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A B S T R A C T

When pedestrians are cognitively loaded, this influences their street-crossing behaviour, leading to negative 
impact on overall road safety. However, the mechanisms underpinning this impact remain debated, and this 
study seeks to further investigate them through modelling and electroencephalography. We conducted a 
computer-based pedestrian crossing experiment, and employed drift-diffusion models to quantitatively analyse 
how cognitive load impacts pedestrian decision-making. To further test the models’ validity, we analysed centro- 
parietal positive potential (CPP), a neural signal associated with evidence accumulation, to investigate whether 
this neural evidence aligned with the evidence accumulation predicted by the models. In our experiment, par
ticipants encountered a simulated scenario with a car approaching under four different time-to-arrival (TTA) 
conditions. In half the trials, participants performed cognitive tasks while deciding when to cross the street. 
Results showed that cognitive load weakened the effect of TTA on the probability of crossing before the car, 
increased response times, raised the probability of collision, and attenuated CPP amplitude. The best-performing 
model, which captured all of these effects, accumulated evidence based on utility estimates, but with a lower 
responsiveness to these utilities during cognitive load. This model also showed the strongest correlation between 
its evidence traces and the CPP amplitude, both with and without cognitive load. These findings support the 
hypothesis that cognitive load reduces responsiveness to perceptual evidence (at least in non-automatised tasks), 
making it a strong candidate for explaining both our results and existing research on the effects of cognitive load 
in other tasks.

1. Introduction

Pedestrians are the most vulnerable road users due to their lack of 
protective equipment and slower movement compared to vehicles (El 
Hamdani et al., 2020). The National Highway Traffic Safety Adminis
tration (NHTSA) estimated that 7522 pedestrians died in traffic crashes 
in the U.S. in 2022, accounting for approximately 17.7 % of all traffic 
fatalities (National Safety Council, 2024). In 2022, the UK reported 385 
pedestrian fatalities, 5901 serious injuries and 13,041 minor injuries 
(UK Department for Transport, 2023). The most common contributory 
factor assigned to pedestrians involved in fatal or serious collisions in 
the UK from 2018 to 2022 was “failure to look properly” by the pedes
trian, which was linked to 9685 collisions (UK Department for Trans
port, 2023). By observing real-world data from 10,543 pedestrians, 

Wells et al. (2018) found that over one-third of pedestrians engaged in 
secondary tasks during crossings. These secondary tasks can impose a 
high cognitive load and potentially affect pedestrian decision-making.

According to cognitive load theory, cognitive load is defined as the 
mental effort required to process information within the capacity limits 
of working memory (Sweller, 1988, 2010). Research has shown that it 
can influence decision-making across multiple domains, including edu
cation (Sweller, 1988; Wang et al., 2018), social judgment (Hoffmann 
et al., 2013), attribution of intentionality (Zucchelli et al., 2025), and 
spatial reasoning (Longstaffe et al., 2014). In general, increased cogni
tive load reduces controlled processing and may bias judgments or ac
tions. Extending this perspective to traffic contexts, cognitive load also 
affects pedestrian decision-making. In street-crossing scenarios, two 
main types of secondary tasks—visual distractions and cognitive 
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tasks—can impose such load and interfere with safe crossing decisions. 
A typical example of a visual distraction would be messaging on a mo
bile phone (although this task clearly also has a cognitive element), 
whereas typical examples of cognitive distractions are phone conver
sations. The negative impact of visual distractions on pedestrian crossing 
has been consistently reported across studies: pedestrians take longer to 
cross the street, miss more safe crossing opportunities, and spend less 
time on observing the traffic environment when engaged in visually 
demanding tasks (Byington and Schwebel, 2013; Jiang et al., 2018; Tian 
et al., 2022). Compared to the well-established understanding of visual 
distractions on pedestrian crossing, the effects of cognitive tasks without 
visual distractions remain less clear. Some studies found that cognitive 
tasks can slow pedestrian crossing initiation time (Jiang et al., 2018; Liu 
et al., 2021), reduce the time pedestrians spend looking at traffic 
(Stavrinos et al., 2011), and increase the probability of being hit 
(Schwebel et al., 2012; Horberry et al., 2019). In contrast, some studies 
reported no significant impact of cognitive tasks on pedestrians’ crossing 
behaviour (Neider et al., 2011; Simmons et al., 2020). These inconsistent 
findings might be attributed to the mix of different methodologies, 
especially some of the studies cited above were studies in real traffic, 
where a lot of other confounding factors will have been involved (e.g., 
Jiang et al., 2018; Horberry et al., 2019; Liu et al., 2021). Therefore, a 
controlled study is needed to more directly examine the impact of 
cognitive load on pedestrian crossing decisions.

One way to better understand pedestrian crossing behaviour is by 
way of mathematical modelling. One modelling framework which has 
been used to model pedestrian crossing is drift diffusion models (DDMs). 
Initially proposed by Ratcliff (1978), DDMs simulate cognitive processes 
in decision-making through evidence accumulation. These models as
sume that a decision is made once the accumulated evidence in the 
model reaches a decision boundary, effectively capturing both the 
choices made and the corresponding decision times (Ratcliff & McKoon, 
2008). The efficacy of DDMs has been demonstrated in applied traffic 
scenarios, including pedestrian crossing (Lin et al., 2022; Pekkanen 
et al., 2022; Theisen et al., 2024), rear-end collision threat detection 
(Markkula et al., 2021), and drivers’ left-turn gap acceptance 
(Zgonnikov et al., 2024). However, no studies to date have incorporated 
cognitive load into the DDM framework, either in road traffic or in 
decision-making more broadly.

