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ARTICLE INFO ABSTRACT

Handling Editor: Lixiao Zhang Incorporating real-driving emission tests into type approval procedures has significantly reduced emissions from

diesel passenger cars. Recent remote sensing studies suggest that NOy emissions from the latest Euro 6d series

Limit of detection

Diesel vehicles

Keywords: (including both Euro 6d-TEMP and Euro 6d) are extremely low, in some cases approaching zero. This study
investigates whether these low NOy concentrations fall below the detection limits of remote sensing devices,
potentially limiting the reliability of measured values. A method is proposed to estimate the limit of detection
using electric vehicle measurements, which serve as low-emission references in the absence of calibration gases.
NOy data from six recent European remote sensing campaigns (2021-2023) were analyzed. The findings suggest
that NOy emissions from the latest Euro 6d series vehicles that are in good working order have reached the
detection limit of OPUS RSD 5000 devices. This approach presents a practical framework for routinely deter-
mining the detection limits of remote sensing devices, improving quality assurance procedures and supporting

Emission monitoring
Remote sensing

High-emitter identification

the interpretation of ultra-low NOy emission measurements with greater confidence.

1. Introduction

Nitrogen Oxides (NOy) emissions from diesel vehicles significantly
contribute to urban air pollution globally (Carslaw et al., 2011; Smit
et al., 2022; Yang et al., 2024). For pre-Euro 6 diesel cars, substantial
discrepancies have been reported between laboratory type-approval
tests and real-world on-road measurements (Chen and
Borken-Kleefeld, 2014). Since the introduction of Euro 6ab in 2014, the
NOx limit for diesel passenger cars has been reduced by 55 % compared
with Euro 5, leading to a substantial reduction in on-road emissions
(Soderena et al., 2020; Yang et al., 2022). With Euro 6d-TEMP and Euro
6d, real-driving emission (RDE) tests became mandatory, ensuring that
aftertreatment systems such as selective catalytic reduction (SCR)
operate effectively under real-world conditions (Garcia-Contreras et al.,
2021). Consequently, on-road measurements confirm that Euro
6d-TEMP and Euro 6d diesel cars comply with the EU NOx emission
limits (Suarez-Bertoa et al., 2019; de Ruiter et al., 2020; Mulholland
et al., 2022).

Remote sensing technology, as a key emission monitoring method for
analyzing the real-world emission performance of vehicle fleets is
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indicating that both the mean and median NOy emissions from the latest
Euro 6d vehicles are very low (Mahesh et al., 2023; Bernard et al., 2023).
This finding raises a critical question: are current remote sensing devices
(RSDs) accurately capturing the emission concentrations from
low-emitting Euro 6 cars, or are the results merely reflecting the
detection limits of the devices?

This study compiles 359,502 valid remote-sensing measurements of
European passenger cars from six campaigns conducted between 2021
and 2023 under the CARES,! ReMOVES® and CONOX projects
(Borken-Kleefeld et al., 2018). The first objective is to quantify
real-world NOy emissions across Euro standards, with emphasis on the
latest Euro 6d-TEMP and Euro 6d diesel vehicles and whether their
observed levels are genuinely near zero across Europe, which would
bring them in line with Euro 5 and 6 gasoline vehicles with their
Three-Way Catalytic (TWC) converters that are known to effectively
control NOy emissions (Carslaw et al., 2011). To interpret these
ultra-low readings, an assessment of instrument detectability is then
undertaken. Using the growing sample of electric-drive vehicles as
low-concentration references, a Laplace fit is used to characterize
background noise and derive campaign-specific limits of detection for

Received 5 August 2025; Received in revised form 15 October 2025; Accepted 22 October 2025

Available online 27 October 2025

0301-4797/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0002-9646-3581
https://orcid.org/0000-0002-9646-3581
https://orcid.org/0000-0003-1646-6852
https://orcid.org/0000-0003-1646-6852
mailto:J.E.Tate@its.leeds.ac.uk
https://cares-project.eu/
https://www.aramis.admin.ch/Texte/?ProjectID=45536
www.sciencedirect.com/science/journal/03014797
https://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2025.127767
https://doi.org/10.1016/j.jenvman.2025.127767
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvman.2025.127767&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Z. Yang et al.

the remote sensing instruments. These LoD estimates are then used to
contextualise the Euro-class emission distributions and to distinguish
signal from noise.

