

Exploring Taste Heterogeneity and Substitution Patterns in Dockless Bike-Sharing Parking Preferences

Shujing Zhang^{a,b}, Thomas O. Hancock^b, Stephane Hess^b, Shunping Jia^{a*}

^a*School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China*

^b*Choice Modelling Centre & Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK*

* **Corresponding author:** Shunping Jia

Address: School of Traffic and Transportation, Beijing Jiaotong University, Beijing, China

Email: shpjia@bjtu.edu.cn

1 **Abstract**

2 Dockless bike-sharing (DBS) is an important sustainable urban transportation mode in many cities but
3 faces challenges with disorderly parking management. This study aims to explore the presence of taste
4 heterogeneity and substitution patterns in DBS users' parking preferences and to determine how
5 interpersonal variations, alternative-specific attributes, and socio-demographic characteristics affect
6 parking choices. Based on stated-preference data collected in China, a mixed nested logit (Mixed NL)
7 model is employed to account for both inter-alternative correlation and random taste heterogeneity. The
8 results indicate that reducing the distance to parking and increasing monetary fines are more effective in
9 discouraging disorderly parking than offering incentives for orderly parking or adjusting parking fees.
10 Social influence also plays a critical role, as users are more likely to park disorderly when they observe
11 others doing so. Meanwhile, the research also reveals that users are willing to pay an average of 0.8 CNY
12 to reduce the distance to parking by 100 metres, and are willing to accept on average an additional 58
13 metres of the distance to parking in exchange for 10 minutes of free riding time. These insights into DBS
14 users' parking behaviour enhance the understanding of the effectiveness of possible policy interventions
15 and offer a valuable reference for developing future management strategies.

16 **Keywords** dockless bike-sharing; parking behaviour; mixed GEV model; taste heterogeneity; inter-
17 alternative correlations; stated choice experiment

1 **1. Introduction**

2 Given the global drive towards a low-carbon future, sustainable transportation has become essential for
3 reducing emissions and improving air quality. One prominent solution for promoting low-emission urban
4 travel is the development of cycling systems, which provide an eco-friendly and efficient alternative to
5 motorised transport. Notably, dockless bike-sharing (DBS), also known as free-floating bike-sharing, has
6 rapidly expanded worldwide in recent years. By offering users the flexibility to pick up and drop off bikes
7 anywhere without relying on fixed docking stations (Zhang et al., 2019), DBS presents significant
8 advantages over traditional station-based public bicycle systems.

9 China, as one of the pioneers of DBS systems, operated approximately 15 million bicycles with an
10 average of 47 million daily orders nationwide by the end of 2021 (China Road Transport Association,
11 2023). DBS has played an important role in easing urban traffic congestion and addressing the ‘last mile’
12 challenge in public transportation. However, it has also introduced a new challenge. Due to the limited
13 parking resources that cannot quickly adapt to the expansion of DBS deployment, disorderly parking has
14 become a widespread issue in China (Su et al., 2020; Zhang et al., 2019). In high-demand locations such
15 as subway stations, office areas and commercial complexes, insufficient parking capacity often leads to an
16 accumulation of bicycles, resulting in problems such as encroaching on pedestrian and cycling spaces and
17 occupying restricted areas (Wang et al., 2021a, 2021b; Tang et al., 2024), as shown in Fig. 1.

18 (a) Parking blocking sidewalks (b) Parking occupying pedestrian crossing (c) Parking in restricted area

Fig. 1. Examples of disorderly parked DBS in Beijing, China (Photos: author)

19 Similar problems have also emerged in other countries, such as Austria, Singapore, the UK, the US, and
20 Australia, leading to negative public perception and increased regulatory interventions (Laa and
21 Emberger, 2020; Cai et al., 2023; He and Zhang, 2024). In response to stricter regulations for DBS
22 established in some cities, such as Singapore, Vienna, Oxford, and Melbourne, some operational
23 companies chose to exit the market because of rising costs (Laa and Emberger, 2020). Amsterdam opted
24 to impose a temporary ban on all DBS systems in 2017 specifically due to excessive use of private bike
25 parking spaces (O’Sullivan, 2017). These phenomena illustrate that disorderly parking not only negatively
26 affects cyclists, pedestrians as well as the city’s appearance, but also severely impacts the sustainability of
27 shared-micromobility systems.

28 Understanding users’ parking preferences is crucial for designing more effective interventions targeting
29 the root causes of disorderly parking. Few studies have examined how users’ socioeconomic
30 characteristics, psychological factors, and environmental factors influence the decision between
31 disorderly and orderly parking (Wang et al., 2021a, 2021b; Huang et al., 2023; Wang et al., 2023).
32 Several policy interventions have been suggested, such as offering rewards for orderly parking behaviour,
33 imposing penalties for disorderly parking behaviour, and enhancing public awareness regarding orderly

1 parking practices (Su et al., 2020; Gao L. et al., 2021; Tang et al., 2024). However, due to limitations in
2 research methods, most studies have only highlighted the effect of incentives in promoting orderly
3 parking behaviour, but few have investigated what the most efficient level of incentives is. Identifying the
4 optimal incentive is crucial for achieving the desired behavioural guidance while ensuring efficient
5 resource use and maximizing impact. Additionally, there has been a lack of in-depth exploration into the
6 possibility of taste heterogeneity among different individuals. In the context of car parking, taste
7 heterogeneity has been shown to be a major factor in parking type choice, influencing the impact of
8 substantive factors such as access, search, and egress time, as well as attitudes toward potential fines for
9 illegal parking (Hess and Polak, 2004). Accordingly, exploring taste heterogeneity in the influences of
10 different factors and policy interventions on parking preferences among DBS users would be valuable in
11 obtaining a more accurate understanding of user behaviour.

12 This paper aims to fill the research gap by examining the presence of deterministic and random taste
13 heterogeneity in users' preferences and quantifying the distribution of the values users place upon
14 different utility factors influencing parking choices. To achieve this, we first conducted a stated
15 preference experiment, enabling the analysis of various attributes that might impact users' behaviour, and
16 then employed a mixed nested logit model, which allows for both interpersonal random taste
17 heterogeneity and inter-alternative correlations, to explore the extent to which individual characteristics
18 and alternative-specific attributes influence users' parking decisions and how this varies among
19 individuals.

20 The study contributes to the literature in two key ways: (1) Our results reveal the presence of
21 deterministic and random taste heterogeneity in DBS users' parking preferences and quantify the impact
22 of the random variation on coefficient estimates for specific attributes (e.g., proximity to designated
23 parking areas, perceived behaviour of other users, potential rewards, fines, and parking fees). (2) By
24 evaluating the effectiveness of policy interventions and estimating the marginal rate of substitution (e.g.,
25 willingness to pay for reduced distance to parking, the trade-off between rewards and the distance to
26 parking), this study generates insights for policymakers and operators seeking to promote orderly parking.
27 Although the present paper focuses solely on the DBS system, we strongly believe that the observations
28 are also applicable to other dockless shared-micromobility systems, such as shared e-scooters and shared
29 e-bikes, which experience similar disorderly parking problems (Liazo et al., 2022; Meng et al., 2024).
30 The remainder of this paper is organised as follows. Section 2 provides a review of existing studies on
31 DBS parking challenges and management. Section 3 introduces the stated choice experiment design and
32 data collection process. Section 4 describes the applied modelling framework. Section 5 presents and
33 discusses the estimation results and the marginal rate of substitution, such as willingness to pay and value
34 of time. Section 6 discusses the implications and limitations of our work and presents the conclusions.

35 2. Literature review

36 2.1. *Parking management strategies for DBS*

37 Existing literature has proposed various parking management strategies for dockless bike-sharing (DBS)
38 systems, which are summarised in Table 1. Considering that DBS parking problems are largely driven by
39 insufficient parking supply, previous studies have primarily addressed these challenges from planning and
40 operational perspectives, which can be regarded as a supply-side approach. Establishing parking spots
41 that match demand is a critical management strategy that has been widely studied (Zhang et al., 2019;
42 Hua et al., 2020; Arif and Margellos, 2022). Hua et al. (2020) used trip data from Mobike and the
43 dockless bike-sharing survey in Nanjing to estimate parking demand, then applied clustering methods to
44 identify virtual stations where bikes tend to congregate. Arif and Margellos (2022) developed a scenario

1 optimization model to jointly determine the capacities and locations of parking spots, accounting for
 2 uncertainties in parking demand and points of interest within the area. Electric fence technology is
 3 considered an effective method to regulate users' parking behaviour. [Zhang et al. \(2019\)](#), [Liazo et al.](#)
 4 ([2022](#)) and [Cai et al. \(2023\)](#) propose methodological frameworks to optimize electric fence planning, with
 5 the aim of maximizing parking demand coverage. However, demand-based parking spot optimization
 6 strategy has some limitations. For example, inaccurate predictions of parking demand can lead to failures
 7 in matching supply with actual needs ([Meng et al., 2024](#)). Furthermore, this approach largely overlooks
 8 parking compliance, i.e., even with sufficient parking facilities, users may still choose to park disorderly
 9 due to inconvenience or the absence of mandatory enforcement ([Si et al., 2024](#)). While geo-fencing
 10 techniques can promote orderly parking by preventing users from locking bicycles outside designated
 11 parking areas, the high infrastructure costs ([Cai et al., 2023](#)) limit broad adoption, and issues with position
 12 recognition accuracy may still allow disorderly parking ([Wang et al., 2019](#)).

13 Another key strategy to promote the balance between parking supply and demand is the repositioning of
 14 DBS systems. There is a considerable amount of current research on this topic, which can be divided into
 15 two types: static bicycle repositioning problems (SBRP) and dynamic bicycle repositioning problems
 16 (DBRP) ([Liang et al., 2024](#)). SBRP typically rebalances stations overnight and cannot explicitly respond
 17 to demand fluctuations that occur during the day ([Pal and Zhang, 2017](#); [Du et al., 2020](#)). DBRP is used to
 18 match travelers' dynamic parking and pick-up demand fluctuations during the daytime ([Tian et al., 2020](#);
 19 [Cheng et al., 2021](#); [Zhou et al., 2023](#); [Liang et al., 2024](#)). [Tian et al. \(2020\)](#) developed a flow-type task
 20 window to fit the strong time-sensitive demand fluctuation, which could help complete each rebalancing
 21 within an average of 4 minutes. [Liang et al. \(2024\)](#) proposed a general mixed-integer programming model
 22 for multi-period rebalancing problems and simulated 1-minute time-slots (a level of detail fine enough to
 23 approximate real-time demand) to evaluate the performance of the proposed method. Although previous
 24 studies have done a lot of work to enable the supply to match real-time demand via rebalancing strategies,
 25 there is still a lot of demand lost ([Tian et al., 2020](#); [Liang et al., 2024](#)). Additionally, rebalancing measures
 26 are often constrained by DBS companies' operational cost controls and the limited availability of labor
 27 ([Wang et al., 2023](#)).

28 **TABLE 1**

29 Summary of parking management strategies for DBS

Research category	Approaches	Literature
Parking spots planning	Parking facility planning	Hua et al., 2020 ; Arif and Margellos, 2022
Bicycle repositioning	Electric fence planning Static bicycle repositioning Dynamic bicycle repositioning	Zhang et al., 2019 ; Liazo et al., 2022 ; Cai et al., 2020 Pal and Zhang, 2017 ; Du et al., 2020 Tian et al., 2020 ; Cheng et al., 2021 ; Zhou et al., 2023 ; Liang et al., 2024
User-based strategies	Incentive-based approaches Penalty-based approaches	Chiariotti, 2020 ; Cheng et al., 2021 ; Fukushige et al., 2022 Bao et al., 2023

30 Parking spots planning and bicycle repositioning strategies can balance parking supply and demand to
 31 some extent, helping to mitigate disorderly parking caused by insufficient parking spaces. However, it
 32 does not directly regulate users' parking behaviour. Some studies have explored incentive-based
 33 approaches ([Chiariotti, 2020](#); [Cheng et al., 2021](#); [Fukushige et al., 2022](#)), using incentive measures to
 34 encourage DBS users to rent bicycles in surplus stations or return bikes to deficient stations. [Fukushige et](#)
 35 [al. \(2022\)](#) proposed a potentially cost-effective strategy for rebalancing DBS by offering incentives to
 36 users, either to walk farther to access a bicycle (origin-based incentives) or to bring a bicycle to an

undersupplied area (destination-based incentives). Their findings suggest that users are willing to walk an additional 3.8 minutes per dollar (around 0.52 minutes per CNY) at origins and 4.2 minutes per dollar (around 0.58 minutes per CNY) at destinations in response to such incentives. [Bao et al. \(2023\)](#) suggested a strategy that integrates parking infrastructure and penalties, and evaluated the impact of punitive measures on promoting standard parking.