To examine how cognitive load influences brain activity and 
behaviour, previous studies have used electroencephalography (EEG) to 
record event-related potentials. The P300 component, in particular, has 
been widely adopted as a neural index of cognitive load. P300 compo
nent reflects cognitive processing, typically peaking around 300 ms after 
stimulus onset, and has been found to decrease significantly under 
cognitively demanding conditions in both non-traffic (Daffner et al., 
2011; Xu et al., 2020) and traffic-related tasks (Strayer & Drews, 2007; 
Chan et al., 2016). However, as the P300 primarily indexes stimulus 
evaluation rather than the decision formation process, existing research 
provides limited insight into how cognitive load alters the underlying 
dynamics of decision-making. To address this gap, we focused on the 
centro-parietal positivity (CPP), an event-related potential component 
that tracks the gradual accumulation of decision evidence and peaks 
around the time of the response (O’Connell et al., 2012; Kelly & 
O’Connell, 2013). By examining the CPP, we can model the neural 
processes of decision making with a mechanistic explanation, capturing 
the accumulation of evidence that drives the final choice. The effec
tiveness of CPP in representing decision-making processes has been 
demonstrated in both simple perceptual tasks, such as random dot- 
motion perception (Kelly & O’Connell, 2013; Kohl et al., 2020), 
gradual contrast-change detection (O’Connell et al., 2012; McGovern 
et al., 2018), and embodied decision-making tasks, such as collision 
threat detection (Markkula et al., 2021). In our previous work, we have 
used DDMs to model pedestrian crossing decisions and found a strong 
correlation between CPP amplitude and accumulated evidence in DDM 
(Ma et al., 2025). However, it remains unclear whether this correlation 

persists when modifying the task, such as by introducing cognitive load.
Here, we build on the paradigm from our previous study (Ma et al., 

2025) to directly investigate the impact of cognitive load on pedestrian 
crossing decisions and associated brain activity. Using both EEG data 
and evidence accumulation models, we test alternative hypotheses 
about the mechanisms of how cognitive load impacts decision-making. 
We conducted a computer-based pedestrian crossing experiment, 
where participants initiated street crossing via a button response. 
Cognitive load was manipulated by introducing a concurrent letter- 
counting task while participants made pedestrian crossing decisions. 
As this secondary task imposed additional but task-irrelevant demands 
on working memory, it represents an extraneous cognitive load condi
tion according to the cognitive load theory (Sweller, 1988, 2010). 
During the experiment, participants’ behavioural responses and EEG 
data were recorded simultaneously. The influence of cognitive load was 
modelled using different DDM variants, and the CPP signal was extrac
ted and compared between cognitive load and baseline tasks. Finally, 
correlations between accumulated evidence in the DDM and CPP were 
tested.

2. Method

2.1. Participants and apparatus

The experiment was designed as a 4 (TTA) × 2 (cognitive task con
ditions) within-subjects repeated measures experiment. Twenty-five 
right-handed participants (11 males, 14 females) completed the exper
iment, with a mean age of 33 ± 9.6 years. All participants had normal or 
corrected-to-normal vision and reported no history of psychiatric dis
orders or brain injuries. Participants were required to abstain from 
alcohol prior to the experiment. We conducted a power analysis using 
G*Power (Faul et al., 2009), assuming a medium effect size (Cohen’s d 
= 0.5), an alpha level of 0.05, and a target power of 0.95. Based on these 
parameters, the analysis indicated that at least 23 participants were 
needed, which is slightly fewer than our actual sample. The assumed 
medium effect size was chosen as a conservative estimate, given that 
previous cognitive load studies have typically reported effect sizes 
exceeding 0.5 (Mayer & Moreno, 2003). Participants provided informed 
consent prior to the experiment. The experiment lasted about 90 min, 
and each participant received a £20 gift voucher as compensation upon 
completion. The study was approved by the School of Psychology 
Research Ethics Committee at the University of Leeds (Reference: 
PSCETHS-1106).

In this experiment, Unity® was used to create high-quality 3D scenes 
and to control motion in the virtual world. Behavioural responses were 
recorded at the computer screen’s refresh rate of 60 Hz. EEG data were 
collected with a Biosemi ActiveTwo system, using a 64-channel 10–20 
international cap and six additional electrodes, including four channels 
for electrooculography (EOG), and two mastoid electrodes. EEG data 
were recorded at a 1024 Hz sampling rate and downsampled to 256 Hz 
after acquisition using ActiTools software (version 9.01).

2.2. Experiment design

Fig. 1 illustrates the experiment design. Each trial began with an 
auditory chime, followed by a fixation cross displayed on a grey back
ground for 2, 2.5, or 3 s, chosen randomly. Participants were instructed 
to maintain fixation on the central cross until the car appeared and could 
freely move their eyes afterward. Next, an image of a car appeared 
centrally on the screen, marking the start of the pedestrian crossing 
scenario. The car approached the participant from either the left or right 
side, randomly and with equal frequency. The participant’s viewpoint, 
or the “camera” in the virtual environment, was positioned at an average 
pedestrian eye height (approximately 1.6 m) and consistently oriented 
toward the approaching vehicle’s geometrical centre. This configuration 
replicated a natural first-person perspective, similar to how a pedestrian 
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would normally perceive an oncoming car when standing at the road
side. In each trial, the car started 40 m from the pedestrian, approaching 
at one of four speeds—16 m/s, 13.33 m/s, 11.42 m/s, or 10 m/ 
s—corresponding to TTA conditions of 2.5, 3, 3.5, and 4 s. A small per- 
trial jitter drawn from a uniform distribution in ±0.1 s was added to the 
TTA to reduce the probability of participants recognizing each of the 
four discrete trial types. The street was 4.2 m wide, and participants 
started 0.5 m from the roadside. When they decided to cross, they 
pressed the forward slash key on the keyboard, which triggered a 
translation of their position across the street in the virtual environment, 
to simulate crossing, at a speed of 1.6 m/s. As they walked, the view
point changed to reflect the pedestrian’s movement across the street. 
The visual information available to participants differed between cross- 
before and cross-after decisions depending on the presence of an 
oncoming vehicle, providing a realistic crossing experience. Participants 
could freely choose when to cross, either before or after the car passed. 
After each crossing, the scene faded out for 0.25 s before the next trial 
began. During the street-crossing task, if the participant was hit by the 
car, a “beep” sound was played to indicate the collision, and the trial 
immediately ended, with the next trial beginning thereafter.