There are three key contributions to the existing literature. First, it
proposes a practical method for estimating the limit of detection (LoD)
of remote sensing devices under field conditions, where calibration gas
blending facilities are not available. This method offers a straightfor-
ward approach for data analysts to determine whether a NOy measure-
ment falls below the device’s detection limit at that time. Second, by
applying this method to a cross-campaign remote sensing database
(Rushton et al., 2025), the study reveals that a substantial proportion of
NOy measurements from the latest Euro 6d-TEMP and Euro 6d diesel
passenger cars fall below the estimated detection limits of current
remote sensing systems, indicating a fundamental shift in the detect-
ability of NOy emissions from modern diesel vehicles using current
remote sensing technology. Third, the empirical evidence on the prac-
tical limits of current remote sensing technologies provides valuable
technical insights for future campaign design, instrument development,
and policy implementation. These findings are considered very timely as
the European Commission plans to introduce large-scale remote sensing
under its upcoming ‘Roadworthiness Package’ (European Commission,
2025). This includes proposing wide-scale, routine use of vehicle emis-
sion remote sensing to screen at least 30 % of its registered fleet in all 27
EU member states to improve detection of defective vehicles, subsequent
roadside inspection and remedial action.

2. Literature review
2.1. Remote sensing technology principles and applications

Remote sensing technology has become an important and cost-
effective method for monitoring real-world vehicle emissions at the
fleet level (Huang et al., 2018). These systems estimate exhaust emis-
sions rapidly and non-intrusively under actual driving conditions by
measuring the absorption of specific wavelengths of light by gas mole-
cules (Bishop and Stedman, 1996). Pollutant concentrations are typi-
cally expressed as ratios to COz and can be converted to fuel-specific
(g/kg) or distance-specific (g/km) emission factors (ICCT, 2018; Davi-
son et al., 2020).

RSDs also collect vehicle speed, acceleration, license plate data, and
environmental conditions (e.g., temperature, pressure, humidity) during
measurements, enabling large-scale fleet sampling without disrupting
traffic (Grange et al., 2019; Yang et al., 2022). Their results are widely
used to evaluate emission trends across standards, identify
high-emitting vehicles or manufacturers, and assess the influence of
driving conditions on emissions (Chen et al., 2020; Huang et al., 2019;
Yang et al., 2022).

Emissions from the latest Euro 6d diesel light-duty vehicles are
significantly lower than their Euro 5 predecessors, raising concerns that
the reliability of remote sensing measurement results is decreasing, with
the recorded values becoming closer to the background noise level
rather than reflecting the true pollutant concentration. For example,
Knoll et al. (2024) observed that EDAR systems consistently under-
estimated NO, emissions compared to Portable Emissions Measurement
Systems (PEMS). They attributed this discrepancy to the possibility that
primary nitrogen dioxide (NO3) emissions are already below the
detection limit of the EDAR devices.

2.2. Background noise and limit of detection

When remote sensing devices measure vehicle emissions, even if the
target pollutant (such as NOy) is entirely absent, the devices themselves
still record minor random fluctuations or interference signals, man-
ifested as measured values randomly fluctuating around zero (Gruening
etal., 2019; Yang et al., 2022). Sources of background noise include: (1)
inherent random fluctuations from the instrument’s electronic
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components and detectors; (2) interference caused by environmental
conditions (e.g., temperature fluctuations, humidity changes, or
ambient particulates); (3) residual plumes from earlier traffic on the
same or from traffic of nearby lanes (Huang et al., 2018; Smit et al.,
2021). In this study, we focus specifically on quantifying the background
noise originating from the instrument itself, rather than broader atmo-
spheric or traffic-related variability, as the former determines the
intrinsic detection capability of the remote sensing system.

If the actual pollutant concentration is extremely low, the recorded
values are indistinguishable from a blank measurement. Therefore,
acknowledging and quantifying background noise and instrument off-
sets is essential for accurate interpretation of remote sensing data during
emission measurement campaigns. In remote sensing emission studies,
background noise is typically quantified as the standard deviation of
measurements obtained using blank samples or test samples with con-
centrations of analyte close to or below the expected LoD (Cantwell,
2025). For instance, using certified calibration gas cylinders, Ropkins
etal. (2017) determined the background noise of the EDAR device® to be
7 ppm for NO, while Rushton et al. (2018) reported a background noise
level of 58 ppm for NO for the RSD 4600 instrument.”

When certified gas cylinders of different concentrations (or blends)
are not available, some studies interpret the negative values recorded by
RSDs as manifestations of background noise. Pokharel et al. (2001)
identified the Laplace distribution as the most appropriate model for
characterizing this noise pattern. In subsequent work, Bishop and
Stedman (2014) used the Laplace distribution and reported a back-
ground noise level of 30 ppm for NO from the FEAT system.”