TABLE 2

Previous work on DBS users' parking behaviour or intention

Research Methods	Literature	Analysis Methods	Key findings
Rating scale survey (intentions)	Zhao and Wang (2019)	Hierarchical regression analysis	<ul style="list-style-type: none"> Attitude, subjective norm, social norms and perceived behavioural control influence DBS users' parking intention.
	Wang et al. (2021a)	Ordered logit model	<ul style="list-style-type: none"> Social norms, reciprocity, communication responsibility, and institutional environment influence proper DBS parking intention. Descriptive social norms influence disorderly parking intention.
	Wang et al. (2021b)	Ordinary Least Squares	<ul style="list-style-type: none"> Perceived invulnerability promotes disorderly parking intention.
	Wang, M. et al. (2023)	Partial least squares (PLS-SEM)	<ul style="list-style-type: none"> Factors such as user self-discipline and parking space influence DBS disorderly parking behaviour.
	Jiang et al. (2019)	Factor analysis	<ul style="list-style-type: none"> Measures such as co-enhanced standardised parking or the improvement of parking facilities can help relieve disorderly parking.
	Wei et al. (2022)	Principal component analysis	<ul style="list-style-type: none"> Rewards are more effective than punishments in promoting orderly parking. Injunctive norms show a stronger influence than descriptive norms.
	Huang et al. (2023)	Process macro model	<ul style="list-style-type: none"> Punishment, personal norm, and descriptive norm positively influence users' orderly parking behaviour. Both economic incentives and punitive measures increased DBS users' willingness to park correctly. Punitive measures were marginally more effective than incentives.
	Tang et al. (2024)	Structural equation model (SEM)	<ul style="list-style-type: none"> Both positive and negative incentives can encourage DBS users to park legally. Users' heterogeneous characteristics could exert influences on the effect of policy compliance.
	Si et al. (2024)	Bootstrap and regression analyses	<ul style="list-style-type: none"> Factors predicting parking compliance included gender, age, occupation, usage behaviour, and travel preferences.
	Gao L. et al. (2021)	Mixed Logit model	<ul style="list-style-type: none"> Warning messages and monetary incentives shifted users' parking behaviour more than social norm interventions.
Field experiments	Bao et al. (2023)	Binary logistic model	<ul style="list-style-type: none"> There is significant spatiotemporal heterogeneity in inconsiderate parking.
	Su et al. (2020)	Logistic and probit models	<ul style="list-style-type: none"> Inconsiderate parking behaviour is influenced by riding distance, as well as the density of surrounding catering service places, lifestyle services, sports and leisure places, hotels and hostels.
Revealed preference (RP) method	Wang, Y. et al. (2023)	Spatial clustering and decision trees methods	

2.2. User parking behaviour in DBS system

Studying users' parking behaviours is essential for developing effective parking management policies to address DBS parking problems. [Table 2](#) provides insights into the related studies on users' parking behaviours and intentions. Most of them have examined the factors influencing users' choices and

1 preferences between disorderly and orderly parking (Wang et al., 2021a, 2021b; Wang, M. et al., 2023;
2 Wang, Y. et al., 2023; Bao et al., 2023; Huang et al., 2023; Tang et al., 2024). For example, Wang et al.
3 (2021a) identified the lack of a shared definition of ‘orderly parking’ as the most significant factor
4 affecting DBS parking, alongside social norms, reciprocity, communication responsibility, and the
5 institutional environment. Wang et al. (2021b) further demonstrated that descriptive social norms shape
6 users’ attitudes toward orderly parking directly and indirectly, and then influence the orderly parking
7 intention. Tang et al. (2024) proposed that the severity and certainty of punishment, along with personal
8 and descriptive norms, positively affect users’ attitudes toward orderly parking, which, in turn, influence
9 their parking behaviour. Other factors, such as past parking behaviour (Wang, M. et al., 2023a),
10 socioeconomic characteristics (Wang et al., 2021a, 2021b; Bao et al., 2023; Wang, M. et al., 2023), DBS
11 usage patterns (Bao et al., 2023), and the built environment (Wang, Y. et al., 2023) have also been shown
12 to significantly influence parking behaviour.

13 Additionally, few studies have evaluated the influence of behaviour interventions aimed at addressing
14 disorderly parking (Su et al., 2020; Gao L. et al., 2021; Si et al., 2024). Su et al. (2020) used a randomised
15 field experiment to assess the effectiveness of warning messages and monetary incentives in promoting
16 orderly parking behaviour, finding that both interventions improved compliance. Similarly, Si et al.
17 (2024) explored the impact of penalties and incentives on user compliance, showing that penalties were
18 more effective in encouraging orderly parking within designated electronic fences. Gao L. et al. (2021)
19 established a mixed logit model to determine how positive and negative incentive measures affect parking
20 behaviour, demonstrating that monetary rewards are more effective at promoting orderly parking than
21 financial penalties.

22 2.3. Research gap

23 Understanding parking behaviour is essential for DBS parking management, since users’ compliance with
24 parking regulations directly impacts the effectiveness of planning and operational measures. However,
25 research focusing on DBS usage from a behavioural perspective has received relatively limited attention,
26 leaving notable gaps that call for further exploration.

27 Firstly, the possibility of explained and unexplained taste heterogeneity among users has been widely
28 ignored in previous studies on DBS parking behaviour. Similar to other decision-making behaviour,
29 individuals show significant differences in their responses to changes in various attributes of a given
30 alternative within the specific parking context, and neglecting these differences may lead to bias and
31 poorer model fit (Hess and Polak, 2004). Only one study by Gao L. et al. (2021) has considered random
32 taste heterogeneity in the model, indicating that the impact of factors such as travel purpose, gender,
33 number of companions, and willingness to incur penalties or accept rewards varies among individuals.
34 However, the deterministic and random taste heterogeneity in initial preferences for specific parking
35 alternatives, as well as in responses to alternative-specific attributes, have not been adequately explored.
36 Secondly, past studies were mainly based on rating scale survey to identify the factors influencing parking
37 intention or behaviour, and to analyse the relationships between them (Huang et al., 2019; Jiang et al.,
38 2019; Zhao and Wang, 2019; Wang et al., 2021a, 2021b; Wei et al., 2022; Wang, M. et al., 2023; Si et al.,
39 2024; Tang et al., 2024). However, this method has certain limitations. For instance, it collects
40 respondents’ attitudes or preferences toward specific items, but it lacks contextualization and the process
41 of choice trade-offs. Regarding other methods, field experiments (Su et al., 2020) allow for the direct
42 observation of behaviour in controlled settings but cannot fully account for variations in attributes. The
43 RP method (Wang, Y. et al., 2023) relies on respondents’ observed choices or previous behaviour,
44 limiting the ability to explore attributes or alternatives that do not exist (Helveston et al., 2018). Few

1 studies have employed the SP survey. There is a lack of sufficient understanding of users' responses to
2 new parking alternatives or attributes that emerge under policy interventions.
3 Thirdly, as proposed by [Su et al. \(2020\)](#), exploring the relationship between the value of the reward and
4 the distance people are willing to walk or the time they are willing to spend would be valuable for setting
5 appropriate incentive prices. However, no research has been conducted in this area to date.

6 **3. Survey and data**

7 *3.1. The definition of orderly and disorderly parking for DBS and its current status in China*

8 As of now, there is no standardised definition of orderly and disorderly parking for DBS in both academic
9 and operational fields ([Wang et al., 2021a](#); [Heinen and Buehler, 2019](#)). [Jiang et al. \(2019\)](#) and [Wang et al.](#)
10 ([2021a](#)) provided a broader definition of disorderly parking as parking outside the designated areas, while
11 [Gao L. et al. \(2021\)](#) defined it more specifically as occupying a bicycle lane, sidewalk, or walkway for the
12 blind, as well as overcrowded parking when legal parking spaces are fully occupied. [Su et al. \(2021\)](#) and
13 [Si et al. \(2024\)](#) further considered whether bicycles within designated areas were properly placed, taking
14 into account their positioning and alignment. Different cities or districts in China have established
15 specific definitions of disorderly parking based on their unique conditions and management objectives.
16 For example, some places have implemented geo-fencing technology, using GPS to restrict users to end
17 rides only in designated areas to promote orderly parking, with parking outside the geo-fenced boundaries
18 considered disorderly ([Zhang et al., 2019](#)). In contrast, in places lacking designated parking areas, the
19 definition of disorderly parking is more ambiguous ([Wang et al., 2021a](#)).

20 In typical scenarios, bicycle parking resources are limited and dispersed. The nearest parking areas to
21 high-traffic destinations, such as busy public transportation stations and work, educational or residential
22 locations, are often insufficient to meet demand ([Van der Spek and Scheltema, 2015](#); [Heinen and Buehler,](#)
23 [2019](#)). Without enforced requirements, DBS users want to park their bicycles as close as possible to the
24 destination and lack adequate motivation to park bicycles in more distant parking areas, leading to the
25 accumulation of bicycles near the destinations. This results in bicycles overflowing onto sidewalks,
26 bicycle lanes, and even motor lanes. Accordingly, this research is focused on addressing this critical issue.
27 We proceeded under the assumption that clearly designated parking areas exist, and define orderly
28 parking as parking within designated parking areas, focusing specifically on the situation where the
29 nearest designated parking area to the destination is saturated.

30 *3.2. Survey design*

31 The survey was divided into four components, collecting data on: 1) current DBS usage and parking
32 information, such as riding frequency, average riding time, past parking behaviour, past penalty
33 experiences for disorderly parking, and reasons for past disorderly parking; 2) responses to stated choice
34 (SC) tasks; 3) responses to self-report scale statements; and 4) respondents' socio-demographic
35 characteristics, including gender, age, education, income, occupation, and bike ownership. Based on the
36 objectives here, only stated preference (SP) data and socio-demographic information were employed in
37 the modeling process. The following section outlines the process involved in designing the SC
38 components.

39 *3.2.1. SP scenario design*

40 We used SC tasks in the survey to understand how people react to different parking options and
41 management methods that do not currently exist in real parking scenarios. In the questionnaire, we
42 presented respondents with hypothetical decision-making scenarios, which were based on a typical DBS

1 travel situation. Detailed explanations and a graphical illustration were provided, as shown in Fig. 2. The
 2 text was originally written in Chinese for data collection and then translated into English for illustration in
 3 this paper. Different from previous studies, the designated paid parking area was also included as one of
 4 the parking options. Although paid parking areas are currently uncommon in practice and primarily used
 5 for private bicycle storage, it remains valuable to explore as a potential management strategy for DBS and
 6 allows us to evaluate how users trade off between cost and convenience. Fig. 3 gives an example of the
 7 SC tasks.

Scenario

Suppose you ride a dockless bike-sharing to the subway station to catch the subway, but find that there is no parking space left in the nearest designated free parking area (lined parking areas) next to the subway station. At this point, you have **three parking options** to choose from:

Another designated free parking area: Park in a designated free parking area located a certain distance away from the destination. After parking, you will need to walk back to the subway station. You could receive a reward for parking here.

Designated paid parking area: It is nearer to the subway station than the alternative designated free parking area but requires a parking fee.

Disorderly parking: Leave your bicycle near the subway station entrance (with a negligible walking distance), but this could result in a fine.

Please select the parking option that you prefer.

Note: The described scenario may differ from situations you have experienced in real life. However, we hope you can put yourself in the scenario and respond thoughtfully and realistically about what you would choose to do in such situations.

Designated paid parking area
②

Subway Station C

Designated free parking area
①

Designated free parking area (no capacity)
③

Disorderly parking

Road A

Road B

Alt1: Parking in another designated free parking area
Alt2: Parking in designated paid parking area
Alt3: Disorderly parking

8
 9 **Fig. 2.** Illustration of the choice scenario in SP survey.

	Another designated free parking area	Designated paid parking area	Disorderly parking
Distance from the destination	200m (The round trip takes 4 min)	100m (The round trip takes 2 min)	
Reward	30 min free ride coupon		
Parking fee		¥1	
Fine			¥5
Number of other people parking disorderly			High (more than 10 people)
Choice question:	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>

10
 11 **Fig. 3.** Example of SC tasks in the questionnaire.

12 **3.2.2. Experiment design**

13 The SC experimental design was developed using the Ngene software (ChoiceMetrics, 2018). SC tasks
 14 include three parking alternatives: 1) free parking area, 2) paid parking area, and 3) disorderly parking,
 15 which individuals were asked to choose between. All three alternatives were labeled in the experiment,

meaning that the label itself conveys information to respondents, allowing for the estimation of label-specific preference parameters and constants (Louviere et al., 2000). Based on a systematic review of the literature (Fukuda and Morichi, 2007; Wang et al., 2021a; Gao et al., 2021b), as well as the specific objectives and scope of this research, five attributes were ultimately included, which are summarised in Table 3. Not every attribute applies to all three alternatives. Specifically, “distance to parking” serves as a general attribute for the two orderly parking alternatives. “Reward” is linked to the free parking area, while the “parking fee” attribute pertains to the paid parking area. Additionally, the “fine” and the “other people” attributes are associated with the disorderly parking alternative. Increasing the number of levels leads to greater design complexity and a higher number of choice tasks (Louviere et al., 2000). To balance statistical efficiency with respondents’ cognitive burden, three levels were assigned to attributes such as distance to parking, parking fee, and the number of other people parking disorderly. For the reward and fine attributes, an explicit zero level was included to enable the estimation of presence-versus-absence effects on choice behaviour. All of the attribute levels were determined such that they extended beyond current observed real-world levels while varying within reasonable ranges, providing sufficient variation needed to estimate the attribute’s sensitivity, while also ensuring feasibility and realism for respondents in the survey (Song et al., 2018). To better reflect practical conditions and avoid dominated alternatives, two constraints were applied to the attribute levels in the experiment design: (1) the parking cost in the paid parking area must be lower than the fine for disorderly parking when the fine is non-zero, and (2) the distance to the free parking area must exceed the distance to the paid parking area.

TABLE 3
Overview of attributes and their levels

Attributes	Attribute Descriptions	Another designated free parking area	Designated paid parking area	Disorderly parking
Reward	The free riding coupon for parking in a more distant free parking area (min)	0/ 10/ 20/ 30	–	–
Distance to parking	Additional distance needed to park in another designated free or paid parking area (m)	200/ 500/ 800	100/ 200/ 300	–
Parking fee	Charges imposed by the designated paid parking area (CNY)	–	0.5/ 1/ 2	–
Fine	Monetary penalties automatically deducted for disorderly parking bikes (CNY)	–	–	0/ 1/ 3/ 5
Other people	Number of other users who disorderly park bikes outside designated parking areas.	–	–	No others/ Low (≤ 10 people)/ High (> 10 people)

Note: CNY/USD ≈ 0.138 during survey period
It is important to note that this research adopts the free riding time coupon as the reward to encourage users to park bicycles in designated parking areas, rather than relying on the monetary reward frequently used in previous studies (Su et al., 2020; Wang et al., 2021a, 2021b; Gao et al., 2021b). In practical situations, various factors impacting the financial sustainability of monetary incentives, such as cost implications and budget constraints, could significantly influence DBS companies’ willingness and ability to implement monetary rewards for orderly parking. In contrast, non-monetary incentive types, such as free riding time coupons, appear to be easier to implement and have been increasingly explored by DBS

1 companies (Beijing News, 2024) and in some academic studies regarding DBS users' choices in recent
2 years (Shen et al., 2018; Li et al., 2019; Kirkman, 2019; Si et al., 2024). In the SC tasks, we presented
3 respondents with both the distance to parking and the corresponding round-trip time to the destination,
4 calculated based on average speeds. It is assumed that cycling from the destination to the designated
5 parking area would be at an average speed of 10 km/h (see Long and Zhao, 2020 for the statistical
6 average cycling speed of bike-sharing in Chinese cities), while the return to the destination would be on
7 foot at an average speed of 4 km/h (see Romanillos and Gutierrez, 2019; Jia et al., 2022).
8 A D-efficient design (Bliemer and Rose, 2024) was used to achieve a low D-error, corresponding to a
9 higher level for the Fisher information, which facilitates more precise parameter estimates. A swapping
10 algorithm (ChoiceMetrics, 2018) was applied to minimize D-error and maximize attribute level balance.
11 Due to the absence of prior information on the coefficients, we initially conducted a pilot study using non-
12 informative priors (small positive or negative values) (Rose and Bliemer, 2009; Bliemer and Collins,
13 2016). A total of 50 samples were collected in the pilot study, which was conducted in June 2024. The
14 final experimental design was subsequently generated based on the information obtained from the pilot
15 survey, resulting in the design of 12 SC tasks for each respondent. The S-estimate, which indicates the
16 smallest sample size needed for all parameters to be statistically significant, was calculated to be 200 in
17 the final D-efficient design, suggesting that a sample size above 200 is likely adequate to draw
18 meaningful conclusions (Rose and Bliemer, 2013).