The entire experiment consisted of eight blocks, alternating between 
blocks with and without cognitive task, as shown in Fig. 1. The cognitive 
load task was designed as counting the total occurrences of a specific 
letter in an audio recording, a method that has been used in previous 
studies (Veltman & Gaillard, 1998; Engström et al., 2005; Wilkie et al., 
2019). Participants counted throughout the entire cognitive load block 
and reported their final count to the experimenter at the end of each 
block. Half of the participants did the cognitive task first, whereas the 
other half did the tasks in the opposite order. Each of these eight blocks 
consisted of 32 trials (4 TTAs × 2 Sides × 4 repetitions), with the order 
randomised within each block, for a total of 256 trials per participant.

The virtual road-crossing scenario was presented on a 24-inch LCD 
monitor (resolution: 1920 × 1080 pixels; refresh rate: 60 Hz) positioned 
approximately 60 cm from the participant. The visual field covered 
about 50◦ horizontally and 25◦ vertically, matching a typical desktop 
viewing distance and offering a naturalistic yet controlled experience.

2.3. Procedure

Participants sat approximately 60 cm from the screen in a darkened 
EEG lab. To help participants become familiar with the experiment and 
fully understand the scenarios, a practice session was conducted prior to 
the formal experiment. This session consisted of a 5-minute practice 

block of 16 trials (4 TTAs × 2 sides × 2 repetitions), ensuring that all test 
scenarios were covered. During the practice, the experimenter was 
present to answer any questions and to make sure the participant fully 
understood the task. Thereafter, the participants were left alone to 
complete the eight experimental blocks. Self-paced breaks were allowed 
between blocks. Participants were instructed to keep their gaze on the 
fixation target and avoid blinking while the car was on screen and until 
they responded. During cognitive task blocks, participants continuously 
counted throughout the entire block and reported their final count to the 
experimenter at the end of the block.

2.4. Data preprocessing and measures

EEG preprocessing was done using EEGLAB 2019 (Delorme & 
Makeig, 2004) and Fieldtrip (Oostenveld et al., 2011). The steps of 
preprocessing were the same as in our previous study (Ma et al., 2025) 
and in line with Boyle et al. (2022), as follows:

All data were visually inspected, and channels with obviously poor 
quality were excluded. The continuous data were then re-referenced to 
the average of all 64 channels. A high-pass FIR filter was applied with 
cut-offs at 1 Hz and 0.1 Hz separately. Both filtered datasets were sub
sequently processed with a low-pass filter set at 40 Hz. Independent 
component analysis (ICA; Delorme et al., 2007) was performed on the 1 
Hz filtered dataset to extract components, which were then removed 
from the 0.1 Hz filtered dataset to eliminate artifacts. This approach 
preserves ERP integrity by avoiding distortion from applying ICA to EEG 
data filtered at 0.1 Hz (Boyle et al., 2022). For the ERP analysis, a 
baseline correction was applied using the 200 ms period before the car 
appeared in each trial. The data were segmented into 1-second epochs as 
follows: stimulus-locked epochs from − 0.1 to 0.9 s around car appear
ance, and response-locked epochs from − 0.9 to 0.1 s around the par
ticipant’s crossing initiation button press. Following epoch definition, 
the Fully Automated Statistical Thresholding for EEG Artefact Rejection 
(FASTER; Nolan et al., 2010) in MATLAB was used to identify and 
remove bad epochs. Finally, the CPP amplitude was derived by aver
aging five channels centred on Pz (Pz, CPz, POz, P1, P2), as done in 
previous studies (Markkula et al., 2021).

In addition to the EEG measures, several behavioural indicators were 
extracted to evaluate the effects of cognitive load on pedestrian decision- 
making. The behavioural measures analysed in this study included the 
probability of cross-before decisions, response time, and the probability 
of collision. We examined the influence of cognitive load on these 
measures, and further compared the model’s prediction results with the 

Fig. 1. Experimental design and trial procedure.
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experimental data based on these behavioural indices.

2.5. Basic drift–diffusion models

In past drift–diffusion modelling of road user decisions, two types of 
models have been used, based on different theoretical frameworks: 
perception-based and utility-based models. Perception-based models 
accumulate evidence directly from perceptual heuristics (Pekkanen 
et al., 2022; Zgonnikov et al., 2024; Theisen et al., 2024), whereas 
utility-based models base their evidence on the anticipated future utility 
of the action (Lin et al., 2022; Markkula et al., 2023). In our previous 
study of pedestrian crossing decisions, we compared these two model 
types (Ma et al., 2025), and found that a utility-based model exhibited 
better performance, but with relatively good performance for a 
perception-based model also. Both of these best-performing models 
shared the assumption that the rate of evidence accumulation varies 
over time (as the car approaches) and that the decision boundary is 
collapsing over time, and both models were capable of capturing the 
probability of crossing before the car and the timing of the crossing 
decisions. Therefore, in this study, we started from these two basic 
models, and tested three different possible mechanisms for how cogni
tive load might affect the modelled decision-making process. 

(1) Basic perception-based model

The definition of drift rate in the basic perception-based model (dxp) 
is as follows: 

dxp = P(t)dt+ dW (1) 

where W represents noise following a stochastic Wiener process, with a 
constant standard deviation of 1 (Ricciardi, 1976). P(t) represents the 
contribution of perceptual information to the drift rate, which varies 
across different model variants. In our previous work, P(t) was defined 
as shown in Eq. (2), and this serves as the basic model for the perception- 
based model that includes cognitive load. 

P(t) = α(TTA(t) − θcrit) (2) 

where α (α > 0) quantifies the how perceptual information affects the 
drift rate. θcrit is a critical TTA threshold which determines the direction 
in which evidence gets accumulated. 