Since the ability of an instrument to detect a pollutant depends on
how clearly the signal stands out from the background noise, the concept
of the LoD is often used to define the lowest concentration that can be
reliably distinguished from background noise (Crowther, 2001;
Armbruster and Pry, 2008). LOD are normally calculated by multiplying
a standard deviation (i.e., background noise) by a suitable factor. U.S.
Environmental Protection Agency (2015) and Cantwell (2025) estimate
the LoD as three times the standard deviation. Thus, accurately identi-
fying and quantifying background noise is fundamental to determining
the LoD of remote sensing instruments and evaluating the reliability of
remote sensing monitoring data.

In conclusion, although several studies have acknowledged the
presence of instrument noise in remote sensing, few have systematically
examined its specific characteristics or the corresponding limits of
detection, particularly for newer devices. Given that NOy emissions from
the latest Euro 6d vehicles are extremely low, understanding the
detection limits of current remote sensing instruments has become
increasingly important for ensuring accurate interpretation of mea-
surement results.

3. Materials and methods
3.1. Remote sensing instrumentation and measurement setup

The remote sensing measurements analyzed in this paper were
measured by two different commercial instruments (the OPUS RSD
(Carslaw and Rhys-Tyler, 2013) and the HEAT EDAR (Ropkins et al.,
2017)), both providing measurements of Nitric Oxide (NO) and Nitrogen
dioxide (NO3). The OPUS RSD is a cross-road remote sensing system that
combines non-dispersive infrared (NDIR) for CO, CO,, and HC detection
with non-dispersive dispersive ultraviolet (NDUV) spectroscopy for NO
and NOs, (see Fig. 1-a). (Bishop and Stedman, 1996). Specifically, NO is
measured at 227 nm and NO3 at 438 nm. By measuring the amount of
IR/UV light absorbed and subtracting the pre-vehicle background
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Fig. 1. Schematics of a typical remote sensing deployment: (a) cross-road remote sensing system [left]; (b) top-down remote sensing system (EDAR) [right]

(Borken-Kleefeld and Dallmann, 2018).

absorption, the pollutant levels in the exhaust plume can be determined.
The HEAT EDAR is a top-down remote sensing system using a
laser-based DIAL (Differential Absorption LiDAR) method (see Fig. 1-b).
It determines gas concentrations by emitting two laser beams at different
wavelengths (one at the gas absorption peak and one outside it) and
comparing the differences in their backscattered signals to quantify the
gas absorption (Weitkamp, 2005).

While OPUS RSD uses NDIR and NDUV method and HEAT EDAR uses
DIAL method, both systems fundamentally operate on the principle of
detecting specific wavelengths of light absorbed by gas molecules to
determine gas concentrations remotely and non-intrusively. This com-
monality ensures that both systems can effectively monitor and measure
gas emissions in various settings. The ReMOVES project in Switzerland
in 2021 used both the HEAT EDAR and OPUS RSD instruments and
found that these two instruments provided comparable NOy values for
both diesel and petrol passenger cars (Betschart et al., 2022), therefore
in this paper it is considered appropriate to be able to directly compare
results measured by the OPUS RSD and the HEAT EDAR instruments.

3.2. Sample description

3.2.1. Measurement sites and campaigns

From 2021 to 2023, several measurement campaigns were con-
ducted across Europe, primarily under the auspices of three major ini-
tiatives: the H2020-funded CARES project, the ReMOVES project, and
the CONOX project. A detailed description is provided below in Table 1.
The ReMOVES project selected 8 suitable sites in Switzerland in 2021,
and both the HEAT EDAR and the OPUS RSD were used in these cam-
paigns. In the CARES project, three measurement campaigns were car-
ried out in cities across Europe (i.e., Milan, Krakow, and Prague). The
emission records were captured by the HEAT EDAR instruments in Milan
while the other cities used the OPUS RSD instruments. The latest dataset
is from the CONOX project, carried out in Switzerland in 2023 using the
OPUS RSD devices.

Table 1
Campaign description.

3.2.2. Fuel type and emission standard

Fig. 2 illustrates the sample size collected during each campaign and
the proportion of different fuel types. Campaigns were dominated by
either diesel or petrol vehicles, with the remaining share consisting of
hybrid electric vehicles (HEVs), battery electric vehicles (BEVs), and
vehicles powered by liquefied petroleum gas (LPG). The campaign in
Krakow had the most records, with approximately 113,300 valid mea-
surements from passenger cars. In most campaigns, petrol-powered cars
dominated the share of measurements (on average 51.0 %), with diesel
cars being slightly less common (on average 37.8 %). In Prague, the
situation was the opposite, with diesel-powered cars being the dominant

. petrol
. diesel

. hybrid electric

| e

battery electric

. other

90000

60000

Count of Vehicles

30000

Campaign

Fig. 2. Distribution of vehicle fuel type for passenger cars in each campaign.