19 3.3. Data collection

20 The survey was implemented using an online questionnaire developed using the online tool Credamo
21 (<https://www.credamo.world/#/>) in July 2024. Credamo is a professional survey platform in China with a
22 commercial panel of over 3 million members (Credamo, 2022), covering all provinces and administrative
23 regions. It has been widely used in numerous studies (Tang et al., 2023; Si et al., 2024). We imposed a
24 strict constraint on the recruited samples, restricting them to individuals who had previously used DBS.
25 Participants could receive a bonus of CNY 2 (approximately USD 0.27), which would be credited to their
26 electronic accounts. The average response time for all respondents is about 8 minutes. In total, 703
27 participants completed the survey. After reviewing the survey responses, the final analysis included 600
28 valid responses, following the manual exclusion of 103 respondents with dubious survey responses,
29 which were excluded based on specific criteria, such as instructed response items (Meade and Craig,
30 2012), response time (Huang et al., 2012) and long strings of the same response category (Johnson, 2005).
31 The effective response rate was 85%.

32 3.4. Descriptive statistics

33 A detailed summary of the respondents' socio-demographic (e.g., gender, age, income, education level,
34 occupation, bike ownership) and DBS usage characteristics (e.g., usage frequency, average riding
35 duration, city of residence), including income distribution, is provided in Appendix 1. Among those who
36 provided valid responses, 58% were female. Young people made up the majority of respondents, with
37 60% aged 21-30 and 23% aged 31-40, which is similar to the user profile of DBS reported by iiMedia
38 Research (2022), where 81% of users are aged between 22 and 40. The sample displayed a relatively high
39 level of academic achievement, with 70% holding a bachelor's degree and an additional 19% having a
40 master's degree or higher, aligning with the educational characteristics of shared mobility users reported
41 in the *Green Development Report on Shared Mobility* (2017). The majority of respondents (72%) were
42 employed full-time, while 22% were students. Monthly income levels among respondents were relatively
43 evenly distributed across the sample.

1 Regarding DBS usage, 85% of respondents used DBS at least once per week. Most respondents (61%)
 2 reported an average riding duration of 11-20 minutes, which was consistent with the observations from
 3 [WRI \(2020\)](#). Additionally, [CAUPD \(2024\)](#) shows that the average duration of a single bike ride is
 4 approximately 12.1 minutes in 2024. Overall, the demographic and usage characteristics of the sample in
 5 this survey matched the user profile of China's DBS market as described in existing reports, indicating
 6 the representativeness of the sample.

7 Although approximately 22% of respondents are located in cities where geo-fencing technology has been
 8 implemented, its potential influence on their acceptance of and responses to the choice scenario, which
 9 was designed without considering geo-fencing, is expected to be limited. This is because geo-fencing in
 10 these cities has typically been implemented only in a small portion of the city area, while free-floating
 11 parking remains permitted in most parts of the city. In addition, some cities have simultaneously adopted
 12 an incentive-based approach as part of their parking management strategy, alongside geo-fencing. Given
 13 the clearly described scenarios in the SP survey, the perceived impact of geo-fencing on the findings is
 14 considered negligible in this study. The choice proportions for free parking, paid parking and disorderly
 15 parking in the survey were 41%, 39%, and 20%, respectively. Despite being a hypothetical option not
 16 currently existing in real-world settings, paid parking exhibited a relatively high selection rate, suggesting
 17 that respondents regarded it as a valid alternative.

18 4. Modelling framework

19 4.1. Utility specification

20 In our work, discrete choice models were estimated based on the principles of random utility
 21 maximization ([McFadden, 1973](#)), assuming that an individual will select the alternative that provides the
 22 highest utility. The random utility function U_{ni} for alternative i for respondent n , consisting of a
 23 deterministic component V_{ni} and a random component ε_{ni} , is specified as shown in Eq. (1)

$$24 \quad U_{ni} = V_{ni} + \varepsilon_{ni} = \delta_{ni} + \beta_n' x_{ni} + \varepsilon_{ni}, \quad (1)$$

25 where δ_{ni} represents the alternative specific constants (ASCs) capturing the average effect on utility of all
 26 factors not included in the model, x_{ni} are attributes associated with alternatives i as faced by respondent n ,
 27 β_n represents the weight or importance that respondent n attaches to the corresponding attribute in the
 28 choice process and can be positive or negative depending on the attribute. Relaxing the assumption of
 29 homogeneity across individuals, we can incorporate deterministic taste heterogeneity into the models by
 30 allowing for interactions between estimated parameters and individual socio-demographic characteristics.

31 For example, δ_{ni} can be written as a deterministic function of an observed vector z_n^δ of individual
 32 characteristics ($\delta_{ni} = \delta_i + \omega_{z,i} z_n^\delta$, where $\omega_{z,i}$ represents the extent to which each individual characteristic
 33 influences the overall perception for different alternatives) ([Bhat, 2000](#)). In the case of a continuous
 34 interaction (see for example [Hess et al., 2007](#); [Axhausen et al., 2008](#)), the interaction term could be
 35 expressed as

$$36 \quad f(z_n^\beta, x_{ni}) = \beta_x \left(\frac{z_n^\beta}{\bar{z}^\beta} \right)^{\eta_{z,x}} x_{ni}, \quad (2)$$

37 where z_n^β is the observed value for a given socio-demographic variable such as income for respondent
 38 n , \bar{z}^β gives the mean value across the sample population. The estimate of $\eta_{z,x}$ gives the elasticity of the
 39 sensitivity to x_i with respect to changes in z^β ; if $\eta_{z,x}$ is negative, an increase in z^β will lead to a decrease in

1 sensitivity towards x_i , with the opposite applying in the case of positive values for $\eta_{z,x}$. β_x captures the
 2 marginal utility of changes in attribute x_i at the average value of z^β in the same population.

3 *4.2 MNL and NL model*

4 Assuming the random error terms ε_{ni} to be identically and independently distributed (i.i.d.) across
 5 alternatives and respondents with a type I extreme value (or Gumbel) distribution, we developed a
 6 multinomial logit (MNL) model (McFadden, 1973) as the base. The probability of respondent n choosing
 7 alternative i from the set of alternatives J is then given by

$$8 \quad P_{ni} = \frac{e^{V_{ni}}}{\sum_{j \in J} e^{V_{nj}}} \quad (3)$$

9 The restriction imposed by the MNL model on the distribution of random error terms leads to the
 10 independence from irrelevant alternatives (IIA) property, resulting in identical cross-elasticities between
 11 all pairs of alternatives (Wen and Koppelman, 2001). To address these limitations, we developed the
 12 nested logit (NL) model (Williams, 1997) within the closed-form generalised extreme value (GEV)
 13 framework (McFadden, 1978), which expands the MNL by offering more flexible specifications of error
 14 terms ε_{ni} to handle correlations between alternatives. In the NL model, alternatives are divided into
 15 different nests ($B_1, B_2 \dots B_K$), and λ_k is used to measure the degree of independence in unobserved utility
 16 among alternatives within nest B_k . We would then have $0 < \lambda_k \leq 1$, while a higher value of λ_k indicates
 17 greater independence and lower correlation among these alternatives (Train, 2009). The choice
 18 probability of respondent n choosing alternative i within nest B_k is given by Eq. (4), which can be
 19 decomposed into a marginal probability P_{nB_k} and a conditional probability $P_{ni|B_k}$.

$$20 \quad P_{ni}(\beta) = P_{ni|B_k} P_{nB_k}, \quad (4)$$

$$21 \quad P_{nB_k} = \frac{e^{\lambda_k I_{nk}}}{\sum_{\ell=1}^K e^{\lambda_\ell I_{n\ell}}}, \quad (5)$$

$$22 \quad P_{ni|B_k} = \frac{e^{V_{ni}/\lambda_k}}{\sum_{j \in B_k} e^{V_{nj}/\lambda_k}}, \quad (6)$$

23 where

$$24 \quad I_{nk} = \ln \sum_{j \in B_k} e^{V_{nj}/\lambda_k} \quad (7)$$

25 *4.3. Mixed GEV models*

26 In order to capture potential random variations in respondents' preferences, we developed mixed
 27 multinomial logit (MMNL) models (McFadden and Train, 2000). The most widely used formulation of
 28 the MMNL is based on random coefficients, which is referred to as the random-coefficients logit (RCL)
 29 model (Train, 2009). In our research, we considered three types of distributions for coefficients: normal,
 30 log-normal, and negative log-normal distributions. We assumed that ASCs follow a normal distribution,
 31 based on the a priori assumption that different individuals may perceive parking alternatives as either
 32 advantageous or disadvantageous, as expressed in Eq. (8), where θ_δ is a vector of parameters (including
 33 mean μ_{δ_i} and standard deviation σ_{δ_i}) characterizing the distribution and ξ_{ni} are the draws from the
 34 selected distribution for each respondent n . Similarly, we assumed the coefficient of the reward attribute

1 to follow a log-normal distribution, while those of distance to parking, parking fee, and fine to follow
 2 negative log-normal distributions, ensuring the positive or negative effects of these attributes, as shown in
 3 Eq. (9).

$$f(\delta_i | \theta_\delta) = \mu_{\delta_i} + \sigma_{\delta_i} \xi_{ni}, \xi_{ni} \sim N(0,1) \quad (8)$$

$$f(\beta_x | \theta_\beta) = \pm \exp(\mu_{\beta_x} + \sigma_{\beta_x} \xi_{nx}), \xi_{nx} \sim N(0,1) \quad (9)$$

6 While the RCL model introduces random taste heterogeneity, it does not accommodate potential
 7 correlation among alternatives. Another formulation of the MMNL model is the error-components logit
 8 (ECL), which is conceptually different, yet mathematically equivalent to the RCL model (Ben-Akiva and
 9 Bierlaire, 2003; Hess et al., 2004; Train, 2009). Instead of assuming inter-individual variations in taste
 10 parameters, the ECL model introduces inter-alternative correlations by allowing certain alternatives to
 11 share common error components in their utility. The ECL can be implemented by assigning a dummy
 12 variable to each nest of alternatives. With K non-overlapping nests, the error component term can be
 13 expressed as

$$\tau'_n \varphi = \sum_{k=1}^K \tau_{nk} d_{ik}, \quad (10)$$

15 where $\tau_{nk} \sim N(0, \sigma_\tau)$ is a random term with zero mean, shared by all alternatives in the nest k , and σ_τ
 16 captures the magnitude of the correlation. $d_{ik}=1$ if the alternative i belongs to the nest k , and 0 otherwise.
 17 The terms in φ represent error components associated with each nest, defining the stochastic portion of
 18 utility along with ε_{ni} .

19 Although the MMNL model allows for both random taste heterogeneity and flexible substitution patterns,
 20 it still **suffers** from important issues of identification (Walker, 2001). Mixed GEV models have been
 21 shown to avoid the identification issues associated with MMNL models and offer advantages in
 22 computational efficiency (Hess et al., 2004; Haghani et al., 2015). Additionally, the Mixed NL model
 23 offers a computational advantage by reducing the number of random coefficients, while the ECL model
 24 requires an additional random terms to represent each separate nests (Hess et al., 2004; Haghani et al.,
 25 2015). Accordingly, we developed a mixed nested logit (Mixed NL) model, which incorporates a
 26 correlation structure, enabling the evaluation of choice probabilities within the NL framework and
 27 calculating unconditional probabilities by integrating over the probability distribution of the coefficients.
 28 The unconditional probability for choosing alternative i is obtained by integrating Eq. (4) over the
 29 possible values of β weighted by its function Eq. (11).

$$30 P_{ni}(\theta) = \int_{\beta} P_{ni}(\beta) f(\beta | \theta) d\beta = \int_{\beta} \frac{e^{V_{ni}/\lambda_k} (\sum_{j \in B_k} e^{V_{nj}/\lambda_k})^{\lambda_k-1}}{\sum_{\ell=1}^K (\sum_{j \in B_\ell} e^{V_{nj}/\lambda_\ell})^{\lambda_\ell}} f(\beta | \theta) d\beta \quad (11)$$

31 5. Empirical analysis

32 5.1. Specification procedure

33 Five models were established using a step-wise approach. The MNL model was initially created as the
 34 basis for comparison, assuming that no correlation existed between the alternatives. We then estimated a
 35 NL model, incorporating a nesting parameter to account for potential heightened correlations among the
 36 two orderly parking alternatives. Following that, the model was extended to a RCL model, which
 37 included random parameters to accommodate interpersonal random taste heterogeneity. A MMNL
 38 incorporating random coefficients and error components, and a Mixed NL model, were finally estimated
 39 to simultaneously account for both inter-alternative correlations and random taste heterogeneity. It should

1 be noted that the MMNL model with both random coefficients and error components is referred to as the
2 ECL model in this paper to distinguish it from the RCL model.
3 For model identification purposes, the free parking area alternative was assumed as the base alternative
4 for all models, with the corresponding alternative-specific constants (ASC) parameter fixed at 0. The
5 attribute for the effect of the number of other people parking disorderly was dummy-coded and entered
6 the utility functions as categorical variables to describe whether others were parking disorderly, with 'no
7 others' set as the reference category (fixed at 0). Other attributes entered the utility function linearly. To
8 identify sources of heterogeneity, possible deterministic taste heterogeneity in the parameters was tested
9 by incorporating interaction terms. It was observed that accommodating deterministic heterogeneity found
10 an improvement of model fit, as evidenced by all the selection criteria considered (Likelihood Ratio test,
11 $p < 0.001$). Higher model fit indicators were found when interacting respondents' gender and age with the
12 ASC for the disorderly parking alternative, and respondents' income with parking fee as a continuous
13 interaction. Although incorporating riding frequency and duration covariates could offer meaningful
14 insights, these variables did not yield statistically significant effects (see [Appendix 2](#)). Therefore, they
15 were excluded from the final model in favor of model parsimony. Rather than exploring the interactions
16 between the income characteristic and ASC for alternatives, we specified a continuous interaction term
17 between income and parking fee to capture how sensitivity to parking fees varies across income. A
18 negative value of the interaction parameter indicates that respondents with higher income are less
19 sensitive to parking fees, and vice versa. It should be noted that the midpoint approach ([Bhat, 1994](#); [Von](#)
20 [Fintel, 2007](#)) was used to handle grouped and missing income data, enabling the estimation of the
21 continuous interaction. Additionally, to account for potential correlation in unobserved utility
22 components, we tested all theoretically valid nesting structures among the three alternatives. As shown in
23 [Appendix 3](#), the specification that grouped the free parking area and the paid parking area into an "orderly
24 parking" nest exhibited the strongest substitution pattern between alternatives, so this nesting structure
25 was adopted in the final NL and Mixed NL models.