(2) Basic utility-based model

The definition of drift rate in basic utility-based model (dxu(t)) is as 
follows: 

dxu(t) =
∫ TTA0

t
U(tʹ)dtʹ+ dW (3) 

In Eq. (3), the integrals estimate the future total utility of crossing at 
time t versus waiting until the car arrives and crossing afterward. The 
calculation of the total utility of crossing (xu(t)) ends when the pedes
trian reaches the other side of the street. The utility of crossing (U(tʹ)) 
varies across different models, and its definition in our previous study is 
shown in Eq. (4). This serves as the basis for the utility-based model that 
includes cognitive load. 

U(t) = tanh(U − C(t))

C(t) =

{
kc/(TTA0 − t), t⩽TTA0

0, t > TTA0

(4) 

Eq. (4) indicates that once crossing is initiated, the utility rate U 
represents the benefit gained from making progress at each time step. If 
the crossing occurs in front of the oncoming car, an additional cost rate 
is applied, which represents a discomfort cost that increases as the car 
approaches. Here, kc quantifies the subject’s concern about collision 

risk; a higher kc value reflects greater caution. The hyperbolic tangent 
(tanh) function acts as a squashing function: as the car passes (t = TTA0), 
C(t) approaches infinity, while tanh(U − C(t)) approaches − 1, ensuring 
the function remains integrable.

2.6. Modelling cognitive load within drift–diffusion models

To capture the underlying mechanisms through which cognitive load 
affects pedestrian decision-making, the model was developed based on 
three hypotheses supported by previous studies: 

• Hypothesis 1: influencing evidence model. For the first modelling 
approach, we assumed cognitive load affects responsiveness to 
perceptual evidence and call it the “influencing evidence” model. This 
assumption aligns with studies on cognitive control with limited 
capacity (Marois & Ivanoff, 2005). Under cognitive load, the re
sources available for cognitive control become strained, and this 
reduced ability to control attention can affect how well people pro
cess visual information and make decisions (Gilbert and Li, 2013; Liu 
et al., 2018; Jo et al., 2021).

• Hypothesis 2: separate evidence model. For the second modelling 
approach, we assumed that cognitive load directly influences the 
decision to cross the street, regardless of the incoming perceptual 
evidence, and call it the “separate evidence” model. This assumption 
can be thought of as a form of behavioural adaptation, where people 
sometimes become more cautious in their primary tasks when 
handling secondary tasks, potentially inhibiting the crossing decision 
while cognitively loaded (Taylor & Thoroughman, 2008).

• Hypothesis 3: noise model. For the third modelling approach, we 
assumed that cognitive load impacts the decision noise variability, i. 
e., noise function in the DDMs, and call it the “noise” model. This 
assumption can be thought of as another possible impact of the 
reduced cognitive control as discussed for the “influencing evidence” 
models, i.e. instead of scaling down the evidence, that evidence 
might become noisier. This, in turn, suggests that cognitive load can 
sometimes lead to decisions being made without thorough deliber
ation (Zucchelli et al., 2025).

Based on these three hypotheses, cognitive load was modelled as the 
influencing evidence model, the separate evidence model, and the noise 
model within the perception-based and utility-based frameworks, 
resulting in a total of six model variants. The details of these models are 
explained below.

For the influencing evidence model, the definition of P(t) in perception- 
based framework and the definitions of U(t) in the utility-based frame
work are shown in Eq. (5) and Eq. (6). 

P(t) = (α + kcogXcog)(TTA(t) − θcrit)

Xcog =

{
0, baseline

1, cognitive task

(5) 

U(t) = tanh((1 + kcogXcog)(U − C(t))) (6) 

where kcog quantifies the influence of the cognitive task, adjusting the 
degree to which perceptual information contributes to the drift rate. 
Compared to the original perception model in Ma et al. (2025), we 
added kcogXcog in the coefficient of TTA. Specifically, ifkcog > 0, the de
cision making process will respond more strongly to the perceptual ev
idence about the approaching car, and if kcog < 0, the decision-making 
process will respond less strongly to the perceptual evidence, indi
cating a reduced sensitivity to the TTA of the approaching car.

For the separate evidence model in the perception-based and utility- 
based frameworks, Xcog was added directly to the drift rate, indepen
dently of other coefficients. The definition of P(t) in the perception- 
based model and U(t) in the utility-based model are in Eq. (7) and Eq. 
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(8). The meanings of the variables in the equations are consistent with 
those described earlier. 

P(t) = α(TTA(t) − θcrit)+ kcogXcog (7) 

U(t) = tanh(U − C(t)+ kcogXcog) (8) 

For the noise model in the perception-based and utility-based frame
works, the standard deviation of the noise is scaled when cognitive load 
is present. Specifically, we set the noise standard deviation to 1 +

kcogXcog. The equations of P(t) in perception-based model and U(t) in 
utility-based model in this section are the same as in Eq. (2) and Eq. (4).

2.7. Boundary and non-decision time

Our previous work found that both perception-based and utility- 
based models were found to align best with human data when com
bined with a collapsing decision boundary. The definition of this 
collapsing boundary is consistent across all models described above. The 
collapsing boundary suggests that as time progresses, the amount of 
accumulated evidence to make a decision is reduced, due to the limited 
time available for decision-making. The corresponding equation is as 
follows (Zgonnikov et al., 2024): 

b(t) = ±b0 ×
1

(1 + e− k(TTA0 − t− τ) )
(9) 

Where b0 represents the boundary scaling parameter, which is multi
plied by a sigmoid function of TTA = TTA0 − t to create a collapsing 
boundary. The parameter k (where k > 0) defines the boundary’s 
sensitivity to TTA, while τ corresponds to the TTA value at which the 
boundary reaches ± 1/2b0.

All models include a normally distributed non-decision time tND, 
representing delays due to sensory perception and motor execution, 
defined as follows: 

tND ∈ N(μND, σND) (10) 

2.8. Model fitting

All models were implemented using PyDDM (Shinn et al., 2020) and 
fitted separately for each participant. The fitting process was conducted 
using the differential evolution algorithm to optimize model parameters 
and improve fit quality. The free parameters in the perception-based 
model variants were:α, θcrit , kcog, b0, k, τ, μND, σND, and those in the 
utility-based models were: U,kc,kcog,b0,k, τ,μND,σND.