Project Site information Campaign code Year Dates Device Sample size
CARES Poland - Krakow Krakow 2021 Nov 30 - Decl10 OPUS 113,306
CARES Italy - Milan Milan 2021 Sept 23 - Oct 8 HEAT 22,959
CARES Czech Republic - Prague Prague 2022 Sept 5 - Sept 23 OPUS 86,890
ReMOVES Switzerland - 3 sites Switzerland - HEAT 2021 May 29 - Jun 11 HEAT 47,886
ReMOVES Switzerland - 8 sites Switzerland - OPUS 2021 Apr 26 - Jun 17 OPUS 51,895
CONOX Switzerland - Zurich Switzerland-2023 2023 NA OPUS 36,566
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type (55.8 %). Fig. 2 also illustrates the share of HEVs and BEVs on road.
BEVs were nearly absent in most campaigns, with only 0.3 % recorded in
Prague and 0.7 % in Switzerland-OPUS. Similarly, HEVs remained a
minority fuel type, with the highest share observed in the Switzerland-
2023 campaign at 9.1 %, followed by Krakow, Switzerland-HEAT, and
Switzerland-OPUS, each in the 4 % range. In Milan, hybrids accounted
for less than 1 % of the fleet and were entirely absent in the Prague
dataset.

The detailed information on emission standard of diesel passenger
cars in each campaign is identified by cross-referencing recorded num-
ber plates with vehicle registration records. The Euro standard compo-
sition for diesel passenger cars is illustrated in Fig. 3. For most of the
campaigns, the dominant emission standards are Euro 5 and Euro 6a/b/
¢, with one exception: Euro 4 cars in Krakow still account for 27.2 % of
the total vehicles. Prague has the highest percentage of the latest Euro
6d passenger cars comprising 9.0 %, even higher than the campaign
carried out one year later in Switzerland in 2023 (7.7 %).

3.2.3. Driving conditions

As ambient temperature (Grange et al., 2019), road grade and engine
load (expressed as Vehicle Specific Power) (Gallus et al., 2017) all have
an impact on the emission performance of the vehicles, it is necessary to
study and account for the driving conditions in each campaign (with
brief summaries provided in Table 2 and detailed distribution plots
presented in Table S. 1 in the Supplementary materials). Among these
factors, ambient temperature can also affect instrument noise through
its influence on detector stability and optical response. In contrast, road
grade and engine load primarily affect the plume shape and signal
strength rather than the background noise. Additionally, remnant
exhaust plumes from preceding vehicles may interfere with background
light intensity measurements, thereby contributing to apparent noise in
the recorded data.

Ambient temperature varied across different campaigns: the three
campaigns in Switzerland and the campaign in Milan all had a median
temperature around 22 °C, while the campaign in Prague had a lower
median temperature of 15 °C. Krakow had the lowest median ambient
temperature of 5.7 °C as the campaign was carried out in the winter
months. High NOy emissions from diesel cars are expected in Krakow, as
low temperatures are not conducive to the optimal efficiency of NOy
emission control systems (e.g. EGR and SCR) commonly deployed on
diesel engines (Smit et al., 2025). Road grade at all RSD sites was pos-
itive, as guidance (Borken-Kleefeld, 2013) recommends deploying on a
slightly uphill slop to increase likelihood engines are under load. The
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Fig. 3. Composition of emission standard of diesel passenger cars in
each campaign.
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Table 2
Median ambient temperature, road grade, speed, acceleration and VSP values of
different campaigns.

Campaign Ambient Road Speed Acceleration VSP
temperature grade (km/h) (km/h/s) kw/
O (%) ton)
Krakow 5.7 1.2 40.0 1.3 9.4
Milan 22.0 0.1 30.4 0.3 3.7
Prague 14.7 1.4 31.2 2.2 10.4
Switzerland- 22.0 0.7 95.4 0.6 18.2
HEAT
Switzerland- 25.6 1.6 35.0 0.3 6.4
OPUS
Switzerland- 25.7 NA 49.3 0.4 13.9
2023

speed and acceleration data illustrates that the vehicles captured by the
RSDs have a typical speed between 30 km/h and 60 km/h, while the
acceleration is mainly between 1 km/h/s and 2 km/h/s. The Vehicle
Specific Power (VSP) values in the last column are calculated based on
vehicles instantaneous speed/acceleration, road grade and vehicle type
(Jiménez-Palacios, 1999). VSP values provide a metric of the instanta-
neous load on the engine to overcome rolling resistance, aerodynamic
drag, acceleration and hill climbing per unit of mass of the vehicle; and
are closely correlated with fuel consumption and tail-pipe emission
levels. The 2021 campaign in Switzerland, which used the EDAR HEAT
device, took place in a highway setting (multiple lanes). This environ-
ment had higher average speeds of around 90 km/h and VSP values of
approximately 18.2 kW/ton. In contrast, the Milan campaign that took
place on slower urban roads had a median VSP value of about 3.7
kW/ton.