26 *5.2 Estimation results*

27 All models in this paper were estimated in R using Apollo ([Hess and Palma, 2019](#)), with 500 MLHS
28 draws ([Hess et al., 2006](#)) for numerical approximation of the MMNL integrals. The model selection
29 criteria and estimation results for five models are presented in [Table 4](#) and [Table 5](#), respectively. Moving
30 from left to right, goodness-of-fit gradually improves, as seen from the values of final LL , AIC , BIC , and
31 Adjusted ρ^2 , indicating that the explanatory power of the models progressively increases with the rising
32 specification complexity, while maintaining a good balance between model fit and complexity. The better
33 performance of the Mixed NL model compared to the MNL, NL and RCL models could also be
34 confirmed by likelihood ratio (LR) tests. For example, the LR test yields a value of 54.64 with a
35 corresponding p-value of < 0.01 when comparing the Mixed NL and RCL models, indicating that the
36 improvement in model fit is statistically significant. Specifically, the Mixed NL model outperforms the
37 other models by allowing for both interpersonal variations in DBS parking preferences while also
38 allowing for correlation between the orderly parking alternatives ([Hess, 2004](#)). Notably, the Mixed NL
39 model achieves a goodness-of-fit nearly equivalent to (and marginally better than) that of the ECL model,
40 which is consistent with the findings of [Haghani et al. \(2015\)](#). Moreover, the Mixed NL model
41 demonstrated better performance in capturing the effects of key variables. In particular, it was able to
42 reveal a significant difference between the coefficients for $\beta_{\text{other people low}}$ and $\beta_{\text{other people high}}$, whereas the ECL

1 model failed to do so. Therefore, the following analysis will focus on the estimation results of the Mixed
2 NL model.

3 **TABLE 4**
4 Model selection criteria of the DBS parking choice models

Goodness-of-fit measures	Multinomial logit	Nested logit	Random-coefficients logit	Error-components logit	Mixed nested logit
Number of choice observations	7200	7200	7200	7200	7200
Number of estimated parameters	10	11	16	18	18
<i>LL</i> (final)	-5591.88	-5572.85	-4667.5	-4641.59	-4640.18
<i>AIC</i>	11203.75	11167.69	9367.01	9319.17	9316.35
<i>BIC</i>	11272.57	11243.39	9477.12	9443.04	9440.23
Adj. ρ^2	0.2918	0.2941	0.4079	0.4109	0.4111

5 [Fig. 4](#) presents a graphical representation of the probability distributions of utility coefficients. Significant
6 random interpersonal taste heterogeneity was identified for six coefficients: ASC for paid parking area
7 alternative, ASC for disorderly parking alternative, reward, distance to parking, parking fee, and fine
8 parameters. We assume that the ASCs follow a normal distribution. The mean estimates for ASCs of the
9 paid parking area and disorderly parking alternatives are significantly negative, while disorderly parking
10 ASC shows the lowest mean, suggesting a general preference for the free parking area over the paid one
11 and disorderly parking is perceived most negatively. The standard deviation of the ASC for the disorderly
12 parking alternative is relatively high, indicating the significant variability in respondents' preferences for
13 disorderly parking. Interaction terms further reveal that females and older individuals have an even
14 stronger aversion to disorderly parking, which is consistent with [Wang et al. \(2021a\)](#) and [Su et al. \(2020\)](#),
15 suggesting that socio-demographic characteristics significantly influence the overall perception of parking
16 alternatives.

17 The coefficient of reward is assumed to be log-normally distributed, while the estimated mean and
18 standard deviation are both statistically significant. The sign of the coefficient is arbitrary when
19 interpreting the direction of the effect, but it does influence the magnitude of the effect. Specifically, the
20 more negative the mean parameter, the smaller the magnitude of the marginal utility, indicating lower
21 sensitivity to the reward attribute. Given that previous research primarily evaluated monetary rewards as
22 an incentive measure ([Gao L. et al., 2021](#); [Wang et al., 2021a, 2021b](#)), this research demonstrates that
23 offering free riding time coupons as rewards also significantly encourages users to park at more distant
24 locations, although the effect is relatively modest.

25 A negative log-normal distribution is employed for the coefficients of distance to parking, parking fee and
26 fine. The mean and standard deviation of the three coefficients are all significant. As seen from the
27 interaction term, individuals with higher incomes show lower sensitivity to parking fees. However, the
28 significance of the $\eta_{\text{income, parking fee}}$ declines as model complexity increases, and becomes statistically
29 insignificant in the Mixed NL model, which suggests that the taste heterogeneity for parking fees is
30 mainly captured by the random component instead of the interacting covariate.

1 **TABLE 5**

2 Model estimation results for MNL, NL, RCL, ECL and Mixed NL models

Parameters	Multinomial logit		Nested logit		Random-coefficients logit		Error-components logit		Mixed nested logit	
	Est.	Rob. t_rat.	Est.	Rob. t_rat.	Est.	Rob. t_rat.	Est.	Rob. t_rat.	Est.	Rob. t_rat.
Means of utility coefficients										
$\delta_{\text{free parking area}}$	0	—	0	—	0	—	0	—	0	—
$\delta_{\text{paid parking area}}$	-0.643	-8.08***	-0.557	-9.12***	-1.113	-8.75***	-1.116	-9.10***	-0.883	-8.98***
$\delta_{\text{disorderly parking}}$	-1.444	-5.38***	-1.187	-4.70***	-2.262	-4.52***	-2.095	-4.02***	-1.765	-4.16***
$\omega_{\text{female, disorderly parking}}$	-0.339	-2.70***	-0.319	-2.69***	-0.544	-1.84*	-0.602	-2.42**	-0.617	-2.73***
$\omega_{\text{age, disorderly parking}}$	-0.191	-2.31**	-0.187	-2.38**	-0.525	-3.05***	-0.599	-3.31***	-0.422	-2.96***
β_{reward}	0.030	14.93***	0.024	12.85***						
$\beta_{\text{distance to parking}}$	-5.583	-26.34***	-4.401	-16.00***						
$\beta_{\text{parking fee}}$	-0.898	-18.42***	-0.666	-12.25***						
$\eta_{\text{income, parking fee}}$	-0.144	-3.43***	-0.144	-3.38***	-0.104	-2.26**	-0.094	-2.23**	-0.083	-1.59
β_{fine}	-1.341	-24.57***	-1.260	-24.18***						
$\beta_{\text{no others}}$	0	—	0	—	0	—	0	—	0	—
$\beta_{\text{other people}}$	0.546	7.63***	0.560	8.47***	0.813	5.61***				
$\beta_{\text{other people low}}$							0.846	5.45***	0.650	5.02***
$\beta_{\text{other people high}}$							0.831	4.81***	0.901	6.39***
Standard deviations of utility coefficients										
$\sigma_{\delta_{\text{paid parking area}}}$					0.576	3.53 ***	0.537	3.14***	0.512	4.84***
$\sigma_{\delta_{\text{disorderly parking}}}$					2.392	12.54***	-2.084	-12.20***	2.046	11.94***
$\tau_{\text{orderly parking}}$							1.124	3.64***		
Location parameters on log-scale										
$\mu_{\beta_{\text{reward}}}$					-3.131^	-38.81***	-3.168^	-38.74***	-3.478^	-33.12***
$\mu_{\beta_{\text{distance to parking}}}$					2.287^	53.14***	2.328^	53.56***	2.025^	29.52***
$\mu_{\beta_{\text{parking fee}}}$					0.456^	7.70***	0.448^	7.65***	0.165^	1.96**
$\mu_{\beta_{\text{fine}}}$					1.260^	13.49***	1.310^	20.00***	1.075^	13.44***
Log-scale standard deviations										
$\sigma_{\beta_{\text{reward}}}$					-0.467^	-3.49***	-0.610^	-6.91***	0.690^	6.55***
$\sigma_{\beta_{\text{distance to parking}}}$					-0.493^	-9.95***	-0.491^	-19.65***	-0.489^	-16.44***
$\sigma_{\beta_{\text{parking fee}}}$					0.517^	5.02***	-0.548^	-9.09***	0.472^	4.04***

$\sigma_{\beta_{\text{fine}}}$	-0.665 ^{^^}	-7.00***	0.693 ^{^^}	9.36***	-0.642 ^{^^}	-9.33***
Nesting coefficient						
$\lambda_{\text{orderly parking}}$	0.706	15.79***			0.657	13.31***

1
Note:

2 * Signify confidence at 90%, ** Signify confidence at 95%, *** Signify confidence at 99%.

3 [^] means the coefficient is log-normally distributed by assumption, ^{^^} means the coefficient is negative log-normally distributed by assumption.

4 For coefficients assumed to follow a log-normal or negative log-normal distribution, the estimated parameters correspond to the location parameter on log-scale and log-scale

5 standard deviation for the log-transformed coefficients (i.e., $\log(\beta)$ or $\log(-\beta)$). These parameters define the log-normal probability density function, but do not represent the mean
6 and standard deviation of the coefficients (i.e., β) themselves.

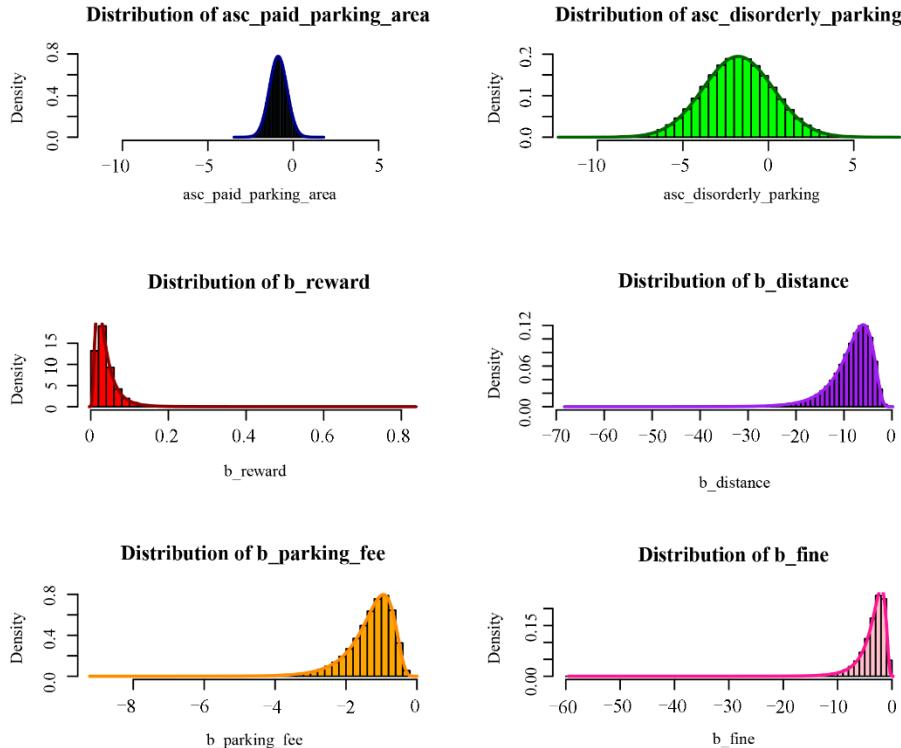


Fig. 4. Probability distribution for random utility coefficients estimated based on the Mixed NL model.

The positive coefficient for the dummy variable representing other people's behaviour implies that when others park disorderly, respondents are more likely to do the same. This can be explained by the theory of descriptive norms proposed by [Cialdini et al. \(1990\)](#), which suggests that individuals' behaviour is guided by the perception of how other people behave in a given context. While many users believe that orderly parking is better for the environment and society, they may still park disorderly when observing others doing so ([Fukuda and Morichi, 2007](#); [Wang et al., 2021b](#)). Compared with the other three models, the Mixed NL model revealed a significant difference between the coefficients for $\beta_{\text{other people high}}$ and $\beta_{\text{other people low}}$, indicating that a higher number of people parking disorderly increases the utility of choosing disorderly parking more than a lower number does. It implies that, compared with low-perceived descriptive norms, high-perceived descriptive norms can lead to a greater level of moral disengagement, which has been supported by findings in other literature ([Rinker and Neighbors, 2013](#); [Zhao et al., 2017](#)). The nesting parameter ($\lambda_{\text{orderly parking}}$) is significant at the 99% level of confidence and takes a value of 0.657, implying a high correlation between the unobserved utilities of the free parking area and paid parking area alternatives. This correlation pattern is further supported by the significant variance of the error component term associated with these two alternatives in the ECL model.

5.3. Analysis of policy intervention effectiveness

For assessing the impact of changes in policy interventions, model predictions were conducted in Apollo ([Hess and Palma, 2019](#)), with the prediction algorithm set to perform 500 runs. We first generated forecasts based on the base values of the explanatory variables as specified in the SC experiment and subsequently predicted the new choice probabilities of each alternative at the observation level resulting from the percentage change in the values of five explanatory variables. The predicted probabilities of choosing specific alternatives under several policy interventions can be observed clearly, as shown in [Fig.](#)

5. It should be noted that no single base value is reported for each attribute in Fig. 5, as the relative changes are derived from all choice tasks, each of which is assigned different attribute values. The base values and their corresponding adjusted values after applying relative changes are provided in Appendix 4. For example, in choice task 1, the distance to the free parking area is 800m, and a 30% reduction corresponds to a decrease of 240m. In contrast, in choice task 4, where the distance to the free parking area is 500 m, a 30% reduction corresponds to a decrease of 150m. In Fig. 5, relative changes ranging from -30% to +30% were applied to all choice tasks, and the choice probabilities represent the overall predicted changes aggregated across all tasks.

