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Abstract

The inverted pendulum pedestrian model (IPM) for walking on laterally-oscillating structures, originally
proposed by Macdonald [1], has been recently calibrated using data from pedestrians walking on a
laterally-oscillating instrumented treadmill and generalised for predictive use in Czaplewski et al. [2].
The former task was accomplished by defining an empirically-derived foot placement control law. The
latter task was accomplished by relating the parameters of this law to the basic anthropometric and
gait characteristics of the pedestrian. Closed-form solutions for the long-term average lateral forces
obtained from the generalised IPM were then derived in Czaplewski & Bocian [3] based on the framework
introduced by McRobie [4]. These solutions were used to obtain the probabilistic lateral dynamic
(in)stability criteria for structures subjected to pedestrian loading presented in this paper. A framework
introduced in Bocian et al. [5] is used in which stability requirements are expressed in terms of the
pedestrian Scruton number and the critical number of pedestrians. To achieve this goal it was necessary
to propose a framework for defining a statistical model of the anthropometric parameters used within
the IPM solutions, relevant for a given population of pedestrians. It was also necessary to define IPM
validity criteria enabling spurious solutions to be omitted from the analysis. To make the proposed
structural stability criteria applicable in engineering practice, a framework had to be defined enabling
simplified envelopes of the self-excited forces to be obtained. Crucially, these simplified envelopes should
not penalise structural solutions, rendering them overly conservative. The proposed stability criteria are
evaluated based on two case studies of bridges prone to pedestrian-induced lateral dynamic instability.
The relatively recent occurrence of instability on the Squibb Park Bridge and its consequences are

presented here in detail, as this case is currently little known in the structural engineering community.
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1 Introduction

Significant advances in understanding of pedestrian lateral loading on structures have been made in the
years following the instability of the London Millennium Footbridge (LMF) on its opening day [6]. The
evidence for the dominant role of pedestrian-structure interaction mechanism in causing structural instability
was obtained from measurements on full-scale bridges [7], [8], [9], [10], [11], [12], [13] and purpose-built
experimental platforms [2], [14], [15], [16], [17], [18], [19], [20], [21], [22]. Numerous modelling approaches
have been proposed to capture pedestrian behaviour on laterally-oscillating structures with varying level of
success [16], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32].

Despite these advances in knowledge, the design of structures, particularly bridges, against pedestrian-
induced lateral instability remains a high-risk activity. This is because structural codes development gener-

ally lags the challenges of engineering practice. Perhaps the best recent illustration of this is the protracted



litigation that followed the failed retrofit of the Squibb Park Bridge (SPB) in the USA which suffered from
excessive pedestrian-induced vibrations. The case against the SPB’s designer ended in a no-liability settle-
ment, thanks to which the SPB owner recovered $1.95M. Whatever the verdict, both parties involved in

this project and the people the SPB was to serve cannot call themselves the winners.

It seems the 2nd generation of Eurocodes, which is currently under development, will not address this
problem. The considered proposal is to effectively adopt the provisions reported from two European re-
search projects funded through the Research Fund for Coal and Steel (RFCS), namely SYNPEX [33], i.e.
Advanced Load Models for Synchronous Pedestrian Excitation and Optimised Design Guidelines for Steel
Footbridges, and HIVOSS [34], i.e. Human Induced Vibrations of Steel Structures, which concluded more
than 15 years ago. These provisions rely on harmonic load models in which pedestrian-structure interaction
is not inherently captured. However, synchronisation of pedestrian footsteps to the lateral structural motion
is intrinsically considered, which is known not to be the dominant structural excitation mechanism [16], [19],
[20], [21]. Therefore, their applicability is, at best, uncertain. Perhaps this is the reason for these provisions
to be included within the 2nd generation of Eurocodes in the form of an informative annex. This is to say

that they can be used should a national annex be unavailable.

In many countries which adopted Eurocodes, there is still no national annex regulating the design of struc-
tures against pedestrian-induced loading. From these in which there is, arguably the most advanced design
guidelines against pedestrian-induced lateral loading are included in the British National Annex to Eurocode
1 [35]. This is a consequence of the significant effort spent on solving this problem in the wake of the lateral
instability observed on the LMF [6]. These design guidelines originate from a loading model accounting
for the legged nature of human locomotion [36] — which was a notable breakthrough from the harmonic
models of pedestrian loading — in which synchronisation of pedestrian gait to the lateral structural motion
is not a necessary condition for the occurrence of structural instability. However, at their culmination, these
guidelines are adjusted to match the results of limited measurements from the LMF only. Therefore, their

universal applicability remains uncertain.