A negative log-likelihood loss function was used for model fitting to 
assess accuracy. This approach calculates the probability of observing 
the data given the model, and takes the negative logarithm of that 
probability, such that lower values indicate a better fit. When a pedes
trian crosses in front of the car, we refer to the decision as a cross-before 
decision; otherwise as a cross-after decision. For cross-before decisions, 
response times were divided into bins of 0.005 s, matching the model 
simulation timestep. For cross-after decisions, all response times were 
grouped into a single bin, since our models did not predict the response 
time for these non-safety critical decisions. For each trial, the model 
predicted the probability of a response within each bin. The total 
negative log-likelihood of the observed data given the model was then 
calculated as the sum of the negative log-likelihoods of the model- 
predicted probabilities for the observed response times across all tri
als. Finally, Akaike Information Criterion values (AIC, Akaike, 1973) 
were derived from the negative log-likelihood to evaluate the trade-off 
between model fit and complexity.

3. Results

3.1. Effect of cognitive load on street-crossing behaviour

The experimental data for the probability of cross-before decisions 
and response times in cross-before trials under the four TTA conditions 
are shown in Fig. 2 (a) and (c). We used generalized linear mixed model 
(GLMM) analysis for inferential statistics, given the repeated measures 
in the data (Corp. IBM, 2021). Both the probability of cross-before de
cisions and the response times increased significantly with the increase 
of TTAs (p < 0.001), which is in line with our previous findings (Ma 
et al., 2025). The cognitive task had a significant flattening effect on the 
probability of cross-before decisions (p = 0.004). More specifically, 
under low TTA conditions (2.5 and 3 s), cognitive load increased the 
probability of making cross-before decisions, whereas under high TTA 
conditions (3.5 and 4 s), it decreased this probability. For pedestrians 
who chose to cross before the car, they exhibited longer response times 
during the cognitive task compared to the baseline task (p < 0.001).

As a preview, Figs. 2(b) and (d) present the probability of cross- 
before decisions and response times predicted by the best model. A 
detailed analysis of all tested model variants is provided in the following 
section.

3.2. Modelling cognitive load effects using drift–diffusion models

The six DDM variants were fitted to individual participants. Fig. 3
shows the predicted probabilities of cross-before decisions and response 
times by averaging the predictions for each participant’s experimental 
data. There are clear differences in predictions between the model 
variants, but these differences are small in magnitude compared to the 
effect of TTA on crossing probabilities and response times (as shown in 
Fig. 2). Therefore, to make the differences between model variants 
easier to see, in Fig. 3 the average crossing probability and response time 
at each TTA, taken across both baseline and cognitive task conditions, 
have been subtracted from both human data and model predictions, thus 
removing the increasing trend associated with TTA conditions for both 
metrics. A perfect model fit in Fig. 3 would show the navy and orange 
dashed lines passing exactly through the circles of the corresponding 
colour. The model coming closest to such a fit was the “influencing 
evidence” model, with the minimum AIC value of 32902. This model 
captured both the flattening of the probability of cross-before decisions 
under cognitive tasks (Fig. 3(a): orange and navy dashed lines showing 
crossover, in the right direction) and the increased response times for 
cross-before decisions in cognitive task conditions (Fig. 3(b): orange 
dashed line higher than navy dashed line). The model predictions for 
this model are shown in Figs. 2(b) and (d), showing its ability to also 
capture the main effect of TTA condition on both cross-before proba
bility (Fig. 2(b)) and on cross-before response time (Fig. 2(d)).

Additionally, the “influencing evidence” model variant was the best 
both for the utility-based and perception-based models, compared to the 
“separate evidence” model and the “noise” model. This alignment sug
gests that the cognitive load changed the perceptual evidence directly, 
rather than acting as separate evidence or influencing decision noise 
variability. However, none of the six model variants succeeded very well 
at reproducing the human behaviour in the baseline task at the lowest 
TTA of 2.5 s. In this condition, the participants exhibited lower proba
bilities of crossing and shorter cross-before response times than all 
model variants.

From a safety perspective, we investigated whether the best model, i. 
e., the utility-based “influencing evidence” model, could predict the 
probability of collision. Given the 4.2 m virtual street width and a 2.6 m/ 
s walking speed used in this experiment, the simulated pedestrian 
required 2.22 s to cross the street, after the participant’s button 
response. Thus, with a TTA of 2.5 s, participants only had 0.28 s to 
respond if they wanted to cross the street before the car without a 
collision. Similarly, at TTAs of 3, 3.5 and 4 s, the maximum reaction 
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times to cross safely were 0.78, 1.28 and 1.78 s, respectively. Using these 
threshold values, we calculated collision frequencies both for the par
ticipants and the model. As shown in Fig. 4, the model predictions 
aligned with the experimental data, showing a higher probability of 
collision during cognitive tasks compared to the baseline. However, the 
model’s predicted collision probability for the baseline condition was 
higher than the experimental data, particularly when the TTA was 2.5 s, 
in line with what was said above about the model’s response times being 
longer than the humans’ in this condition.

3.3. Effect of cognitive load on centro-parietal positivity (CPP)

Fig. 5 shows topographical EEG maps from 50 ms before to 50 ms 
after the response time for cross-before trials, in both baseline and 
cognitive task conditions, replicating the typical centro-parietal posi
tivity (CPP) at response that has been observed in previous studies 
without cognitive load, both in abstract laboratory tasks (O’Connell 
et al., 2012; Kelly & O’Connell, 2013) as well as in our previous study on 
pedestrian street crossing (Ma et al., 2025). Fig. 5 shows that the same 
positivity at response is present also during cognitive load, but with an 
effect of this load: T-tests comparing EEG potential at each electrode 
between baseline and cognitive task conditions revealed significant 
differences in the centro-parietal area, with EEG potential decreasing 
during the cognitive task condition. The electrodes used for CPP analysis 
are highlighted in the figure, and there is overlap between these signals 
and the electrodes affected by the cognitive task, suggesting that the CPP 
signal could be useful to further analyse the cognitive load effect.