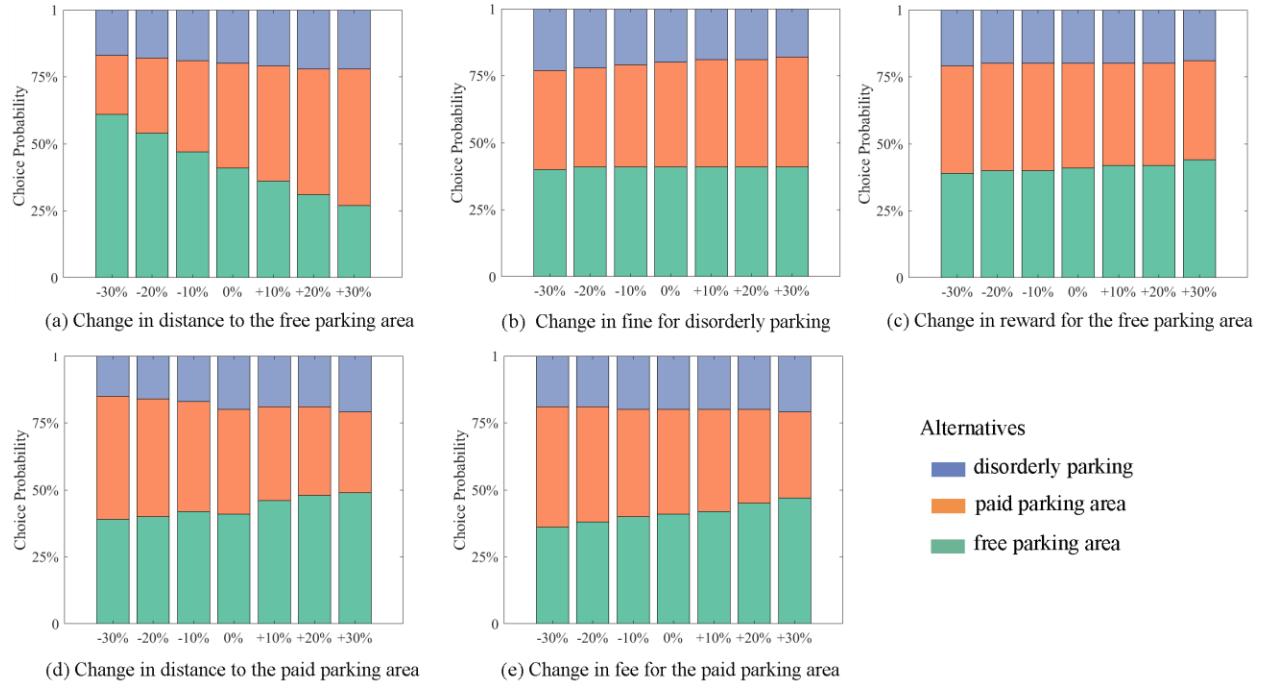


Fig. 5. Choice probability under policy interventions based on the Mixed NL model.

Reducing the distance to designated parking areas, whether paid or free, has been shown to reduce disorderly parking rates. Under the original scenario, the choice probabilities for the free parking area, paid parking area, and disorderly parking are 41%, 38%, and 21%, respectively. A 30% reduction in the distance to the free parking area results in a 3% decrease in the probability of choosing disorderly parking, while a 30% increase in distance leads to a 2% rise. In comparison, reducing the distance to the paid parking area by 30% yields a 5% decrease in the probability of disorderly parking, whereas a 30% increase leads to a 1% rise. These results suggest establishing high-density DBS parking facilities, which enable users to access designated parking areas within a relatively short distance when the parking areas near the destination are fully occupied, have the potential to discourage disorderly parking behaviour. This finding aligns with Meng et al. (2024), which demonstrated a potential non-linear relationship between the density of shared scooter parking corrals and parking non-compliance rates. To further examine behavioural sensitivity, we calculated direct and cross choice elasticities in response to a 1% increase in each attribute, as shown in Table 6. The choice elasticities of the disorderly parking alternative in response to a 1% increase in the distance to the free and paid parking areas are 0.40 and 0.30, respectively, both lower than that of the free and paid parking alternatives. This indicates that while reductions in the distance to parking do help lower disorderly parking rates, the main shift in choice occurs between the free and paid parking alternatives.

1 Implementing monetary punitive measures can also help reduce parking non-compliance, which is
 2 consistent with [Gao et al. \(2021\)](#). More specifically, a 30% reduction in fines for disorderly parking
 3 increases the probability of such behaviour by 3%, while a 30% increase in fines results in a 2% decrease.
 4 The choice elasticity of disorderly parking with respect to a 1% increase in the fine is 0.36. In comparison,
 5 a 30% increase or decrease in rewards only leads to a 1% shift in the probability of disorderly parking,
 6 indicating a limited behavioural response to free riding reward changes. Among all the policy interventions
 7 examined, the choice elasticity of disorderly parking in response to changes in the reward is the lowest.

8 **TABLE 6**

9 Choice elasticities in response to a 1% increase in attribute values

	distance to parking (free)	reward	distance to parking (paid)	parking fee	fine
free parking area	-1.40	0.18	0.50	0.35	0.04
paid parking area	1.26	-0.14	-0.69	-0.45	0.14
disorderly parking	0.40	-0.11	0.31	0.16	-0.36

10 Furthermore, adjustments to parking fees exhibit the potential in influencing the probabilities of choosing
 11 free or paid parking alternatives, demonstrating the effectiveness of pricing mechanisms in influencing
 12 parking behaviour. However, they have weak impact on disorderly parking behaviour. The choice
 13 elasticity of disorderly parking with respect to a 1% increase in the parking fee is 0.16.

14 Overall, only the choice elasticities of the free and paid parking alternatives in response to a 1% increase
 15 in the distance to the free parking area exceed 1, which can be considered relatively elastic. This suggests
 16 that users are sensitive to changes in the distance to free parking areas. In contrast, the choice elasticities
 17 associated with a 1% increase in other attributes fall below 1, indicating relatively inelastic responses
 18 ([Hensher et al., 2015](#)). This finding demonstrates that relying on a single policy intervention may be
 19 insufficient to address the problem of disorderly parking. A combination of policy interventions may be
 20 necessary to achieve more effective parking management outcomes.

21 *5.4. Willingness to pay interpretation*

22 Willingness to pay (WTP) values were calculated based on parameter estimates for each model, as
 23 presented in [Table 6](#). During the survey period, the exchange rate was CNY/USD = 0.138. For models
 24 with fixed coefficients, the mean values and robust standard errors of WTPs were computed using the
 25 Delta method ([Train, 2009](#)), while WTP distributions were derived through a simulation approach for the
 26 random coefficient models ([Hensher and Greene, 2003; Daly et al., 2011](#)). Specifically, the random
 27 coefficients were simulated at the individual level. To illustrate this intermediate step, we provide in
 28 Appendix 5 the transformed estimates of coefficients with log-normal and negative log-normal
 29 distributions. The empirical distribution of WTP was then derived from the distribution of the ratio of
 30 these individual coefficients. Since all random coefficients for attributes follow either a positive or
 31 negative log-normal distribution, this ensures that moments of the WTP distributions (e.g., mean and
 32 variance) can be calculated ([Daly et al., 2012](#)). The WTPs produced by the four models are similar in
 33 magnitude. However, an overall increase in the mean value and wider quartiles can be observed as model
 34 complexity increases, which is consistent with findings in empirical discrete choice studies ([Hess et al.,](#)
 35 [2004; van den Berg, 2010; Teye, 2014](#)). This indicates that ignoring random taste heterogeneity and
 36 substitution patterns can lead to a risk of biased results. The broad range of WTP values also confirms
 37 that individuals place different values on distance to parking and time to/from parking. The subsequent
 38 analysis thus mainly focuses on the Mixed NL model. The following analysis mainly focuses on the
 39 Mixed NL model.

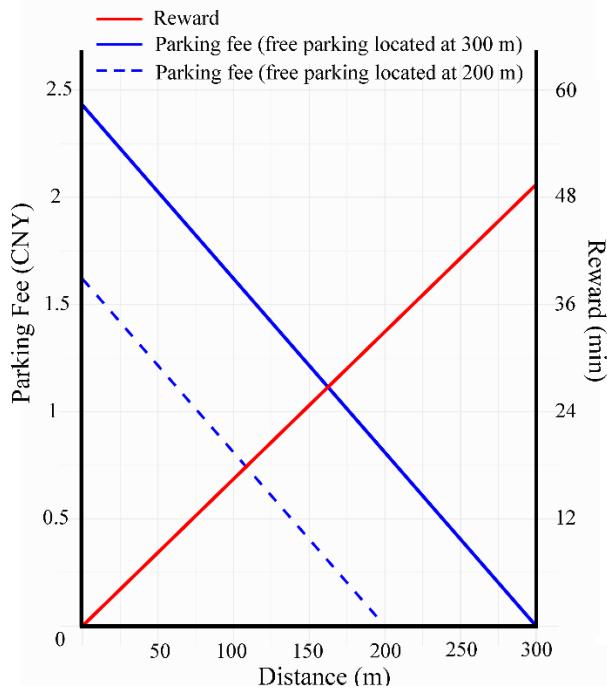
Starting with the WTP for the reduced distance to parking, we first derived the distributions of the marginal utilities for the distance to parking and parking fee attributes. Then, we generated 500 random draws and calculated the ratio of the marginal utility of distance to parking to the marginal utility of parking fee for each sample in this set. Given that both distance to parking and parking fee follow a negative log-normal distribution, the WTP for distance to parking also follows a log-normal distribution, with an estimated mean of CNY 0.81 per 100 metres saved. This result could not be found directly in other research, but similar analysis can be found in [Guo et al.'s \(2023\)](#) study, in which the WTP for a reduction of 100 metres in the picking up distance of DBS was calculated as CNY 0.45 using the NL model. Some studies also focused on the WTP for private bicycle parking ([Van Lierop et al., 2018](#); [Kohlrautz and Kuhnlimhof, 2025](#)). Kohlrautz and Kuhnlimhof (2025) estimated the WTP of cyclists at RWTH Aachen University for various types of bicycle parking facilities and found that the average WTP for reducing the walking distance by 100 metres exceeds 0.20 euros (around CNY 1.58) per day. [Van Lierop et al. \(2018\)](#) observed that 43% of cyclists in Montreal, Canada, were willing to pay over 0.50 dollars (around CNY 3.63) per day for secured bicycle parking.

TABLE 7
WTP calculations for MNL, NL, RCL, ECL and Mixed NL models

	Models	Mean and percentiles of distribution				Changes against Mixed NL		
		mean	robust s.e.	s.d.	interquartile range	mean	s.d.	interquartile range
Multinomial logit	WTP (CNY/100 m) _{parking fee distance to parking}	0.62	0.03			-23%		
	VoT (CNY/1 h) _{parking fee time to/from parking}	20	1.02			-24%		
	MRS (m/10 min) _{distance to parking reward}	-54	4.00			-7%		
	MRS (min/10 min) _{time to/from parking reward}	-1.12	0.08			-15%		
Nested logit	WTP (CNY/100 m) _{parking fee distance to parking}	0.66	0.03			-19%		
	VoT (CNY/1 h) _{parking fee time to/from parking}	21.05	1.07			-20%		
	MRS (m/10 min) _{distance to parking reward}	-55	3.77			-5%		
	MRS (min/10 min) _{time to/from parking reward}	-1.15	0.07			-13%		
Random -coefficient logit	WTP (CNY/100 m) _{parking fee distance to parking}	0.81		0.66	0.63	0%	6%	3%
	VoT (CNY/1 h) _{parking fee time to/from parking}	25.8		19.4	19.3	-2%	-8%	-5%
	MRS (m/10 min) _{distance to parking reward}	-56		42.8	42.0	-3%	-29%	-14%
	MRS (min/10 min) _{time to/from parking reward}	-1.23		1.10	1.00	-7%	-24%	-12%
Error -components logit	WTP (CNY/100 m) _{parking fee distance to parking}	0.86		0.73	0.67	6%	18%	10%
	VoT (CNY/1 h) _{parking fee time to/from parking}	27.3		25.2	22.2	3%	19%	9%
	MRS (m/10 min) _{distance to parking reward}	-56		51.4	45.5	-3%	-15%	-7%
	MRS (min/10 min) _{time to/from parking reward}	-1.20		0.94	0.95	-9%	-35%	-17%
Mixed nested logit	WTP (CNY/100 m) _{parking fee distance to parking}	0.81		0.62	0.61			
	VoT (CNY/1 h) _{parking fee time to/from parking}	26.4		21.1	20.3			
	MRS (m/10 min) _{distance to parking reward}	-58		60.1	49.0			
	MRS (min/10 min) _{time to/from parking reward}	-1.32		1.44	1.14			

We also show value of time (VoT) in addition to WTP. Specifically, we replaced the distance to parking attribute with parking time in the model under the assumption that all respondents travel at an average and constant speed, and then re-estimated the parameters. The VoT was derived from the ratio of the marginal utility of parking time to the marginal utility of the parking fee, with the mean value of the VoT distribution estimated at 26.4 CNY per hour. It is important to note that the VoT estimated in this study

1 reflects the overall value of time to/from parking, including both the time required to access the parking
 2 area and the walking time from there to the final destination. VoT-related research in China is relatively
 3 limited, and there is a lack of official statistical data (Song et al., 2018). Gao K, et al. (2021) estimated the
 4 value of travel time for DBS trips in Shanghai to be CNY 30.2 per hour. Kou et al. (2017) obtained the
 5 average value of commuting times for public transport and car travel as CNY 11.34 per hour and CNY
 6 17.81 per hour, respectively in Beijing. The VoT estimates obtained in this study are broadly of the same
 7 order of magnitude as those reported in the relevant literature.
 8 Additionally, the marginal rate of substitution (MRS) values for the trade-offs between the distance to
 9 parking and reward were calculated by dividing the coefficient of the reward attribute by the coefficient
 10 of distance to parking, reflecting how individuals trade off increased the distance to parking against the
 11 rewards offered. The estimated mean of the MRS distribution for each 10-minute free riding reward is 58
 12 metres, indicating that respondents are willing to accept an additional 58 metres of the distance to parking
 13 in exchange for receiving a 10-minute free riding reward. According to the *Standards for the Provision of*
 14 *Non-Motorised Vehicle Parking Facilities in Urban Road Spaces in Beijing* (2023), for areas around the
 15 entrances and exits of public transportation with limited space, the establishment of non-motorised
 16 vehicle parking facilities is recommended within a range of 50 to 100 metres. Similarly, the MRS
 17 between parking time and reward was calculated by dividing the coefficient of the reward attribute by the
 18 coefficient of parking time. The results suggest that respondents are willing to spend an average of 1.32
 19 extra minutes proceeding to a designated parking area in exchange for receiving a 10-minute free riding
 20 reward.



