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Abstract

The inverted pendulum pedestrian model (IPM) for walking on laterally-oscillating structures, originally

proposed by Macdonald [1], has been recently calibrated using data from pedestrians walking on a

laterally-oscillating instrumented treadmill and generalised for predictive use in Czaplewski et al. [2].

The former task was accomplished by defining an empirically-derived foot placement control law. The

latter task was accomplished by relating the parameters of this law to the basic anthropometric and

gait characteristics of the pedestrian. Closed-form solutions for the long-term average lateral forces

obtained from the generalised IPM were then derived in Czaplewski & Bocian [3] based on the framework

introduced by McRobie [4]. These solutions were used to obtain the probabilistic lateral dynamic

(in)stability criteria for structures subjected to pedestrian loading presented in this paper. A framework

introduced in Bocian et al. [5] is used in which stability requirements are expressed in terms of the

pedestrian Scruton number and the critical number of pedestrians. To achieve this goal it was necessary

to propose a framework for defining a statistical model of the anthropometric parameters used within

the IPM solutions, relevant for a given population of pedestrians. It was also necessary to define IPM

validity criteria enabling spurious solutions to be omitted from the analysis. To make the proposed

structural stability criteria applicable in engineering practice, a framework had to be defined enabling

simplified envelopes of the self-excited forces to be obtained. Crucially, these simplified envelopes should

not penalise structural solutions, rendering them overly conservative. The proposed stability criteria are

evaluated based on two case studies of bridges prone to pedestrian-induced lateral dynamic instability.

The relatively recent occurrence of instability on the Squibb Park Bridge and its consequences are

presented here in detail, as this case is currently little known in the structural engineering community.

Keywords: bridge design, pedestrian-structure interaction, vibration serviceability, probabilistic sta-

bility criteria, London Millennium Bridge, Clifton Suspension Bridge, Squibb Park Bridge

1 Introduction

Signiőcant advances in understanding of pedestrian lateral loading on structures have been made in the

years following the instability of the London Millennium Footbridge (LMF) on its opening day [6]. The

evidence for the dominant role of pedestrian-structure interaction mechanism in causing structural instability

was obtained from measurements on full-scale bridges [7], [8], [9], [10], [11], [12], [13] and purpose-built

experimental platforms [2], [14], [15], [16], [17], [18], [19], [20], [21], [22]. Numerous modelling approaches

have been proposed to capture pedestrian behaviour on laterally-oscillating structures with varying level of

success [16], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32].

Despite these advances in knowledge, the design of structures, particularly bridges, against pedestrian-

induced lateral instability remains a high-risk activity. This is because structural codes development gener-

ally lags the challenges of engineering practice. Perhaps the best recent illustration of this is the protracted
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litigation that followed the failed retroőt of the Squibb Park Bridge (SPB) in the USA which suffered from

excessive pedestrian-induced vibrations. The case against the SPB’s designer ended in a no-liability settle-

ment, thanks to which the SPB owner recovered $1.95M. Whatever the verdict, both parties involved in

this project and the people the SPB was to serve cannot call themselves the winners.

It seems the 2nd generation of Eurocodes, which is currently under development, will not address this

problem. The considered proposal is to effectively adopt the provisions reported from two European re-

search projects funded through the Research Fund for Coal and Steel (RFCS), namely SYNPEX [33], i.e.

Advanced Load Models for Synchronous Pedestrian Excitation and Optimised Design Guidelines for Steel

Footbridges, and HIVOSS [34], i.e. Human Induced Vibrations of Steel Structures, which concluded more

than 15 years ago. These provisions rely on harmonic load models in which pedestrian-structure interaction

is not inherently captured. However, synchronisation of pedestrian footsteps to the lateral structural motion

is intrinsically considered, which is known not to be the dominant structural excitation mechanism [16], [19],

[20], [21]. Therefore, their applicability is, at best, uncertain. Perhaps this is the reason for these provisions

to be included within the 2nd generation of Eurocodes in the form of an informative annex. This is to say

that they can be used should a national annex be unavailable.

In many countries which adopted Eurocodes, there is still no national annex regulating the design of struc-

tures against pedestrian-induced loading. From these in which there is, arguably the most advanced design

guidelines against pedestrian-induced lateral loading are included in the British National Annex to Eurocode

1 [35]. This is a consequence of the signiőcant effort spent on solving this problem in the wake of the lateral

instability observed on the LMF [6]. These design guidelines originate from a loading model accounting

for the legged nature of human locomotion [36] – which was a notable breakthrough from the harmonic

models of pedestrian loading – in which synchronisation of pedestrian gait to the lateral structural motion

is not a necessary condition for the occurrence of structural instability. However, at their culmination, these

guidelines are adjusted to match the results of limited measurements from the LMF only. Therefore, their

universal applicability remains uncertain.

The design of structures is inherently associated with risk management. To facilitate this task in the context

of lateral structural stability, it is postulated that the relevant design guidelines should meet the following

requirements:

(i) They should be derived from őrst principles. Given the developments in our understanding of pedestrian-

structure interaction over the last two decades, there is no reason why the design guidelines should be

phenomenological. Phenomenological guidelines are those containing design provisions that attempt

to link cause and effect either without necessarily considering the underlying mechanisms or adopting

uncertain assumptions. This is typical of the early stages of the development of theory describing

observations. In the context considered, the quintessential example of this are the pedestrian loading

models based on the preferential-phase synchronisation of the timing of pedestrian footsteps to the

lateral structural motion – a condition known as synchronous lateral excitation or lock-in [6], [37].

This condition is now known to be neither the dominant structural excitation mechanism nor even

necessary for structural instability to occur [16], [18], [19], [20]. To address this shortcoming, design

guidelines should be based on a pedestrian model that captures the fundamental relationships between

pedestrian anthropometric and gait characteristics, and bridge dynamics. This will ensure that the

mechanisms governing the observed behaviours are understood and taken into account.

(ii) They should be indiscriminate. Pedestrian-induced lateral structural instability has been observed on

bridges varying in size, principal load bearing mechanism, construction materials and location – see

Tables 1 and 2 in [38]. What uniőes all those instability cases is the structural excitation mechanism.

Therefore, there is an argument to be made for the design guidelines to be universal. This is to say that

they should be generally applicable for any given structure and any given population of pedestrians.
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(iii) They should be speciőc, but not restrictive. This means that they should give the designer the con-

ődence to make informed choices whilst accounting for the speciőc structural characteristics and

operational conditions which may differ from project to project. The structural characteristics in-

clude the dynamic properties such as the modal frequency, mass, damping and mode shape, and the

dimensions. The operational conditions may relate to the speciőc population of users, their number

and distribution on the structure. All these factors can determine the critical loading conditions.

(iv) They should be adaptable. The target service life for bridges during which they are expected to re-

main operational may vary depending on their role and importance. Nevertheless, footbridges and

road bridges have been known to suffer from pedestrian-induced lateral instability. A good example

of the latter class is the Auckland Harbour Bridge (AHB) in New Zealand [39]. This large bridge

repeatedly experienced excessive lateral vibrations when occupied by crowds of walking pedestrians.

This occurred during Maōri land marches of 1975 and 2004, and most recently in 2022 during demon-

strations against COVID-19 vaccine mandate. The AHB, inaugurated in 1954, was never envisaged

to experience the rapidly increasing level of traffic. It was widened as soon as in 1969 by the addition

of two lanes on each side, cantilevered from the piers. These lanes are currently dedicated to road

traffic, but on the rare occasions pedestrian traffic is allowed, they can suffer from the excessive lateral

response.

Modern bridges are required to withstand many decades of use. Eurocode 0 (BS EN 1990:2002+A1:2005)

enforces the service life of 100 years [40], which has been extended in the UK to 120 years according to

the UK National Annex to Eurocode 1 (NA+A1:2020 to BS EN 1991-2:2003) [35]. AASHTO (Amer-

ican Association of State Highway and Transportation Officials), which is equivalent to the National

Highways in the UK, suggests the design service life for steel and concrete highway bridges between 75

and 150 years [41]. Just like the road traffic loading in the case of the AHB, pedestrian loading is likely

to change in this long-term perspective. A recent study predicts over half of the global population of

adults to be overweight or obese by 2050 [42]. Taking this into consideration, the design guidelines

should enable the assessment of instability not only for the current users of structures, but also be

capable of taking into account future population trends.

(v) They should be simple enough to be used in engineering practice. There is a balance to be struck

between detail and clarity. Simpler design guidelines prevent from errors being made but may not

capture the expected structural behaviour precisely. They may still be acceptable, provided they do

not penalise the design, rendering it overly conservative.

Considering all of the above, the overreaching aim of this study is to deőne design provisions against lateral

dynamic instability for structures subjected to the loading from walking pedestrians. Underpinning the

development of these design provisions are the requirements stated in points (i) – (v). The outputs from

the calibrated and generalised IPM deőned in [2] and [3] are used for this purpose, thus satisfying (i).

To improve the generalised IPM accuracy, also purported in (i), an analytical criterion is derived enabling

solutions violating the kinematic constraints of human walking gait to be identiőed and omitted from further

processing. The lateral dynamic stability criteria are deőned based on thereof validated outputs from the

generalised IPM using a framework introduced in [5]. These criteria are expressed in the probabilistic

sense, taking into account the structural characteristics and operational conditions, thus satisfying (iii). A

statistical model of pedestrian anthropometric parameters is proposed applicable for any given population

of pedestrians, thus satisfying (ii). The outputs from this model are used to determine the equivalent

added damping and mass for the considered population of pedestrians for use within the probabilistic

stability criteria, thus satisfying (iv). An algorithm is also proposed enabling piecewise-linear envelopes of

the critical equivalent added damping and its standard deviation to be deőned. This makes the proposed

probabilistic stability criteria suitable for the inclusion in codiőed design guidelines, thus satisfying (v).

The rest of the paper is organised as follows. Section 2 presents research materials and methods. The

generalised IPM is presented in Section 2.1, closed-form long-term solutions of the lateral self-excited forces
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derived from the generalised IPM are presented in Section 2.2, and probabilistic stability criteria are pre-

sented in Section 2.3. The results of this study are presented and discussed in Section 3. The anthropometric

data for populations of selected European countries and the USA are presented in Section 3.1. The statis-

tical model of of the anthropometric parameters from which inputs to the generalised IPM can be obtained

is presented in Section 3.2. The analytical criterion enabling solutions of the generalised IPM violating

kinematic gait constraints to be identiőed is derived in Section 3.3. The self-excited forces expressed in

terms of the equivalent added damping and mass are established for an exemplar population in Section 3.4.

The added mass effect, which can shift the stability boundaries, is established in Section 3.4.1, and the

critical equivalent added damping and its standard deviation is established in Section 3.4.2. The algorithm

enabling piecewise-linear envelopes of the critical equivalent added damping and its standard deviation to be

obtained is presented in Section 3.4.3. Two case studies conducted to evaluate the proposed lateral dynamic

stability criteria are presented in Section 3.5. The concluding remarks are presented in Section 4.

2 Materials and methods

This section presents the main components necessary to deőne provisions against structural lateral dynamic

instability. The calibrated and generalised IPM, as proposed in Czaplewski et al. [2], is presented in Section

2.1. The closed-form solutions for the long-term average self-excited forces obtained from the generalised

IPM, as derived in Czaplewski & Bocian [3], are presented in Section 2.2. The probabilistic stability criteria,

as derived in Bocian et al. [5], are presented in Section 2.3.

