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A B S T R A C T

Incorporating real-driving emission tests into type approval procedures has significantly reduced emissions from 
diesel passenger cars. Recent remote sensing studies suggest that NOx emissions from the latest Euro 6d series 
(including both Euro 6d-TEMP and Euro 6d) are extremely low, in some cases approaching zero. This study 
investigates whether these low NOx concentrations fall below the detection limits of remote sensing devices, 
potentially limiting the reliability of measured values. A method is proposed to estimate the limit of detection 
using electric vehicle measurements, which serve as low-emission references in the absence of calibration gases. 
NOx data from six recent European remote sensing campaigns (2021–2023) were analyzed. The findings suggest 
that NOx emissions from the latest Euro 6d series vehicles that are in good working order have reached the 
detection limit of OPUS RSD 5000 devices. This approach presents a practical framework for routinely deter
mining the detection limits of remote sensing devices, improving quality assurance procedures and supporting 
the interpretation of ultra-low NOx emission measurements with greater confidence.

1. Introduction

Nitrogen Oxides (NOx) emissions from diesel vehicles significantly 
contribute to urban air pollution globally (Carslaw et al., 2011; Smit 
et al., 2022; Yang et al., 2024). For pre-Euro 6 diesel cars, substantial 
discrepancies have been reported between laboratory type-approval 
tests and real-world on-road measurements (Chen and 
Borken-Kleefeld, 2014). Since the introduction of Euro 6ab in 2014, the 
NOx limit for diesel passenger cars has been reduced by 55 % compared 
with Euro 5, leading to a substantial reduction in on-road emissions 
(Söderena et al., 2020; Yang et al., 2022). With Euro 6d-TEMP and Euro 
6d, real-driving emission (RDE) tests became mandatory, ensuring that 
aftertreatment systems such as selective catalytic reduction (SCR) 
operate effectively under real-world conditions (García-Contreras et al., 
2021). Consequently, on-road measurements confirm that Euro 
6d-TEMP and Euro 6d diesel cars comply with the EU NOx emission 
limits (Suarez-Bertoa et al., 2019; de Ruiter et al., 2020; Mulholland 
et al., 2022).

Remote sensing technology, as a key emission monitoring method for 
analyzing the real-world emission performance of vehicle fleets is 

indicating that both the mean and median NOx emissions from the latest 
Euro 6d vehicles are very low (Mahesh et al., 2023; Bernard et al., 2023). 
This finding raises a critical question: are current remote sensing devices 
(RSDs) accurately capturing the emission concentrations from 
low-emitting Euro 6 cars, or are the results merely reflecting the 
detection limits of the devices?

This study compiles 359,502 valid remote-sensing measurements of 
European passenger cars from six campaigns conducted between 2021 
and 2023 under the CARES,1 ReMOVES2 and CONOX projects 
(Borken-Kleefeld et al., 2018). The first objective is to quantify 
real-world NOx emissions across Euro standards, with emphasis on the 
latest Euro 6d-TEMP and Euro 6d diesel vehicles and whether their 
observed levels are genuinely near zero across Europe, which would 
bring them in line with Euro 5 and 6 gasoline vehicles with their 
Three-Way Catalytic (TWC) converters that are known to effectively 
control NOx emissions (Carslaw et al., 2011). To interpret these 
ultra-low readings, an assessment of instrument detectability is then 
undertaken. Using the growing sample of electric-drive vehicles as 
low-concentration references, a Laplace fit is used to characterize 
background noise and derive campaign-specific limits of detection for 
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the remote sensing instruments. These LoD estimates are then used to 
contextualise the Euro-class emission distributions and to distinguish 
signal from noise.

There are three key contributions to the existing literature. First, it 
proposes a practical method for estimating the limit of detection (LoD) 
of remote sensing devices under field conditions, where calibration gas 
blending facilities are not available. This method offers a straightfor
ward approach for data analysts to determine whether a NOx measure
ment falls below the device’s detection limit at that time. Second, by 
applying this method to a cross-campaign remote sensing database 
(Rushton et al., 2025), the study reveals that a substantial proportion of 
NOx measurements from the latest Euro 6d-TEMP and Euro 6d diesel 
passenger cars fall below the estimated detection limits of current 
remote sensing systems, indicating a fundamental shift in the detect
ability of NOx emissions from modern diesel vehicles using current 
remote sensing technology. Third, the empirical evidence on the prac
tical limits of current remote sensing technologies provides valuable 
technical insights for future campaign design, instrument development, 
and policy implementation. These findings are considered very timely as 
the European Commission plans to introduce large-scale remote sensing 
under its upcoming ‘Roadworthiness Package’ (European Commission, 
2025). This includes proposing wide-scale, routine use of vehicle emis
sion remote sensing to screen at least 30 % of its registered fleet in all 27 
EU member states to improve detection of defective vehicles, subsequent 
roadside inspection and remedial action.