Fig. 6(a) shows the stimulus-locked CPP under different TTA con
ditions for cross-before decisions in baseline and cognitive task condi
tions. The changes in CPP amplitude are consistent with our previous 
study (Ma et al., 2025): Initially, a negative potential appears before the 
signal buildup between 300–350 ms, likely influenced by visual evoked 
potentials triggered by the sudden onset of the stimulus, i.e., the 
appearance of the car on the screen. Following this, the signal amplitude 
begins to increase around 350 ms across all conditions, reflecting the 
positivity of the centro-parietal signal. The comparison between base
line and cognitive task conditions shows that, across all TTA conditions, 
the buildup of the CPP was attenuated in the cognitive task condition.

Fig. 6(b) shows the response-locked CPP under different TTA 

conditions for cross-before decisions in baseline and cognitive task 
conditions. For both conditions, the centro-parietal signal peaks at or 
near the response time; the typical pattern for the CPP (O’Connell et al., 
2012; Kelly & O’Connell, 2013). The CPP peak value for all TTA con
ditions was lower during the cognitive task than in the baseline condi
tion, consistent with the attenuation observed in the stimulus-locked 
CPP.

3.4. Correlation between accumulated evidence and CPP

In our previous study (Ma et al., 2025), we found a correlation be
tween model evidence and CPP amplitude. We now test whether this 
also holds for the different model variants that take cognitive load into 
account. In Section 3.2, we found that the utility-based model performed 
better than the perception model across all model variants. Therefore, in 
this section, we compared the influence of cognitive load within the 
utility-based models, analysing the evidence traces generated by the 
models in relation to CPP amplitude.

First, we compared the model evidence traces qualitatively to the 
CPP data, and found that the evidence traces in the utility-based 
“influencing evidence” model seemed to best reproduce the various 
patterns observed in the CPP amplitudes, as shown in Fig. 7(a). Specif
ically, this model captures three qualitative patterns that are observable 
in Fig. 6: First, the stimulus-locked evidence traces of the four TTA 
conditions differed significantly between the cognitive load task and the 
baseline, as shown in the left panels. Second, in stimulus-locked traces, 
the evidence values showed greater differences between TTA conditions 
in the baseline, whereas these differences were smaller in the cognitive 
load task. Third, in response-locked traces, the peak evidence value was 
lower in the cognitive load task compared to the baseline. Apart from 
these replications, it should be noted that the utility-based “influencing 
evidence” model did not represent visual evoked potentials, which is 
natural since these potentials are not addressed by the models.

In contrast, the evidence traces in the other two utility models, i.e., 
the “separate evidence” model and “noise” model, did not show any of 
these three patterns observed in the CPP. Since the results for the “noise” 
model variant were qualitatively very similar to those for the “separate 
evidence” model, we show only the “separate evidence” model in Fig. 7
(b). Furthermore, the evidence traces in Fig. 7 become noisy at late times 

Fig. 2. Probability of cross-before decisions and cross-before response time under four TTA conditions. (a), (c): Experimental data; (b), (d): Best model predictions. 
The shaded area in (a) represents 95% confidence intervals (CIs). Lines in (c) and (d) represent the mean value of response time at each TTA condition.
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in the leftmost panels and early times in the rightmost panels because, 
after participants make their decisions, the model evidence becomes 
undefined, resulting in an average based on fewer trials.

To quantitatively analyse the similarity between model evidence and 
CPP, we also analysed the correlation between response-locked CPP 
amplitude and accumulated evidence from the utility models, as shown 
in Fig. 8. This correlation included a time period of 400 ms pre response, 
chosen since it reflects the typical CPP buildup period in our data (cf. the 
response-locked traces in Figs. 6 and 7). The CPP amplitude showed a 
positive correlation with the evidence across all models, with statisti
cally significant results (p < 0.05). Among these, the “influencing 

evidence” model demonstrated the highest correlation coefficient, 
across all three different data splits (baseline, cognitive, baseline +
cognitive), further supporting its effectiveness in capturing the under
lying neural processes.

4. Discussion and conclusions

4.1. The effects of cognitive load on behaviour

This study directly investigated the impact of cognitive load on 
pedestrian crossing decisions and associated brain activity using a 

Fig. 3. Comparison of human and model probability of cross-before decisions (a) and cross-before response time (b). The error bars represent the 95 % CIs.
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controlled, computer-based experiment. By extending the paradigm in 
our previous study with a cognitively loading task, we found that 
cognitive load had a significant flattening effect on the probability of 
cross-before decisions. Specifically, there was an increase of the low 
probabilities of cross-before decisions at shorter TTA conditions (2.5 s 
and 3 s) but a decrease of the high probabilities at longer TTA conditions 
(3.5 s and 4 s); in other words, the effect of TTA on the probability of a 
cross-before decision was reduced by cognitive load. Furthermore, the 
cognitive load task resulted in increased response times and higher 
probabilities of collision, consistent with findings from previous studies 
(Jiang et al., 2018; Horberry et al., 2019; Liu et al., 2021).

To explain the pattern underlying the influence of cognitive load, we 
proposed three hypotheses: First, we hypothesized that cognitive load 
influences decision-making by consuming limited capacity required for 
cognitive control (Marois & Ivanoff, 2005). Second, we hypothesized 
that pedestrians under cognitive load may exhibit behavioural adapta
tion, becoming more cautious and inhibiting crossing decisions when 
cognitively loaded (Taylor & Thoroughman, 2008). Third, we hypoth
esized that cognitive load increases decision noise variability, some
times resulting in decisions made without thorough deliberation 
(Zucchelli et al., 2025). It should be noted that it is difficult to draw 
conclusions about these hypotheses based on the behavioural data 
alone, without modelling. It could possibly be argued that there is no 
clear evidence of behavioural adaptation, as one might expect crossing 
probability to decrease across all TTAs if this were the case. Addition
ally, the lack of a clear increase in response time variability under 
cognitive load could possibly be seen as evidence against the decision 
noise hypothesis. However, further quantitative comparisons are needed 

to clearly differentiate between these hypotheses.