3.3. Fitting distributions to fleet emissions

Fleet-level emissions are often summarized using the mean. How-
ever, numerous studies (Bishop et al., 2012; ICCT, 2018; Chen et al.,
2019) have shown that NOy emissions from diesel vehicles typically
exhibit right-skewed distributions, where a small proportion of
high-emitting vehicles can substantially increase the mean value. Fig. 4
illustrates this pattern using data from the Switzerland—-OPUS campaign.
In symmetrical distributions, the mean, median, and mode are approx-
imately equal, whereas in right-skewed distributions, a few
high-emitting vehicles can significantly influence the mean, making it
less representative of the fleet’s overall behavior. The mode, defined as
the peak of the fitted probability density function, provides a more
practical measure of the most common or “typical” emission level within
a fleet.

Based on the observed right-skewed and symmetrical patterns of
emission distributions, the Gumbel and Laplace distributions were
selected for fitting. The Gumbel distribution was chosen for the right-
skewed data; this choice is supported by previous studies (Pokharel
et al., 2001; Rushton et al., 2021; Yang et al., 2022) and is particularly
suitable as it can accommodate the small negative values arising from
measurement noise. For the more symmetrical distributions, the Laplace
model was selected over the conventional normal distribution because
our instrument noise data exhibited sharper peaks and heavier tails than
a normal bell shape. This choice is justified by consistently higher R
values from comparative fits and is consistent with prior remote sensing
studies (Pokharel et al., 2001).

For each vehicle group, the NOy emission data were fitted to both
distributions by maximum likelihood estimation (MLE). The goodness of
fit was evaluated using the coefficient of determination R? and
Anderson-Darling test, and the distribution with the higher R? (and
higher Anderson-Darling test p-value) was selected. Approximate 95 %
confidence intervals for the fitted parameters were obtained via
nonparametric bootstrapping (1000 replicates). The mode of the best-
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Fig. 4. Histogram of NOy emissions from diesel passenger cars by emission standard in Switzerland.

fitting distribution, together with its confidence bounds, was then used
to characterize the representative emission rate of the corresponding
fleet.

e Gumbel Distribution

The Gumbel distribution is appropriate for modeling right-skewed
data, such as emission levels influenced by occasional high-emitting
vehicles. The probability density function f(x) and cumulative distri-
bution function F(x) of the Gumbel distribution are defined as follows:

fx)=-xe @

F(x)=e* 2 2)

Where a is the location parameter, which equals the mode value and
thus and represents the most probable emission rate (the point where the
fitted distribution reaches its maximum), and scale parameter b de-
scribes the spread of the dataset.

e Laplace Distribution

The Laplace distribution, also known as the double-exponential
distribution, is particularly useful for modeling data with sharp peaks
and heavier tails than the normal distribution (Kotz et al., 2012). The
probability density function f(x) and cumulative density function F(x) of
the Laplace distribution are given as follows:

f(x)=2-xe b 3

F(x) = @

Where a represents the peak or the mean of the distribution, and b is the
scale parameter, which controls the spread or variability of the distri-
bution.

3.4. Limit of detection determination

In this study, background noise is estimated from ultra low emission
electric vehicles (ULEVs), which include BEVs and petrol HEVs. These
vehicles are expected to emit no, or negligible NOy locally, under normal
conditions (Knoll et al., 2024). Diesel HEVs and other fuel hybrids were
excluded from the analysis. In optical remote sensing measurements,
pollutant concentrations are expressed as ratios relative to CO5 (e.g.,
NOy/CO3) (Bishop and Stedman, 1996) and can subsequently be con-
verted to fuel-specific emission factors (expressed in grams of pollutant
per kilogram of fuel, g/kg) (ICCT, 2018). All ULEV records used for LoD
derivation were verified to be based on valid CO, measurements,
ensuring that the data are not affected by near-zero CO; concentration
values, which can occur when the CO; signal from the exhaust plume is
too weak and may artificially inflate the calculated emission factor.

To ensure the noise characterization was not biased by any small,
real positive emissions from these vehicles, a mirroring technique was
applied. Specifically, only the portion of the ULEV measurement dis-
tribution to the left of its mode was used for the analysis, as it is assumed
to represent pure instrument noise. This lower half of the distribution
was then mirrored to construct a perfectly symmetric dataset. This
mirrored dataset was then fitted to a Laplace distribution, providing a
complete and interpretable model of the instrument noise
characteristics.