2. Literature review

2.1. Remote sensing technology principles and applications

Remote sensing technology has become an important and cost- 
effective method for monitoring real-world vehicle emissions at the 
fleet level (Huang et al., 2018). These systems estimate exhaust emis
sions rapidly and non-intrusively under actual driving conditions by 
measuring the absorption of specific wavelengths of light by gas mole
cules (Bishop and Stedman, 1996). Pollutant concentrations are typi
cally expressed as ratios to CO2 and can be converted to fuel-specific 
(g/kg) or distance-specific (g/km) emission factors (ICCT, 2018; Davi
son et al., 2020).

RSDs also collect vehicle speed, acceleration, license plate data, and 
environmental conditions (e.g., temperature, pressure, humidity) during 
measurements, enabling large-scale fleet sampling without disrupting 
traffic (Grange et al., 2019; Yang et al., 2022). Their results are widely 
used to evaluate emission trends across standards, identify 
high-emitting vehicles or manufacturers, and assess the influence of 
driving conditions on emissions (Chen et al., 2020; Huang et al., 2019; 
Yang et al., 2022).

Emissions from the latest Euro 6d diesel light-duty vehicles are 
significantly lower than their Euro 5 predecessors, raising concerns that 
the reliability of remote sensing measurement results is decreasing, with 
the recorded values becoming closer to the background noise level 
rather than reflecting the true pollutant concentration. For example, 
Knoll et al. (2024) observed that EDAR systems consistently under
estimated NO2 emissions compared to Portable Emissions Measurement 
Systems (PEMS). They attributed this discrepancy to the possibility that 
primary nitrogen dioxide (NO2) emissions are already below the 
detection limit of the EDAR devices.

2.2. Background noise and limit of detection

When remote sensing devices measure vehicle emissions, even if the 
target pollutant (such as NOx) is entirely absent, the devices themselves 
still record minor random fluctuations or interference signals, man
ifested as measured values randomly fluctuating around zero (Gruening 
et al., 2019; Yang et al., 2022). Sources of background noise include: (1) 
inherent random fluctuations from the instrument’s electronic 

components and detectors; (2) interference caused by environmental 
conditions (e.g., temperature fluctuations, humidity changes, or 
ambient particulates); (3) residual plumes from earlier traffic on the 
same or from traffic of nearby lanes (Huang et al., 2018; Smit et al., 
2021). In this study, we focus specifically on quantifying the background 
noise originating from the instrument itself, rather than broader atmo
spheric or traffic-related variability, as the former determines the 
intrinsic detection capability of the remote sensing system.

If the actual pollutant concentration is extremely low, the recorded 
values are indistinguishable from a blank measurement. Therefore, 
acknowledging and quantifying background noise and instrument off
sets is essential for accurate interpretation of remote sensing data during 
emission measurement campaigns. In remote sensing emission studies, 
background noise is typically quantified as the standard deviation of 
measurements obtained using blank samples or test samples with con
centrations of analyte close to or below the expected LoD (Cantwell, 
2025). For instance, using certified calibration gas cylinders, Ropkins 
et al. (2017) determined the background noise of the EDAR device3 to be 
7 ppm for NO, while Rushton et al. (2018) reported a background noise 
level of 58 ppm for NO for the RSD 4600 instrument.4

When certified gas cylinders of different concentrations (or blends) 
are not available, some studies interpret the negative values recorded by 
RSDs as manifestations of background noise. Pokharel et al. (2001)
identified the Laplace distribution as the most appropriate model for 
characterizing this noise pattern. In subsequent work, Bishop and 
Stedman (2014) used the Laplace distribution and reported a back
ground noise level of 30 ppm for NO from the FEAT system.5

Since the ability of an instrument to detect a pollutant depends on 
how clearly the signal stands out from the background noise, the concept 
of the LoD is often used to define the lowest concentration that can be 
reliably distinguished from background noise (Crowther, 2001; 
Armbruster and Pry, 2008). LOD are normally calculated by multiplying 
a standard deviation (i.e., background noise) by a suitable factor. U.S. 
Environmental Protection Agency (2015) and Cantwell (2025) estimate 
the LoD as three times the standard deviation. Thus, accurately identi
fying and quantifying background noise is fundamental to determining 
the LoD of remote sensing instruments and evaluating the reliability of 
remote sensing monitoring data.

