who had previously used DBS.
Participants could receive a bonus of CNY 2 (approximately USD 0.27), which would be credited to their
electronic accounts. The average response time for all respondents is about 8 minutes. In total, 703
participants completed the survey. After reviewing the survey responses, the final analysis included 600
valid responses, following the manual exclusion of 103 respondents with dubious survey responses,
which were excluded based on specific criteria, such as instructed response items (Meade and Craig,
2012), response time (Huang et al., 2012) and long strings of the same response category (Johnson, 2005).
The effective response rate was 85%.

3.4. Descriptive statistics

A detailed summary of the respondents’ socio-demographic (e.g., gender, age, income, education level,
occupation, bike ownership) and DBS usage characteristics (e.g., usage frequency, average riding
duration, city of residence), including income distribution, is provided in Appendix 1. Among those who
provided valid responses, 58% were female. Young people made up the majority of respondents, with
60% aged 21-30 and 23% aged 31-40, which is similar to the user profile of DBS reported by iiMedia
Research (2022), where 81% of users are aged between 22 and 40. The sample displayed a relatively high
level of academic achievement, with 70% holding a bachelor's degree and an additional 19% having a
master's degree or higher, aligning with the educational characteristics of shared mobility users reported
in the Green Development Report on Shared Mobility (2017). The majority of respondents (72%) were
employed full-time, while 22% were students. Monthly income levels among respondents were relatively
evenly distributed across the sample.
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Regarding DBS usage, 85% of respondents used DBS at least once per week. Most respondents (61%)
reported an average riding duration of 11-20 minutes, which was consistent with the observations from
WRI (2020). Additionally, CAUPD (2024) shows that the average duration of a single bike ride is
approximately 12.1 minutes in 2024. Overall, the demographic and usage characteristics of the sample in
this survey matched the user profile of China’s DBS market as described in existing reports, indicating
the representativeness of the sample.

Although approximately 22% of respondents are located in cities where geo-fencing technology has been
implemented, its potential influence on their acceptance of and responses to the choice scenario, which
was designed without considering geo-fencing, is expected to be limited. This is because geo-fencing in
these cities has typically been implemented only in a small portion of the city area, while free-floating
parking remains permitted in most parts of the city. In addition, some cities have simultaneously adopted
an incentive-based approach as part of their parking management strategy, alongside geo-fencing. Given
the clearly described scenarios in the SP survey, the perceived impact of geo-fencing on the findings is
considered negligible in this study. The choice proportions for free parking, paid parking and disorderly
parking in the survey were 41%, 39%, and 20%, respectively. Despite being a hypothetical option not
currently existing in real-world settings, paid parking exhibited a relatively high selection rate, suggesting
that respondents regarded it as a valid alternative.

4. Modelling framework
4.1. Utility specification

In our work, discrete choice models were estimated based on the principles of random utility
maximization (McFadden, 1973), assuming that an individual will select the alternative that provides the
highest utility. The random utility function U, for alternative i for respondent 7, consisting of a
deterministic component V,; and a random component &,;, is specified as shown in Eq. (1)

Uni =Vni +&ni :5ni+ﬂl’1xni+5nia (1)

where J,; represents the alternative specific constants (ASCs) capturing the average effect on utility of all
factors not included in the model, x,; are attributes associated with alternatives i as faced by respondent #,
[, represents the weight or importance that respondent n attaches to the corresponding attribute in the
choice process and can be positive or negative depending on the attribute. Relaxing the assumption of
homogeneity across individuals, we can incorporate deterministic taste heterogeneity into the models by
allowing for interactions between estimated parameters and individual socio-demographic characteristics.
For example, d,; can be written as a deterministic function of an observed vector z¢ of individual
characteristics ( 5,; = 6; + a)z,iz;,‘S , where w.;represents the extent to which each individual characteristic

influences the overall perception for different alternatives) (Bhat, 2000). In the case of a continuous
interaction (see for example Hess et al., 2007; Axhausen et al., 2008), the interaction term could be
expressed as

B 7z x
f(Zf}:xni)=,Bx( } Xni > (2)

ZH
=B
where z/7 is the observed value for a given socio-demographic variable such as income for respondent

n, z” gives the mean value across the sample population. The estimate of 7. gives the elasticity of the
sensitivity to x; with respect to changes in 2%; if 7., is negative, an increase in 2 will lead to a decrease in

12
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sensitivity towards x;, with the opposite applying in the case of positive values for #.. fx captures the
marginal utility of changes in attribute x; at the average value of z# in the same population.

4.2 MNL and NL model

Assuming the random error terms &,; to be identically and independently distributed (i.i.d.) across
alternatives and respondents with a type I extreme value (or Gumbel) distribution, we developed a
multinomial logit (MNL) model (McFadden, 1973) as the base. The probability of respondent n choosing

alternative i from the set of alternatives J is then given by
Vi

Bi=—"— (3)
jeJeVW
The restriction imposed by the MNL model on the distribution of random error terms leads to the
independence from irrelevant alternatives (IIA) property, resulting in identical cross-elasticities between
all pairs of alternatives (Wen and Koppelman, 2001). To address these limitations, we developed the
nested logit (NL) model (Williams, 1997) within the closed-form generalised extreme value (GEV)
framework (McFadden, 1978), which expands the MNL by offering more flexible specifications of error
terms ¢,; to handle correlations between alternatives. In the NL model, alternatives are divided into
different nests (B, B»...Bx), and /i is used to measure the degree of independence in unobserved utility
among alternatives within nest Bx. We would then have 0<<A,<: 1, while a higher value of 4« indicates
greater independence and lower correlation among these alternatives (Train, 2009). The choice
probability of respondent # choosing alternative i within nest By is given by Eq. (4), which can be

decomposed into a marginal probability £,z and a conditional probability Pz, .

Bi(B) = P, Fus, » (4)
oAl
Pan = W (5)
Vil 2 ’
B, = m (6)
where ,
L =In Y FlA (1)

JEB:

4.3. Mixed GEV models

In order to capture potential random variations in respondents’ preferences, we developed mixed
multinomial logit (MMNL) models (McFadden and Train, 2000). The most widely used formulation of
the MMNL is based on random coefficients, which is referred to as the random-coefficients logit (RCL)
model (Train, 2009). In our research, we considered three types of distributions for coefficients: normal,
log-normal, and negative log-normal distributions. We assumed that ASCs follow a normal distribution,
based on the a priori assumption that different individuals may perceive parking alternatives as either
advantageous or disadvantageous, as expressed in Eq. (8), where 6; is a vector of parameters (including
mean /s and standard deviation o, ) characterizing the distribution and &,; are the draws from the

selected distribution for each respondent #. Similarly, we assumed the coefficient of the reward attribute
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to follow a log-normal distribution, while those of distance to parking, parking fee, and fine to follow
negative log-normal distributions, ensuring the positive or negative effects of these attributes, as shown in
Eq. (9).