4.2. Modelling cognitive load in DDMs

The DDM analysis allows for a precise and quantitative test of our 
three proposed hypotheses. We developed three approaches to model 
the effect of cognitive load within both utility-based and perception- 
based DDM frameworks: as influencing the responsiveness to percep
tual evidence (“influencing evidence” model), as an independent source 
of evidence (“separate evidence” model), or as contributing to decision 
noise variability (“noise” model), resulting in six model variants. We 
found that the utility-based “influencing evidence” model had the best 
performance among these models. It captured the flattening effect in the 
probability of cross-before decisions, increased response time and 
increased probability of collisions. These findings support our hypoth
esis that cognitive load reduces the responsiveness to perceptual input. 
When pedestrians are engaged in a cognitive load task, their remaining 
cognitive resources for perception are reduced, therefore pedestrians 
become less efficient at using the perceptual evidence to make their 
decisions (Gilbert and Li, 2013; Liu et al., 2018; Jo et al., 2021). Ac
cording to the “cognitive control hypothesis” proposed by Engström 
et al. (2017), the effects of cognitive load observed in our pedestrian 
crossing studies suggest that road crossing is not a fully automated 
behaviour but instead requires some degree of cognitive control. In fully 
automated tasks, the “influencing evidence” effect should not occur, as 
such tasks would not be impaired by cognitive load. These results pro
vide quantitative insights into how cognitive load affects the way in
dividuals integrate sensory information when making street-crossing 

Fig. 4. Group-averaged probability of collisions for all trials. The left graph shows the group-averaged model predicted values for the “influencing evidence” model, 
while the right graph shows the group-averaged experimental data with the standard deviation.

Fig. 5. Topography of response-locked activity for the baseline and cognitive task conditions, using the time window of [-50, 50] ms around the response time for 
cross-before decisions in all TTA conditions.

S. Ma et al.                                                                                                                                                                                                                                       Accident Analysis and Prevention 225 (2026) 108310 

8 



decisions.
It is noteworthy that, under baseline conditions, none of the six DDM 

variants could accurately predict the probability of cross-before de
cisions or the corresponding response times at the lowest TTA of 2.5 s. In 
this condition, participants were less likely to cross than the best-fitting 
model; however, those participants who decided to cross exhibited 
shorter cross-before response times than predicted by the model. This 
indicates that the models tended to overestimate response times and, 
consequently, the perceived collision risk. This discrepancy provides 
meaningful insight into human decision-making under time-critical 
conditions. It suggests that when decision time is limited, participants 
may rely on mechanisms beyond gradual evidence accumulation, such 
as fast heuristic strategies (Hafenbrädl et al., 2016). This kind of 
response may arise from motor readiness (Schultze-Kraft et al., 2020; 
Parés-Pujolràs et al., 2023). Pedestrians may prepare specific motor 
actions for crossing in advance. When a salient event occurs, such as the 
appearance of a car, this pre-activated motor readiness can exceed the 
decision threshold, leading to a motor response even in the absence of 
sufficient evidence. Such mechanisms enable rapid reactions in urgent 
contexts where waiting for additional evidence is not feasible, yet they 
also introduce behavioural variability that the current DDM framework, 
which assumes continuous evidence accumulation, cannot fully capture.

The above interpretation aligns with dual-process theories of higher 
cognition, which distinguish between fast, automatic System 1 pro
cessing and slower, reflective System 2 processing (Evans and Stanovich, 
2013; Kahneman, 2011). System 1 processing operate automatically and 
without controlled attention, whereas System 2 processing rely on 
working memory to support deliberate reasoning (Evans, 2008; Stano
vich, 2011). According to the default-interventionist framework, 
behaviour is typically driven by System 1 processing, with System 2 
processing intervening only when the situation is complex or cognitively 
demanding (Kahneman, 2011; Kahneman & Frederick, 2002). Based on 
this framework, the rapid crossing decisions observed at a TTA of 2.5 s 
may reflect System 1 processing that occurred too quickly for System 2 

control to engage. These results therefore suggest that, under extreme 
time pressure, pedestrians’ crossing behaviour may shift from evidence- 
based decision-making toward intuitive, pre-activated responses. 
Nevertheless, further research is required to empirically verify whether 
such System 1 and System 2 processing indeed underlie pedestrian 
street-crossing behaviour.

4.3. Cognitive load’s attenuated effect on neural signatures of decision 
making

From a neurocognitive perspective, we are the first to show that the 
effect of cognitive load causes an attenuated CPP amplitude compared to 
baseline conditions. This finding aligns with previous studies that 
examined the impact of cognitive load using ERP components such as 
P300, both in non-traffic-related tasks (Daffner et al., 2011; Xu et al., 
2020) and driving-related tasks (Chan & Singhal, 2015; Chan et al., 
2016; Yu et al., 2024). These studies suggested that a reduction in P300 
amplitude was associated with limited attentional capacity during 
cognitive load and was interpreted as a reallocation of attention and 
processing resources from processes underlying P300 generation to the 
increasing demands of working memory (Watter et al., 2001). Similarly, 
the attenuated CPP in our study may reflect a reallocation of attention 
during the pedestrian street-crossing task. Specifically, the decrease in 
CPP amplitude likely indicates a shift from deciding whether and when 
to cross to focusing on the concurrent cognitive task. Overall, our results 
align with previous arguments suggesting that the P300 and CPP are 
closely related and may reflect the same underlying neural processes 
(O’Connell et al., 2012; Twomey et al., 2015).