21
 22 **Fig. 6.** Conceptual illustration of WTP and MRS variation with distance.

23 A conceptual illustration of how mean values of WTP and MRS vary with changes in the distance to
 24 parking is presented in Fig. 6. The red solid line represents the required riding time reward to encourage
 25 users to park in the free parking area as the distance increases. The blue solid and dashed lines indicate
 26 the users' willingness to pay for different locations of paid parking areas when the free parking area is
 27 located 300m and 200m from the destination, respectively. When the free parking area is located 300

1 metres from the destination, an average free-riding reward of 51.7 minutes is required to incentivize users
2 to park there. Under this situation, if there is a paid parking area available at the destination, users would
3 be willing to pay approximately CNY 2.4 to reduce the distance to parking. These insights, based on the
4 mean values, may serve as a valuable reference for DBS companies in designing appropriate parking fees
5 and reward levels. However, it is important to note that, at the individual level, the acceptable walking
6 distance does not necessarily increase linearly with the reward. This subsection primarily focuses on the
7 implementation of paid parking areas and incentive-based approaches to encourage the use of remote
8 parking options. While the findings provide useful insights for designing parking management strategies,
9 they have limited direct relevance to policy interventions specifically aimed at reducing disorderly
10 parking.

11 **6. Discussion and conclusion**

12 Dockless bike-sharing has rapidly gained popularity in recent years, offering a sustainable and convenient
13 mode of transportation. However, the accompanying disorderly parking has emerged as one of the most
14 challenging problems for city administrators. This paper presents an in-depth investigation of users'
15 parking preferences in DBS trips, in order to provide a reference for developing targeted policy
16 interventions that encourage orderly parking.

17 *6.1. Theoretical Implications*

18 The present research offers several theoretical implications for the literature on bicycle parking behaviour.
19 Firstly, this study expands the literature on DBS parking management from the user-based perspective.
20 While prior studies have primarily addressed parking problems through supply-side strategies, such as the
21 planning of designated parking areas and bicycle rebalancing (Zhang et al., 2019; Tian et al., 2020), these
22 approaches often face practical challenges in implementation (Wang et al., 2019; Si et al., 2024; Meng et
23 al., 2024). By examining users' parking preferences and evaluating the behavioural effects of different
24 policy interventions, this study provides a behavioural foundation for the development of more direct
25 parking management strategies to improve parking compliance. There is still a lack of in-depth empirical
26 investigations on this topic.

27 Secondly, this research improves the modelling of DBS user behaviour by employing a mixed nested
28 logit model that simultaneously accounts for both random taste heterogeneity and inter-alternative
29 correlations. While deterministic taste heterogeneity associated with socioeconomic demographics such
30 as gender and age, has been widely acknowledged in existing studies (Su et al., 2021; Gao et al., 2021; Si
31 et al., 2024), interpersonal random taste heterogeneity has received comparatively little attention (Gao et
32 al., 2021). The present research confirms that different orderly parking alternatives are strongly
33 correlated, and there is significant random taste variation in how users respond to alternative-specific
34 attributes such as proximity to designated parking areas, parking fees, rewards, and fines. Incorporating
35 random taste heterogeneity allows for more accurate estimation of key measures, including the WTP,
36 VoT, and MRS, as ignoring such heterogeneity may lead to biased results (Hess et al., 2004; van den
37 Berg, 2010; Teye, 2014).

38 Thirdly, the findings of this study may be extended to other forms of micromobility, such as shared e-
39 scooters and private bicycle parking, which also face challenges related to disorderly parking. The
40 behavioural characteristics identified through this study, particularly interpersonal random taste
41 heterogeneity and the influence of the distance to parking, incentives, parking fees and descriptive norms
42 on cyclist parking behaviour, may also be applicable to other forms of micromobility. However, it should
43 be noted that unlike shared micromobility users, private bicycle cyclists are also influenced by factors

1 such as the risk of theft (van Lierop et al., 2018; Jonkeren and Kager, 2021; Kohlrautz and Kuhnighof, 2025) and the value of the bicycle (Kohlrautz and Kuhnighof, 2025), which should be taken into account 2 when designing parking management strategies for private bicycles.

3 Finally, from a methodological perspective, this paper contributes to the limited application of mixed 4 GEV models, which is underutilised in practice due to computational complexity and the lack of 5 estimation options in most commercial econometric software. In the present research, we estimated the 6 model using Apollo, which facilitates for the mixing of any underlying kernel model.

7 *6.2. Practical Implications*

8 The present research provided insights for DBS companies and local governments to improve parking 9 compliance and reduce disorderly parking.

10 First, the findings indicate that users tend to avoid disorderly parking, particularly female and older 11 individuals. Therefore, it is essential to establish a clear and consistent definition of disorderly parking 12 behaviour and to explicitly communicate it to users to avoid ambiguity. Confusing or inconsistent rules 13 may undermine users' understanding and hinder parking compliance. Furthermore, it is important to 14 consider the taste heterogeneity when developing parking management strategies, as suggested by 15 Kohlrautz and Kuhnighof (2025). For example, educational and guidance messages could be more 16 actively directed toward male and younger users via the DBS app to enhance parking compliance.

17 Secondly, we discovered that reducing the distance to parking and imposing monetary penalties for 18 disorderly parking are obviously effective in discouraging such behaviour. When parking spaces near the 19 destination are saturated, users are less willing to proceed to other designated parking areas as the 20 distance to parking increases. This highlights the need for planning high-density DBS parking facilities, 21 especially around high-demand destinations (Meng et al., 2024). In addition, DBS companies should 22 strive to implement technological solutions that enable the prompt identification of disorderly parking and 23 the enforcement of penalties (Tang et al., 2024). Furthermore, this study found that DBS users are willing 24 to accept an average of 58 additional metres of the distance to parking for a 10-minute free riding reward, 25 which provides a practical reference for designing incentive measures to promote orderly parking.

26 Thirdly, we found that descriptive norms significantly impact users' utility when choosing parking 27 behaviour. When users observe a greater number of others engaging in disorderly parking, they are more 28 likely to exhibit similar behaviour. This suggests that timely detection and repositioning of disorderly 29 parked bicycles are crucial for preventing the accumulation of bicycles.

30 Finally, this study considers paid parking as a potential management strategy when the designated free 31 parking area is located far from the destination. We found that users are willing to pay approximately 32 CNY 0.81 to reduce the distance to parking by 100 metres. Paid bicycle parking has mainly been studied 33 in relation to private bicycles, including cases in the Netherlands (Molin and Maat, 2015), Canada (van 34 Lierop et al., 2018), and Germany (Kohlrautz and Kuhnighof, 2025), but has not yet been considered in 35 the context of DBS. Nevertheless, we believe that paid parking could still be explored as a viable strategy 36 for managing DBS parking. Given that DBS companies often lack incentives to actively manage parking 37 due to cost concerns, allowing them to operate paid parking spaces near high-demand locations such as 38 metro stations or business districts under government authorization and charge parking fees directly 39 through the app may offer a profitable model. This could encourage greater operator involvement in 40 parking management and reduce the burden currently placed primarily on local governments.

41 *6.3. Limitations*

1 One limitation of this study is the insufficient consideration of the ordering effect in the stated choice
2 experiment design. The presentation order of alternatives within the choice set has been recognised to
3 influence choice outcomes in some literature (Garbarski et al., 2016; Boxebeld, 2024). To improve the
4 validity of stated preference data, future research should consider implementing mitigative measures, such
5 as randomizing the positions of labeled alternatives in the choice set and then incorporating position
6 indicators into the model specification to account for potential ordering effects. Another limitation of the
7 experimental design lies in the presentation of both the distance to parking and the corresponding round-
8 trip time in the SC tasks. The intent was to assist respondents who may not have a clear perception of
9 distance, as time is often a more intuitive reference in travel contexts. However, because time and
10 distance are distinct concepts, and individuals may perceive or respond to them differently, this approach
11 may have influenced how respondents evaluated the attribute, which was not fully accounted for in the
12 experimental design. Moreover, the SC survey did not explicitly state that fines would be strictly
13 enforced, which may have led some respondents to infer the likelihood of enforcement based on their
14 prior experiences, potentially introducing bias. Nevertheless, this should not have substantial influence on
15 the estimated direction of the fine coefficient.

16 From a methodological perspective, this study relies solely on SP data, which is useful for examining
17 hypothetical choices by hypothesizing alternatives and attributes, but it has potential limitations related to
18 the veracity of individuals' stated responses, which may lead to inconsistencies with users' realistic
19 parking preferences (Helveston et al., 2018). In addition, the assessment of the effectiveness of policy
20 interventions derived based on the study sample and the SP scenario offers theoretical insights, but may
21 have limited generalisability to real-world conditions. Combining RP and SP data in model estimation
22 could overcome the weaknesses of each data source. It is recommended to use the pooled RP and SP data
23 in the future to reduce bias from hypothetical choice situations. Additionally, some latent factors such as
24 personal attitudes, ascription of responsibility, awareness of consequences, and personal norms have also
25 been proven to influence users' parking choices in previous studies (Wang et al., 2021b; Tang et al.,
26 2024). However, this type of data is not reflected in the data used to develop the present model. Future
27 studies are encouraged to integrate latent variables into discrete choice models, to enhance the
28 understanding of the impact of unobserved factors on DBS users' decision-making processes.

29 *6.4. Conclusions*

30 This paper developed a mixed nested logit model to simultaneously account for both random taste
31 heterogeneity and inter-alternative correlations in dockless bike-sharing parking preference. Based on the
32 SP data collected in China, this study examined how DBS users' parking choices are influenced by
33 socioeconomic characteristics and alternative-specific factors, while also evaluating the effectiveness of
34 various policy interventions. The findings confirm the existence of random taste heterogeneity in
35 preferences for the distance to parking, rewards, fines, and parking fees, and demonstrate that reducing
36 the distance to parking and imposing penalties are effective strategies for discouraging disorderly parking.
37 Users' willingness to accept additional distance to parking in exchange for free riding time rewards, as
38 well as their willingness to pay to reduce the distance to parking, was also estimated. This study
39 contributes to the literature on DBS parking management by extending the empirical understanding of
40 parking behaviour. Moreover, the results offer empirical evidence for local governments and DBS
41 operators in formulating more effective parking policies to mitigate disorderly parking.

42 **CRediT authorship contribution statement**

1 **Shujing Zhang**: Conceptualization, Methodology, Investigation, Formal Analysis, Data curation,
2 Writing – original draft. **Thomas O. Hancock**: Conceptualization, Methodology, Writing - review &
3 editing. **Stephane Hess**: Conceptualization, Methodology, Writing - review & editing. **Shunping Jia**:
4 Conceptualization, Writing - review & editing, Supervision.

5 **Acknowledgement**

6 Thomas O. Hancock and Stephane Hess acknowledge support from the European Research Council
7 through the advanced grant 101020940-SYNERGY.

References

Arif, A., & Margellos, K. (2022). Locating parking hubs in free-floating ride-share systems via data-driven optimization. *IEEE Transactions on Intelligent Transportation Systems*, 23(8), 11621-11632.

Axhausen, K. W., Hess, S., König, A., Abay, G., Bates, J. J., & Bierlaire, M. (2008). Income and distance elasticities of values of travel time savings: New Swiss results. *Transport Policy*, 15(3), 173-185.

Bao, J., Chen, G., & Liu, Z. (2023). Exploring the influence of parking penalties on bike-sharing system with willingness constraints: A case study of Beijing, China. *Sustainability*, 15(16), 12526.

Beijing Municipal Commission of Transport. (2023). Standards for the Provision of Non-Motorized Vehicle Parking Facilities in Urban Road Spaces in Beijing. Beijing, China. (in Chinese)

Beijing News. (2024, May 8). Beijing to achieve full coverage of high-precision positioning for shared bikes, continuing remote parking incentives this year. Retrieved April 28, 2025, from <https://news.qq.com/rain/a/20240508A05EXV00>

Ben-Akiva, M., & Bierlaire, M. (2003). Discrete choice models with applications to departure time and route choice. In R. Hall (Ed.), *Handbook of Transportation Science* (2nd ed., pp. 7-37). Kluwer Academic Publishers.

Bhat, C. R. (1994). Imputing a continuous income variable from grouped and missing income observations. *Economics Letters*, 46(4), 311-319. [https://doi.org/10.1016/0165-1765\(94\)90151-1](https://doi.org/10.1016/0165-1765(94)90151-1)

Bhat, C. R. (2000). Incorporating Observed and Unobserved Heterogeneity in Urban Work Travel Mode Choice Modeling. *Transportation Science*, 34(2):228-238.

Bhat, C. R. (2003). Random utility-based discrete choice models for travel demand analysis. *Transportation Systems Planning: Methods and Applications*, 10, 1-30.

Bliemer, M. C. J., & Collins, A. T. (2016). On determining priors for the generation of efficient stated choice experimental designs. *Journal of Choice Modelling*, 21, 10-14. <https://doi.org/10.1016/j.jocm.2016.04.002>

Bliemer, M. C. J., & Rose, J. M. (2024). Chapter 7: Designing and conducting stated choice experiments. In *Handbook of Choice Modelling*. Cheltenham, UK: Edward Elgar Publishing. Retrieved October 20, 2024.

Boxebeld, S. (2024). Ordering effects in discrete choice experiments: A systematic literature review across domains. *Journal of Choice Modelling*, 51, 100489. <https://doi.org/10.1016/j.jocm.2024.100489>

Cai, Y., Ong, G. P., & Meng, Q. (2023). Bicycle sharing station planning: From free-floating to geo-fencing. *Transportation Research Part C: Emerging Technologies*, 147, 103990.

Cheng, Y., Wang, J., & Wang, Y. (2021). A user-based bike rebalancing strategy for free-floating bike sharing systems: A bidding model. *Transportation Research Part E: Logistics and Transportation Review*, 154, 102438.