In conclusion, although several studies have acknowledged the 
presence of instrument noise in remote sensing, few have systematically 
examined its specific characteristics or the corresponding limits of 
detection, particularly for newer devices. Given that NOx emissions from 
the latest Euro 6d vehicles are extremely low, understanding the 
detection limits of current remote sensing instruments has become 
increasingly important for ensuring accurate interpretation of mea
surement results.

3. Materials and methods

3.1. Remote sensing instrumentation and measurement setup

The remote sensing measurements analyzed in this paper were 
measured by two different commercial instruments (the OPUS RSD 
(Carslaw and Rhys-Tyler, 2013) and the HEAT EDAR (Ropkins et al., 
2017)), both providing measurements of Nitric Oxide (NO) and Nitrogen 
dioxide (NO2). The OPUS RSD is a cross-road remote sensing system that 
combines non-dispersive infrared (NDIR) for CO, CO2, and HC detection 
with non-dispersive dispersive ultraviolet (NDUV) spectroscopy for NO 
and NO2 (see Fig. 1-a). (Bishop and Stedman, 1996). Specifically, NO is 
measured at 227 nm and NO2 at 438 nm. By measuring the amount of 
IR/UV light absorbed and subtracting the pre-vehicle background 

3 https://www.heatremotesensing.com/edar.
4 https://opusrse.com/technology/the-remote-sensing-device/.
5 https://digitalcommons.du.edu/feat/.
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absorption, the pollutant levels in the exhaust plume can be determined. 
The HEAT EDAR is a top-down remote sensing system using a 
laser-based DIAL (Differential Absorption LiDAR) method (see Fig. 1-b). 
It determines gas concentrations by emitting two laser beams at different 
wavelengths (one at the gas absorption peak and one outside it) and 
comparing the differences in their backscattered signals to quantify the 
gas absorption (Weitkamp, 2005).

While OPUS RSD uses NDIR and NDUV method and HEAT EDAR uses 
DIAL method, both systems fundamentally operate on the principle of 
detecting specific wavelengths of light absorbed by gas molecules to 
determine gas concentrations remotely and non-intrusively. This com
monality ensures that both systems can effectively monitor and measure 
gas emissions in various settings. The ReMOVES project in Switzerland 
in 2021 used both the HEAT EDAR and OPUS RSD instruments and 
found that these two instruments provided comparable NOx values for 
both diesel and petrol passenger cars (Betschart et al., 2022), therefore 
in this paper it is considered appropriate to be able to directly compare 
results measured by the OPUS RSD and the HEAT EDAR instruments.

3.2. Sample description

3.2.1. Measurement sites and campaigns
From 2021 to 2023, several measurement campaigns were con

ducted across Europe, primarily under the auspices of three major ini
tiatives: the H2020-funded CARES project, the ReMOVES project, and 
the CONOX project. A detailed description is provided below in Table 1. 
The ReMOVES project selected 8 suitable sites in Switzerland in 2021, 
and both the HEAT EDAR and the OPUS RSD were used in these cam
paigns. In the CARES project, three measurement campaigns were car
ried out in cities across Europe (i.e., Milan, Krakow, and Prague). The 
emission records were captured by the HEAT EDAR instruments in Milan 
while the other cities used the OPUS RSD instruments. The latest dataset 
is from the CONOX project, carried out in Switzerland in 2023 using the 
OPUS RSD devices.

3.2.2. Fuel type and emission standard
Fig. 2 illustrates the sample size collected during each campaign and 

the proportion of different fuel types. Campaigns were dominated by 
either diesel or petrol vehicles, with the remaining share consisting of 
hybrid electric vehicles (HEVs), battery electric vehicles (BEVs), and 
vehicles powered by liquefied petroleum gas (LPG). The campaign in 
Krakow had the most records, with approximately 113,300 valid mea
surements from passenger cars. In most campaigns, petrol-powered cars 
dominated the share of measurements (on average 51.0 %), with diesel 
cars being slightly less common (on average 37.8 %). In Prague, the 
situation was the opposite, with diesel-powered cars being the dominant 

Fig. 1. Schematics of a typical remote sensing deployment: (a) cross-road remote sensing system [left]; (b) top-down remote sensing system (EDAR) [right] 
(Borken-Kleefeld and Dallmann, 2018).

Table 1 
Campaign description.