The design of structures is inherently associated with risk management. To facilitate this task in the context
of lateral structural stability, it is postulated that the relevant design guidelines should meet the following

requirements:

(i) They should be derived from first principles. Given the developments in our understanding of pedestrian-
structure interaction over the last two decades, there is no reason why the design guidelines should be
phenomenological. Phenomenological guidelines are those containing design provisions that attempt
to link cause and effect either without necessarily considering the underlying mechanisms or adopting
uncertain assumptions. This is typical of the early stages of the development of theory describing
observations. In the context considered, the quintessential example of this are the pedestrian loading
models based on the preferential-phase synchronisation of the timing of pedestrian footsteps to the
lateral structural motion — a condition known as synchronous lateral excitation or lock-in [6], [37].
This condition is now known to be neither the dominant structural excitation mechanism nor even
necessary for structural instability to occur [16], [18], [19], [20]. To address this shortcoming, design
guidelines should be based on a pedestrian model that captures the fundamental relationships between
pedestrian anthropometric and gait characteristics, and bridge dynamics. This will ensure that the
mechanisms governing the observed behaviours are understood and taken into account.

(i1) They should be indiscriminate. Pedestrian-induced lateral structural instability has been observed on
bridges varying in size, principal load bearing mechanism, construction materials and location — see
Tables 1 and 2 in [38]. What unifies all those instability cases is the structural excitation mechanism.
Therefore, there is an argument to be made for the design guidelines to be universal. This is to say that

they should be generally applicable for any given structure and any given population of pedestrians.



(iii) They should be specific, but not restrictive. This means that they should give the designer the con-
fidence to make informed choices whilst accounting for the specific structural characteristics and
operational conditions which may differ from project to project. The structural characteristics in-
clude the dynamic properties such as the modal frequency, mass, damping and mode shape, and the
dimensions. The operational conditions may relate to the specific population of users, their number
and distribution on the structure. All these factors can determine the critical loading conditions.

(iv) They should be adaptable. The target service life for bridges during which they are expected to re-
main operational may vary depending on their role and importance. Nevertheless, footbridges and
road bridges have been known to suffer from pedestrian-induced lateral instability. A good example
of the latter class is the Auckland Harbour Bridge (AHB) in New Zealand [39]. This large bridge
repeatedly experienced excessive lateral vibrations when occupied by crowds of walking pedestrians.
This occurred during Maori land marches of 1975 and 2004, and most recently in 2022 during demon-
strations against COVID-19 vaccine mandate. The AHB, inaugurated in 1954, was never envisaged
to experience the rapidly increasing level of traffic. It was widened as soon as in 1969 by the addition
of two lanes on each side, cantilevered from the piers. These lanes are currently dedicated to road
traffic, but on the rare occasions pedestrian traffic is allowed, they can suffer from the excessive lateral
response.

Modern bridges are required to withstand many decades of use. Eurocode 0 (BS EN 1990:2002-+A1:2005)
enforces the service life of 100 years [40], which has been extended in the UK to 120 years according to
the UK National Annex to Eurocode 1 (NA+A1:2020 to BS EN 1991-2:2003) [35]. AASHTO (Amer-
ican Association of State Highway and Transportation Officials), which is equivalent to the National
Highways in the UK, suggests the design service life for steel and concrete highway bridges between 75
and 150 years [41]. Just like the road traffic loading in the case of the AHB, pedestrian loading is likely
to change in this long-term perspective. A recent study predicts over half of the global population of
adults to be overweight or obese by 2050 [42]. Taking this into consideration, the design guidelines
should enable the assessment of instability not only for the current users of structures, but also be
capable of taking into account future population trends.

(v) They should be simple enough to be used in engineering practice. There is a balance to be struck
between detail and clarity. Simpler design guidelines prevent from errors being made but may not
capture the expected structural behaviour precisely. They may still be acceptable, provided they do

not penalise the design, rendering it overly conservative.

Considering all of the above, the overreaching aim of this study is to define design provisions against lateral
dynamic instability for structures subjected to the loading from walking pedestrians. Underpinning the
development of these design provisions are the requirements stated in points (i) — (v). The outputs from
the calibrated and generalised IPM defined in [2] and [3] are used for this purpose, thus satisfying (i).
To improve the generalised IPM accuracy, also purported in (i), an analytical criterion is derived enabling
solutions violating the kinematic constraints of human walking gait to be identified and omitted from further
processing. The lateral dynamic stability criteria are defined based on thereof validated outputs from the
generalised IPM using a framework introduced in [5]. These criteria are expressed in the probabilistic
sense, taking into account the structural characteristics and operational conditions, thus satisfying (iii). A
statistical model of pedestrian anthropometric parameters is proposed applicable for any given population
of pedestrians, thus satisfying (ii). The outputs from this model are used to determine the equivalent
added damping and mass for the considered population of pedestrians for use within the probabilistic
stability criteria, thus satisfying (iv). An algorithm is also proposed enabling piecewise-linear envelopes of
the critical equivalent added damping and its standard deviation to be defined. This makes the proposed

probabilistic stability criteria suitable for the inclusion in codified design guidelines, thus satisfying (v).