Chiariotti, F., Pielli, C., Zanella, A., & Zorzi, M. (2020). An optimization framework for bike-sharing with dynamic rebalancing and user incentives. *ACM Transactions on Autonomous and Adaptive Systems*, 14(3), Article 11, 30 pages.

China Academy of Urban Planning and Design (CAUPD). (2024). Annual report on sharing bikes and sharing electric bikes riding in major Chinese cities. Accessed September 23, 2024. <https://www.csver.com> (in Chinese)

China Road Transport Association (CRTA). (2023). Guidelines for the Management of Dockless Bike-Sharing Parking. Retrieved from <https://www.crta.org.cn/details.html?id=11&contentId=2922>

ChoiceMetrics. (2018). Ngene 1.2 User Manual & Reference Guide. ChoiceMetrics Pty Ltd. <https://www.choice-metrics.com>

Cialdini, R. B., Kallgren, C. A., & Reno, R. R. (1991). A focus theory of normative conduct: A theoretical refinement and reevaluation of the role of norms in human behavior. *Advances in Experimental Social Psychology*, 24, 201-234.

Credamo (2022). <https://www.credamo.com/#/functions>

Daly, A., Hess, S., & Jong, G. (2011). Calculating errors for measures derived from choice modelling estimates. *Transportation Research Part B: Methodological*, 46, 333-341.

Daly, A., Hess, S., & Train, K. (2012). Assuring finite moments for willingness to pay in random coefficient models. *Transportation*, 39, 19-31.

Du, M., Cheng, L., Li, X., & Tang, F. (2020). Static rebalancing optimization with consideration of the collection of malfunctioning bikes in free-floating bike sharing systems. *Transportation Research Part E: Logistics and Transportation Review*, 141, 102012.

Fukuda, D., & Morichi, S. (2007). Incorporating Aggregate Behavior in an Individual's Discrete Choice: An Application to Analyzing Illegal Bicycle Parking Behavior. *Transportation Research Part A: Policy and Practice*, 41(4), 313-325.

Fukushige, T., Fitch, D. T., & Handy, S. (2022). Can an incentive-based approach to rebalancing a dock-less bike-share system work? Evidence from Sacramento, California. *Transportation Research Part A: Policy and Practice*, 163, 181-194. <https://doi.org/10.1016/j.tra.2022.07.011>

Gao, K., Yang, Y., Li, A., Li, J., & Yu, B. (2021). Quantifying economic benefits from free-floating bike-sharing systems: A trip-level inference approach and city-scale analysis. *Transportation Research Part A: Policy and Practice*, 144, 89-103.

Gao, L., Ji, Y., Yan, X., Fan, X., & Guo, W. (2021). Incentive measures to avoid the illegal parking of dockless shared bikes: the relationships among incentive forms, intensity and policy compliance. *Transportation*, 48, 1033-1060.

Garbarski, D., Schaeffer, N. C., & Dykema, J. (2016). The effect of response option order on self-rated health: A replication study. *Quality of Life Research*, 25(8), 2117-2121. <https://doi.org/10.1007/s11136-016-1249-y>

Guo, D., Yao, E., Liu, S., Chen, R., Hong, J., & Zhang, J. (2023). Exploring the role of passengers' attitude in the integration of dockless bike-sharing and public transit: A hybrid choice modeling approach. *Journal of Cleaner Production*, 384, 135627.

Haghani, M., Sarvi, M., & Shahhoseini, Z. (2015). Accommodating taste heterogeneity and desired substitution pattern in exit choices of pedestrian crowd evacuees using a mixed nested logit model. *Journal of Choice Modelling*, 16, 58-68.

He, Z., & Zhang, Y. (2024). Dockless bike sharing in Singapore: perceptions of stakeholders, tensions of management, and implications for the public space. *Journal of Urbanism: International Research on Placemaking and Urban Sustainability*, 1–20.

Heinen, E., & Buehler, R. (2019). Bicycle parking: a systematic review of scientific literature on parking behaviour, parking preferences, and their influence on cycling and travel behaviour. *Transport Reviews*, 39(5), 630–656.

Helveston, J. P., Feit, E. M., & Michalek, J. J. (2018). Pooling stated and revealed preference data in the presence of RP endogeneity. *Transportation Research Part B: Methodological*, 109, 70–89.

Hensher, D. A., & Greene, W. H. (2003). The mixed logit model: The state of practice. *Transportation*, 30(2), 133–176. [https://doi.org/10.1016/S0191-2615\(02\)00046-9](https://doi.org/10.1016/S0191-2615(02)00046-9)

Hensher, D. A., Rose, J. M., & Greene, W. H. (2015). *Applied choice analysis: A primer* (2nd ed.). Cambridge University Press.

Hess, S., Adler, T., & Polak, J. W. (2007). Modelling airport and airline choice behaviour with the use of stated preference survey data. *Transportation Research Part E: Logistics and Transportation Review*, 43(3), 221–233.

Hess, S., Bierlaire, M., & Polak, J. W. (2004). Development and application of a mixed cross-nested logit model. Paper presented at the XXIth European Transport Conference, Strasbourg, France.

Hess, S., Daly, A., & Batley, R. (2018). Revisiting consistency with random utility maximisation: Theory and implications for practical work. *Theory Decision*, 84, 181–204.

Hess, S., Train, K. E., & Polak, J. W. (2006). On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice. *Transportation Research Part B: Methodological*, 40(2), 147–163.

Hess, S., & Palma, D. (2019). Apollo: A flexible, powerful and customizable freeware package for choice model estimation and application. *Journal of Choice Modelling*, 31, 100–125.

Hess, S., & Polak, J. W. (2004). An analysis of parking behaviour using discrete choice models calibrated on SP datasets. *ERSA conference papers (ersa04p60)*, European Regional Science Association.

Hua, M., Chen, X., Zheng, S., Cheng, L., & Chen, J. (2020). Estimating the parking demand of free-floating bike sharing: A journey-data-based study of Nanjing, China. *Journal of Cleaner Production*, 244, 118764.

Huang, J. L., Curran, P. G., Keeney, J., Poposki, E. M., & DeShon, R. P. (2012). Detecting and deterring insufficient effort responding to surveys. *Journal of Business and Psychology*, 27(1), 99–114.

Huang, L., Yuan, H., Dong, X., Chen, Z., & Zhou, L. (2023). Social norms and socially responsible consumption behavior in the sharing economy: The mediation role of reciprocity motivation. *Journal of Cleaner Production*, 414, 137750.

iiMedia Research. (2022). Monitoring report on China's shared motorcycle market and user behavior from 2021 to 2022. Accessed October 6, 2024. <https://www.iimedia.cn/c400/84363.html> (in Chinese)

Jia, X., Wang, J., Zhu, Y., Ji, W., & Cao, B. (2022). Climate chamber study on thermal comfort of walking passengers at different moving speeds. *Building and Environment*, 224, 109540.

Jiang, Q., Ou, S.-J., & Wei, W. (2019). Why shared bikes of free-floating systems were parked out of order? A preliminary study based on factor analysis. *Sustainability*, 11(12), 3287.

Johnson, J. A. (2005). Ascertaining the validity of individual protocols from web-based personality inventories. *Journal of Research in Personality*, 39(1), 103–129.

Jonkeren, O., & Kager, R. (2021). Bicycle Parking at Train Stations in the Netherlands: Travellers' Behaviour and Policy Options. *Research in Transportation Business & Management*, 40, 100581.

Kirkman, E. (2019). Free riding or discounted riding? How the framing of a bike share offer impacts offer-redemption. *Journal of Behavioral Public Administration*, 2(2).

Kohlrautz, D., & Kuhnlimhof, T. (2025). Cyclists' heterogeneous parking preferences and their implications for bicycle parking facilities. *Transportation Research Part A: Policy and Practice*, 191, 104298. <https://doi.org/10.1016/j.tra.2024.104298>

Kou, W., Chen, X., Yu, L., Qi, Y., & Wang, Y. (2017). Urban commuters' valuation of travel time reliability based on stated preference survey: A case study of Beijing. *Transportation Research Part A: Policy and Practice*, 95, 372–380.

Laa, B., & Emberger, G. (2020). Bike sharing: Regulatory options for conflicting interests – Case study Vienna. *Transport Policy*, 98, 148–157.

Li, X., Zhang, Y., Du, M., & Yang, J. (2019). Social factors influencing the choice of bicycle: Difference analysis among private bike, public bike sharing, and free-floating bike sharing in Kunming, China. *KSCE Journal of Civil Engineering*, 23(6), 2339–2348.

Liang, J., Jena, S. D., & Lodi, A. (2024). Dynamic rebalancing optimization for bike-sharing systems: A modeling framework and empirical comparison. *European Journal of Operational Research*, 317(3), 875–889.

Liazos, A., Iliopoulou, C., Kepaptsoglou, K., & Bakogiannis, E. (2022). Geofence planning for electric scooters. *Transportation Research Part D: Transport and Environment*, 102, 103149.

Long, Y., & Zhao, J. (2020). What makes a city bikeable? A study of intercity and intracity patterns of bicycle ridership using Mobike big data records. *Built Environment*, 46(1), 55–75.

Louviere, J. J., Hensher, D. A., Swait, J. D., & Adamowicz, W. (2000). *Stated Choice Methods: Analysis and Applications*. Cambridge University Press.

McFadden, D. L. (1973). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), *In frontiers in econometrics*. New York: Wiley.

McFadden, D. (1978). Modelling the choice of residential location, in A. Kar-lquist, ed., 'Spatial Interaction Theory and Planning Models', North Holland, Amsterdam, chapter 25, pp. 75–96.

McFadden, D., & Train, K. (2000). Mixed MNL Models for Discrete Response. *Journal of Applied Econometrics*, 15(5), 447–470.

Meade, A. W., & Craig, S. B. (2012). Identifying careless responses in survey data. *Psychological Methods*, 17(3), 437–455.

Meng, S., Brown, A., Klein, N. J., Thigpen, C., Haydu, B., & Stout, N. (2024). Shared scooter parking: The role of parking density and land use in compliance and demand [Technical Report]. <https://doi.org/10.13140/RG.2.2.26503.61607>

Molin, E., & Maat, K. (2015). Bicycle parking demand at railway stations: Capturing price-walking trade-offs. *Research in Transportation Economics*, 53, 3–12. <https://doi.org/10.1016/j.retrec.2015.10.014>

O'Sullivan, F. (2017, August 3). Amsterdam fights back against rogue bike shares. Bloomberg. <https://www.bloomberg.com/news/articles/2017-08-03/amsterdam-s-fight-against-rogue-bike-shares>

Pal, A., & Zhang, Y. (2017). Free-floating bike sharing: Solving real-life large-scale static rebalancing problems. *Transportation Research Part C: Emerging Technologies*, 80, 92–116.

Policy Research Center for Environment and Economy, Ministry of Ecology and Environment of the People's Republic of China. (2017). Green Development Report on Shared Mobility. Accessed September 15, 2019. http://www.preee.org/yjcg/yjbg/201909/t20190905_732543.html (in Chinese)

Rinker, D. V., & Neighbors, C. (2013). Social influence on temptation: Perceived descriptive norms, temptation and restraint, and problem drinking among college students. *Addictive Behaviors*, 38, 2918–2923.

Romanillos, G., & Gutiérrez, J. (2019). Cyclists do better: Analyzing urban cycling operating speeds and accessibility. *International Journal of Sustainable Transportation*, 14(6), 448–464.

Rose, J. M., & Bliemer, M. C. J. (2009). Constructing efficient stated choice experimental designs. *Transport Reviews*, 29(5), 587–617. <https://doi.org/10.1080/01441640902827623>

Rose, J. M., & Bliemer, M. C. J. (2013). Sample size requirements for stated choice experiments. *Transportation*, 40, 1021–1041.

Senanayake, S., Barnett, A., Brain, D., Allen, M., Powell, E. E., O'Beirne, J., Valery, P., Hickman, I. J., & Kularatna, S. (2018). A discrete choice experiment to elicit preferences for a chronic disease screening programme in Queensland, Australia. *Public Health*, 228, 105–111.

Shen, Y., Zhang, X., & Zhao, J. (2018). Understanding the usage of dockless bike sharing in Singapore. *International Journal of Sustainable Transportation*, 12(9), 686–700.

Si, H., Liang, J., Ke, J., Cheng, L., & De Vos, J. (2024). What limits improper bike-sharing parking most: Penalties or incentives? Findings from an online behavioral experiment. *Transportation Research Part F: Traffic Psychology and Behaviour*, 107, 133–148.

Song, F., Hess, S., & Dekker, T. (2018). Accounting for the impact of variety-seeking: Theory and application to HSR-air intermodality in China. *Journal of Air Transport Management*, 69, 99–111.

Su, D., Wang, Y., Yang, N., & Wang, X. (2020). Promoting considerate parking behavior in dockless bike-sharing: An experimental study. *Transportation Research Part A: Policy and Practice*, 140, 153–165.

Tang, Y., Zhang, Y., & Ning, X. (2023). Uncertainty in the platform market: The information asymmetry perspective. *Computers in Human Behavior*, 148, 107918.

Tang, Z., Hao, J., & Wang, X. (2024). Park smart or face the music: Understanding users' orderly parking behavior of dockless shared bikes from the perspective of deterrence theory. *Transportation Research Part F: Traffic Psychology and Behaviour*, 107, 507–520. <https://doi.org/10.1016/j.trf.2024.09.017>

Teye, C., Davidson, P., & Culley, R. (2014). Simultaneously accounting for inter-alternative correlation and taste heterogeneity among long-distance travelers using mixed nested logit (MXNL) model to improve toll road traffic and revenue forecasts. *Transportation Research Procedia*, 1(1), 24–35.

Tian, Z., Zhou, J., Szeto, W. Y., Tian, L., & Zhang, W. (2020). The rebalancing of bike-sharing system under flow-type task window. *Transportation Research Part C: Emerging Technologies*, 112, 1–27.

Train, K. E. (2009). *Discrete Choice Methods with Simulation*. Cambridge University Press.

Van der Spek, S. C., & Scheltema, N. (2015). The Importance of Bicycle Parking Management. *Research in Transportation Business & Management*, 15, 39–49.

van Lierop, D., Lee, B. H. Y., & El-Geneidy, A. M. (2018). Secure investment for active transport: Willingness to pay for secured bicycle parking in Montreal, Canada. In J. Broaddus (Ed.), *Bicycle urbanism: Reimagining bicycle friendly cities* (pp. 144–159). Routledge.