Following the approach recommended by Cantwell (2025), the
standard deviation of ULEV  measurements, serving as
low-concentration samples, is calculated and used to estimate the
background noise of remote sensing devices.

background noise = oy )

Specifically, the LoD is defined as three times the background noise,
following the method recommended by the U.S. Environmental Pro-
tection Agency (US EPA, 2015; Cantwell, 2025):

LoD = 3*background noise (6)

Beyond simply estimating background noise, this study also tests
whether the NOy distributions of ULEVs follow a Laplace distribution.
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The Laplace distribution, widely used in differential privacy® to model
controlled noise (Sarathy and Muralidhar, 2011), has also been applied
to characterize instrument noise in remote sensing studies (Pokharel
et al., 2001). If ULEV NOx measurements conform to a Laplace distri-
bution, it would further support the use of their distribution’s standard
deviation as a reliable indicator of background noise.

To investigate whether the low NOy measurements from Euro 6
diesel vehicles reflect actual emissions or are primarily dominated by
instrument noise, a two-sample Anderson-Darling test is conducted to
compare the NOy distributions of ULEVs and Euro 6 series fleets
(including Euro 6 ab, 6d-TEMP, and 6d). If the diesel fleets’ NOx mea-
surements also follow a Laplace distribution with a similar location
parameter and scale parameter to that of ULEVSs, it would suggest that
their measurements are largely governed by instrument noise rather
than true NOy emissions.

4. Results
4.1. Instrument noise and limit of detection

Since the noise distribution is expected to be symmetrical around
zero, both Normal and Laplace distributions were fitted to the NOy
emission data from ULEVs in each campaign to identify which model
best represents the instrument noise. A goodness-of-fit comparison
(Table S. 2) confirmed that the Laplace distribution provided a superior
fit for all fleets and was therefore selected to characterize the back-
ground noise and calculate the corresponding LoD. The key parameters
from the Laplace fits are presented in Table 3. The location parameter
represents the instrument’s offset, while the scale parameter is used to
derive the background noise and LoD. All uncertainties, shown in pa-
rentheses, are 95 % confidence intervals generated from 1000 bootstrap
replicates.

ULEV data from the Prague and Switzerland-2023 campaigns were
excluded due to quality control issues as: in the Prague campaign,
although over 300 ULEV measurements were recorded, all license plate
recognition entries were marked as false, indicating unreliable data and
necessitating exclusion; and in the Switzerland-2023 campaign, while
valid data were available, the median NOy concentration among ULEVs
was unusually high at 1.2 g/kg, compared to much lower values
observed in other campaigns using the same OPUS device. This suggests

Table 3
Instrument noise characteristics and detection limits derived from Laplace
modeling (g/kg).

Instrument ~ Campaign Location Scale Background LoD
value (95 %  value noise
CcD (95 % CI)
OPUS Switzerland- 0.11 (0.08, 0.31 0.42 1.26
OPUS 0.15) (0.29,
0.34)
Krakow -0.23 0.89 1.26 3.78
(—0.29, (0.83,
—-0.14) 0.94)
HEAT Switzerland- 0.45 (0.34, 0.49 0.69 2.07
HEAT 0.54) (0.43,
0.55)
Milan —0.01 0.26 0.35 1.05
(-0.07, (0.21,
—0.05) 0.30)

S Differential privacy denotes a mathematical approach for preserving the
privacy of individual contributions by adding carefully calibrated Laplace
noise, ensuring that the output of a query remains almost unchanged whether a
single data point is included or excluded.
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that the instrument lacked sufficient sensitivity to reliably detect low-
concentration emissions.

Among the evaluated instruments, the HEAT device used in Milan
recorded the lowest background noise (0.35 g/kg), indicating superior
measurement precision and sensitivity (LoD = 1.05 g/kg). Similarly, for
campaigns using the OPUS device, the Switzerland-OPUS instrument
exhibited lower background noise (0.42 g/kg) and a lower LoD (1.26 g/
kg) compared to other OPUS deployments. Negative location values
were observed in the Milan campaign and the Switzerland-OPUS
campaign, suggesting a systematic negative offset in the instrument’s
readings.