2.1 Generalised inverted pendulum pedestrian model (IPM)

The long-term structural dynamic stability of the considered mode under the action of pedestrians is mainly

affected by the component of force applied at the modal frequency, fb [4], [5]. That force component is

captured by the generalised IPM, as shown in Czaplewski et al. [2]. Assuming that the mode behaves

linearly, the equation of motion for that mode can be deőned by [5]:

[

M +

N
∑

i=1

∆Mi (ωb)φ
2
i

]

Ẍ +

[

C +

N
∑

i=1

∆Ci (ωb)φ
2
i

]

Ẋ +KX = Frem (1)

where M , C and K are the modal mass, damping and stiffness, respectively, N is the number of pedestrians

on the structure, ∆Ci and ∆Mi are the equivalent added damping and mass, respectively, for the i-th

pedestrian, which are dependent on the structural vibration frequency, fb =
ωb

2π , φi is the modal amplitude

at the location of i-th pedestrian, X is the generalised displacement with dots over symbols representing

relative differentiation with respect to time, and Frem contains all remaining components of pedestrian

lateral force, i.e. it does not include the self-excited forces at fb. All components of Frem either provide

background excitation to the structure, since they are detuned from fb, or their magnitudes are too small to

cause any signiőcant long-term effects [1]. Therefore, in the analysis of structural stability those components

can be discarded by setting Frem = 0.

The generalised IPM, presented in Czaplewski et al. [2], is the calibrated and parametrised IPM originally

proposed by Macdonald in [1], which was inspired by the work of Barker [36]. It consists of a mass, m,

equivalent to the pedestrian mass and concentrated at a point referred to as the centre of mass (CoM),

sitting on top of a massless rigid leg of the length l. The IPM is a two-dimensional model conőned to the

frontal plane, i.e. a vertical plane perpendicular to the direction of progression. It represents pedestrian

body dynamics during the single-support phase of gait, in which only one leg is in contact with the ground.

The double-support phase of gait, in which the support of the body is transferred from one leg to the other,

is omitted, hence the switch between steps is instantaneous while preserving the lateral velocity of the CoM.
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Figure 1: Diagrammatic representation of a structure during the development of lateral instability due to

the loading from N inhomogeneous pedestrians represented by the generalised inverted pendulum pedestrian

models (IPMs).

To ensure that balance is maintained, a foot placement control law of the type proposed by Hof et al. [43] is

implemented within the generalised IPM. The position of the centre of pressure (CoP), which is effectively

the origin of the ground reaction force vector, that being equivalent and opposite to the vector of the force

exerted by the pedestrian onto the structure, at the initiation of the step is adjusted according to:

ui,j = yi (ti,j) + αi [ẋi (ti,j − τi) + ẏi (ti,j)]± βi (2)

where the subscripts i and j denote quantities deőned for the i-th pedestrian and j-th step, respectively,

y is the lateral displacement of the CoM relative to an arbitrary point on the structure, x is the lateral

displacement of the structure at the location of the i-th pedestrian relative to a stationary (in the absolute

sense) reference point, α is the constant of proportionality (i.e. slope), β is the constant offset (i.e. intercept)

which is taken as positive and negative for steps taken with the right and left leg, respectively, ti,j is the

time instance of the initiation of the j-th step by the i-th pedestrian, τ is the time offset, and dots over

symbols represent relative derivatives with respect to time t.

The foot placement control law in Eq. 2 differs from the law proposed by Hof et al. [43], adopted in the

original IPM proposed by Macdonald [1], in that coefficients α and β in Eq. 2 are empirically obtained

constants generalised based on the pedestrian anthropometric characteristics. Therefore, α corresponds

to 1/Ωp in Hof et al. [43], where Ωp is the angular pendulum frequency deőned as
√

g/l where g is the

gravitational acceleration and l = 1.34L, where L is the pedestrian leg length, and β corresponds to the

constant lateral offset termed the margin of stability, denoted bmin in Hof et al. [43]. Furthermore, the

time offset τ introduced in Eq. 2, but missing in Hof et al. [43], accounts for the omission of the double-
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support phase of gait within the IPM and neuromotor control, i.e. issues related to the integration of sensory

information and the execution of motor activities enabling the pedestrian to remain balanced. Both these

issues are discussed in more detail in Section 3.1.4 in Czaplewski et al. [2].

The anthropometric characteristics deőning α and β are the pedestrian height, H, leg length taken as the

distance between the lateral malleous and the top of greater trochanter, L, pelvis width taken as the lateral

distance between the points on the two sides of pedestrian body marking the top of greater trochanter, P

and shoulder width taken as the lateral distance between points on the two sides of pedestrian body marking

the glenohumeral axes, S, such that:

αi = 0.501
√

Hi − 1.462

√

Li

Hi
+ 1.3

√

Pi

Hi
+ 1.747

√

Si

Hi
− 0.808 (3)

βi = 0.0752αi +N (−0.0106, 0.0015) (4)

where N (µ, σ) is a random variable drawn from normal distribution with mean µ and standard deviation

σ. The time offset, τ , is deőned in terms of the stride frequency, fs:

τi = −0.0116f1.571s,i + 0.0476f−1
s,i (5)

The CoM equation of motion, assuming the leg remains close to vertical during walking, is given by:

ÿi (t) +
1

α2
i

[ui,j − yi (t)] = −ẍ (t) (6)

and the total lateral force from the pedestrian onto the structure is given by:

Fi (t) = −mi [ẍ (t) + ÿi (t)] =
mi

α2
i

[ui,j − yi (t)] (7)

The pedestrian-speciőc parameters, i.e. mass, mi, together with αi, βi and τi deőned in Eqs. 3, 4 and 5,

respectively, determine the long-term average self-excited forces at the modal frequency, ∆Ci and ∆Mi,

which are used in the generalised equation of motion in Eq. 1. These forces are deőned in Section 2.2.

2.2 Closed-form solutions of the long-term average self-excited forces

The closed-form solutions for the long-term average lateral forces generated from the generalised IPM at

the structural oscillation frequency were derived in Czaplewski & Bocian [3] based on the formulation

of the original IPM porposed by Macdonald [1] introduced by McRobie [4]. Those solutions cover two

types of pedestrian stepping behaviour on laterally-oscillating structures: phase drift and synchronisation.

Phase drift occurs when pedestrian stride frequency is constant and different from the structural oscilla-

tion frequency, hence the phase between the pedestrian and structural motion evolves at a constant rate.

Synchronisation occurs when those two frequencies are exactly the same, hence the phase between the pedes-

trian and structural motion is constant. However, they do not cover phase pulling, i.e. the case when the

pedestrian stride frequency is modulated by the structural motion, hence the phase between the pedestrian

and structural motion evolves at a varying rate. Whether all these cases should be taken into account in

deőning the structural lateral dynamic stability criteria is still an issue of debate.

Phase pulling mechanism was őrst discovered from the analysis of pedestrian-structure interaction on

vertically-oscillating structures using an inverted pendulum pedestrian model in Bocian et al. [44], [45]
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and some empirical evidence for this was provided in Nessler et al. [46]. It was advocated by McRobie et al.

[47] that the same mechanism, albeit termed intermittency and limited to one mode of phase modulation

only, could explain the underestimation of the negative damping effect arising from pedestrian-structure

interaction on laterally-oscillating structures from laboratory measurements relative to that obtained from

measurements on full-scale bridges. Empirical evidence supporting this claim was provided from the exper-

imental campaign by Bocian et al. [19], although two modes of phase pulling were identiőed distinguished

based on whether fs falls below or above fb, in line with the model predictions [44], [45]. Another expla-

nation was offered in McRobie [4] to reconcile the outputs from the IPM and measurements from the LMF

[6] in that a proportion of pedestrians in a crowd could synchronise their gait with the lateral structural

motion at phases increasing the detrimental damping effect.

Whether the phase-pulling mechanism and synchronisation should be incorporated in the provisions against

structural instability is still unclear. Bocian et al. [19] identiőed phase pulling in only 5 out of 137

conducted tests with pedestrians walking on a laterally-oscillating instrumented treadmill, although the

criterion adopted therein for the classiőcation of this stepping behaviour was quite stringent. The same study

reported no evidence of preferential phase frequency entrainment (i.e. lock in), while very few occurrences

of synchronisation were reported from observations on full-scale structures [38]. Therefore, while neither

phase pulling nor synchronisation can be discounted at this point, it is difficult to argue their central role in

causing structural instability. Nevertheless, the IPM lends itself to modiőcations enabling this mechanism

to be captured, as shown in [47], [48], [49].

The parametric analyses of the generalised IPM in the case of phase drift presented in Czaplewski &

Bocian [3] suggest that pedestrians can generate the effective negative damping much more detrimental to

structural stability than the average estimates obtained from the LMF [6]. Therefore, even without making

any assumptions as to the occurrence of phase pulling or synchronisation, they can provide more onerous

structural (in)stability criteria than those currently available, e.g. [5], [35], [50], [51].

Taking all of the above into consideration, the structural stability criteria presented in this study are based

on the solutions of the self-excited forces for the case of phase drift. It needs to be borne in mind that these

solutions also contain the occurrence of synchronisation, however ∆C and ∆M are averaged in this case

over all possible phase angles. Therefore, for the general case of phase drift, according to [3], ∆Ci and ∆Mi

are deőned by:

∆Ci = − 2miA
2

α2
iω

2
bTi

(K1a1 −K2a2) (8)

∆Mi =
miA

α2
iω

2
b

[

1− 2A

ωbTi
(K1a2 +K2a1)

]

(9)

where:

A = 1− 1

1 + α2
iω

2
b

K1 = 1− αiωb

A
sinψτ,i

K2 = αiωb

(

1− 1

A
cosψτ,i

)

a1 = 1− e
Ti
2αi cosψs,i

a2 = e
Ti
2αi sinψs,i

and ψs,i =
ωbTi

2 deőnes the phase offset per period of a single step, where Ti = 1
fs,i

is the duration of the gait
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cycle, and ψτ,i = ωbτi deőnes the phase offset per time lag. As can be seen in Eqs. 8 and 9, the long-term

solutions for the average self-excited forces are independent from βi included in the foot placement control

law in Eq. 2, but they are dependent on αi and τi.

Having deőned ∆Ci and ∆Mi for any pedestrian with known anthropometric and gait characteristics, a

probabilistic framework is required to account for the distribution of the self-excited forces in the population

sample loading a structure. Such a framework is presented in Section 2.3.

2.3 Probabilistic stability criteria

A probabilistic framework deőning the structural lateral dynamic stability criteria, suitable for use with the

generalised IPM, was presented in Bocian et al. [5]. The structural stability boundary for a given mode was

derived based on Eq. 1 by applying Fourier transforms and substituting for the structural angular natural

frequency ωn =
√

K
M and the damping ratio ζ = C

2Mωn
[52]:

−
[

1 +
1

M

N
∑

i=1

∆Mi (ωb)φ
2
i

]

ω2
b +

[

2ζωn +
1

M

N
∑

i=1

∆Ci (ωb)φ
2
i

]

iωb + ω2
n = 0 (10)

where i =
√
−1. Therefore, on the stability boundary of the pedestrians-structure system the following

relationships apply [52], [53]:

ωn = ωb

√

1 + µ̃∆M (ωb)mr (11)

ζ = − ωb

ωn
µ̃∆C (ωb)mr (12)

where mr =
Mp

M is the pedestrians to structure mass ratio in which the modal mass of pedestrians is deőned

as:

Mp =

∫ Ls

0

mpφ
2 ds (13)

where Ls is the length of the structure, mp is the mass of pedestrians per unit length and s is the distance

along the structure. In Eqs. 11 and 12, µ̃∆C and µ̃∆M are the mean equivalent added damping and mass,

respectively, based on the considered population, normalised such that:

µ̃∆C =
µ∆C

2ωbµm
(14)

µ̃∆M =
µ∆M

µm
(15)

where µm is the average mass of a pedestrian for the considered population.