(6105 )= ps, + 05 Euirni ~ NO) 8)

F(B:105)=2exp(up, +0p, Em).En ~ N(O,) 9)

While the RCL model introduces random taste heterogeneity, it does not accommodate potential
correlation among alternatives. Another formulation of the MMNL model is the error-components logit
(ECL), which is conceptually different, yet mathematically equivalent to the RCL model (Ben-Akiva and
Bierlaire, 2003, Hess et al., 2004; Train, 2009). Instead of assuming inter-individual variations in taste
parameters, the ECL model introduces inter-alternative correlations by allowing certain alternatives to
share common error components in their utility. The ECL can be implemented by assigning a dummy
variable to each nest of alternatives. With K non-overlapping nests, the error component term can be
expressed as

T'n® = Yke1 Tndir, (10)

where 7,,;,~N(0,0;) is a random term with zero mean, shared by all alternatives in the nest &, and o,
captures the magnitude of the correlation. dy=1 if the alternative i belongs to the nest k, and 0 otherwise.
The terms in ¢ represent error components associated with each nest, defining the stochastic portion of
utility along with ;.

Although the MMNL model allows for both random taste heterogeneity and flexible substitution patterns,
it still suffers from important issues of identification (Walker, 2001). Mixed GEV models have been
shown to avoid the identification issues associated with MMNL models and offer advantages in
computational efficiency (Hess et al., 2004; Haghani et al., 2015). Additionally, the Mixed NL model
offers a computational advantage by reducing the number of random coefficients, while the ECL model
requires an additional random terms to represent each separate nests (Hess et al., 2004; Haghani et al.,
2015). Accordingly, we developed a mixed nested logit (Mixed NL) model, which incorporates a
correlation structure, enabling the evaluation of choice probabilities within the NL framework and
calculating unconditional probabilities by integrating over the probability distribution of the coefficients.
The unconditional probability for choosing alternative i is obtained by integrating Eq. (4) over the
possible values of § weighted by its function Eq. (11).

eVul X DI

Pm' 0)= Pm' O)dp =
©) =], Pi(B)f (BB =], S,

f(B16)ap (11)

5. Empirical analysis
5.1. Specification procedure

Five models were established using a step-wise approach. The MNL model was initially created as the
basis for comparison, assuming that no correlation existed between the alternatives. We then estimated a
NL model, incorporating a nesting parameter to account for potential heightened correlations among the
two orderly parking alternatives. Following that, the model was extended to a RCL model, which
included random parameters to accommodate interpersonal random taste heterogeneity. A MMNL
incorporating random coefficients and error components, and a Mixed NL model, were finally estimated
to simultaneously account for both inter-alternative correlations and random taste heterogeneity. It should
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be noted that the MMNL model with both random coefficients and error components is referred to as the
ECL model in this paper to distinguish it from the RCL model.

For model identification purposes, the free parking area alternative was assumed as the base alternative
for all models, with the corresponding alternative-specific constants (ASC) parameter fixed at 0. The
attribute for the effect of the number of other people parking disorderly was dummy-coded and entered
the utility functions as categorical variables to describe whether others were parking disorderly, with ‘no
others’ set as the reference category (fixed at 0). Other attributes entered the utility function linearly. To
identify sources of heterogeneity, possible deterministic taste heterogeneity in the parameters was tested
by incorporating interaction terms. It was observed that accommodating deterministic heterogeneity found
an improvement of model fit, as evidenced by all the selection criteria considered (Likelihood Ratio test,
p <0.001). Higher model fit indicators were found when interacting respondents’ gender and age with the
ASC for the disorderly parking alternative, and respondents’ income with parking fee as a continuous
interaction. Although incorporating riding frequency and duration covariates could offer meaningful
insights, these variables did not yield statistically significant effects (see Appendix 2). Therefore, they
were excluded from the final model in favor of model parsimony. Rather than exploring the interactions
between the income characteristic and ASC for alternatives, we specified a continuous interaction term
between income and parking fee to capture how sensitivity to parking fees varies across income. A
negative value of the interaction parameter indicates that respondents with higher income are less
sensitive to parking fees, and vice versa. It should be noted that the midpoint approach (Bhat, 1994; Von
Fintel, 2007) was used to handle grouped and missing income data, enabling the estimation of the
continuous interaction. Additionally, to account for potential correlation in unobserved utility
components, we tested all theoretically valid nesting structures among the three alternatives. As shown in
Appendix 3, the specification that grouped the free parking area and the paid parking area into an "orderly
parking" nest exhibited the strongest substitution pattern between alternatives, so this nesting structure
was adopted in the final NL and Mixed NL models.

5.2 Estimation results

All models in this paper were estimated in R using Apollo (Hess and Palma, 2019), with 500 MLHS
draws (Hess et al., 2006) for numerical approximation of the MMNL integrals. The model selection
criteria and estimation results for five models are presented in Table 4 and Table 5, respectively. Moving
from left to right, goodness-of-fit gradually improves, as seen from the values of final LL, AIC, BIC, and
Adjusted p?, indicating that the explanatory power of the models progressively increases with the rising
specification complexity, while maintaining a good balance between model fit and complexity. The better
performance of the Mixed NL model compared to the MNL, NL and RCL models could also be
confirmed by likelihood ratio (LR) tests. For example, the LR test yields a value of 54.64 with a
corresponding p-value of <0.01 when comparing the Mixed NL and RCL models, indicating that the
improvement in model fit is statistically significant. Specifically, the Mixed NL model outperforms the
other models by allowing for both interpersonal variations in DBS parking preferences while also
allowing for correlation between the orderly parking alternatives (Hess, 2004). Notably, the Mixed NL
model achieves a goodness-of-fit nearly equivalent to (and marginally better than) that of the ECL model,
which is consistent with the findings of Haghani et al. (2015). Moreover, the Mixed NL model
demonstrated better performance in capturing the effects of key variables. In particular, it was able to
reveal a significant difference between the coefficients for Sotmer people low a0 Sother people high, Whereas the ECL
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model failed to do so. Therefore, the following analysis will focus on the estimation results of the Mixed
NL model.