Notably, substantial variability in background noise was also
observed for the same instrument model across different campaigns. As
detailed in Table 2, the campaign in Krakow was conducted under very
low ambient temperatures (5.7 °C), while the Switzerland campaign was
situated on a high-speed motorway with smooth-flowing traffic. It is
plausible that these distinct environmental and operational conditions
influence the instrument’s background noise. However, a more defini-
tive analysis would require a larger ULEV dataset that includes con-
current measurements of environmental variables. Such an analysis
would be necessary to distinguish between various potential noise
sources (such as physical shaking, electronic interference, or chemical
issues (Pokharel et al., 2001)) and ultimately to develop site-specific
correction factors. In conclusion, ULEV measurements from all cam-
paigns, except those excluded due to data quality issues, were found to
follow a Laplace distribution. Low-concentration NOy measurements
from ULEVs have been validated as suitable inputs for estimating the
background noise and detection limit of remote sensing devices. A lower
background noise reflects improved measurement stability and en-
hances the device’s ability to detect smaller pollutant concentrations
with greater confidence.

4.2. NO, emission trend characterization

By separately applying the Gumbel and Laplace distributions to each
subset and selecting the distribution with highest R? value as the best fit
for describing fleet characteristics, the typical emission rates of diesel
passenger cars from Euro 4 to Euro 6d are derived. Specifically, all fleets
from Euro 4 to Euro 6ab follow the Gumbel distribution.” For Euro 6d-
TEMP and Euro 6d fleets, the Milan campaign, the Switzerland-HEAT
campaign, and the Switzerland-2023 campaign follow the Gumbel dis-
tribution while the remaining campaigns follow the Laplace distribu-
tion. In conclusion, earlier-generation vehicles are better characterized
by the Gumbel distribution, while newer models (Euro 6d-TEMP and
Euro 6d) begin to exhibit characteristics of the Laplace distribution in
certain cases.

Fig. 5 presents the emission trends of diesel cars across different
campaigns. A substantial improvement in NOy emission performance
has been observed for diesel passenger cars since the introduction of
Euro 6 ab. Among Euro 4 to Euro 6 ab vehicles, the Switzerland-HEAT
campaign recorded the lowest emission rates. This may be attributed
to higher highway speeds leading to elevated combustion temperatures
(affecting EGR control) and higher SCR temperatures within the effec-
tive thermal window (as summarized in Table 2). Similar observations
were reported by O’ Driscoll et al. (2018) and Yang et al. (2022), sug-
gesting that high engine load does not necessarily result in high NOy
emissions from diesel vehicles.

In contrast, the Switzerland-2023 campaign exhibited the highest
NOy emissions for Euro 4 to Euro 6 ab diesel passenger cars, even

7 Detailed information on the measurement count, R? values of the matching
distribution, and the location value for each fleet are summarized in Table S. 3
in the Supplementary materials. The corresponding fitting distributions for each
Euro standard in each campaign are summarized in Table S. 4 in the Supple-
mentary materials.



Z. Yang et al.
12.5] PS
[ ]
10.0
-
" 7.5
2 o o
=2
= ‘
O 5.0
= [ ]
o
® )
2.5+ ]
o [
e *
0.01
Euro 4 Euro 5 Euro 6ab  Euro 6d-TEMP  Euro 6d
Class

Krakow @ Prague ® Switzerland-HEAT
® Milan @ Switzerland-2023 @ Switzerland-OPUS

Fig. 5. Typical NOy emissions for diesel passenger cars in different campaigns.

surpassing the Krakow campaign, where extremely low ambient tem-
peratures (as low as 5.7 °C) influence emission rates. Notably, the
Switzerland-2023 campaign is the most recent of all campaigns,
resulting in the Euro 4 to Euro6ab vehicles involved being relatively
older. This suggests that vehicle deterioration may be impacting emis-
sion rates. For Euro 6d-TEMP and Euro 6d vehicles, emission rates were
consistently low across different campaigns. Specifically, the Milan
campaign, which utilized the EDAR HEAT device, recorded a typical
NOy emission rate of only 0.1 g/kg, suggesting that NOy emissions from
Euro 6d-TEMP and Euro 6d diesel vehicles may have approached the
detection limit.

4.3. Limit of detection significance

As shown in Section 4.2, the emission distributions for all fleets from
Euro 4 to Euro 6 ab were consistently found to follow the Gumbel dis-
tribution. However, for the cleaner Euro 6d-TEMP and Euro 6d fleets, a
mixed pattern was observed, where some fleets follow a Laplace distri-
bution while others follow a Gumbel distribution. Based on this obser-
vation, it was hypothesized that the shape of the measured distribution
is indicative of the signal-to-noise ratio. Specifically, it is suspected that
if a fleet’s emissions are largely below the LoD, its measured distribution
will resemble the Laplace distribution, indicating it is noise-dominated.
Conversely, if a fleet has significant and right-skewed real emissions, the
Gumbel distribution will provide a better fit, suggesting that the true
emission signal is dominant.