Von Fintel, D. (2007). Dealing with earnings bracket responses in household surveys – How sharp are midpoint imputations? *Journal of Income Distribution*, 16(2), 42–61. <https://doi.org/10.1111/j.1813-6982.2007.00122.x>

Walker, J. L. (2001). Extended discrete choice models: Integrated framework, flexible error structures, and latent variables (Ph.D. dissertation). Massachusetts Institute of Technology.

Wang, M., Zhang, X. X., & Liu, Y. (2023). How to regulate users' disorderly parking behavior of free-floating bike sharing? An empirical study based on social psychology. *Transportation Letters*, 15(10), 1354–1365.

Wang, Y., Jia, S., Zhang, S., & Li, J. (2019). Reward and Punishment Strategy for Bicycle-sharing Parking Based on the Game Theory under the Influence of Position Recognition Rate. *Journal of Transportation Systems Engineering and Information Technology*, 19(1), 9–17. (in Chinese)

Wang, Y., Jia, S., Zhou, H., Charlton, S., & Hazen, B. (2021a). Factors affecting orderly parking of dockless shared bicycles: An exploratory study. *International Journal of Logistics Research and Applications*, 24(1), 103–125.

Wang, Y., Yang, Y., Wang, J., Douglas, M., & Su, D. (2021b). Examining the influence of social norms on orderly parking behavior of dockless bike-sharing users. *Transportation Research Part A: Policy and Practice*, 147, 284–296.

Wang, Y., Li, J., Su, D., & Zhou, H. (2023). Spatial-temporal heterogeneity and built environment nonlinearity in inconsiderate parking of dockless bike-sharing. *Transportation Research Part A: Policy and Practice*, 175, 103789.

Wei, W., Jiang, Q., & Gu, C. (2022). What co-creation countermeasures can users take to stop the disorderly parking of dockless shared bikes? *Research in Transportation Business & Management*, 43, 100777.

Wen, C.-H., & Koppelman, F. S. (2001). The generalized nested logit model. *Transportation Research Part B: Methodological*, 35(7), 627-641.

Williams, H. C. W. L. (1977). "On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit." *Environment and Planning A*, 9(3), 285-344.

World Resources Institute (WRI). (2020). How Dockless Bike Sharing Changes Lives: An Analysis of Chinese Cities. Accessed September 24, 2020. <https://www.wri.org/research/how-dockless-bike-sharing-changes-lives-analysis-chinese-cities>.

Zhang, Y., Lin, D., & Mi, Z. (2019). Electric fence planning for dockless bike-sharing services. *Journal of Cleaner Production*, 206, 383-393.

Zhao, D., & Wang, D. (2019). The research of tripartite collaborative governance on disorderly parking of shared bicycles based on the theory of planned behavior and motivation theories—A case of Beijing, China. *Sustainability*, 11(19), 5431.

Zhao, H., Zhang, H., & Xu, Y. (2017). Effects of perceived descriptive norms on corrupt intention: The mediating role of moral disengagement. *International Journal of Psychology*, 54. 10.1002/ijop.12401.

Zhou, Y., Lin, Z., Guan, R., & Sheu, J.-B. (2023). Dynamic battery swapping and rebalancing strategies for e-bike sharing systems. *Transportation Research Part B: Methodological*, 177, 102820.

Appendix 1. Demographics and usage characteristics of the survey respondents.

Characteristics	Categories	Number	Percentage (%)
Gender	Male	252	42
	Female	348	58
Age group	≤20	25	4.2
	21-30	362	60.3
	31-40	140	23.3
	41-50	51	8.5
	≥51	22	3.7
Income per month (CNY)	≤2000	69	11.5
	2001-4000	104	17.3
	4001-6000	95	15.8
	6001-8000	94	15.7
	8001-10000	89	14.8
	≥10001	141	23.5
	I'd rather not to say.	8	1.3
Education level	High school/technical secondary school	20	3.3
	Junior college	45	7.5
	Undergraduate	422	70.3
	Master	106	17.7
	Ph.D. and above	7	1.2
Occupation	Employed full time	431	71.8
	Employed part time (less than 24 hours/week)	7	1.2
	Self-employed or unemployed	26	4.3
	Retired	2	0.3
Bike ownership	Student	134	22.3
	No	235	39.2
	Yes	365	60.8
Use frequency	Once every few months or less	34	5.7
	At least once a month	59	9.8
	1-2 times a week	244	40.7
	3-5 times a week	194	32.3
	Once a day or more	69	11.5
Average riding duration(min)	≤10	57	9.5
	11-20	367	61.2
	21-30	148	24.7
	≥30	28	4.7
City of residence	Cities with geo-fencing implementation	129	21.5
	Cities without geo-fencing implementation	471	78.5

Note: CNY/USD ≈ 0.138 during survey period

Appendix 2. Model estimation results for MNL, NL, MMNL, Mixed NL models incorporating riding frequency and duration covariates.

Parameters	Multinomial logit		Nested logit		Mixed multinomial logit		Mixed nested logit	
	Est.	Rob. t_rat.	Est.	Rob. t_rat.	Est.	Rob. t_rat.	Est.	Rob. t_rat.
Means of utility coefficients								
$\delta_{\text{free parking area}}$	0	—	0	—	0	—	0	—
$\delta_{\text{paid parking area}}$	-0.644	-8.08***	-0.558	-9.13***	-1.096	-8.84***	-0.859	-8.80***
$\delta_{\text{disorderly parking}}$	-1.446	-5.38***	-1.191	-4.72***	-2.15	-4.37***	-1.743	-4.04***
$\omega_{\text{female, disorderly parking}}$	-0.356	-2.84***	-0.332	-2.80***	-0.671	-2.55**	-0.575	-2.62***
$\omega_{\text{age, disorderly parking}}$	-0.189	-2.28**	-0.185	-2.36**	-0.545	-3.45***	-0.473	-3.40***
β_{reward}	0.043	4.62***	0.034	4.70***				
$\omega_{\text{riding frequency, reward}}$	-5.9979e-04	-0.31	-6.0351e-04	-0.42	-7.7179e-04	-0.244	-4.4152e-04	-0.19
$\omega_{\text{riding duration, reward}}$	-0.005	-1.75*	-0.003	1.63	-0.008	-1.82*	-0.005	-1.65*
$\beta_{\text{distance to parking}}$	-7.045	-10.43***	-5.592	-8.94***				
$\omega_{\text{riding frequency, distance to parking}}$	0.155	1.18	0.138	1.28	0.282	1.17	0.156	0.79
$\omega_{\text{riding duration, distance to parking}}$	0.414	2.244**	0.138	2.10**	0.592	1.87*	0.354	1.37
$\beta_{\text{parking fee}}$	-0.899	-18.46***	-0.667	-12.21***				
$\eta_{\text{income, parking fee}}$	-0.148	-3.52***	-0.149	-3.50***	-0.111	-2.46**	-0.102	-2.21**
β_{fine}	-1.343	-24.50***	-1.262	-24.07***				
$\beta_{\text{no others}}$	0	—	0	—	0	—	0	—
$\beta_{\text{other people}}$	0.549	7.66***	0.562	8.49***	0.827	6.02***		
$\beta_{\text{other people low}}$							0.666	5.25***
$\beta_{\text{other people high}}$							0.893	6.29***
Standard deviations of utility coefficients								
$\sigma_{\delta_{\text{paid parking area}}}$					0.566	3.38 ***	0.423	3.32***
$\sigma_{\delta_{\text{disorderly parking}}}$					2.304	12.92***	-1.96	-11.63***
Location parameters on log-scale								
$\mu_{\beta_{\text{reward}}}$					-2.749^	-11.42***	-3.043^	-12.23***
$\mu_{\beta_{\text{distance to parking}}}$					2.53^ [^]	24.51***	2.232^ [^]	17.14***
$\mu_{\beta_{\text{parking fee}}}$					0.447^ [^]	7.59***	0.190^ [^]	2.45**
$\mu_{\beta_{\text{fine}}}$					1.278^ [^]	18.84***	1.097^ [^]	15.16***
Log-scale standard deviations								
$\sigma_{\beta_{\text{reward}}}$					-0.401^	-3.31***	-0.427^	-3.96***
$\sigma_{\beta_{\text{distance to parking}}}$					-0.405^ [^]	-8.87***	-0.443^ [^]	-7.83***
$\sigma_{\beta_{\text{parking fee}}}$					-0.538^ [^]	-7.68***	-0.537^ [^]	-8.114***
$\sigma_{\beta_{\text{fine}}}$					-0.666^ [^]	13.06***	-0.642^ [^]	-9.33***

Nesting coefficient					
$\lambda_{\text{orderly parking}}$	0.706	15.57***		0.690	14.68***

Note:

* Signify confidence at 90%, ** Signify confidence at 95%, *** Signify confidence at 99%.

[^] means the coefficient is log-normally distributed by assumption, [^][^] means the coefficient is negative log-normally distributed by assumption.

For coefficients assumed to follow a log-normal distribution, the estimated means and standard deviations refer to the parameters that directly define the probability density function of the log-normal distribution; the same applies to negative log-normal distribution.

Appendix 3. Estimate results of alternative nesting structures.

Estimate results	NL _{orderly_parking}	NL _{paid_disorderly}	NL _{existing}
$\lambda_{\text{orderly parking}}$	0.706		
$\lambda_{\text{paid disorderly}}$		0.727	
$\lambda_{\text{existing}}$			1.891
Goodness-of-fit			
Number of estimated parameters	11	11	11
LL (final)	-5572.85	-5571.95	-5487.31
Adj. ρ^2	0.2941	0.2942	0.3049
AIC	11167.69	11165.89	10996.63
BIC	11243.39	11241.59	11072.33
Likelihood ratio test (value)	38.06	39.86	209.14
Likelihood ratio test (p value)	6.86×10^{-13}	2.728×10^{-10}	2.116×10^{-47}

Appendix 4. Base values and corresponding adjusted attribute values used in the prediction.

Attributes	Relative changes	Choice tasks											
		1	2	3	4	5	6	7	8	9	10	11	12
Distance to parking (free)/m	-30%	560	560	560	350	350	350	350	140	560	140	350	560
	-20%	640	640	640	400	400	400	400	160	640	160	400	640
	-10%	720	720	720	450	450	450	450	180	720	180	450	720
	base	800	800	800	500	500	500	500	200	800	200	500	800
	10%	880	880	880	550	550	550	550	220	880	220	550	880
	20%	960	960	960	600	600	600	600	240	960	240	600	960
	30%	1040	1040	1040	650	650	650	650	260	1040	260	650	1040
Rewards/CNY	-30%	7	14	7	0	21	14	0	21	7	14	0	21
	-20%	8	16	8	0	24	16	0	24	8	16	0	24
	-10%	9	18	9	0	27	18	0	27	9	18	0	27
	base	10	20	10	0	30	20	0	30	10	20	0	30
	10%	11	22	11	0	33	22	0	33	11	22	0	33
	20%	12	24	12	0	36	24	0	36	12	24	0	36
	30%	13	26	13	0	39	26	0	39	13	26	0	39
Distance to parking (paid)/m	-30%	210	70	140	70	140	140	210	70	140	70	210	210
	-20%	240	80	160	80	160	160	240	80	160	80	240	240
	-10%	270	90	180	90	180	180	270	90	180	90	270	270
	base	300	100	200	100	200	200	300	100	200	100	300	300
	10%	330	110	220	110	220	220	330	110	220	110	330	330
	20%	360	120	240	120	240	240	360	120	240	120	360	360
	30%	390	130	260	130	260	260	390	130	260	130	390	390
Parking fee/CNY	-30%	0.35	0.35	0.7	1.4	0.35	1.4	0.7	0.35	0.7	0.35	0.35	1.4
	-20%	0.4	0.4	0.8	1.6	0.4	1.6	0.8	0.4	0.8	0.4	0.4	1.6
	-10%	0.45	0.45	0.9	1.8	0.45	1.8	0.9	0.45	0.9	0.45	0.45	1.8
	base	0.5	0.5	1	2	0.5	2	1	0.5	1	0.5	0.5	2
	10%	0.55	0.55	1.1	2.2	0.55	2.2	1.1	0.55	1.1	0.55	0.55	2.2
	20%	0.6	0.6	1.2	2.4	0.6	2.4	1.2	0.6	1.2	0.6	0.6	2.4
	30%	0.65	0.65	1.3	2.6	0.65	2.6	1.3	0.65	1.3	0.65	0.65	2.6
Fine/CNY	-30%	0.7	0.7	0	3.5	2.1	0	3.5	0	2.1	0	3.5	2.1
	-20%	0.8	0.8	0	4	2.4	0	4	0	2.4	0	4	2.4
	-10%	0.9	0.9	0	4.5	2.7	0	4.5	0	2.7	0	4.5	2.7
	base	1	1	0	5	3	0	5	0	3	0	5	3
	10%	1.1	1.1	0	5.5	3.3	0	5.5	0	3.3	0	5.5	3.3
	20%	1.2	1.2	0	6	3.6	0	6	0	3.6	0	6	3.6
	30%	1.3	1.3	0	6.5	3.9	0	6.5	0	3.9	0	6.5	3.9
Number of other people parking disorderly		0	2	2	2	1	2	0	0	1	1	0	1

Appendix 5. Transformed estimates of coefficients with log-normal and negative log-normal distributions.

Models	Parameters	Distribution	mean	s.d.	interquartile range
Random -coefficient logit	β_{reward}	log-normal distribution	0.049	0.02	0.03
	$\beta_{\text{distance to parking}}$	negative log-normal distribution	-11.117	5.83	6.67
	$\beta_{\text{parking fee}}$	negative log-normal distribution	-1.802	1.00	1.12
	β_{fine}	negative log-normal distribution	-4.398	3.27	3.27
Error -components logit	β_{reward}	log-normal distribution	0.051	0.03	0.04
	$\beta_{\text{distance to parking}}$	negative log-normal distribution	-11.574	6.05	6.92
	$\beta_{\text{parking fee}}$	negative log-normal distribution	-1.819	1.08	1.18
	β_{fine}	negative log-normal distribution	-4.716	3.71	3.60
Mixed nest logit	β_{reward}	log-normal distribution	0.039	0.03	0.03
	$\beta_{\text{distance to parking}}$	negative log-normal distribution	-8.536	4.44	5.09
	$\beta_{\text{parking fee}}$	negative log-normal distribution	-1.319	0.66	0.76
	β_{fine}	negative log-normal distribution	-3.600	2.57	2.62