By analogy with the classical analysis of ŕutter instability using ŕutter derivatives in wind engineering

[54], [55], a convenient way of expressing the stability boundary in terms of the pedestrian Scruton number

was proposed by McRobie & Morgenthal [14]. Using a similar approach, the pedestrian Scruton number is

deőned as:

D = ζ
M

Mp
(16)

8



which is effectively a mass-damping parameter. The same approach was adopted in Newland [53], except

that D in Eq. 16 is half of the pedestrian Scruton number deőned therein. To avoid structural lateral

dynamic instability in the considered vibration mode, D should lie above the stability boundary.

Three loading scenarios were considered in [5], for which the pedestrian Scruton number was deőned in a

probabilistic sense. To simplify the notation, parameters Φn can be introduced deőning the n-th power of

the mode shape integral:

Φn =

∫ Ls

0

φn ds (17)

which can be evaluated for any mode shape. However, for a mode shape deőned by p half sine waves, such

that:

φ = sin
pπs

Ls
(18)

based on Eq. 17, Φ2 = 1
2 and Φ4 = 3

8 for any integer p. To account for the variability of pedestrian

parameters, the standard deviation of the normalised equivalent added damping is used:

σ̃∆C =
σ∆C

2ωbµm
(19)

together with the conődence limits drawn from normal distribution, such that zγ corresponds to the

100 (1− γ) percent one-sided upper conődence interval, such that for the 95% conődence limit zγ=0.05 =

1.645 and for the 99% conődence limit zγ=0.01 = 2.326.

For the uniform distribution of pedestrians on the structure:

ζ
M

Mp,nom

> −µ̃∆C + zγ σ̃∆C
1

Φ2

√
N

√

Φ4 (20)

where the nominal modal mass of pedestrian, Mp,nom, can be taken as:

Mp,nom = NµmΦ2 (21)

Therefore, for a sinusoidal mode shape, Eq. 20 simpliőes to:

ζ
M

Mp,nom

> −µ̃∆C + zγ σ̃∆C

√

3

2N
(22)

where:

Mp,nom =
Nµm

2
(23)

For the random distribution of pedestrians on the structure:

ζ
M

Mp,nom

> −µ̃∆C +
zγ

Φ2

√
N

√

σ̃2
∆CΦ4 + µ̃2

∆C (Φ4 − Φ2
2) (24)
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which for a sinusoidal mode shape simpliőes to:

ζ
M

Mp,nom

> −µ̃∆C + zγ

√

1

2N
(µ̃2

∆C + 3σ̃2
∆C) (25)

For all pedestrians distributed at the maximum of the mode shape:

ζ
M

Mp,nom

>
φ2

max

Φ2

(

−µ̃∆C + zγ σ̃∆C
1√
N

)

(26)

For more details on the derivation of the probabilistic stability criteria the reader is referred to Bocian et al.

[5]. The remaining problem is the deőnition of µ̃∆C , µ̃∆M and σ̃∆C based on closed-form solutions presented

in Section 2.2 which, according to the generalised IPM presented in Section 2.1, depend on the considered

population of pedestrians and their anthropometric characteristics.

3 Results and discussion

To obtain outputs from the calibrated and generalised IPM based on the closed-form solutions presented in

Section 2.2, the pedestrian anthropometric data are required, which are deőned in Section 3.1. These data

are used to establish statistical models of the pedestrian anthropometric parameters presented in Section

3.2. The validity of the calibrated and generalised IPM is then established in Section 3.3, before deőning the

critical pedestrian-generated forces in terms of the equivalent added damping, ∆C, and equivalent added

mass, ∆M , in Section 3.4. To showcase the applicability of the proposed structural stability criteria, case

studies of two bridges susceptible to pedestrian-induced lateral instability are presented in Section 3.5.

Since these bridges are located in the UK and the USA, the critical stability criteria are established for

the two corresponding populations, and additionally for the population of Poland, although the presented

methodology can be applied for any population of pedestrians.

3.1 Anthropometric data

The anthropometric data required to deőne the probabilistic structural stability criteria based on the outputs

of the calibrated and generalised IPM were taken from publications reporting these data for the selected

countries in Europe, i.e. Poland and the UK [56], and the USA [57]. The data for the UK and the USA

will be used in the case studies of bridges prone to the lateral dynamic instability under the action of

pedestrians presented in Section 3.5. The anthropometric datasets reported in [56], [57] are given according

to ISO 7250 standard [58] providing a convention for describing the anthropometric measurements. Apart

from the stature, which was taken as equivalent to the height, H, and the hip breadth, which was taken as

equivalent to the pelvis width, P , the datasets also include the shoulder breadth, which is deőned in ISO

7250 standard [58] in a different manner than the shoulder width, S, used in the generalised IPM [2]. To

account for this difference, a multiplier of 0.83 was applied to the values from [56], [57] to obtain S.

The remaining parameter to deőne is the leg length, L. Due to lack of suitable data deőning this parameter

for the considered populations compatible with the measurement method in [18], [19], L was taken herein to

reŕect the data from tests on the instrumented treadmill used to calibrate the IPM. The mean value of L
H

was 0.45 and the standard deviation was 0.0115, hence these values were adopted in all statistical models.

The pedestrian mass is correlated with the height [59], which is captured by the body mass index (BMI),

deőned by the ratio m
H2 , where m is expressed in kg and H is expressed in m. According to the World

Health Organization (WHO) [60], in 2016 the mean BMI for men and women in Poland was 27.4 and 25.9

kgm−2, respectively, with the corresponding standard deviation of 3.85 and 4.85 kgm−2 [61]. According to

10



Figure 2: Anthropometric parameters adopted in the calibrated and generalised IPM [2].

Table 1: Anthropometric parameters for the populations of selected countries expressed according to the

convention of ISO 7250 [58].

Country Gender

Stature [m] Hip breadth [m]
Shoulder

breadth [m]

percentile percentile percentile

5th 50th 95th 5th 50th 95th 5th 50th 95th

Poland
male (48%) 1.660 1.778 1.890 0.311 0.345 0.380 0.376 0.410 0.445

female (52%) 1.536 1.634 1.740 0.319 0.358 0.388 0.332 0.372 0.416

United

Kingdom

male (49%) 1.641 1.775 1.869 0.316 0.363 0.411 0.376 0.412 0.447

female (51%) 1.514 1.620 1.726 0.332 0.390 0.448 0.338 0.368 0.394

USA
male (49%) 1.648 1.755 1.870 0.308 0.344 0.387 0.384 0.415 0.447

female (51%) 1.525 1.626 1.740 0.311 0.353 0.400 0.335 0.365 0.396

the British National Health Service (NHS) [62], the mean BMI for men and women in the UK was 27.2 and

26.9 kgm−2, respectively, with the corresponding standard deviation of 4.45 and 5.53 kgm−2. According to

the Vital and Health Statistics [63], which provides official data of the United States Department of Health

& Human Services, in 2020 the mean BMI for men and women in the USA was 28.6 and 28.7 kgm−2,

respectively, with the corresponding standard deviation of 4.63 and 5.63 kgm−2.

3.2 Statistical modelling of pedestrian anthropometric parameters

To obtain the mean normalised equivalent added damping and mass deőned in Eqs. 14 and 15, respectively,

and the standard deviation of the normalised equivalent added damping deőned in Eq. 19, it is őrst necessary

to establish a statistical model of the anthropometric parameters representative of the considered population.

This procedure involves the following steps, making use of the data in Tables 1 and 2:

(i) Determination of gender based on the binomial distribution.

(ii) Determination of height, H, based on the normal distribution.

11



Table 2: Anthropometric parameters for the populations of selected countries expressed according to the

convention adopted in the calibrated and generalised IPM [2].

Country Gender
H [m]

BMI

[kg.m−2]
L/H [-] P/H [-] S/H [-]

mean±standard deviation

Poland
male 1.778±0.058 27.4±3.85 0.450±0.0115 0.194±0.0034 0.191±0.0024

female 1.634±0.051 25.9±4.75 0.450±0.0115 0.219±0.0063 0.189±0.0057

United

Kingdom

male 1.775±0.057 27.2±4.45 0.450±0.0115 0.205±0.0068 0.193±0.0025

female 1.620±0.053 26.9±5.53 0.450±0.0115 0.241±0.0126 0.189±0.0013

USA
male 1.755±0.056 28.6±4.63 0.450±0.0115 0.196±0.0050 0.196±0.0015

female 1.626±0.054 28.7±5.63 0.450±0.0115 0.217±0.0065 0.186±0.0020

(iii) Determination of the BMI based on the gamma distribution, and subsequently determination of the

pedestrian mass, m.

(iv) Determination of the leg length, L, assuming the ratio L
H is characterised by the normal distribution.

(v) Determination of the ratios P
H and S

H assuming normal distributions and relationships of these ratios

with the BMI. The latter assumption was adopted to avoid outliers, e.g. pedestrians with wide pelvis

but low mass or narrow shoulders but high mass. This was achieved by applying linear relationships

expressed in Eq. 27, where µ and σ denote the mean and standard deviation, respectively.

µP/H,mod =µP/H +
σP/H

σBMI
(BMI − µBMI)

µS/H,mod =µS/H +
σS/H

σBMI
(BMI − µBMI)

σP/H,mod =
σP/H

2

σS/H,mod =
σS/H

2

(27)

Due to availability, veriőcation of the proposed statistical model was conducted based on the data from

the English population reported by the NHS [62]. It can be seen in Figure 3 (a) that the BMI for men is

only slightly skewed to the right, but the right tail is much longer for women, as seen in Figure 3 (b). This

shape of the data distribution is captured by the gamma distribution, as assumed in (iii). A comparison of

the output of the proposed statistical model in terms of body height, H, and mass, m, is shown in Figure

4. It can be seen that the body height and mass are captured by the statistical model very well for both

men and women, but there is slightly higher variability of the body height obtained from the model relative

to measurements. However, since the calibrated and generalised IPM gives more detrimental self-excited

forces for shorter and heavier pedestrians, and the statistical model is slightly biased in these directions,

it can be considered acceptable. This can be further understood by inspecting Figure 5, presenting the

relationship between the coefficient of proportionality in the foot placement control law, α, and the body

mass, m, based on the statistical model for the Polish population. The body mass, m, scales the magnitude

of the equivalent added damping directly, as can be seen in Eq. 8. The lower the value of α, assuming all

other relevant pedestrian anthropometric and gait characteristics, and structural lateral oscillatory motion

remain the same, the stronger the inŕuence of the lateral structural motion on the step width, as can be

seen in Eq. 2.
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Figure 3: Distribution of the BMI of the English population according to the NHS data [62] and the

statistical model.

Figure 4: Comparison of the data from the English population obtained from the NHS [62] with the outputs

from the statistical model in terms of the height, H, and body mass, m. The red and blue dots represent

women and men, respectively.

3.3 Generalised IPM validity study

Having established the procedure for obtaining a statistical model of the anthropometric parameters of the

considered population in Section 3.2, it is now possible to verify the applicability of the calibrated and

generalised IPM for the range of its deőning parameters. The underlying rationale for this task is that the

predictions of the IPM are valid if the kinematic constraints associated with real walking gait are preserved.

The original IPM proposed by Macdonald [1] was derived based on the assumption of a small angle of the

pendulum leg from vertical at the step switchover. That angle, θ, is denoted in Figure 6, together with

the lateral distance between the locations of the CoP at consecutive steps, ∆u. For some combinations of
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Figure 5: The relationship between the coefficient of proportionality in the foot placement control law, α,

and the body mass, m, according to the statistical model for the Polish population. The red and blue dots

represent women and men, respectively.

deőning parameters, the IPM can generate the lateral CoM velocities translating into ∆u which are not seen

in real human gait, which violates the small angle assumption and invalidates the forces generated from the

IPM. This issue is treated rigorously in this section.

The step width is increased for higher structural oscillation amplitudes, X, lower coefficient of proportion-

ality, α, and higher free coefficient, β. The inŕuence of the stride and structural oscillation frequencies, fs
and fb, respectively, is more complex. However, lower fs typically translates into an increased step width.