TABLE 4
Model selection criteria of the DBS parking choice models

Goodness—of—fit Multinomial Nested Random-coefficients Error-components Mixed nested
measures logit logit logit logit logit
Number of choice 7200 7200 7200 7200 7200
observations

Number of estimated 10 11 16 18 13
parameters

LL (final) -5591.88 -5572.85 -4667.5 -4641.59 -4640.18
AIC 11203.75 11167.69 9367.01 9319.17 9316.35
BIC 11272.57 11243.39 9477.12 9443.04 9440.23
Adj. p? 0.2918 0.2941 0.4079 0.4109 04111

Fig. 4 presents a graphical representation of the probability distributions of utility coefficients. Significant
random interpersonal taste heterogeneity was identified for six coefficients: ASC for paid parking area
alternative, ASC for disorderly parking alternative, reward, distance to parking, parking fee, and fine
parameters. We assume that the ASCs follow a normal distribution. The mean estimates for ASCs of the
paid parking area and disorderly parking alternatives are significantly negative, while disorderly parking
ASC shows the lowest mean, suggesting a general preference for the free parking area over the paid one
and disorderly parking is perceived most negatively. The standard deviation of the ASC for the disorderly
parking alternative is relatively high, indicating the significant variability in respondents’ preferences for
disorderly parking. Interaction terms further reveal that females and older individuals have an even
stronger aversion to disorderly parking, which is consistent with Wang et al. (2021a) and Su et al. (2020),
suggesting that socio-demographic characteristics significantly influence the overall perception of parking
alternatives.

The coefficient of reward is assumed to be log-normally distributed, while the estimated mean and
standard deviation are both statistically significant. The sign of the coefficient is arbitrary when
interpreting the direction of the effect, but it does influence the magnitude of the effect. Specifically, the
more negative the mean parameter, the smaller the magnitude of the marginal utility, indicating lower
sensitivity to the reward attribute. Given that previous research primarily evaluated monetary rewards as
an incentive measure (Gao L. et al., 2021; Wang et al., 2021a, 2021b), this research demonstrates that
offering free riding time coupons as rewards also significantly encourages users to park at more distant
locations, although the effect is relatively modest.

A negative log-normal distribution is employed for the coefficients of distance to parking, parking fee and
fine. The mean and standard deviation of the three coefficients are all significant. As seen from the
interaction term, individuals with higher incomes show lower sensitivity to parking fees. However, the
significance of the #income, parking fec declines as model complexity increases, and becomes statistically
insignificant in the Mixed NL model, which suggests that the taste heterogeneity for parking fees is
mainly captured by the random component instead of the interacting covariate.
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1 TABLES
2 Model estimation results for MNL, NL, RCL, ECL and Mixed NL models

Parameters Multinomial logit Nested logit Random-coefficients logit ~ Error-components logit Mixed nested logit
Est. Rob.t rat. Est. Rob.t rat. Est. Rob. t_rat. Est. Rob.t rat. Est. Rob.t rat.

Means of utility coefficients

Ofree parking area 0 — 0 — 0 — 0 — 0 —

Opaid parking arca -0.643 -8.08***  .0.557 -0.12%%* -1.113 -8.75%** -1.116 -0.10%** -0.883 -8.98***

Odisorderly parking -1.444 -5.38***%  -1.187 -4 70%** -2.262 -4 .52%%* -2.095 -4.02%%* -1.765 -4.16%**

Wfemale, disorderly parking -0.339 -2.70%%*  -.0.319 -2.69%** -0.544 -1.84* -0.602 -2.42%%* -0.617 DK e

Wage, disorderly parking -0.191 -2.31%  -0.187 -2.38%* -0.525 -3.05%** -0.599 =33k -0.422 -2.96%**

Preward 0.030 14.93%*%*  0.024 12.85%**

Pistance to parking -5.583  -26.34%*¥* 4401  -16.00%**

Prarking fee -0.898  -18.42%*¥*  -0.666  -12.25%**

Tincome, parking fee -0.144 -3.43%*%% - 0.144 -3.38%** -0.104 -2.26%* -0.094 -2.23%%* -0.083 -1.59

Prine -1.341  -24.57%** 21260  -24.18%**

Pro others 0 — 0 — 0 — 0 — 0 —

Pother people 0.546 7.63*¥*¥*  0.560 8.47¥x* 0.813 5.61%%*

Pother people low 0.846 5.45%%* 0.650 5.02%**

Pother people high 0.831 4.81%** 0.901 6.39%**

Standard deviations of utility coefficients

08 yaid parking area 0.576 3.53 **x 0.537 3.14%** 0.512 4.84%**

08 gisorderly parking 2.392 12.54%** -2.084  -12.20%** 2.046 11.94%**

Torderly parking 1.124 3.64%%*

Location parameters on log-scale

HB,eward -3.1310 -38.81*** -3.168"  -38.74%%* -3.478~  -33.12%%*

HB4istance to parking 2287 53.14%** 2.328"™M 53.56*** 2025 29.52%*%*

HBparking fee 0.456" 7.70%** 0.448" 7.65%*¥*  0.165™ 1.96%*

HBeine 1.260™ 13.49%** 1.310™M 20.00%*** 1.075™ 13.44%**

Log-scale standard deviations

OB, oward -0.467" -3.49%** -0.610" -6.91*** 0.690" 6.55%**

OBistance to parking -0.493/\ -9.95%*%*% 0491 -19.65%**  -0.489"M  -16.44%**

OBparking fee 0.517™ 5.02%%*  -0.548"™ -9.09%**  (0.472/ 4.04%**

17
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OBfine -0.665™" -7.00%** 0.693"M 9.36%**  -0.642""" -9.33%%x*

Nesting coefficient

Jorderly parking 0.706 15.79%%* 0.657 13.31%**
Note:

* Signify confidence at 90%, ** Signify confidence at 95%, *** Signify confidence at 99%.

" means the coefficient is log-normally distributed by assumption, ~* means the coefficient is negative log-normally distributed by assumption.

For coefficients assumed to follow a log-normal or negative log-normal distribution, the estimated parameters correspond to the location parameter on log-scale and log-scale
standard deviation for the log-transformed coefficients (i.e., log(B) or log(-B)). These parameters define the log-normal probability density function, but do not represent the mean
and standard deviation of the coefficients (i.e., f) themselves.
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Fig. 4. Probability distribution for random utility coefficients estimated based on the Mixed NL model.