To validate this hypothesis, a full Laplace distribution was fitted to
the data from diesel fleets that also exhibited a Laplace-like shape (i.e.,
Euro 6d-TEMP and Euro 6d fleets of Switzerland-OPUS campaign and
Krakow campaign). The scale parameter for each of these fleets was then
compared to the benchmark noise scale parameter, which was previ-
ously derived from the ULEV data.

Table 4 illustrate the comparison of Laplace scale parameters for the
instrument noise and diesel fleet emission distributions. While the
Laplace distribution provided an excellent fit for the Euro 6d-TEMP and
Euro 6d of Switzerland-OPUS campaign and Krakow campaign data, the
ULEV-derived noise parameter did not fall within the 95 % confidence
intervals of the diesel fleets. However, the fitted values were only
marginally higher than the noise benchmark. This suggests that these
distributions are strongly noise-influenced, with a minor contribution
from true vehicle emissions.
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Table 4
Laplace Scale Parameters for Instrument Noise and Diesel Fleet Emissions in
OPUS campaigns.

Campaign Scale Emission Scale Anderson-Darling
parameter for standard value p-value
instrument (95 %
noise Cch

Switzerland- 0.31 Euro 6d- 1.02 0.27

OPUS TEMP (0.88,
1.18)
Euro 6d 1.09 0.60
(0.72,
1.45)
Krakow 0.89 Euro 6d- 1.23 0.13
TEMP (1.12,
1.36)
Euro 6d 1.34 0.84
(1.18,
1.49)

5. Conclusions and outlook

This study evaluated NOy emission levels of light-duty diesel pas-
senger vehicles across six recent European remote sensing campaigns,
with a particular focus on determining whether emissions from the latest
Euro 6 series vehicles exceed the detection limit. Results confirm a
substantial reduction in NOy emissions since the introduction of Euro 6
ab standards, with Euro 6d-TEMP and Euro 6d vehicles approaching
zero emissions in several campaigns.

To evaluate the instrument’s performance under field conditions, a
data-driven method was implemented to estimate background noise and
the LoD. This approach utilized NOy measurements from ultra-low-
emission reference vehicles (including battery electric and petrol
hybrid models), which are assumed to emit negligible NO4. To isolate
the symmetrical noise component from any residual positive emission
signals, the lower 50th percentile of the reference vehicle data was
mirrored to create a perfectly symmetric distribution. This procedure
effectively removes the influence of the small, right-skewed tail caused
by occasional real-world emissions, allowing for a more accurate char-
acterization of the instrument’s inherent background noise. The result-
ing symmetric dataset was shown to follow a Laplace distribution,
confirming its suitability for modeling instrument noise. Based on this
noise model, the LoD was estimated. Results revealed that a large pro-
portion of Euro 6d-TEMP and Euro 6d vehicle measurements fell below
the estimated LoD. Moreover, in several campaigns employing the filter-
based NDUV remote sensing system (OPUS RSD), distribution fitting
indicated a shift from signal-dominated to noise-dominated emission
behavior in newer Euro 6d-TEMP and Euro 6d vehicles.

The significance of a well-defined LoD is twofold. First, it is crucial
for accurately characterizing modern low-emission fleets by dis-
tinguishing genuine low-emission measurements from instrument noise,
ensuring that the performance of the cleanest vehicles is not mis-
interpreted. Second, a clear LoD is essential for maintaining the reli-
ability of high-emitter identification. When a substantial proportion of
measurements approaches the detection limit, the observed data dis-
tribution becomes dominated by instrument noise, which can distort the
statistical thresholds used to identify high emitters (Yang et al., 2022;
Ghaffarpasand et al., 2023). As a result, the separation between truly
clean vehicles and gross polluters becomes less reliable, undermining
the primary goal of remote sensing programs. Future research should
therefore focus on developing robust statistical approaches to distin-
guish genuine high emitters under low-emission conditions and on
enhancing instrumentation to improve detection sensitivity.

Looking ahead, as the number of electric vehicles especially battery
electric vehicles on the road continues to grow, the method developed in
this study could enable routine, day-to-day estimation of the LoD in
remote sensing campaigns. This would be particularly valuable in the
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context of the European Commission (2025) proposed ‘Roadworthiness
Package’, which aims to implement large-scale, routine remote sensing
to screen at least 30 % of the vehicle fleet across all EU member states.
Given that frequent manual calibration is often impractical, the ability
to estimate LoD directly from ULEV measurements would support more
effective and adaptive monitoring. This also opens new opportunities for
research on how environmental factors such as temperature, humidity,
and other ambient conditions, as well as traffic conditions affect in-
strument detection capabilities in real-world settings, ensuring more
robust and reliable remote sensing applications under routine regulatory
use.
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