Due to a relatively little inŕuence on the setp width and to simplify the matter, β was taken as zero.

The parameters α and fb are predetermined by the pedestrian anthropometric parameters and structural

characteristics (predominantly mass and stiffness), respectively. The structural oscillation amplitude, X, is

an independent variable which does not affect the magnitudes of self-excited forces in Eqs. 8 and 9, how-

ever, it affects the step width. Since X during the instability period of the CMB [9] and CSB [10] reached

approximately 0.01 m, this value was adopted in the subsequent analysis of the IPM applicability.

Figure 6: The IPM at the step transition – the lateral distance between the location of the centre of pressure

(CoP) for consecutive steps, ∆u, and the resulting angle of the stepping leg from vertical, θ.
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A small angle approximation, enabling trigonometric functions to be avoided within the IPM solution,

typically applies for angles up to 15 degrees. Although the accuracy of small angle approximation keeps

decreasing beyond that value, a limit of 20 degrees was adopted herein reŕecting the step widths which are

still easily achievable in real human gait while not overly compromising the accuracy of the IPM relative to

the exact solution. This can be understood by inspecting the Taylor series approximation for sin θ, which

contains only odd components, i.e. θ− θ3

3! +
θ5

5! − (...). According to this assumption, θ ≥ 7
18π which means

that ∆u
2l ≤ cos 7

18π ≈ 0.342. Therefore, assuming l = 1.34L as taken in Macdonald [1], where l is the

pendulum length, the condition that must be satisőed is as follows:

|∆u| ≤ 0.9166L (28)

Adopting the assumption β = 0, the change in the lateral position of the CoP between consecutive steps

can be calculated according to Eq. 31 in Czaplewski & Bocian [3]:

∆u =
[

A (αẋ0 + x0)− α˜̇x0
]

e(2αfs)
−1 −A (αẋ1 + x1) + α˜̇x1 (29)

where A = 1− 1
1+α2ω2

b

and:

x0 = X sin (ψ − ψp)

ẋ0 = Xωb cos (ψ − ψp)

˜̇x0 = Xωb cos (ψ − ψp − ψτ )

x1 = X sinψ

ẋ1 = Xωb cosψ

˜̇x1 = Xωb cos (ψ − ψτ )

(30)

where ψ is the bridge phase angle, and ψp = ωb

2fs
and ψτ = ωbτ are phase offsets as per period of a single

step and per time offset τ , respectively. ∆u is at maximum when:

ψ = 2

[

arctan

(

√

C2
1 + C2

2 + C2

C1

)

+ π

]

= ψ∗ (31)

where:

C1 = (−Aαωb cosψp +A sinψp − αωb sinψp sinψτ + αω cosψp cosψτ ) e
(2αfs)−1

+Aαωb + αωb cosψτ

C2 = (Aαωb sinψp +A cosψp − αωb sinψp cosψτ − αωb cosψp sinψτ ) e
(2αfs)−1 −A− αωb sinψτ

(32)

The maximum separation between the lateral position of the CoP, ∆u∗, is then:

∆u∗ = X
∣

∣

∣

{

A
[

αωb(sinψp sinψ
∗ + cosψp cosψ

∗) + cosψp sinψ
∗ − sinψp cosψ

∗
]

+

− αωb

[

(cosψp sinψτ + sinψp cosψτ ) sinψ
∗ + (cosψp cosψτ − sinψp sinψτ ) cosψ

∗
]}

e(2αfs)
−1

+

−A(αωb cosψ
∗ + sinψ∗) + αωb(sinψτ sinψ

∗ + cosψτ cosψ
∗)
∣

∣

∣

(33)
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∆u∗ deőned in Eq. 28 is a characteristic value for any combination of α and ωb. It is now necessary to

reverse the problem and őnd the minimum fs for which Eq. 28 is satisőed. The exemplar results from the

analysis of the IPM validity are presented in Figure 7. The leg length, L, was established from α while

adopting the average L/H, P/H and S/H based on the representative sample of the Polish population. The

presented results can be evaluated in the context of typical pedestrian stride frequencies which fall between

0.6 and 1.1 Hz. It can be seen that the applicability of the IPM is generally limited at the combination

of the lowest α and fb within the range of 0.3 to 1.3 Hz and, more signiőcantly, at fb close to 2 Hz. The

importance of these parametric limits can be understood by considering the range of α for the representative

sample of the Polish population presented in Figure 5 and the stepping behaviour of pedestrians walking

on a laterally-oscillating instrumented treadmill reported in [18], [19].

Small values of α, below 0.17 s, can be seen in Figure 5 for the pedestrians having the lowest mass, who

comprise a small part of the whole population. Furthermore, when subjected to the lateral structural motion,

pedestrians have a tendency to speed up their steps, i.e. increase their stepping rate. The results from the

tests reported in [18], [19] show that the lowest average stride frequency was above 0.8 Hz. Importantly, those

results come from an experimental setup enabling pedestrians to freely adjust their walking speed, hence

stride frequency, due to the incorporated automatic treadmill belt speed feedback mechanism. This justiőes

the cases for which the combination of parameters deőning the IPM violates the lateral CoP separation

condition to be treated as outliers and omitting them from further analyses.

Figure 7: The minimum stride frequency, fs, for which the IPM provides valid solutions based on the

representative sample of the Polish population.

3.4 Critical structural dynamic stability parameters

The critical structural dynamic stability parameters were established following the methodology introduced

in Bocian et al. [5]. The normalised mean equivalent added damping, µ̃∆C , normalised standard deviation

of the equivalent added damping, σ̃∆C , and mean normalised equivalent added mass, µ̃∆M , were obtained

using Eqs. 8, 9 and 19, respectively. The range of structural oscillation frequency, fb, was taken as [0.001 Hz,

2.0 Hz]. The upper limit of fb was chosen conservatively since no cases of pedestrian-induced lateral dynamic

instability have been reported beyond fb ≈ 1.12 Hz (see Table 1 in [38]), except from a single case of the

Cragside Bridge opened in 1875, which is a wrought iron arch bridge having extremely low lateral stiffness

and the main lateral mode at approximately 2.8 Hz [64]. Furthermore, the UK National Annex to Eurocode

1 [35], which arguably contains the most sophisticated provisions for designing structures against pedestrian-

induced lateral instability currently available, states that it may be assumed that unstable lateral response

will not occur for structures not having signiőcant lateral modes below 1.5 Hz. The range of pedestrian

walking speed, v, was taken as [0.6 ms−1, 1.7 ms−1]. The lower limit of v represents the pedestrian walking

speed in a crowd at density of approximately 2 people/m2 [6], [52] beyond which walking is heavily impaired.
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The upper limit represents the speed at which a pedestrian is highly likely to change their gait from walking

to running. The stride frequency, fs, for each pedestrian from a representative sample of the considered

population of the size N = 10000 was obtained from the relationship established in Dean (1965) [65]:

fs = 1.3502
v0.5

H
(34)

The stride frequency was veriőed and corrected, if necessary, according to the procedure outlined in Sec-

tion 3.3. The values of −µ̃∆C , σ̃∆C and µ̃∆M , together with their corresponding extreme values for each

considered fb are shown in Figure 8. It needs to be pointed out that µ̃∆C , deőned in Eq. 14, is presented

in Figure 8 with a reversed sign, since this is how it enters the probabilistic stability criteria presented in

Section 2.3.

Figure 8: (a) The normalised mean equivalent added damping, (b) the corresponding standard deviation of

the equivalent added damping, and (c) the normalised mean equivalent added mass. The plots in the top

row present the results relative to the walking speed and the plots in the bottom row present the envelopes

of the minimum and maximum values.

In general, the extreme values of parameters shown in Figure 8 were obtained for the lowest walking speeds.

The extreme values of −µ̃∆C are always positive for fs smaller than approximately 0.7 Hz, and −µ̃∆C can

take values above 4 for fb between approximately 0.2 Hz and 0.3 Hz. For fb above 0.7 Hz, the maximum

and minimum values of −µ̃∆C are always positive and negative, respectively, having magnitude below 1,

except for fb at around 1.2 Hz for which the maximum is 0.

The maximum σ̃∆C at approximately 1.6 is found for fb corresponding to the maximum of −µ̃∆C . For fb
above 0.6 Hz σ̃∆C is generally below 0.5.

For fb below 0.3 Hz µ̃∆M is always negative, but for fb between approximately 0.5 Hz and 1 Hz it is always

positive. The global minimum of µ̃∆M at approximately −10 is found for the lowest considered fb close to

0 Hz, and the global maximum of µ̃∆M at approximately 5 is found for fb at approximately 0.6 Hz. For fb
beyond approximately 0.8 Hz µ̃∆M takes values between −0.5 and 2.
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Figure 9: Frequency ratio, r = fb
fn

.

3.4.1 Frequency shifts due to the equivalent added mass effect

The effect of the equivalent added mass is to shift the vibration frequency of the structure subjected to

the loading from pedestrians. Having obtained the envelopes of minimum and maximum values of µ̃∆M

presented in Figure 8, it was possible to determine the corresponding frequency shifts, r = fb
fn

, according

to Eq. 11. For clarity of the presentation, the pedestrian-to-structure mass ratio, mr, was taken as 0.1,

0.3 and 0.5. Since the maximum mass ratio observed on bridges during the lateral dynamic structural

instability period was approximately 0.23 for the LMF [6] (assuming uniform distribution of pedestrians on

the bridge), the value of mr = 0.3 conservatively covers all known cases. The results of this analysis are

shown in Figure 9. It needs to be borne in mind that the presented frequency shifts may not correspond to

the critical conditions for structural instability. However, they are indicative of the possible changes in the

structural vibration frequency due to the presence of pedestrians. For fn below 0.3 Hz, r is always higher

than 1 or it is undeőned. In all these cases the presence of pedestrians increases the structural vibration

frequency, fb, relative to the natural frequency, fn, meaning that pedestrians act in this case as a source of

signiőcant negative mass to the structure. For fn between approximately 0.5 Hz and 1.5 Hz, r is usually

smaller than 1, dropping to as little as 0.5, which means that the pedestrians act in this case as a source of

signiőcant additional mass to the structure.

3.4.2 Critical added damping

Having established the frequency shifts for the considered range of pedestrian walking speeds, v, and

pedestrian-to-bridge mass ratios, mr, it is now possible to deőne −µ̃∆C accounting for the frequency shifts

and expressed relative to the natural structural frequency, fn. Due to the frequency shifts associated with

the equivalent added mass effect discussed in Section 3.4.1, the critical −µ̃∆C was sometimes found at mul-

tiple values for a single fn. In these cases the maximum (positive) value of −µ̃∆C was preserved, since it

is the most detrimental to structural stability. The results for −µ̃∆C are shown in Figure 10 (a), and the

corresponding σ̃∆C is shown in Figure 10 (b). The most interesting results are obtained for fn up to 1.2

Hz, i.e. for the range of fn containing modal frequencies for which instability was identiőed from full-scale

bridges. In this case, the higher mr, the wider the range of fn for which −µ̃∆C is positive. Beyond fn ≈ 1

Hz, there is relatively little variation of −µ̃∆C , of which magnitude is generally low. As could be expected

(see the discussion of Figure 8 in Section 3.4), the critical −µ̃∆C is found, in most cases, for the lowest

v. The exception is the interval of fn deőned by the intersection points of curves representing the lowest

and the highest walking speeds. Therefore, results for the lowest and highest v (0.6 ms−1 and 1.7 ms−1,

respectively) only need to be considered to derive simpliőed envelopes of −µ̃∆C and σ̃∆C for use with the

probabilistic stability criteria presented in Section 2.3.
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Figure 10: The relationship between the structural natural frequency, fn, and (a) −µ̃∆C and (b) σ̃∆C

accounting for the considered range of walking speeds, v, and mass ratios, mr. The legends apply to both

plots.