The positive coefficient for the dummy variable representing other people’s behaviour implies that when
others park disorderly, respondents are more likely to do the same. This can be explained by the theory of
descriptive norms proposed by Cialdini et al. (1990), which suggests that individuals’ behaviour is guided
by the perception of how other people behave in a given context. While many users believe that orderly
parking is better for the environment and society, they may still park disorderly when observing others
doing so (Fukuda and Morichi, 2007; Wang et al., 2021b). Compared with the other three models, the
Mixed NL model revealed a significant difference between the coefficients for Somer people high and

Pother people 1ow, indicating that a higher number of people parking disorderly increases the utility of choosing
disorderly parking more than a lower number does. It implies that, compared with low-perceived
descriptive norms, high-perceived descriptive norms can lead to a greater level of moral disengagement,
which has been supported by findings in other literature (Rinker and Neighbors, 2013; Zhao et al., 2017).
The nesting parameter (Aorderly parking) 1S significant at the 99% level of confidence and takes a value of
0.657, implying a high correlation between the unobserved utilities of the free parking area and paid
parking area alternatives. This correlation pattern is further supported by the significant variance of the
error component term associated with these two alternatives in the ECL model.

5.3. Analysis of policy intervention effectiveness

For assessing the impact of changes in policy interventions, model predictions were conducted in Apollo
(Hess and Palma, 2019), with the prediction algorithm set to perform 500 runs. We first generated
forecasts based on the base values of the explanatory variables as specified in the SC experiment and
subsequently predicted the new choice probabilities of each alternative at the observation level resulting
from the percentage change in the values of five explanatory variables. The predicted probabilities of
choosing specific alternatives under several policy interventions can be observed clearly, as shown in Fig.
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5. It should be noted that no single base value is reported for each attribute in Fig. 5, as the relative
changes are derived from all choice tasks, each of which is assigned different attribute values. The base
values and their corresponding adjusted values after applying relative changes are provided in Appendix
4. For example, in choice task 1, the distance to the free parking area is 800m, and a 30% reduction
corresponds to a decrease of 240m. In contrast, in choice task 4, where the distance to the free parking
area is 500 m, a 30% reduction corresponds to a decrease of 150m. In Fig. 5, relative changes ranging
from —30% to +30% were applied to all choice tasks, and the choice probabilities represent the overall
predicted changes aggregated across all tasks.

1

1 1

75% 75% 75%
= 2z z
£ k- E
E 50% £ 50% £ 50%
8 2 2
= < =3
g 5 3]

25% 25% 25%

0 0
30% -20% -10% 0% +10% +20% +30% -30% -20% -10% 0% +10% +20% +30% 30% -20% -10% 0% +10% +20% +30%
(a) Change in distance to the free parking area (b) Change in fine for disorderly parking (c) Change in reward for the free parking area
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ot n% Alfernatives
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5 s o paid parking area
E E
= = .
S o free parking area

25% 25% = parking
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(d) Change in distance to the paid parking area (e) Change in fee for the paid parking area

Fig. 5. Choice probability under policy interventions based on the Mixed NL model.

Reducing the distance to designated parking areas, whether paid or free, has been shown to reduce
disorderly parking rates. Under the original scenario, the choice probabilities for the free parking area, paid
parking area, and disorderly parking are 41%, 38%, and 21%, respectively. A 30% reduction in the distance
to the free parking area results in a 3% decrease in the probability of choosing disorderly parking, while a
30% increase in distance leads to a 2% rise. In comparison, reducing the distance to the paid parking area
by 30% yields a 5% decrease in the probability of disorderly parking, whereas a 30% increase leads to a 1%
rise. These results suggest establishing high-density DBS parking facilities, which enable users to access
designated parking areas within a relatively short distance when the parking areas near the destination are
fully occupied, have the potential to discourage disorderly parking behaviour. This finding aligns with
Meng et al. (2024), which demonstrated a potential non-linear relationship between the density of shared
scooter parking corrals and parking non-compliance rates. To further examine behavioural sensitivity, we
calculated direct and cross choice elasticities in response to a 1% increase in each attribute, as shown in
Table 6. The choice elasticities of the disorderly parking alternative in response to a 1% increase in the
distance to the free and paid parking areas are 0.40 and 0.30, respectively, both lower than that of the free
and paid parking alternatives. This indicates that while reductions in the distance to parking do help lower
disorderly parking rates, the main shift in choice occurs between the free and paid parking alternatives.
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Implementing monetary punitive measures can also help reduce parking non-compliance, which is
consistent with Gao et al. (2021). More specifically, a 30% reduction in fines for disorderly parking
increases the probability of such behaviour by 3%, while a 30% increase in fines results in a 2% decrease.
The choice elasticity of disorderly parking with respect to a 1% increase in the fine is 0.36. In comparison,
a 30% increase or decrease in rewards only leads to a 1% shift in the probability of disorderly parking,
indicating a limited behavioural response to free riding reward changes. Among all the policy interventions
examined, the choice elasticity of disorderly parking in response to changes in the reward is the lowest.

TABLE 6
Choice elasticities in response to a 1% increase in attribute values

distance to parking (free) = reward  distance to parking (paid)  parking fee  fine

free parking area -1.40 0.18 0.50 0.35 0.04
paid parking area 1.26 -0.14 -0.69 -0.45 0.14
disorderly parking 0.40 -0.11 0.31 0.16 -0.36

Furthermore, adjustments to parking fees exhibit the potential in influencing the probabilities of choosing
free or paid parking alternatives, demonstrating the effectiveness of pricing mechanisms in influencing
parking behaviour. However, they have weak impact on disorderly parking behaviour. The choice
elasticity of disorderly parking with respect to a 1% increase in the parking fee is 0.16.

Overall, only the choice elasticities of the free and paid parking alternatives in response to a 1% increase
in the distance to the free parking area exceed 1, which can be considered relatively elastic. This suggests
that users are sensitive to changes in the distance to free parking areas. In contrast, the choice elasticities
associated with a 1% increase in other attributes fall below 1, indicating relatively inelastic responses
(Hensher et al., 2015). This finding demonstrates that relying on a single policy intervention may be
insufficient to address the problem of disorderly parking. A combination of policy interventions may be
necessary to achieve more effective parking management outcomes.