Project Site information Campaign code Year Dates Device Sample size

CARES Poland - Krakow Krakow 2021 Nov 30 - Dec10 OPUS 113,306
CARES Italy - Milan Milan 2021 Sept 23 - Oct 8 HEAT 22,959
CARES Czech Republic - Prague Prague 2022 Sept 5 - Sept 23 OPUS 86,890
ReMOVES Switzerland - 3 sites Switzerland - HEAT 2021 May 29 - Jun 11 HEAT 47,886
ReMOVES Switzerland - 8 sites Switzerland - OPUS 2021 Apr 26 - Jun 17 OPUS 51,895
CONOX Switzerland - Zurich Switzerland-2023 2023 NA OPUS 36,566

Fig. 2. Distribution of vehicle fuel type for passenger cars in each campaign.
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type (55.8 %). Fig. 2 also illustrates the share of HEVs and BEVs on road. 
BEVs were nearly absent in most campaigns, with only 0.3 % recorded in 
Prague and 0.7 % in Switzerland-OPUS. Similarly, HEVs remained a 
minority fuel type, with the highest share observed in the Switzerland- 
2023 campaign at 9.1 %, followed by Krakow, Switzerland-HEAT, and 
Switzerland-OPUS, each in the 4 % range. In Milan, hybrids accounted 
for less than 1 % of the fleet and were entirely absent in the Prague 
dataset.

The detailed information on emission standard of diesel passenger 
cars in each campaign is identified by cross-referencing recorded num
ber plates with vehicle registration records. The Euro standard compo
sition for diesel passenger cars is illustrated in Fig. 3. For most of the 
campaigns, the dominant emission standards are Euro 5 and Euro 6a/b/ 
c, with one exception: Euro 4 cars in Krakow still account for 27.2 % of 
the total vehicles. Prague has the highest percentage of the latest Euro 
6d passenger cars comprising 9.0 %, even higher than the campaign 
carried out one year later in Switzerland in 2023 (7.7 %).

3.2.3. Driving conditions
As ambient temperature (Grange et al., 2019), road grade and engine 

load (expressed as Vehicle Specific Power) (Gallus et al., 2017) all have 
an impact on the emission performance of the vehicles, it is necessary to 
study and account for the driving conditions in each campaign (with 
brief summaries provided in Table 2 and detailed distribution plots 
presented in Table S. 1 in the Supplementary materials). Among these 
factors, ambient temperature can also affect instrument noise through 
its influence on detector stability and optical response. In contrast, road 
grade and engine load primarily affect the plume shape and signal 
strength rather than the background noise. Additionally, remnant 
exhaust plumes from preceding vehicles may interfere with background 
light intensity measurements, thereby contributing to apparent noise in 
the recorded data.

Ambient temperature varied across different campaigns: the three 
campaigns in Switzerland and the campaign in Milan all had a median 
temperature around 22 ◦C, while the campaign in Prague had a lower 
median temperature of 15 ◦C. Krakow had the lowest median ambient 
temperature of 5.7 ◦C as the campaign was carried out in the winter 
months. High NOx emissions from diesel cars are expected in Krakow, as 
low temperatures are not conducive to the optimal efficiency of NOx 
emission control systems (e.g. EGR and SCR) commonly deployed on 
diesel engines (Smit et al., 2025). Road grade at all RSD sites was pos
itive, as guidance (Borken-Kleefeld, 2013) recommends deploying on a 
slightly uphill slop to increase likelihood engines are under load. The 

speed and acceleration data illustrates that the vehicles captured by the 
RSDs have a typical speed between 30 km/h and 60 km/h, while the 
acceleration is mainly between 1 km/h/s and 2 km/h/s. The Vehicle 
Specific Power (VSP) values in the last column are calculated based on 
vehicles instantaneous speed/acceleration, road grade and vehicle type 
(Jiménez-Palacios, 1999). VSP values provide a metric of the instanta
neous load on the engine to overcome rolling resistance, aerodynamic 
drag, acceleration and hill climbing per unit of mass of the vehicle; and 
are closely correlated with fuel consumption and tail-pipe emission 
levels. The 2021 campaign in Switzerland, which used the EDAR HEAT 
device, took place in a highway setting (multiple lanes). This environ
ment had higher average speeds of around 90 km/h and VSP values of 
approximately 18.2 kW/ton. In contrast, the Milan campaign that took 
place on slower urban roads had a median VSP value of about 3.7 
kW/ton.

3.3. Fitting distributions to fleet emissions

Fleet-level emissions are often summarized using the mean. How
ever, numerous studies (Bishop et al., 2012; ICCT, 2018; Chen et al., 
2019) have shown that NOx emissions from diesel vehicles typically 
exhibit right-skewed distributions, where a small proportion of 
high-emitting vehicles can substantially increase the mean value. Fig. 4
illustrates this pattern using data from the Switzerland–OPUS campaign. 
In symmetrical distributions, the mean, median, and mode are approx
imately equal, whereas in right-skewed distributions, a few 
high-emitting vehicles can significantly influence the mean, making it 
less representative of the fleet’s overall behavior. The mode, defined as 
the peak of the fitted probability density function, provides a more 
practical measure of the most common or “typical” emission level within 
a fleet.