3.4.3 Piecewise-linear envelopes for the critical added damping

The results presented in Figure 10 are deőned by curves which cannot be expressed using simple functions.

However, simplicity is a desired characteristic of any structural design guidelines since it generally makes

them easier to apply hence prevents from making errors. Therefore, simpliőed envelopes were established

for the relationships between −µ̃∆C and fn, and σ̃∆C and fn. A systematic approach was adopted in

this process, according to the procedure introduced hereafter, to avoid arbitrariness and ensuring universal

applicability, e.g. for various populations of pedestrians. The development of piecewise-linear envelopes for

−µ̃∆C and σ̃∆C based on mr = 0.3, which encompasses all known mass ratios for the recorded cases of

lateral structural instability, is presented in Figure 11.

The piecewise-linear envelope of −µ̃∆C presented in Figure 11 (a) consists of őve sections, three of which

describe linearly varying values and the remaining two set at constant values. These constant values, denoted

−µ̃∆C,const,1 and −µ̃∆C,const,2, were determined by őnding the őrst two local maxima of −µ̃∆C expressed

relative to fb, as shown in Figure 12 (a). Deriving these values from the relationship of −µ̃∆C with fb rather

than fn was convenient and acceptable, since the local maxima within the considered range of fb and fn

are independent of mr.

The őrst section describing linearly varying values was obtained by őnding a tangential line to −µ̃∆C for

v = 0.6 m s−1 at the őrst fn for which −µ̃∆C = 0, as denoted in Figure 11 (a) by the green dot. That

tangential line is denoted in Figure 11 (a) in green and it is given by:

µ̃∆C,lin,1(fn) = aµ,1(mr)fn + bµ,1(mr) (35)

where the parameters aµ,1 and bµ,1 are dependent on mr.
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Figure 11: Development of the piecewise-linear envelopes for the critical −µ̃∆C and σ̃∆C at mr = 0.3.

Figure 12: Characteristic values of −µ̃∆C and σ̃∆C used in the derivation of the piecewise linear envelopes

of −µ̃∆C and σ̃∆C presented in Figure 11.

The second section describing linearly varying values was obtained by őnding a tangential line to −µ̃∆C for

v = 0.6 m s−1 passing through the point denoted in Figure 11 (a) by the purple dot. That point is at the

intersection of the green tangential line previously obtained and −µ̃∆C,const,3 obtained from Figure 11 (a).
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The ordinate of that point was taken as a fraction kµ of max(−µ̃∆C), where kµ was adopted as 0.35. The

second section describing linearly varying values is denoted in Figure 11 (a) in purple and it is given by:

µ̃∆C,lin,2(fn) = aµ,2(mr)fn + bµ,2(mr) (36)

where the parameters aµ,2 and bµ,2 are dependent on mr.

The third section describing linearly varying values was obtained by connecting the őrst two intersection

points of the curves for −µ̃∆C for v = 0.6 m s−1 and −µ̃∆C for v = 1.7 m s−1. This section is delimited

within Figure 11 by the two yellow dots and it is given by:

µ̃∆C,lin,3(fn) = aµ,3(mr)fn + bµ,3 (37)

The crossing points of the őrst line describing linearly varying values with the line set at a constant value of

−µ̃∆C representing the second local maximum, and the second line describing linearly varying values with

the line set at a constant value of −µ̃∆C representing its maximum, all presented in Figure 11 (a), denote

the limiting values of fn used in deőning the envelope of σ̃∆C presented in Figure 11 (b). To make it clear,

dashed vertical lines were denoted therein, linking the speciőed values. For fn on the left and right side of

the crossing points described above, the envelope of σ̃∆C takes constant values equal to the őrst and third

local maximum of σ̃∆C , respectively, which are denoted in Figure 12 (b) by green dots. The second local

maximum in Figure 12 (b) is discarded since it corresponds to the range in which −µ̃∆C is negative (see

Figures 11 and 12). The section describing linearly varying values of σ̃∆C , denoted in Figure 11 (b) in green,

is constructed by linking the sections for which the envelope of σ̃∆C is constant, and it is given by:

σ̃∆C,lin(fn) = aσ(mr)fn + bσ(mr) (38)

where the parameters aσ and bσ depend on mr.

The parameters aµ,1, bµ,1, aµ,2, bµ,2, aµ,3, aσ, bσ, used in Eqs. 35, 36, 37 and 38, were obtained for each mr

within the range [0.10, 0.11, (...) , 0.50], by approximation with 3rd order polynomials. The parameter bµ,3
was taken as constant and invariant of mr.

For the given fn and mr, the envelopes of the critical mean equivalent added damping, µ̃∆C , and the critical

standard deviation of the mean equivalent added damping, σ̃∆C , are obtained from equations presented in

Table 3. Exemplar envelopes based on data for the Polish population are presented in Figure 13 for mass

ratios mr = 0.1 in (a) & (d), mr = 0.3 in (b) & (e) and mr = 0.5 in (c) & (f). It can be seen that the

higher the mass ratio, mr, the wider the range of frequencies, fn, for which signiőcant negative damping

effect can occur.

3.5 Validation study

This section presents exemplar applications of the proposed lateral dynamic stability criteria based on the

case studies of the Clifton Suspension Bridge (CSB) in the UK [10], [12] and the Squibb Park Bridge (SPB)

in the USA [66]. These two bridges – CSB and SPB – differ with respect to their primary function – as

they carry mixed and pedestrian traffic only, scale – having the main span of 194 m and 37 m, structural

arrangement – supported by classical chain suspension system and underslung system, and the construction

era – industrial revolution and recent decades. However, they were both found susceptible to pedestrian-

induced lateral dynamic instability, although for different loading intensities – hundreds of pedestrians and
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Table 3: The piecewise-linear envelopes of the critical mean equivalent added damping, µ̃∆C , and standard deviation, σ̃∆C , for the populations of Poland, the UK

and the USA.

Poland United Kingdom USA

µ̃∆C,calc (fn,mr) = max{µ̃∆C,const,2,min{µ̃∆C,lin,1(fn,mr), µ̃∆C,lin,2(fn,mr), µ̃∆C,const,1}, µ̃∆C,lin,3(fn,mr)}
σ̃∆C,calc (fn,mr) = max{σ̃∆C,const,2,min{σ̃∆C,lin(fn,mr), σ̃∆C,const,1}}

µ̃∆C,const,1 = 4.41 µ̃∆C,const,1 = 3.17 µ̃∆C,const,1 = 4.16

µ̃∆C,const,2 = 0.19 µ̃∆C,const,2 = 0.14 µ̃∆C,const,2 = 0.17

σ̃∆C,const,1 = 1.62 σ̃∆C,const,1 = 1.18 σ̃∆C,const,1 = 0.98

σ̃∆C,const,2 = 0.19 σ̃∆C,const,2 = 0.13 σ̃∆C,const,2 = 0.29

µ̃∆C,lin,1(fn,mr) = aµ,1(mr)fn + bµ,1(mr)

µ̃∆C,lin,2(fn,mr) = aµ,2(mr)fn + bµ,2(mr)

µ̃∆C,lin,3(fn,mr) = aµ,3(mr)fn + bµ,3

σ̃∆C,lin(fn,mr) = aσ(mr)fn + bσ(mr)

aµ,1(mr) = 16.97m3
r − 4.14m2

r − 10.02mr − 9.94 aµ,1(mr) = 82.05m3
r − 85.9m2

r + 22.25mr − 9.27 aµ,1(mr) = 57.2m3
r − 43.97m2

r + 2.3mr − 9.94

bµ,1(mr) = −20.19m3
r + 8.29m2

r + 20.3mr + 6.75 bµ,1(mr) = −40.95m3
r + 46.45m2

r − 5.47mr + 6.14 bµ,1(mr) = −20.3m3
r + 14.71m2

r + 14.53mr + 6.6

aµ,2(mr) = 135.39m3
r − 165.72m2

r + 73.43mr − 16.67 aµ,2(mr) = −61.23m3
r + 37.67m2

r + 6.46mr − 9.0 aµ,2(mr) = 120.91m3
r − 149.34m2

r + 67.3mr − 15.69

bµ,2(mr) = −63.48m3
r + 76.32m2

r − 32.23mr + 11.35 bµ,2(mr) = 49.65m3
r − 39.32m2

r + 4.73mr + 6.08 bµ,2(mr) = −49.57m3
r + 63.14m2

r − 28.42mr + 10.68

aµ,3(mr) = 0.17m3
r − 0.43m2

r + 0.63mr − 1.45 aµ,3(mr) = 0.47m3
r − 0.6m2

r + 0.5mr − 1.13 aµ,3(mr) = −0.23m3
r + 0.03m2

r + 0.44mr − 1.35

bµ,3 = 1.74 bµ,3 = 1.33 bµ,3 = 1.67

aσ(mr) = 27.61m3
r − 34.94m2

r + 16.82mr − 5.07 aσ(mr) = −16.63m3
r + 11.14m2

r + 1.1mr − 2.95 aσ(mr) = 11.99m3
r − 15.3m2

r + 7.55mr − 2.4

bσ(mr) = −14.53m3
r + 17.78m2

r − 7.8mr + 3.75 bσ(mr) = 18.49m3
r − 16.27m2

r + 3.19mr + 2.03 bσ(mr) = −5.31m3
r + 7.01m2

r − 3.35mr + 1.99
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Figure 13: Exemplar piecewise linear envelopes of −µ̃∆C and σ̃∆C , respectively, for mr = 0.1 in (a) & (b),

mr = 0.3 in (c) & (d), and mr = 0.5 in (e) & (f), based on a representative sample of the Polish population,

as deőned in Table 3.

few pedestrians only for the CSB and SPB, respectively. The SPB is introduced herein in more detail, since

it is relatively little known in the structural engineering community. The results from direct (CSB) and

indirect (SPB) measurements of the dynamic behaviour of these bridges and simulations described herein

served to evaluate the proposed structural lateral dynamic stability criteria. For each bridge, numerous

simulations were run to determine lateral structural response due to walking pedestrians in the same way

as in [52] and [2], considering each mode independently and pedestrian force accounting for all components,

i.e. self-excited forces and Frem as deőned in Eq. 1. According to the calibrated and generalised IPM [2],

the behaviour of each pedestrian is given by:

ÿi +
ui,j − yi
α2
i

= −φiẌ (39)

where X is the generalised displacement of analysed mode, and φ is the mode shape amplitude denoted here

such that φi is the mode shape amplitude at the location of i-th pedestrian. The behaviour of the bridge is

given by:

Ẍ + 2ωnζẊ + ω2
nX =

1

M

N
∑

i=1

φimi

α2
i

(ui,j − yi) (40)

where ζ is the damping ratio, M is the modal mass and N is the number of pedestrians on the bridge.

The distributions of pedestrians’ anthropometric parameters were obtained from the statistical models of

relevant populations according to the procedures presented in Section 3.2. The distribution of pedestrian

walking speed, v, was taken according to the normal distribution, N (v, 0.05v) ms−1. All simulations were

run in Python 3.11. The results were compared with the formulas deőning the lateral dynamic stability

criteria presented in Section 2.3 based on −µ̃∆C and σ̃∆C derived from the relevant populations, such as

those presented in Figure 10, and also based on the piecewise linear envelopes of −µ̃∆C and σ̃∆C proposed
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in Section 3.4.3, and measurements from the relevant bridges. Structural instability was identiőed in simu-

lations when the lateral vibration amplitudes reached above 10 mm. This corresponds to the modal lateral

oscillation amplitude of the CSB during the instability period reported in [10]. It needs to be noted that

the self-excited forces derived from the calibrated and generalised IPM are independent of the structural

oscillation amplitude, hence they can be expressed as equivalent added damping and mass.