5.4. Willingness to pay interpretation

Willingness to pay (WTP) values were calculated based on parameter estimates for each model, as
presented in Table 6. During the survey period, the exchange rate was CNY/USD = 0.138. For models
with fixed coefficients, the mean values and robust standard errors of WTPs were computed using the
Delta method (Train, 2009), while WTP distributions were derived through a simulation approach for the
random coefficient models (Hensher and Greene, 2003; Daly et al., 2011). Specifically, the random
coefficients were simulated at the individual level. To illustrate this intermediate step, we provide in
Appendix 5 the transformed estimates of coefficients with log-normal and negative log-normal
distributions. The empirical distribution of WTP was then derived from the distribution of the ratio of
these individual coefficients. Since all random coefficients for attributes follow either a positive or
negative log-normal distribution, this ensures that moments of the WTP distributions (e.g., mean and
variance) can be calculated (Daly et al., 2012). The WTPs produced by the four models are similar in
magnitude. However, an overall increase in the mean value and wider quartiles can be observed as model
complexity increases, which is consistent with findings in empirical discrete choice studies (Hess et al.,
2004; van den Berg, 2010; Teye, 2014). This indicates that ignoring random taste heterogeneity and
substitution patterns can lead to a risk of biased results. The broad range of WTP values also confirms
that individuals place different values on distance to parking and time to/from parking. The subsequent
analysis thus mainly focuses on the Mixed NL model. The following analysis mainly focuses on the
Mixed NL model.
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Starting with the WTP for the reduced distance to parking, we first derived the distributions of the
marginal utilities for the distance to parking and parking fee attributes. Then, we generated 500 random
draws and calculated the ratio of the marginal utility of distance to parking to the marginal utility of
parking fee for each sample in this set. Given that both distance to parking and parking fee follow a
negative log-normal distribution, the WTP for distance to parking also follows a log-normal distribution,
with an estimated mean of CNY 0.81 per 100 metres saved. This result could not be found directly in
other research, but similar analysis can be found in Guo et al.’s (2023) study, in which the WTP for a
reduction of 100 metres in the picking up distance of DBS was calculated as CNY 0.45 using the NL
model. Some studies also focused on the WTP for private bicycle parking (Van Lierop et al., 2018;
Kohlrautz and Kuhnimhof, 2025). Kohlrautz and Kuhnimhof (2025) estimated the WTP of cyclists at
RWTH Aachen University for various types of bicycle parking facilities and found that the average WTP
for reducing the walking distance by 100 metres exceeds 0.20 euros (around CNY 1.58) per day. Van
Lierop et al. (2018) observed that 43% of cyclists in Montreal, Canada, were willing to pay over 0.50
dollars (around CNY 3.63) per day for secured bicycle parking.

TABLE 7
WTP calculations for MNL, NL, RCL, ECL and Mixed NL models
Models Mean and percentiles of distribution Changes against Mixed NL
mean robust s.e. s.d. interquartile mean s.d. interquartile
range range
Multinomial ~ WTP (CNY/100 m)parking fee distance to parking 0.62 0.03 -23%
logit VoT (CNY/1 h)parking fee time to/from parking 20 1.02 -24%
MRS (m/10 min)distance to parking reward -54 4.00 7%
MRS (min/10 min)sme to/from parking reward -1.12 0.08 -15%
Nested logit ~ WTP (CNY/100 m)parking fee distance to parking 0.66 0.03 -19%
VoT (CNY/1 h)parking fee time to/from parking 21.05 1.07 20%
MRS (m/10 min)distance to parking reward -55 3.77 5%
MRS (min/10 min)iime to/from parking reward -1.15 0.07 -13%
Random WTP (CNY/100 m)parking fee distance to parking 0.81 0.66 0.63 0% 6% 3%
'Coif)zl.ctiem VOT (CNY/1 h)parking fe time tofrom parking 2538 19.4 193 2% 8% -5%
MRS (m/10 min)distance to parking reward -56 42.8 42.0 -3% -29% -14%
MRS (min/10 min)sime to/from parking reward -1.23 1.10 1.00 1% -24% -12%
Error WTP (CNY/100 m)parking fee distance to parking 0.86 0.73 0.67 6% 18% 10%
—corrll(}));)ir:ents VoT (CNY/1 h)parking fee time to/from parking 27.3 25.2 222 3% 19% 9%,
MRS (m/10 min)gistance to parking reward -56 51.4 455 -3% -15% 1%
MRS (min/10 min)sime to/from parking reward -1.20 0.94 0.95 9%  -35% -17%
Mixed WTP (CNY/100 m)parking fee distance to parking 0.81 0.62 0.61
nested logit VoT (CNY/1 h)parking fee time to/from parking 26.4 21.1 20.3
MRS (m/10 min)gistance to parking reward -58 60.1 49.0
MRS (min/10 min)time to/from parking reward -1.32 1.44 1.14

We also show value of time (VoT) in addition to WTP. Specifically, we replaced the distance to parking
attribute with parking time in the model under the assumption that all respondents travel at an average and
constant speed, and then re-estimated the parameters. The VoT was derived from the ratio of the marginal
utility of parking time to the marginal utility of the parking fee, with the mean value of the VoT
distribution estimated at 26.4 CNY per hour. It is important to note that the VoT estimated in this study
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reflects the overall value of time to/from parking, including both the time required to access the parking
area and the walking time from there to the final destination. VoT-related research in China is relatively
limited, and there is a lack of official statistical data (Song et al., 2018). Gao K, et al. (2021) estimated the
value of travel time for DBS trips in Shanghai to be CNY 30.2 per hour. Kou et al. (2017) obtained the
average value of commuting times for public transport and car travel as CNY 11.34 per hour and CNY
17.81 per hour, respectively in Beijing. The VoT estimates obtained in this study are broadly of the same
order of magnitude as those reported in the relevant literature.

Additionally, the marginal rate of substitution (MRS) values for the trade-offs between the distance to
parking and reward were calculated by dividing the coefficient of the reward attribute by the coefficient
of distance to parking, reflecting how individuals trade off increased the distance to parking against the
rewards offered. The estimated mean of the MRS distribution for each 10-minute free riding reward is 58
metres, indicating that respondents are willing to accept an additional 58 metres of the distance to parking
in exchange for receiving a 10-minute free riding reward. According to the Standards for the Provision of
Non-Motorised Vehicle Parking Facilities in Urban Road Spaces in Beijing (2023), for areas around the
entrances and exits of public transportation with limited space, the establishment of non-motorised
vehicle parking facilities is recommended within a range of 50 to 100 metres. Similarly, the MRS
between parking time and reward was calculated by dividing the coefficient of the reward attribute by the
coefficient of parking time. The results suggest that respondents are willing to spend an average of 1.32
extra minutes proceeding to a designated parking area in exchange for receiving a 10-minute free riding
reward.