Based on the observed right-skewed and symmetrical patterns of 
emission distributions, the Gumbel and Laplace distributions were 
selected for fitting. The Gumbel distribution was chosen for the right- 
skewed data; this choice is supported by previous studies (Pokharel 
et al., 2001; Rushton et al., 2021; Yang et al., 2022) and is particularly 
suitable as it can accommodate the small negative values arising from 
measurement noise. For the more symmetrical distributions, the Laplace 
model was selected over the conventional normal distribution because 
our instrument noise data exhibited sharper peaks and heavier tails than 
a normal bell shape. This choice is justified by consistently higher R2 

values from comparative fits and is consistent with prior remote sensing 
studies (Pokharel et al., 2001).

For each vehicle group, the NOx emission data were fitted to both 
distributions by maximum likelihood estimation (MLE). The goodness of 
fit was evaluated using the coefficient of determination (R2) and 
Anderson–Darling test, and the distribution with the higher R2 (and 
higher Anderson–Darling test p-value) was selected. Approximate 95 % 
confidence intervals for the fitted parameters were obtained via 
nonparametric bootstrapping (1000 replicates). The mode of the best- 

Fig. 3. Composition of emission standard of diesel passenger cars in 
each campaign.

Table 2 
Median ambient temperature, road grade, speed, acceleration and VSP values of 
different campaigns.

Campaign Ambient 
temperature 
(◦C)

Road 
grade 
(%)

Speed 
(km/h)

Acceleration 
(km/h/s)

VSP 
(kW/ 
ton)

Krakow 5.7 1.2 40.0 1.3 9.4
Milan 22.0 0.1 30.4 0.3 3.7
Prague 14.7 1.4 31.2 2.2 10.4
Switzerland- 

HEAT
22.0 0.7 95.4 0.6 18.2

Switzerland- 
OPUS

25.6 1.6 35.0 0.3 6.4

Switzerland- 
2023

25.7 NA 49.3 0.4 13.9
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fitting distribution, together with its confidence bounds, was then used 
to characterize the representative emission rate of the corresponding 
fleet. 

• Gumbel Distribution

The Gumbel distribution is appropriate for modeling right-skewed 
data, such as emission levels influenced by occasional high-emitting 
vehicles. The probability density function f(x) and cumulative distri
bution function F(x) of the Gumbel distribution are defined as follows: 

f(x)=
1
b
× e

−

⎛

⎝x− a
b +e−

x− a
b

⎞

⎠

(1) 

F(x)= e− e−
x− a

b (2) 

Where a is the location parameter, which equals the mode value and 
thus and represents the most probable emission rate (the point where the 
fitted distribution reaches its maximum), and scale parameter b de
scribes the spread of the dataset. 

• Laplace Distribution

The Laplace distribution, also known as the double-exponential 
distribution, is particularly useful for modeling data with sharp peaks 
and heavier tails than the normal distribution (Kotz et al., 2012). The 
probability density function f(x) and cumulative density function F(x) of 
the Laplace distribution are given as follows: 

f(x)=
1
2b

× e−
|x− a|

b (3) 

F(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
e

x− a
b , x < a

1 −
1
2
e−

x− a
b , x ≥ a

(4) 

Where a represents the peak or the mean of the distribution, and b is the 
scale parameter, which controls the spread or variability of the distri
bution.

3.4. Limit of detection determination

In this study, background noise is estimated from ultra low emission 
electric vehicles (ULEVs), which include BEVs and petrol HEVs. These 
vehicles are expected to emit no, or negligible NOx locally, under normal 
conditions (Knoll et al., 2024). Diesel HEVs and other fuel hybrids were 
excluded from the analysis. In optical remote sensing measurements, 
pollutant concentrations are expressed as ratios relative to CO2 (e.g., 
NOx/CO2) (Bishop and Stedman, 1996) and can subsequently be con
verted to fuel-specific emission factors (expressed in grams of pollutant 
per kilogram of fuel, g/kg) (ICCT, 2018). All ULEV records used for LoD 
derivation were verified to be based on valid CO2 measurements, 
ensuring that the data are not affected by near-zero CO2 concentration 
values, which can occur when the CO2 signal from the exhaust plume is 
too weak and may artificially inflate the calculated emission factor.

To ensure the noise characterization was not biased by any small, 
real positive emissions from these vehicles, a mirroring technique was 
applied. Specifically, only the portion of the ULEV measurement dis
tribution to the left of its mode was used for the analysis, as it is assumed 
to represent pure instrument noise. This lower half of the distribution 
was then mirrored to construct a perfectly symmetric dataset. This 
mirrored dataset was then fitted to a Laplace distribution, providing a 
complete and interpretable model of the instrument noise 
characteristics.