Furthermore, we proposed a quantitative model that can capture the 
attenuated effects of cognitive load—the evidence in our best model 
aligns with the attenuation patterns observed in CPP. Since CPP in
creases as individuals gather evidence to make a decision, its attenuation 
suggests that under cognitive load, less evidence is being accumulated 
per unit of time. As argued above, this might be due to reduced 

Fig. 6. (a) Stimulus-locked centro-parietal signal of cross-before decisions for baseline and cognitive task conditions. Time 0 corresponds to the time at which the 
approaching car appeared on the screen. (b) Response-locked centro-parietal signal of cross-before decisions for baseline and cognitive task conditions. Time 
0 corresponds to the time at which the participant pressed the button to initiate crossing. For both stimulus-locked and response-locked centro-parietal signal, a 
moving average with 0.1 s window size was applied to smooth the data for visualization.
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efficiency in perceiving and processing relevant information under 
cognitive load, because top-down attention is allocated to the secondary 
cognitive task (Lavie et al., 2004; Lavie, 2010). Another interesting 
aspect of this CPP attenuation is related to subjective certainty. Previous 
studies have shown that CPP is modulated by self-reported subjective 
certainty in decision responses, where a higher CPP amplitude indicates 
greater certainty in choices (Dehaene et al., 2003; Tagliabue et al., 
2019). In other words, the attenuated CPP in our study might suggest 
that pedestrians may have been less certain about crossing when making 

a cross-before decision under cognitive load. However, we can’t draw 
definitive conclusions from this study alone, and further studies that 
actually measure subjective certainty are needed to explore this in more 
depth.

4.4. Implications for road safety

The finding that cognitive load reduces responsiveness to perceptual 
evidence has clear implications for improving pedestrian safety. Our 

Fig. 7. Comparison of accumulated evidence traces between the influencing evidence model and the separate evidence model.
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results extend existing evidence indicating that engaging in cognitively 
demanding tasks while making street-crossing decisions increases safety 
risks (Wiczorek & Protzak, 2022; Tian et al., 2022). Importantly, our 
study provides a mechanistic explanation for these risks: under cognitive 
load, pedestrians exhibit reduced sensitivity to dynamic traffic cues, 
making them more likely to accept shorter and potentially unsafe gaps. 
This diminished responsiveness may delay decision-making or lead to 
misjudgement of available crossing intervals, directly increasing the 
likelihood of unsafe crossing behaviours. In practical terms, these find
ings suggest the need for interventions that support pedestrians’ gap 
acceptance decisions under cognitive load. For example, infrastructure- 
based alert systems that integrate roadside sensors or connected vehicle 
technologies could provide context-aware warnings when high-risk gaps 
are detected, effectively compensating for reduced perceptual 
responsiveness.

Beyond conventional traffic environments, understanding pedestrian 
cognitive load is critical for improving the safety of autonomous vehicle 
(AV) systems. Pedestrian models are increasingly used in AV research to 
predict pedestrian behaviour around vehicles (Saleh et al., 2020; 
Sharma et al., 2022) and to simulate realistic human agents in virtual 
testing (Grasso et al., 2020). Incorporating cognitive-load effects into 
these models can enhance their predictive accuracy and ecological 
validity, as cognitive load systematically influences pedestrian decision- 
making and safety behaviour (Wiczorek & Protzak, 2022; Tian et al., 
2022; Ma et al., 2025). Moreover, AV–pedestrian communication sys
tems could benefit from accounting for pedestrians’ cognitive states
—for example, by using adaptive external human–machine interfaces 
(Eisma et al., 2021) that provide clearer intent signalling when pedes
trians are distracted. In this way, insights from cognitive and neuro
physiological modelling can directly inform the development of safer, 
more human-centred autonomous transport systems.

5. Appendix

The experiment demo video can be accessed via the following link: 
https://osf.io/2s6fy/overview?view_only=e11a07a7f9cb4c6996f3905 
2f6a34b42.
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Information Theory. Akadémia Kiadó, Budapest, Hungary, pp. 267–281.

Boyle, N.B., Dye, L., Lawton, C.L., Billington, J., 2022. A combination of green tea, 
rhodiola, magnesium, and B vitamins increases electroencephalogram theta activity 
during attentional task performance under conditions of induced social stress. Front. 
Nutr. 9, 935001.

Byington, K.W., Schwebel, D.C., 2013. Effects of mobile internet use on college student 
pedestrian injury risk. Accid. Anal. Prev. 51, 78–83.

Chan, M., Singhal, A., 2015. Emotion matters: implications for distracted driving. Saf. 
Sci. 72, 302–309. https://doi.org/10.1016/J.SSCI.2014.10.002.

Chan, M., Nyazika, S., Singhal, A., 2016. Effects of a front-seat passenger on driver 
attention: an electrophysiological approach. Transp. Res. Part F Traffic Psychol. 
Behav. 43, 67–79. https://doi.org/10.1016/J.TRF.2016.09.016.

Corp, I.B.M., 2021. IBM SPSS Statistics for Windows, Version 28.0. IBM Corp, Armonk, 
NY.

Daffner, K.R., Chong, H., Sun, X., Tarbi, E.C., Riis, J.L., McGinnis, S.M., Holcomb, P.J., 
2011. Mechanisms underlying age-and performance-related differences in working 
memory. J. Cogn. Neurosci. 23 (6), 1298–1314.

Dehaene, S., Sergent, C., Changeux, J.P., 2003. A neuronal network model linking 
subjective reports and objective physiological data during conscious perception. 
Proc. Natl. Acad. Sci. 100 (14), 8520–8525.

Delorme, A., Sejnowski, T., Makeig, S., 2007. Enhanced detection of artifacts in EEG data 
using higher-order statistics and independent component analysis. Neuroimage 34 
(4), 1443–1449.

El Hamdani, S., Benamar, N., Younis, M., 2020. Pedestrian support in intelligent 
transportation systems: challenges, solutions and open issues. Transp. Res. Part C 
Emerging Technol. 121, 102856. https://doi.org/10.1016/j.trc.2020.102856.

Eisma, Y.B., Reiff, A., Kooijman, L., Dodou, D., de Winter, J.C.F., 2021. External human- 
machine interfaces: effects of message perspective. Transport. Res. F: Traffic Psychol. 
Behav. 78, 30–41. https://doi.org/10.1016/j.trf.2021.01.013.
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