Reward
Parking fee (free parking located at 300 m)
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Fig. 6. Conceptual illustration of WTP and MRS variation with distance.
A conceptual illustration of how mean values of WTP and MRS vary with changes in the distance to
parking is presented in Fig. 6. The red solid line represents the required riding time reward to encourage
users to park in the free parking area as the distance increases. The blue solid and dashed lines indicate
the users’ willingness to pay for different locations of paid parking areas when the free parking area is
located 300m and 200m from the destination, respectively. When the free parking area is located 300
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metres from the destination, an average free-riding reward of 51.7 minutes is required to incentivize users
to park there. Under this situation, if there is a paid parking area available at the destination, users would
be willing to pay approximately CNY 2.4 to reduce the distance to parking. These insights, based on the
mean values, may serve as a valuable reference for DBS companies in designing appropriate parking fees
and reward levels. However, it is important to note that, at the individual level, the acceptable walking
distance does not necessarily increase linearly with the reward. This subsection primarily focuses on the
implementation of paid parking areas and incentive-based approaches to encourage the use of remote
parking options. While the findings provide useful insights for designing parking management strategies,
they have limited direct relevance to policy interventions specifically aimed at reducing disorderly
parking.

6. Discussion and conclusion

Dockless bike-sharing has rapidly gained popularity in recent years, offering a sustainable and convenient
mode of transportation. However, the accompanying disorderly parking has emerged as one of the most
challenging problems for city administrators. This paper presents an in-depth investigation of users’
parking preferences in DBS trips, in order to provide a reference for developing targeted policy
interventions that encourage orderly parking.

6.1. Theoretical Implications

The present research offers several theoretical implications for the literature on bicycle parking behaviour.
Firstly, this study expands the literature on DBS parking management from the user-based perspective.
While prior studies have primarily addressed parking problems through supply-side strategies, such as the
planning of designated parking areas and bicycle rebalancing (Zhang et al., 2019; Tian et al., 2020), these
approaches often face practical challenges in implementation (Wang et al., 2019; Si et al., 2024; Meng et
al., 2024). By examining users’ parking preferences and evaluating the behavioural effects of different
policy interventions, this study provides a behavioural foundation for the development of more direct
parking management strategies to improve parking compliance. There is still a lack of in-depth empirical
investigations on this topic.

Secondly, this research improves the modelling of DBS user behaviour by employing a mixed nested
logit model that simultaneously accounts for both random taste heterogeneity and inter-alternative
correlations. While deterministic taste heterogeneity associated with socioeconomic demographics such
as gender and age, has been widely acknowledged in existing studies (Su et al., 2021; Gao et al., 2021; Si
et al., 2024), interpersonal random taste heterogeneity has received comparatively little attention (Gao et
al., 2021). The present research confirms that different orderly parking alternatives are strongly
correlated, and there is significant random taste variation in how users respond to alternative-specific
attributes such as proximity to designated parking areas, parking fees, rewards, and fines. Incorporating
random taste heterogeneity allows for more accurate estimation of key measures, including the WTP,
VoT, and MRS, as ignoring such heterogeneity may lead to biased results (Hess et al., 2004; van den
Berg, 2010; Teye, 2014).

Thirdly, the findings of this study may be extended to other forms of micromobility, such as shared e-
scooters and private bicycle parking, which also face challenges related to disorderly parking. The
behavioural characteristics identified through this study, particularly interpersonal random taste
heterogeneity and the influence of the distance to parking, incentives, parking fees and descriptive norms
on cyclist parking behaviour, may also be applicable to other forms of micromobility. However, it should
be noted that unlike shared micromobility users, private bicycle cyclists are also influenced by factors

24



O 00 NOO LU A~ WN K

A D W WWWWWWWWWNNNNNRNRNRNRNNERRRRRRERRRER B
P OWWLWOWNOOUBDBWNROOVOONIDTUNDDE WNROOVLOONOOOUDEWNIERERO

o
()

Zhang, Hancock, Hess, and Jia

such as the risk of theft (van Lierop et al., 2018; Jonkeren and Kager, 2021; Kohlrautz and Kuhnimhof,
2025) and the value of the bicycle (Kohlrautz and Kuhnimhof, 2025), which should be taken into account
when designing parking management strategies for private bicycles.

Finally, from a methodological perspective, this paper contributes to the limited application of mixed
GEV models, which is underutilised in practice due to computational complexity and the lack of
estimation options in most commercial econometric software. In the present research, we estimated the
model using Apollo, which facilitates for the mixing of any underlying kernel model.

6.2. Practical Implications

The present research provided insights for DBS companies and local governments to improve parking
compliance and reduce disorderly parking.

First, the findings indicate that users tend to avoid disorderly parking, particularly female and older
individuals. Therefore, it is essential to establish a clear and consistent definition of disorderly parking
behaviour and to explicitly communicate it to users to avoid ambiguity. Confusing or inconsistent rules
may undermine users’ understanding and hinder parking compliance. Furthermore, it is important to
consider the taste heterogeneity when developing parking management strategies, as suggested by
Kohlrautz and Kuhnimhot (2025). For example, educational and guidance messages could be more
actively directed toward male and younger users via the DBS app to enhance parking compliance.
Secondly, we discovered that reducing the distance to parking and imposing monetary penalties for
disorderly parking are obviously effective in discouraging such behaviour. When parking spaces near the
destination are saturated, users are less willing to proceed to other designated parking areas as the
distance to parking increases. This highlights the need for planning high-density DBS parking facilities,
especially around high-demand destinations (Meng et al., 2024). In addition, DBS companies should
strive to implement technological solutions that enable the prompt identification of disorderly parking and
the enforcement of penalties (Tang et al., 2024). Furthermore, this study found that DBS users are willing
to accept an average of 58 additional metres of the distance to parking for a 10-minute free riding reward,
which provides a practical reference for designing incentive measures to promote orderly parking.
Thirdly, we found that descriptive norms significantly impact users’ utility when choosing parking
behaviour. When users observe a greater number of others engaging in disorderly parking, they are more
likely to exhibit similar behaviour. This suggests that timely detection and repositioning of disorderly
parked bicycles are crucial for preventing the accumulation of bicycles.