Following the approach recommended by Cantwell (2025), the 
standard deviation of ULEV measurements, serving as 
low-concentration samples, is calculated and used to estimate the 
background noise of remote sensing devices. 

background noise= σULEV (5) 

Specifically, the LoD is defined as three times the background noise, 
following the method recommended by the U.S. Environmental Pro
tection Agency (US EPA, 2015; Cantwell, 2025): 

LoD=3*background noise (6) 

Beyond simply estimating background noise, this study also tests 
whether the NOx distributions of ULEVs follow a Laplace distribution. 

Fig. 4. Histogram of NOx emissions from diesel passenger cars by emission standard in Switzerland.
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The Laplace distribution, widely used in differential privacy6 to model 
controlled noise (Sarathy and Muralidhar, 2011), has also been applied 
to characterize instrument noise in remote sensing studies (Pokharel 
et al., 2001). If ULEV NOx measurements conform to a Laplace distri
bution, it would further support the use of their distribution’s standard 
deviation as a reliable indicator of background noise.

To investigate whether the low NOx measurements from Euro 6 
diesel vehicles reflect actual emissions or are primarily dominated by 
instrument noise, a two-sample Anderson-Darling test is conducted to 
compare the NOx distributions of ULEVs and Euro 6 series fleets 
(including Euro 6 ab, 6d-TEMP, and 6d). If the diesel fleets’ NOx mea
surements also follow a Laplace distribution with a similar location 
parameter and scale parameter to that of ULEVs, it would suggest that 
their measurements are largely governed by instrument noise rather 
than true NOx emissions.

4. Results

4.1. Instrument noise and limit of detection

Since the noise distribution is expected to be symmetrical around 
zero, both Normal and Laplace distributions were fitted to the NOx 
emission data from ULEVs in each campaign to identify which model 
best represents the instrument noise. A goodness-of-fit comparison 
(Table S. 2) confirmed that the Laplace distribution provided a superior 
fit for all fleets and was therefore selected to characterize the back
ground noise and calculate the corresponding LoD. The key parameters 
from the Laplace fits are presented in Table 3. The location parameter 
represents the instrument’s offset, while the scale parameter is used to 
derive the background noise and LoD. All uncertainties, shown in pa
rentheses, are 95 % confidence intervals generated from 1000 bootstrap 
replicates.

ULEV data from the Prague and Switzerland-2023 campaigns were 
excluded due to quality control issues as: in the Prague campaign, 
although over 300 ULEV measurements were recorded, all license plate 
recognition entries were marked as false, indicating unreliable data and 
necessitating exclusion; and in the Switzerland-2023 campaign, while 
valid data were available, the median NOx concentration among ULEVs 
was unusually high at 1.2 g/kg, compared to much lower values 
observed in other campaigns using the same OPUS device. This suggests 

that the instrument lacked sufficient sensitivity to reliably detect low- 
concentration emissions.

Among the evaluated instruments, the HEAT device used in Milan 
recorded the lowest background noise (0.35 g/kg), indicating superior 
measurement precision and sensitivity (LoD = 1.05 g/kg). Similarly, for 
campaigns using the OPUS device, the Switzerland-OPUS instrument 
exhibited lower background noise (0.42 g/kg) and a lower LoD (1.26 g/ 
kg) compared to other OPUS deployments. Negative location values 
were observed in the Milan campaign and the Switzerland-OPUS 
campaign, suggesting a systematic negative offset in the instrument’s 
readings.

Notably, substantial variability in background noise was also 
observed for the same instrument model across different campaigns. As 
detailed in Table 2, the campaign in Krakow was conducted under very 
low ambient temperatures (5.7 ◦C), while the Switzerland campaign was 
situated on a high-speed motorway with smooth-flowing traffic. It is 
plausible that these distinct environmental and operational conditions 
influence the instrument’s background noise. However, a more defini
tive analysis would require a larger ULEV dataset that includes con
current measurements of environmental variables. Such an analysis 
would be necessary to distinguish between various potential noise 
sources (such as physical shaking, electronic interference, or chemical 
issues (Pokharel et al., 2001)) and ultimately to develop site-specific 
correction factors. In conclusion, ULEV measurements from all cam
paigns, except those excluded due to data quality issues, were found to 
follow a Laplace distribution. Low-concentration NOx measurements 
from ULEVs have been validated as suitable inputs for estimating the 
background noise and detection limit of remote sensing devices. A lower 
background noise reflects improved measurement stability and en
hances the device’s ability to detect smaller pollutant concentrations 
with greater confidence.