Determination of the stability criteria was conducted according to the pedestrian Scruton number deőned

in Eq. 16, accounting for various pedestrians’ distributions on the bridge as captured by Eqs. 20, 24 and 26.

This is a multi-step process due to the dependency of these equations on the mass ratio, mr, and the number

of pedestrians on the bridge, N , but also due to back-calculation of the natural frequency of the bridge given

the response frequency. Therefore, to streamline this process, the approach to obtaining stability criteria

will be individually tailored to the considered case studies. To establish a relationship between D and Ncr,

denoting the critical number of pedestrians, i.e. the minimum number of pedestrians for which instability

will occur, the stability boundaries for each bridge are expressed it terms of D and Ncr.

3.5.1 Clifton Suspension Bridge

Clifton Suspension Bridge (CSB) inaugurated in 1864 in Bristol, UK, is a chain suspension bridge designed

by one of the forefathers of modern bridge engineering - Isambard Kingdom Brunel. The behaviour of

the CSB during crowd loading was investigated by Macdonald [10] and others [12]. The bridge repeatedly

suffered from excessive lateral vibrations when occupied by pedestrians during the annual International

Baloon Fiesta. The instability was identiőed during this event in 2003 for two lateral modes at frequencies

of 0.524 Hz (second lateral mode) and 0.746 Hz (third lateral mode), having damping ratios of 0.58% and

0.68%, respectively [10]. The dynamic stability of these modes is investigated herein. The length of the

bridge was taken as 194 m and the mode shapes were taken from Figure 2 and Table 1 in [12]. The modal

mass was obtained from a őnite element model as 691.9 t and 698.7 t for the second and third lateral

mode, respectively [10]. The distributions of pedestrians’ anthropometric parameters for use within the

calibrated IPM were obtained from the statistical model of the British population presented in Section 3.2.

To ensure validity of the generalised IPM, excessive separation between the lateral foot placement and the

CoM position was prevented using the procedure introduced in the parametric study presented in Section

3.3. However, the lateral vibration amplitude was adopted herein directly from the simulations rather than

őxed as in Eq. 33. Exactly 100 simulations were conducted for each mode, randomly sampling the walking

speed from the closed interval from 0.6 ms−1 to 1.7 ms−1 and the number of pedestrians on the bridge from

the closed intervals from 35 to 235 and 100 to 500 for the second and third lateral mode, respectively.

To obtain the analytical solutions based on −µ̃∆C and σ̃∆C presented in Figure 10, mr was őrst established

for a given N to determine corresponding −µ̃∆C already including the added mass effect. Such obtained

−µ̃∆C is analogous to the pedestrian Scruton number, D, for uniform pedestrians’ distribution on the bridge

at 50% conődence limit, i.e. taking zγ=0.5 = 0. In this case, Eq. 22 can be expressed in terms of the critical

number of pedestrians, Ncr, by substituting Eq. 23:

Ncr = − 2ζM

µ̃∆Cµm
(41)

The stability boundaries for the second and third lateral mode of the CSB, respectively, are presented in

Figure 14 (a) and (b) in terms of pedestrian Scruton number, D, and in Figure 15 (a) and (b) in terms of

the critical number of pedestrians, Ncr. Instability will occur for any D below the stability boundary in

Figure 14 and for N ≥ Ncr in Figure 15.

It can be seen in Figure 14 that for both modes and all considered pedestrian distributions, the results based

on piecewise-linear envelopes, denoted with the subscript env on the plots, are invariant with respect to the
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Figure 14: Pedestrian Scruton number, D, relative to the walking speed of pedestrians for the (a) second

and (b) third lateral mode of the CSB based on the analytical solutions of −µ̃∆C and σ̃∆C , and their

piecewise-linear envelopes.

walking speed, v. These results are almost always conservative relative to the corresponding results obtained

from the exact solutions of −µ̃∆C and σ̃∆C . In the latter case, the highest and lowest D for the second lateral

mode occurs for the lowest and highest v, respectively. However, the opposite relationship is found for the

third lateral mode. As can be expected from the results for D obtained from the exact solutions for −µ̃∆C

and σ̃∆C , Ncr is the lowest for the lowest and highest v for the second and third lateral mode, respectively,

as shown in Figure 15. The most demanding stability requirements are found for all pedestrians distributed

at the antinode of the mode shape. Although these conditions are unlikely to occur during normal bridge

use and can even be unrealistic for large number of pedestrians, they can be considered representative of

conditions during controlled crowd loading tests conducted to examine the structural dynamic stability

boundaries with the least possible effort (i.e. the lowest number of pedestrians), or to excite a bridge to the

levels sufficient to obtain meaningful data for calibration of FE models. Uniform and random distribution

of pedestrians on the bridge yield the same expected damping demand at D50,uni = D50,rand. However,

D95,rand is higher than D95,uni due to the higher variance.

The lateral dynamic stability requirements expressed in terms of D are generally much higher for the second

lateral mode of the CSB. This agrees with the results from measurements on the CSB in 2003 [10] during

which the instability of the second lateral mode was more pronounced under the action of a crowd having

average density up to 1.1 people/m2 corresponding to 488 pedestrians conőned to walking within two narrow

footways. Furthermore, a more demanding bridge damping provision is required to meet 95% conődence

limit in D for the second lateral mode. This is due to −µ̃∆C and σ̃∆C being generally higher for smaller

natural frequencies, fn, as can be seen in Figure 10.

The results from numerical simulations of CSB response under the action of pedestrians generally corroborate
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Figure 15: Stability boundaries expressed in terms of the critical number of pedestrians, Ncr, relative to

the walking speed of pedestrians for the (a) second and (b) third lateral mode of the CSB based on the

analytical solutions of −µ̃∆C and σ̃∆C , their piecewise-linear envelopes, and numerical simulations of the

CSB response.

the results obtained from the stability criteria. It can be seen in Figure 15 that instability occurs for most –

but not all, N above the most lenientNcr. This is expected, since the proposed stability criteria are expressed

in a probabilistic sense, making allowance for conődence limits. The results for the third lateral mode, shown

in Figure 15 (b), are less conservative then those for the second lateral mode, shown in Figure 15 (a), because

there are more unstable cases falling below Ncr corresponding to the most lenient stability requirements.

Closer inspection of this result revealed that the main reason for this is the condition adopted to identify

instability, relying on vibration amplitude only, and a őnite simulation period adopted to make the best

use of available computational resources. The pedestrian force components other than that at the bridge

vibration frequency can add or extract energy to/from the bridge depending on the instantaneous phase

difference between the pedestrian and bridge motion, causing short-term variations in vibration amplitude.

This can lead to spurious identiőcation of instability. Furthermore, for some simulations – typically close

to the stability boundaries, the vibration amplitude evolves very slowly, leading to the adopted instability
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threshold at 10 mm being reached after 10 minutes of the bridge response build-up. This can lead to spurious

identiőcation of stability.

3.5.2 Squibb Park Bridge

The Squibb Park Bridge (SPB) is located on the revitalised waterfront along the East River near the

Brooklyn Bridge in the USA. It was opened in 2013 and demolished in 2019 due to the excessive dynamic

response under pedestrian loading, after a failed retroőtting attempt. The drama that unfolded is perhaps

best captured by the words of Eric Landau, president of the Brooklyn Bridge Park Corporation (BBPP)

managing the SPB site: "(...) you would certainly never hope you’d have to replace something not only that

you just built, but that you just őxed." [67]. The SPB superstructure was almost completely rebuilt in 2020.

Figure 16: The original SPB inaugurated in 2013, located near the Brooklyn Bridge in the USA. Source:

ŕickr.com; left: gigi_nyc (17/11/2013), right: Dave Pinter (8/4/2013); CC BY-NC-ND 2.0.

The original SPB, shown in Figure 16, consisted of four noncolinear rectilinear sections with a total length

of approximately 137 m resting on reinforced concrete pillars via multi-arm supports. The load-bearing

elements of the two central spans, each about 37 m long, were space trusses supported through saddles

enabling slight slip displacements by four tendons made of galvanised steel stretching underneath the deck.

The tendons were led in pairs with the separation reducing from the pillars towards midspan. The trusses’

height increased towards midspan in line with the distribution of bending moments for a simply-supported

structural arrangement. The wooden trusses, deck and railing posts were made from robinia pseudoacacia.

The fasteners and deviators were made of steel brackets, caps and plates, while steel mesh was used to őll

the balustrade. The chosen structural solution ensured unobstructed views of the park and, in the longer

perspective, of Lower Manhattan, while the choice of materials and lightweight construction were to evoke

the experience of walking among the treetops among which the SPB was set. A consequence of the adopted

structural solution and the choice of materials was high susceptibility of the SPB to pedestrian-induced

vibrations. The initial reports on the dynamic behaviour of the SPB are inconclusive as to the nature of the

dynamic response, although most sources quote bounciness [68] and some other quote sway [69], implying the

SPB predominantly vibrated in the vertical or lateral direction, respectively. To verify these prepositions,

the video footage obtained from [70], taken during a period of instability observed approximately three

months after the original SPB opening, was analysed in [66]. The same video is re-analysed herein, but

this time applying an image stabilisation procedure to remove the camera motion components prior to

the application of optical-ŕow motion tracking algorithm. The displacement of a point at the midspan of

the deck, close to the outermost location in the transverse cross section, was calculated in two orthogonal

directions as shown in Figure 17.

The response of the SPB during instability period is shown in Figure 18 (a) in terms of the time histories of

displacement őltered with 4th order bandpass Butterworth őlter with cut-off frequencies at 0.7 Hz and 1 Hz,

and in Figure 18 (b) in terms of the magnitude of fast Fourier transform (FFT) of the displacement. It can
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Figure 17: A snapshot from a video showing the dynamic behaviour of the SPB during instability period

[70], stabilised prior to the application of motion tracking algorithm to remove camera motion, with the

point of measurement of displacement in two orthogonal directions – lateral and vertical.

be seen that the SPB responded predominantly in the lateral direction. The dominant harmonic components

occur at a frequency of approximately 0.84 Hz. It can be assumed that this frequency corresponds to one of

the modal frequencies of the considered span. During the vibration cycle corresponding to this frequency, the

maximum positive displacement in the lateral axis of the bridge occurs simultaneously with the maximum

positive displacement in the vertical axis, according to the coordinate system for the measurement point

shown in Figure 17.

Figure 18: Response of the SPB during instability period in terms of (a) time history of displacement and

(b) magnitude of FFT of signals presented in (a) from the measurement point indicated in Figure 17.

To verify this assessment, a őnite element (FE) model of the same span of the SPB was built in SOFiSTiK

2022, as shown in Figure 19. The top chord of the truss, cross bracing, lower struts and ŕoor beams

transferring the load from the deck to the truss were modelled with beam elements. The deck itself was

modelled with shell elements with zero stiffness in the direction of the planks. The bottom chord of the

truss was modelled with cable elements. The geometry of the structure and its materials’ properties were

based on information provided in [71]. The main mode of the span at 0.95 Hz, obtained from the FE model,

was characterised by torsional motion with a strong lateral translational component, thus qualitatively

conőrming the results obtained from the video footage. The modal mass for this mode obtained from the

FE model was 9400 kg.

The approach to simulations of the dynamic behaviour of the SPB under the action of pedestrians according

to Eqs. 39 and 40 was different to that adopted for the CSB. This is due to the relatively low modal mass of

the considered mode hence high sensitivity of mr – which needs to be updated during the iterative process of

őnding Ncr – to the number of pedestrians on the bridge, N . The simulations commenced with N = 1, and
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Figure 19: The dominant mode of one of the main spans of the SPB based on the őnite element model

generated in SOFiSTiK.

continued with unitary increase until N = Ncr, as deőned in Eq. 41. Due to the unavailability of empirical

data, the damping ratio of 1.5% was adopted based on the results reported for a similar footbridge [72].