Finally, this study considers paid parking as a potential management strategy when the designated free
parking area is located far from the destination. We found that users are willing to pay approximately
CNY 0.81 to reduce the distance to parking by 100 metres. Paid bicycle parking has mainly been studied
in relation to private bicycles, including cases in the Netherlands (Molin and Maat, 2015), Canada (van
Lierop et al., 2018), and Germany (Kohlrautz and Kuhnimhof, 2025), but has not yet been considered in
the context of DBS. Nevertheless, we believe that paid parking could still be explored as a viable strategy
for managing DBS parking. Given that DBS companies often lack incentives to actively manage parking
due to cost concerns, allowing them to operate paid parking spaces near high-demand locations such as
metro stations or business districts under government authorization and charge parking fees directly
through the app may offer a profitable model. This could encourage greater operator involvement in
parking management and reduce the burden currently placed primarily on local governments.

6.3. Limitations
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One limitation of this study is the insufficient consideration of the ordering effect in the stated choice
experiment design. The presentation order of alternatives within the choice set has been recognised to
influence choice outcomes in some literature (Garbarski et al., 2016; Boxebeld, 2024). To improve the
validity of stated preference data, future research should consider implementing mitigative measures, such
as randomizing the positions of labeled alternatives in the choice set and then incorporating position
indicators into the model specification to account for potential ordering effects. Another limitation of the
experimental design lies in the presentation of both the distance to parking and the corresponding round-
trip time in the SC tasks. The intent was to assist respondents who may not have a clear perception of
distance, as time is often a more intuitive reference in travel contexts. However, because time and
distance are distinct concepts, and individuals may perceive or respond to them differently, this approach
may have influenced how respondents evaluated the attribute, which was not fully accounted for in the
experimental design. Moreover, the SC survey did not explicitly state that fines would be strictly
enforced, which may have led some respondents to infer the likelihood of enforcement based on their
prior experiences, potentially introducing bias. Nevertheless, this should not have substantial influence on
the estimated direction of the fine coefficient.

From a methodological perspective, this study relies solely on SP data, which is useful for examining
hypothetical choices by hypothesizing alternatives and attributes, but it has potential limitations related to
the veracity of individuals’ stated responses, which may lead to inconsistencies with users’ realistic
parking preferences (Helveston et al., 2018). In addition, the assessment of the effectiveness of policy
interventions derived based on the study sample and the SP scenario offers theoretical insights, but may
have limited generalisability to real-world conditions. Combining RP and SP data in model estimation
could overcome the weaknesses of each data source. It is recommended to use the pooled RP and SP data
in the future to reduce bias from hypothetical choice situations. Additionally, some latent factors such as
personal attitudes, ascription of responsibility, awareness of consequences, and personal norms have also
been proven to influence users’ parking choices in previous studies (Wang et al., 2021b; Tang et al.,
2024). However, this type of data is not reflected in the data used to develop the present model. Future
studies are encouraged to integrate latent variables into discrete choice models, to enhance the
understanding of the impact of unobserved factors on DBS users’ decision-making processes.

6.4. Conclusions

This paper developed a mixed nested logit model to simultaneously account for both random taste
heterogeneity and inter-alternative correlations in dockless bike-sharing parking preference. Based on the
SP data collected in China, this study examined how DBS users’ parking choices are influenced by
socioeconomic characteristics and alternative-specific factors, while also evaluating the effectiveness of
various policy interventions. The findings confirm the existence of random taste heterogeneity in
preferences for the distance to parking, rewards, fines, and parking fees, and demonstrate that reducing
the distance to parking and imposing penalties are effective strategies for discouraging disorderly parking.
Users’ willingness to accept additional distance to parking in exchange for free riding time rewards, as
well as their willingness to pay to reduce the distance to parking, was also estimated. This study
contributes to the literature on DBS parking management by extending the empirical understanding of
parking behaviour. Moreover, the results offer empirical evidence for local governments and DBS
operators in formulating more effective parking policies to mitigate disorderly parking.
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Appendix 1. Demographics and usage characteristics of the survey respondents.

Characteristics Categories Number Percentage (%)
Gender Male 252 42
Female 348 58
Age group <20 25 4.2
21-30 362 60.3
31-40 140 233
41-50 51 8.5
>51 22 3.7
Income per month (CNY) <2000 69 11.5
2001-4000 104 17.3
4001-6000 95 15.8
6001-8000 94 15.7
8001-10000 89 14.8
>10001 141 23.5
I'd rather not to say. 8 1.3
Education level High school/technical secondary school 20 33
Junior college 45 7.5
Undergraduate 422 70.3
Master 106 17.7
Ph.D. and above 7 1.2
Occupation Employed full time 431 71.8
Employed part time (less than 24 hours/week) 7 1.2
Self-employed or unemployed 26 4.3
Retired 2 0.3
Student 134 22.3
Bike ownership No 235 39.2
Yes 365 60.8
Use frequency Once every few months or less 34 5.7
At least once a month 59 9.8
1-2 times a week 244 40.7
3-5 times a week 194 323
Once a day or more 69 11.5
Average riding duration(min) <10 57 9.5
11-20 367 61.2
21-30 148 24.7
>30 28 4.7
City of residence Cities with geo-fencing implementation 129 21.5
Cities without geo-fencing implementation 471 78.5

Note: CNY/USD =0.138 during survey period
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Appendix 2. Model estimation results for MNL, NL, MMNL, Mixed NL models incorporating riding frequency and duration covariates.

Parameters Multinomial logit Nested logit Mixed multinomial logit Mixed nested logit