4.2. NOx emission trend characterization

By separately applying the Gumbel and Laplace distributions to each 
subset and selecting the distribution with highest R2 value as the best fit 
for describing fleet characteristics, the typical emission rates of diesel 
passenger cars from Euro 4 to Euro 6d are derived. Specifically, all fleets 
from Euro 4 to Euro 6ab follow the Gumbel distribution.7 For Euro 6d- 
TEMP and Euro 6d fleets, the Milan campaign, the Switzerland-HEAT 
campaign, and the Switzerland-2023 campaign follow the Gumbel dis
tribution while the remaining campaigns follow the Laplace distribu
tion. In conclusion, earlier-generation vehicles are better characterized 
by the Gumbel distribution, while newer models (Euro 6d-TEMP and 
Euro 6d) begin to exhibit characteristics of the Laplace distribution in 
certain cases.

Fig. 5 presents the emission trends of diesel cars across different 
campaigns. A substantial improvement in NOx emission performance 
has been observed for diesel passenger cars since the introduction of 
Euro 6 ab. Among Euro 4 to Euro 6 ab vehicles, the Switzerland-HEAT 
campaign recorded the lowest emission rates. This may be attributed 
to higher highway speeds leading to elevated combustion temperatures 
(affecting EGR control) and higher SCR temperatures within the effec
tive thermal window (as summarized in Table 2). Similar observations 
were reported by O’Driscoll et al. (2018) and Yang et al. (2022), sug
gesting that high engine load does not necessarily result in high NOx 
emissions from diesel vehicles.

In contrast, the Switzerland-2023 campaign exhibited the highest 
NOx emissions for Euro 4 to Euro 6 ab diesel passenger cars, even 

Table 3 
Instrument noise characteristics and detection limits derived from Laplace 
modeling (g/kg).

Instrument Campaign Location 
value (95 % 
CI)

Scale 
value 
(95 % CI)

Background 
noise

LoD

OPUS Switzerland- 
OPUS

0.11 (0.08, 
0.15)

0.31 
(0.29, 
0.34)

0.42 1.26

Krakow − 0.23 
(− 0.29, 
− 0.14)

0.89 
(0.83, 
0.94)

1.26 3.78

HEAT Switzerland- 
HEAT

0.45 (0.34, 
0.54)

0.49 
(0.43, 
0.55)

0.69 2.07

Milan − 0.01 
(− 0.07, 
− 0.05)

0.26 
(0.21, 
0.30)

0.35 1.05

6 Differential privacy denotes a mathematical approach for preserving the 
privacy of individual contributions by adding carefully calibrated Laplace 
noise, ensuring that the output of a query remains almost unchanged whether a 
single data point is included or excluded.

7 Detailed information on the measurement count, R2 values of the matching 
distribution, and the location value for each fleet are summarized in Table S. 3 
in the Supplementary materials. The corresponding fitting distributions for each 
Euro standard in each campaign are summarized in Table S. 4 in the Supple
mentary materials.
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surpassing the Krakow campaign, where extremely low ambient tem
peratures (as low as 5.7 ◦C) influence emission rates. Notably, the 
Switzerland-2023 campaign is the most recent of all campaigns, 
resulting in the Euro 4 to Euro6ab vehicles involved being relatively 
older. This suggests that vehicle deterioration may be impacting emis
sion rates. For Euro 6d-TEMP and Euro 6d vehicles, emission rates were 
consistently low across different campaigns. Specifically, the Milan 
campaign, which utilized the EDAR HEAT device, recorded a typical 
NOx emission rate of only 0.1 g/kg, suggesting that NOx emissions from 
Euro 6d-TEMP and Euro 6d diesel vehicles may have approached the 
detection limit.

4.3. Limit of detection significance

As shown in Section 4.2, the emission distributions for all fleets from 
Euro 4 to Euro 6 ab were consistently found to follow the Gumbel dis
tribution. However, for the cleaner Euro 6d-TEMP and Euro 6d fleets, a 
mixed pattern was observed, where some fleets follow a Laplace distri
bution while others follow a Gumbel distribution. Based on this obser
vation, it was hypothesized that the shape of the measured distribution 
is indicative of the signal-to-noise ratio. Specifically, it is suspected that 
if a fleet’s emissions are largely below the LoD, its measured distribution 
will resemble the Laplace distribution, indicating it is noise-dominated. 
Conversely, if a fleet has significant and right-skewed real emissions, the 
Gumbel distribution will provide a better fit, suggesting that the true 
emission signal is dominant.

To validate this hypothesis, a full Laplace distribution was fitted to 
the data from diesel fleets that also exhibited a Laplace-like shape (i.e., 
Euro 6d-TEMP and Euro 6d fleets of Switzerland-OPUS campaign and 
Krakow campaign). The scale parameter for each of these fleets was then 
compared to the benchmark noise scale parameter, which was previ
ously derived from the ULEV data.