The distribution of results for the SPB in terms of the pedestrian Scruton number, D, presented in Figure 20

is similar to that for the third lateral mode of the CSB presented in Figure 14 (b). However, the conődence

limits are generally much wider, which is related to a higher variance in −µ̃∆C associated with the lower

Ncr. The most detrimental effect to the structural stability occurs for pedestrians walking at normal and

high speeds. As in the case of the CSB, for all considered pedestrian distributions, the results based on

piecewise-linear envelopes, denoted with the subscript env on the plots, are invariant with respect to the

walking speed, v. These results are almost always conservative relative to the corresponding results obtained

from the analytical solutions of −µ̃∆C and σ̃∆C .

The results of analysis of the critical number of pedestrians, Ncr, are presented in Figure 21. It can be said

with 95% conődence that lateral instability will occur for 18 randomly distributed pedestrians on the SPB

walking at the slowest considered speeds. However, as few as 4 pedestrians are sufficient to drive the bridge

to instability if they happen to walk at normal or high speeds. The results from simulations generally

support these őndings. Good correspondence of results is also found for the piecewise-linear envelopes.

Taken together, the presented results suggest extremely high susceptibility of the SPB to the excessive

lateral dynamic response under the action of walking pedestrians. Indeed, this can also be deducted from

the inspection of the analysed video footage where the SPB seems to be excessively excited by relatively

few pedestrians [70]. Considering each of the main spans of the SPB could accommodate dozens of freely

walking pedestrians at any given time, it should not be surprising that the original structure remained

opened for less than 18 months after inauguration and, ultimately, had to be replaced.

4 Conclusions

Probabilistic criteria for lateral dynamic stability of structures under the loading from walking pedestrians

were derived in this study based on outputs from the generalised inverted pendulum pedestrian model

(IPM). This required statistical models of the anthropometric parameters deőning the generalised IPM to

be őrst determined for the considered population of pedestrians. A methodology for carrying out this task

was proposed and demonstrated to provide data of sufficient quality. A methodology was also proposed for

identifying an excessive lateral separation between the contralateral foot placements within the analytical

solutions of the generalised IPM. This allowed spurious outputs from the generalised IPM to be avoided.

Having established the parameters deőning the generalised IPM for a given pedestrian population, the

pedestrians-induced self-excited forces were deőned for a range of pedestrian walking speeds in terms of the
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Figure 20: Pedestrian Scruton number, D, relative to the walking speed of pedestrians for the SPB based

on the analytical solutions of −µ̃∆C and σ̃∆C , and their piecewise-linear envelopes.

Figure 21: Stability boundaries expressed in terms of the critical number of pedestrians, Ncr, relative to

the walking speed of pedestrians for the SPB based on the analytical solutions of −µ̃∆C and σ̃∆C , their

piecewise-linear envelopes, and numerical simulations of the SPB response.

mean equivalent added damping and the corresponding standard deviation, and the mean equivalent added

mass. The extreme structural vibration frequency shifts were then determined based on the added mass

effect, taking into account the pedestrians-to-structure mass ratio. They were used to őnd the critical mean

equivalent added damping over all considered walking speeds for each natural frequency up to 2 Hz, together

with the corresponding standard deviation. An algorithm was then developed to generate piecewise-linear

envelopes of these parameters. This step served to simplify their deőnition, thus making the proposed

probabilistic criteria suitable for the inclusion in codiőed design guidelines. The probabilistic stability

conditions were deőned in terms of the pedestrian Scruton number, which is a dimensionless mass-damping

parameter, and the critical number of pedestrians. Three types of pedestrian distribution on the structure

were considered, namely the uniform distribution, random distribution, and all pedestrians distributed at

the antinode of the mode shape.
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A validation study was carried out using two bridges prone to pedestrian-induced lateral dynamic instability,

namely the Clifton Suspension Bridge (CSB) in the UK and the Squibb Park Bridge (SPB) in the USA. The

latter case was studied in more detail as it is relatively little known in the structural engineering community.

A forensic investigation was therefore conducted to identify the causes of the excessive dynamic behaviour

of the SPB, based on the analysis of video footage taken shortly after its opening, and the outputs of a

purpose-built őnite element model. Good agreement was found between the stability boundaries derived

from the critical mean added damping obtained from the generalised IPM and those obtained from numerical

simulations of the dynamic response of these two bridges to pedestrian loading, taking into account all

pedestrian force components. The stability boundaries obtained from the piecewise linear envelopes of

the critical mean equivalent added damping and its standard deviation were shown to capture the most

detrimental loading conditions, taking into account the effect of walking speed, whilst not being overly

conservative.

The proposed probabilistic stability criteria provide a powerful tool for the design of structures, particularly

bridges, against pedestrian-induced lateral instability. They are based on a fundamental model of pedestrian

gait for walking on a laterally-oscillating structure calibrated against empirical data, are traceable since they

are derived from the closed-form long term solutions of the generalised IPM, and can be easily deőned for

any population of pedestrians according to the proposed algorithm. They take into account the intensity

of the load, the inŕuence of the mode shape and the distribution of pedestrians. They therefore allow

different loading conditions to be distinguished and evaluated, enabling the designer to make informed

choices, balancing the risk of structural instability against the considered structural solution. Despite their

obvious power, they are also easy to apply, as they use the familiar concept of the Scruton number – an

index originally used to capture the effects of wind-structure interaction. They can even be expressed in a

more intuitive way in terms of the critical number of pedestrians on the bridge.

The main remaining challenge is for the proposed probabilistic stability criteria to őnd their way beyond the

academic discourse. Cases of laterally unstable bridges are regularly reported in the media. Many of these

bridges require costly retroőtting solutions, leading to legal disputes over liability, as exempliőed herein

by the case of the SPB. This can damage the reputation of their designers and lead to high social costs

associated with the closure of these structures. This could be avoided, or at least reduced, if appropriate

design provisions were included in the national or international structural design standards.

Acknowledgements

This paper is dedicated to the memory of Prof. John H.G. Macdonald from the University of Bristol,

UK, who passed away prematurely in March 2022. John introduced the biomechanically-inspired inverted

pendulum pedestrian model to the őeld of structural engineering in 2009 [1]. M. Bocian and B. Czaplewski

were supported by the Polish National Agency for Academic Exchange (NAWA) under the Polish Returns

programme grant number PPN/PPO/2019/1/00036.

Data availability

The data that support the őndings of this study are available from the corresponding author upon request.

References

[1] J. Macdonald, “Lateral excitation of bridges by balancing pedestrians,ž Proceedings of the Royal So-

ciety of London A: Mathematical, Physical and Engineering Sciences, vol. 465, pp. 1055–1073, 2009.

31



[2] B. Czaplewski, M. Bocian, and J. Macdonald, “Calibration of inverted pendulum pedestrian model for

laterally oscillating bridges based on stepping behaviour,ž Journal of Sound and Vibration, no. 118141,

2023.

[3] B. Czaplewski and M. Bocian, “Long-term solutions to calibrated and generalised Macdonald’s model

for pedestrian-induced lateral forces,ž Journal of Sound and Vibration, no. 118494, 2024.

[4] A. McRobie, “Long-term solutions to Macdonald’s model for pedestrian-induced lateral forces,ž Jour-

nal of Sound and Vibration, vol. 332, pp. 2846–2855, 2013.

[5] M. Bocian, J. Macdonald, and J. Burn, “Probabilistic criteria for lateral dynamic stability of bridges

under crowd loading,ž Computers & Structures, vol. 136, pp. 108–119, 2014.

[6] P. Dallard, A. Fitzpatrick, A. Flint, S. Le Bourva, A. Low, R. Ridsdill Smith, and M. Willford, “The

London Millennium Footbridge,ž The Structural Engineer, vol. 79, no. 22, pp. 17–21, 2001.

[7] Y. Fujino, B. Pacheco, S. Nakamura, and P. Warnitchai, “Synchronization of human walking observed

during lateral vibration of a congested pedestrian bridge,ž Earthquake Engineering & Structural Dy-

namics, vol. 22/9, pp. 741–758, 1993.

[8] S. Nakamura, “Field measurements of lateral vibration on a pedestrian suspension bridge,ž The Struc-

tural Engineer, vol. 81, pp. 22–26, 22 2003.

[9] J. Brownjohn, P. Fok, M. Roche, and P. Omenzetter, “Long span steel pedestrian bridge at Singapore

Changi Airport Ð Part 2: Crowd loading tests and vibration mitigation measures,ž The Structural

Engineer, vol. 82, no. 16, pp. 21–27, 2004.

[10] J. Macdonald, “Pedestrian-induced vibrations of the Clifton Suspension Bridge,ž Proceedings of the

Institution of Civil Engineers – Bridge Engineering, vol. 161/2, pp. 69–77, 2008.

[11] E. Caetano, Á. Cunha, F. Magalhães, and C. Moutinho, “Studies for controlling human-induced vibra-

tion of the Pedro e Inês Footbridge, Portugal. Part 1: Assessment of dynamic behaviour,ž Engineering

Structures, vol. 32, no. 4, pp. 1069–1081, 2010.

[12] R. White, N. Alexander, J. Macdonald, and M. Bocian, “Characterisation of crowd lateral dynamic

forcing from full-scale measurements on the Clifton Suspension Bridge,ž Structures, vol. 24, pp. 415–

425, 2020.

[13] R. Cuevas, J. Jiménez-Alonso, F. Martínez, and I. Díaz, “Assessment of the lateral vibration ser-

viceability limit state of slender footbridges including the postlock-in behaviour,ž Applied Sciences,

vol. 10, p. 967, 2020.

[14] A. McRobie and G. Morgenthal, “Risk management for pedestrian-induced dynamics of footbridges,ž

in Proceedings of the 1st International Conference Footbridge, Paris, France, 20–22 November, 2002.

[15] A. Pizzimenti and F. Ricciardelli, “Experimental evaluation of the dynamic lateral loading of foot-

bridges by walking pedestrians,ž Proceedings of Eurodyn 2005 - 6th International Conference on Struc-

tural Dynamics, Paris, France, 2005.

[16] E. Ingólfsson, C. Georgakis, F. Ricciardelli, and J. Jönsson, “Experimental identiőcation of pedestrian-

induced forces on footbridges,ž Journal of Sound and Vibration, vol. 330, no. 6, pp. 1265–1284, 2011.

[17] S. Carroll, J. Owen, and M. Hussein, “Experimental identiőcation of the lateral human-structure

interaction mechanism and assessment of the inverted-pendulum biomechanical model,ž Journal of

Sound and Vibration, vol. 333, pp. 5865–5884, 2014.

[18] M. Bocian, J. Macdonald, J. Burn, and J. Brownjohn, “Experimental identiőcation of the behaviour of

and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality

environment,ž Engineering Structures, vol. 105, pp. 62–76, 2015.

[19] M. Bocian, J. Burn, J. Macdonald, and J. Brownjohn, “From phase drift to synchronisation – pedes-

trian stepping behaviour on laterally oscillating structures and consequences for dynamic stability,ž

Journal of Sound and Vibration, vol. 392, pp. 382–399, 2017.

[20] D. Claff, M. Williams, and A. Blakeborough, “The kinematics and kinetics of pedestrians on a laterally

swaying footbridge,ž Journal of Sound and Vibration, vol. 407, pp. 286–308, 2017.

32



[21] M. Bocian, H. Wdowicka, J. Burn, and J. Macdonald, “Determinants of pedestrian mediolateral foot

placement in walking on laterally-scillating structures and their consequences for structural stability,ž

Mechanical Systems and Signal Processing, vol. 222, no. 111793, 2025.

[22] B. Castillo, J. Marulanda, and P. Thomson, “Experimental evaluation of pedestrian-induced multiaxial

gait loads on footbridges: Effects of the structure-to-human interaction by lateral vibrating platforms,ž

Sensors, vol. 24, no. 2517, 2024.