Est. Rob. t_rat. Est. Rob. t _rat. Est. Rob. t rat. Est. Rob. t rat.
Means of utility coefficients
Ofree parking area 0 — 0 — 0 — 0 —
Opaid parking arca -0.644 -8.08%** -0.558 9. 13%%* -1.096 -8.84%k* -0.859 -8.80%**
Odisorderly parking -1.446 -5.38*#* -1.191 -4 72 HAk -2.15 -4.37** -1.743 -4.04%**
female, disorderly parking -0.356 -2.84%%* -0.332 -2.80%** -0.671 -2.55%%* -0.575 -2.62%%*
Wage, disorderly parking -0.189 -2.28%* -0.185 -2.36%* -0.545 -3.45%%* -0.473 -3.40%**
Preward 0.043 4.627%** 0.034 4.70%**
@riding frequency, reward -5.9979¢-04 -0.31 -6.0351e-04 -0.42 -7.7179¢-04 -0.244 -4.4152¢-04 -0.19
@riding duration, reward -0.005 -1.75* -0.003 1.63 -0.008 -1.82% -0.005 -1.65%
Pistance to parking -7.045 -10.43%%* -5.592 -8.04%**
riding frequency, distance to parking 0.155 1.18 0.138 1.28 0.282 1.17 0.156 0.79
@riding duration, distance to parking 0.414 2.244%* 0.138 2.10%* 0.592 1.87* 0.354 1.37
Parking fee -0.899 -18.46%** -0.667 -12.27%%*
Tincome, parking fee -0.148 -3.52%%* -0.149 -3.50%** -0.111 -2.46%* -0.102 -2.21%*
Prine -1.343 =24 50%** -1.262 -24.07***
Pro others 0 — 0 — 0 — 0 —
Pother people 0.549 7.66%** 0.562 8.49%** 0.827 6.02%**
Pother people low 0.666 5.25%**
Pother people high 0.893 6.20%%:%
Standard deviations of utility coefficients
08 paid parking area 0.566 3.38 Hkk 0.423 3.32%%%
O8aisorderly parking 2.304 12.92%%* -1.96 -11.63%**
Location parameters on log-scale
HBroward -2.749 -11.42%%%* -3.043» -12.23%%%*
HBistance to parking 2.53™M 24 51 %** 2.232/ 17.14%**
HBparking fee 0.447™" 7.59%** 0.190™M 2.45%*
HBeine 1.278" 18.84%** 1.097™ 15.16%**
Log-scale standard deviations
OB owara -0.401" =33k -0.4277 -3.96%**
OB gistance to parking -0.405"™ -8.87** -0.443M -7.83%%*
O parking fee -0.538"™" -7.68%** -0.537™ -8.114%**

-0.666"" 13.06%** -0.642™ -9.33 %%

Jﬁfine
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Nesting coefficient

lorderly parking 0.706 15.57*%* 0.690 14.68***

Note:

* Signify confidence at 90%, ** Signify confidence at 95%, *** Signify confidence at 99%.

~ means the coefficient is log-normally distributed by assumption, * means the coefficient is negative log-normally distributed by assumption.

For coefficients assumed to follow a log-normal distribution, the estimated means and standard deviations refer to the parameters that directly define the probability density
function of the log-normal distribution; the same applies to negative log-normal distribution.
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Appendix 3. Estimate results of alternative nesting structures.

Estimate results NLorderly_parking NLpaid_disorderly NLexisting
Aorderly parking 0.706
Apaid disorderly 0.727
Aexisting 1.891
Goodness-of-fit
Number of estimated parameters 11 11 11
LL (final) -5572.85 -5571.95 -5487.31
Adj. p? 0.2941 0.2942 0.3049
AIC 11167.69 11165.89 10996.63
BIC 11243.39 11241.59 11072.33
Likelihood ratio test (value) 38.06 39.86 209.14
Likelihood ratio test (p value) 6.86xe™13 2.728xe™10 2.116xe¥
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Appendix 4. Base values and corresponding adjusted attribute values used in the prediction.

Choice tasks

Attributes le lative
changes 2 3 4 5 6 7 8 9 10 11 12
-30% 560 560 560 350 350 350 350 140 560 140 350 560
20% 640 640 640 400 400 400 400 160 640 160 400 640
Distance  _j(o 720 720 720 450 450 450 450 180 720 180 450 720
;‘;rking base 800 800 800 500 500 500 500 200 800 200 500 800
(freeym  10% 880 880 880 550 550 550 550 220 880 220 550 880
20% 960 960 960 600 600 600 600 240 960 240 600 960
30% 1040 1040 1040 650 650 650 650 260 1040 260 650 1040
-30% 7 14 7 0 21 14 0 21 7 14 0 21
20% 8 16 8 0 24 16 0 24 8 16 0 24
o 1% 9 18 9 0 27 18 0 27 9 18 0 27
lé;%’;‘r S base 10 20 10 0 30 20 0 30 10 20 0 30
10% 11 2 11 0 33 22 0 33 11 22 0 33
20% 12 24 12 0 36 24 0 3 12 24 0 36
30% 3 26 13 0 39 26 0 39 13 2 0 39
-30% 210 70 140 70 140 140 210 70 140 70 210 210
20% 240 80 160 80 160 160 240 80 160 80 240 240
Distance  _1(o 270 90 180 90 180 180 270 90 180 90 270 270
;‘;rking base 300 100 200 100 200 200 300 100 200 100 300 300
(paidym  10% 330 110 220 110 220 220 330 110 220 110 330 330
20% 360 120 240 120 240 240 360 120 240 120 360 360
30% 390 130 260 130 260 260 390 130 260 130 390 390
-30% 035 035 07 14 035 14 07 035 07 035 035 14
220% 04 04 08 16 04 16 08 04 08 04 04 1.6
b -10% 045 045 09 18 045 1.8 09 045 09 045 045 1.8
fef/é‘IfY base 05 05 1 2 05 2 1 05 1 05 05 2
10% 055 055 1.1 22 055 22 1.1 055 1.1 055 055 22
20% 06 06 12 24 06 24 12 06 12 06 06 24
30% 065 065 13 26 065 26 13 065 13 065 065 2.6
-30% 07 07 0 35 21 0 35 0 21 0 35 21
220% 08 08 0 4 24 0 4 0 24 0 4 2.4
-~ -10% 09 09 0 45 27 0 45 0 27 0 45 27
le\}; base 1 1 0 5 3 0 5 0 3 0 5 3
10% 11 110 55 33 0 55 0 33 0 55 33
20% 12 12 0 6 36 0 6 0 36 0 6 3.6
30% 13 13 0 65 39 0 65 0 39 0 65 3.9
Number of other
people parking 0 2 2 2 1 2 0 0 1 1 0 1

disorderly
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Appendix 5. Transformed estimates of coefficients with log-normal and negative log-normal

distributions.
Models Parameters Distribution mean  s.d. interquartile range
Random Preward log-normal distribution 0.049 0.02 0.03
-coefficient logit . o
Pistance to parking ~~ Negative log-normal distribution  -11.117  5.83 6.67
Prarking fee negative log-normal distribution -1.802 1.00 1.12
Prine negative log-normal distribution -4.398 3.27 3.27
Error Preward log-normal distribution 0.051 0.03 0.04
-components logit ] o
Pistance to parking ~ nNegative log-normal distribution  -11.574  6.05 6.92
Prarking fee negative log-normal distribution -1.819 1.08 1.18
Prine negative log-normal distribution -4.716  3.71 3.60
Mixed nest logit Preward log-normal distribution 0.039 0.03 0.03
Plistance to parking ~ negative log-normal distribution -8.536 4.44 5.09
Prarking fee negative log-normal distribution -1.319  0.66 0.76
Prine negative log-normal distribution -3.600 2.57 2.62
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