Table 4 illustrate the comparison of Laplace scale parameters for the 
instrument noise and diesel fleet emission distributions. While the 
Laplace distribution provided an excellent fit for the Euro 6d-TEMP and 
Euro 6d of Switzerland-OPUS campaign and Krakow campaign data, the 
ULEV-derived noise parameter did not fall within the 95 % confidence 
intervals of the diesel fleets. However, the fitted values were only 
marginally higher than the noise benchmark. This suggests that these 
distributions are strongly noise-influenced, with a minor contribution 
from true vehicle emissions.

5. Conclusions and outlook

This study evaluated NOx emission levels of light-duty diesel pas
senger vehicles across six recent European remote sensing campaigns, 
with a particular focus on determining whether emissions from the latest 
Euro 6 series vehicles exceed the detection limit. Results confirm a 
substantial reduction in NOx emissions since the introduction of Euro 6 
ab standards, with Euro 6d-TEMP and Euro 6d vehicles approaching 
zero emissions in several campaigns.

To evaluate the instrument’s performance under field conditions, a 
data-driven method was implemented to estimate background noise and 
the LoD. This approach utilized NOx measurements from ultra-low- 
emission reference vehicles (including battery electric and petrol 
hybrid models), which are assumed to emit negligible NOx. To isolate 
the symmetrical noise component from any residual positive emission 
signals, the lower 50th percentile of the reference vehicle data was 
mirrored to create a perfectly symmetric distribution. This procedure 
effectively removes the influence of the small, right-skewed tail caused 
by occasional real-world emissions, allowing for a more accurate char
acterization of the instrument’s inherent background noise. The result
ing symmetric dataset was shown to follow a Laplace distribution, 
confirming its suitability for modeling instrument noise. Based on this 
noise model, the LoD was estimated. Results revealed that a large pro
portion of Euro 6d-TEMP and Euro 6d vehicle measurements fell below 
the estimated LoD. Moreover, in several campaigns employing the filter- 
based NDUV remote sensing system (OPUS RSD), distribution fitting 
indicated a shift from signal-dominated to noise-dominated emission 
behavior in newer Euro 6d-TEMP and Euro 6d vehicles.

The significance of a well-defined LoD is twofold. First, it is crucial 
for accurately characterizing modern low-emission fleets by dis
tinguishing genuine low-emission measurements from instrument noise, 
ensuring that the performance of the cleanest vehicles is not mis
interpreted. Second, a clear LoD is essential for maintaining the reli
ability of high-emitter identification. When a substantial proportion of 
measurements approaches the detection limit, the observed data dis
tribution becomes dominated by instrument noise, which can distort the 
statistical thresholds used to identify high emitters (Yang et al., 2022; 
Ghaffarpasand et al., 2023). As a result, the separation between truly 
clean vehicles and gross polluters becomes less reliable, undermining 
the primary goal of remote sensing programs. Future research should 
therefore focus on developing robust statistical approaches to distin
guish genuine high emitters under low-emission conditions and on 
enhancing instrumentation to improve detection sensitivity.

Looking ahead, as the number of electric vehicles especially battery 
electric vehicles on the road continues to grow, the method developed in 
this study could enable routine, day-to-day estimation of the LoD in 
remote sensing campaigns. This would be particularly valuable in the 

Fig. 5. Typical NOx emissions for diesel passenger cars in different campaigns.

Table 4 
Laplace Scale Parameters for Instrument Noise and Diesel Fleet Emissions in 
OPUS campaigns.

Campaign Scale 
parameter for 
instrument 
noise

Emission 
standard

Scale 
value 
(95 % 
CI)

Anderson–Darling 
p-value

Switzerland- 
OPUS

0.31 Euro 6d- 
TEMP

1.02 
(0.88, 
1.18)

0.27

​ Euro 6d 1.09 
(0.72, 
1.45)

0.60

Krakow 0.89 Euro 6d- 
TEMP

1.23 
(1.12, 
1.36)

0.13

​ Euro 6d 1.34 
(1.18, 
1.49)

0.84
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context of the European Commission (2025) proposed ‘Roadworthiness 
Package’, which aims to implement large-scale, routine remote sensing 
to screen at least 30 % of the vehicle fleet across all EU member states. 
Given that frequent manual calibration is often impractical, the ability 
to estimate LoD directly from ULEV measurements would support more 
effective and adaptive monitoring. This also opens new opportunities for 
research on how environmental factors such as temperature, humidity, 
and other ambient conditions, as well as traffic conditions affect in
strument detection capabilities in real-world settings, ensuring more 
robust and reliable remote sensing applications under routine regulatory 
use.
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