[23] T. Roberts, “Lateral pedestrian excitation of footbridges,ž Journal of Bridge Engineering, vol. 10,

no. 1, pp. 107–112, 2005.

[24] A. Blekherman, “Swaying of pedestrian bridges,ž Journal of Bridge Engineering, vol. 10, no. 2, pp. 142–

150, 2005.

[25] G. Piccardo and F. Tubino, “Parametric resonance of ŕexible footbridges under crowd-induced lateral

excitation,ž Journal of Sound and Vibration, vol. 311, no. 1-2, pp. 353–371, 2008.

[26] T. Morbiato, R. Vitaliani, and A. Saetta, “Numerical analysis of a synchronization phenomenon:

Pedestrian–structure interaction,ž Computers & Structures, vol. 89, no. 17–18, pp. 1649–1663, 2011.

[27] V. Racic and J. Brownjohn, “Mathematical modelling of random narrow band lateral excitation of

footbridges due to pedestrians walking,ž Computers & Structures, vol. 90-91, pp. 116–130, 2012.

[28] A. Erlicher, P. Trovato, and A. Argoul, “A modiőed hybrid van der pol/rayleigh model for the lateral

pedestrian force on a periodically moving ŕoor,ž Mechanical Systems and Signal Processing, vol. 41,

pp. 485–501, 2013.

[29] J. Qin, S. Law, Q. Yang, and N. Yang, “Pedestrian-bridge dynamic interaction, including human

participation,ž Journal of Sound and Vibration, vol. 332, pp. 1107–1124, 2013.

[30] G. Goldsztein, “Lateral oscillations of the center of mass of bipeds as they walk. Inverted pendulum

model with two degrees of freedom,ž AIP Advances, vol. 5, p. 107 208, 2015.

[31] I. Belykh, R. Jeter, and V. Belykh, “Foot force models of crowd dynamics on a wobbly bridge,ž Science

Advances, vol. 3, no. e1701512, 2017.

[32] V. Joshi and M. Srinivasan, “Walking crowds on a shaky surface: Stable walkers discover Millennium

Bridge oscillations with and without pedestrian synchrony,ž Biology Letters, vol. 14, p. 20 180 564,

2018.

[33] Research Fund for Coal & Steel, Advanced load models for synchronous pedestrian excitation and

optimised design guidelines for steel bridges(SYNPEX), 2008.

[34] Research Fund for Coal & Steel, Human induced vibrations of steel structures – Design of footbridges

(HIVOSS), 2008.

[35] UK National Annex to Eurocode 1: Actions on structures – Part 2: Traffic loads on bridges (NA+A1:2020

to BS EN 1991-2-2003), London, United Kingdom: British Standard Institution, 2003.

[36] C. Barker, “Some observations on the nature of the mechanism that drives the self-excited lateral

response of footbridges,ž in Proceedings of the 1st International Conference Footbridge, Paris, France,

20–22 November, 2002.

[37] S. Strogatz, D. Abrams, A. McRobie, B. Eckhardt, and E. Ott, “Crowd synchrony on the Millennium

Bridge,ž Nature, vol. 438, no. 7064, pp. 43–44, 2005.

[38] I. Belykh, M. Bocian, A. Champneys, K. Daley, R. Jeter, J. Macdonald, and A. McRobie, “Emer-

gence of the London Millennium Bridge instability without synchronisation,ž Nature Communications,

vol. 12, no. 7223, 2021.

[39] P. Pennington, “Auckland Harbour Bridge wobbles when crowds walk on it, documents show,ž The

New Zealand Herald, 2023. [Online]. Available: https://www.nzherald.co.nz/nz/auckland-

harbour-bridge-trembles-when-crowds-walk-on-it-documents-show/CLLF3O4DIVBFVCQVSALP3S5JLA/.

[40] Eurocode. Basis of structural design (BS EN 1990:2002+A1:2005), London, United Kingdom: British

Standards Institution, 2002.

[41] U.S. Department of Transportation, Service life design reference guide, Federal Highway Agency, USA,

2022.

33



[42] GBD 2021 Adult BMI Collaborators, “Global, regional, and national prevalance of adult overweight

and obesity, 1990–2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease

Study 2021,ž The Lancet, vol. Preprint, 2025.

[43] A. Hof, M. Gazendam, and W. Sinke, “The condition for dynamic stability,ž Journal of Biomechanics,

vol. 38, no. 1, pp. 1–8, 2005.

[44] M. Bocian, J. Macdonald, and J. Burn, “Modelling of self-excited vertical forces on structures due

to walking pedestrians,ž Proceedings of Eurodyn 20011 - 8th International Conference on Structural

Dynamics, Leuven, Belgium, 2011.

[45] M. Bocian, J. Macdonald, and J. Burn, “Biomechanically inspired modelling of pedestrian-induced

vertical self-excited forces,ž Journal of Bridge Engineering, vol. 18, no. 12, pp. 1336–1346, 2013.

[46] J. Nessler, S. Heredia, J. Bélair, and J. Milton, “Walking on a vertically oscillating treadmill: Phase

synchronization and gait kinematics,ž PLoS ONE, vol. 12, no. 1, e0169924, 2017.

[47] A. McRobie, G. Morgenthal, D. Abrams, and J. Predergast, “Parallels between wind and crowd loading

of bridges,ž Philosophical Transactions of the Royal Society A, vol. 371, p. 20 120 430, 2013.

[48] B. Jia, Y. Chen, and X. Yu, “Hybrid model for pedestrian-induced lateral vibrations of footbridge based

on pedestrian phase evolution and inverted pendulum model: Simulation and validation,ž Journal of

Bridge Engineering, vol. 29, no. 8, 2024.

[49] H. Yang, Z. Wang, B. Wu, and Y. Bao, “Investigation of 3D bipedal spring-loaded inverted pendulum

human walking model on laterally vibrating surfaces in the case of phase drift, phase pulling, and

synchronisation,ž International Journal of Structural Stability and Dynamics, no. 2550220, 2025.

[50] E. Ingólfsson and C. Georgakis, “A stochastic load model for pedestrian-induced lateral forces on

footbridges,ž Engineering Structures, vol. 33, pp. 3454–3470, 2011.

[51] F. Ricciardelli and C. Demartino, “Design of footbridges against pedestrian-induced vibrations,ž Jour-

nal of Bridge Engineering, vol. 21, p. C4015003, 8 2016.

[52] M. Bocian, J. Macdonald, and J. Burn, “Biomechanically inspired modelling of pedestrian-induced

forces on laterally oscillating structures,ž Journal of Sound and Vibration, vol. 331, no. 16, pp. 3914–

3929, 2012.

[53] D. Newland, “Pedestrian excitation of bridges,ž Proceedings of the Institution of Mechanical Engineers

Part C – Journal of Mechanical Engineering Science, vol. 218, pp. 477–492, 2004.

[54] R. Scanlan and J. Tomko, “Airfoil and bridge ŕutter derivatives,ž Journal of the Engineering Mechanics

Division, vol. 97, no. 6, pp. 1717–1737, 1971.

[55] N. Nikitas, J. Macdonald, and J. Jakobsen, “Identiőcation of ŕutter derivatives from full-scale ambient

vibration measurements of the clifton suspension bridge,ž Wind and Structures, vol. 14, no. 3, pp. 1226–

6116, 2011.

[56] E. Jarosz, “Dane antropometryczne populacji osób dorosłych wybranych krajów Unii Europejskiej

i Polski dla potrzeb projektowania (Anthropometric data for adults of the selected coutries of the

European Union and Poland for the design purposes),ž Instytut Wzornictwa Przemysłowego, Prace i

Materiały, no. 6, 2003.

[57] C. Gordon, C. Blackwell, B. Bradtmiller, J. Parham, P. Barrientos, S. Paquette, B. Corner, J. Carson,

J. Venezia, B. Rockwell, M. Mucher, and S. Kristensen, “2012 anthropometric survey of U.S. Army

personnel: Methods and summary statistics,ž U.S. Army Natick Soldier Research, Development and

Engineering Center, no. NATICK/TR-15/007, 2014.

[58] International Organization for Standardization, ISO 7250-1:2017: Basic human body measurements

for technological design - Part 1: Body measurement deőnitions and landmarks, Switzerland, 2017.

[59] C. L. Ogden, C. D. Fryar, M. D. Carroll, and J. Afful, “Anthropometric reference data for children and

adults: United states, 2015–2018,ž National Center for Health Statistics, 159, 2021. [Online]. Available:

https://www.cdc.gov/nchs/data/nhsr/nhsr159-508.pdf.

34



[60] World Health Organization. “Mean body mass index trends among adults, age-standardized (kg/m²).

Estiamtes by country. ž[Online]. Available: https://apps.who.int/gho/data/node.main.A904?

lang=en.

[61] K. Zatońska, L. Waszkiewicz, and M. Bolanowski, “Samoocena stopnia otyłości kobiet i mężczyzn

zamiszkałych na Dolnym Śląsku (Obesity self-assessment by women and men living in Lower Silesia),ž

Endokrynologia, Otyłość i Zaburzenia Przemiany Materii, vol. 2, no. 1, pp. 12–17, 2006.

[62] National Health Service (NHS), “Health Survey for England – 2008 trend tables,ž 2009. [Online].

Available: https : / / digital . nhs . uk / data - and - information / publications / statistical /

health-survey-for-england/health-survey-for-england-2008-trend-tables.

[63] National Center for Health Statistics, “Anthropometric reference data for children and adults: United

States, 2007–2010,ž U.S. Department of Health, Human Services, Centers for Disease Control, and

Prevention, Oct. 2012. [Online]. Available: https://www.cdc.gov/nchs/data/series/sr_11/sr11_

252.pdf.

[64] S. Wilkinson and J. Knapton, “Analysis and solution to human-induced lateral vibrations on a historic

footbridge,ž Journal of Bridge Engineering, vol. 11, pp. 4–12, 1 2006.

[65] G. Dean, “An analysis of the energy expenditure in level and grade walking,ž Ergonomics, no. 8,

pp. 31–47, 1965.

[66] M. Bocian and B. Czaplewski, “Do trzech razy sztuka – niestabilność dynamiczna mostu dla pieszych

w Squibb Park przy Moście Brooklińskim (Third time lucky – dynamic instability of the Squibb Park

Bridge near the Brooklyn Bridge),ž Inżynieria i Budownictwo, vol. 78/1-2, pp. 58–61, 2021.

[67] A. Plitt, “Brooklyn Bridge Park will replace problem-plagued Squibb Bridge,ž Curbed NY, 2018.

[Online]. Available: https://ny.curbed.com/2018/12/4/18125867/brooklyn- bridge- park-

squibb-park-construction.

[68] A. Cho, “Brooklyn footbridge reopens after three-year closure,ž Engineering News Records, 2017.

[Online]. Available: https://www.enr.com/articles/41898-brooklyn-footbridge-reopens-

after-three-year-closure.

[69] L. Foderaro, “Park calls upon a new őrm to steady its swinging bridge,ž The New York Times, 2016.

[Online]. Available: https://www.nytimes.com/2016/01/28/nyregion/new-engineering-firm-

called-upon-to-fix-swaying-squibb-park-bridge.html.

[70] M. Carr. “Brooklyn’s Squibb Park Bridge,ž Accessed: May 7, 2013. [Online]. Available: https://www.

youtube.com/watch?v=vXu2dzBMUDw.

[71] R. Woodward and T. Zoli, “Two bridges built using black locust wood,ž 2nd International Conference

on Timber Bridges, Las Vegas, USA, 30 September – 2nd October, 2013.

[72] A. Rönnquist, E. Strùmmen, and L. Wollebñk, “Dynamic properties from full scale recordings and

FE-modelling of a slender footbridge with ŕexible connections,ž Structural Engineering International,

vol. 18, pp. 421–426, 4 2008.

35