The rest of the paper is organised as follows. Section 2 presents research materials and methods. The

generalised IPM is presented in Section 2.1, closed-form long-term solutions of the lateral self-excited forces



derived from the generalised IPM are presented in Section 2.2, and probabilistic stability criteria are pre-
sented in Section 2.3. The results of this study are presented and discussed in Section 3. The anthropometric
data for populations of selected European countries and the USA are presented in Section 3.1. The statis-
tical model of of the anthropometric parameters from which inputs to the generalised IPM can be obtained
is presented in Section 3.2. The analytical criterion enabling solutions of the generalised IPM violating
kinematic gait constraints to be identified is derived in Section 3.3. The self-excited forces expressed in
terms of the equivalent added damping and mass are established for an exemplar population in Section 3.4.
The added mass effect, which can shift the stability boundaries, is established in Section 3.4.1, and the
critical equivalent added damping and its standard deviation is established in Section 3.4.2. The algorithm
enabling piecewise-linear envelopes of the critical equivalent added damping and its standard deviation to be
obtained is presented in Section 3.4.3. Two case studies conducted to evaluate the proposed lateral dynamic

stability criteria are presented in Section 3.5. The concluding remarks are presented in Section 4.

2 Materials and methods

This section presents the main components necessary to define provisions against structural lateral dynamic
instability. The calibrated and generalised IPM, as proposed in Czaplewski et al. [2], is presented in Section
2.1. The closed-form solutions for the long-term average self-excited forces obtained from the generalised
IPM, as derived in Czaplewski & Bocian [3], are presented in Section 2.2. The probabilistic stability criteria,

as derived in Bocian et al. [5], are presented in Section 2.3.

2.1 Generalised inverted pendulum pedestrian model (IPM)

The long-term structural dynamic stability of the considered mode under the action of pedestrians is mainly
affected by the component of force applied at the modal frequency, f, [4], [5]. That force component is
captured by the generalised IPM, as shown in Czaplewski et al. [2]. Assuming that the mode behaves

linearly, the equation of motion for that mode can be defined by [5]:

N
M + Z AM’L (Wb) ¢12

i=1

N

C+> AC; (w) ¢7

i=1

X+ X+ KX = Fren (1)

where M, C and K are the modal mass, damping and stiffness, respectively, N is the number of pedestrians
on the structure, AC; and AM; are the equivalent added damping and mass, respectively, for the i-th
pedestrian, which are dependent on the structural vibration frequency, f, = 5%, ¢; is the modal amplitude
at the location of i-th pedestrian, X is the generalised displacement with dots over symbols representing
relative differentiation with respect to time, and F., contains all remaining components of pedestrian
lateral force, i.e. it does not include the self-excited forces at f,. All components of Fio,, either provide
background excitation to the structure, since they are detuned from f;, or their magnitudes are too small to
cause any significant long-term effects [1]. Therefore, in the analysis of structural stability those components

can be discarded by setting Fiem = 0.

The generalised IPM, presented in Czaplewski et al. [2], is the calibrated and parametrised IPM originally
proposed by Macdonald in [1], which was inspired by the work of Barker [36]. It consists of a mass, m,
equivalent to the pedestrian mass and concentrated at a point referred to as the centre of mass (CoM),
sitting on top of a massless rigid leg of the length [. The IPM is a two-dimensional model confined to the
frontal plane, i.e. a vertical plane perpendicular to the direction of progression. It represents pedestrian
body dynamics during the single-support phase of gait, in which only one leg is in contact with the ground.
The double-support phase of gait, in which the support of the body is transferred from one leg to the other,
is omitted, hence the switch between steps is instantaneous while preserving the lateral velocity of the CoM.
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Figure 1: Diagrammatic representation of a structure during the development of lateral instability due to
the loading from N inhomogeneous pedestrians represented by the generalised inverted pendulum pedestrian
models (IPMs).

To ensure that balance is maintained, a foot placement control law of the type proposed by Hof et al. [43] is
implemented within the generalised IPM. The position of the centre of pressure (CoP), which is effectively
the origin of the ground reaction force vector, that being equivalent and opposite to the vector of the force

exerted by the pedestrian onto the structure, at the initiation of the step is adjusted according to:

wi gy =y (tig) + ai[& (ti; — ) + 96 (ti5)] £ Bi (2)

where the subscripts ¢ and j denote quantities defined for the i-th pedestrian and j-th step, respectively,
y is the lateral displacement of the CoM relative to an arbitrary point on the structure, x is the lateral
displacement of the structure at the location of the i-th pedestrian relative to a stationary (in the absolute
sense) reference point, « is the constant of proportionality (i.e. slope), 8 is the constant offset (i.e. intercept)
which is taken as positive and negative for steps taken with the right and left leg, respectively, ¢; ; is the
time instance of the initiation of the j-th step by the i-th pedestrian, 7 is the time offset, and dots over

symbols represent relative derivatives with respect to time ¢.

The foot placement control law in Eq. 2 differs from the law proposed by Hof et al. [43], adopted in the
original TPM proposed by Macdonald [1], in that coefficients o and 8 in Eq. 2 are empirically obtained
constants generalised based on the pedestrian anthropometric characteristics. Therefore, « corresponds
to 1/Q, in Hof et al. [43], where Q,, is the angular pendulum frequency defined as \/g/l where g is the
gravitational acceleration and [ = 1.34L, where L is the pedestrian leg length, and S corresponds to the
constant lateral offset termed the margin of stability, denoted by, in Hof et al. [43]. Furthermore, the

time offset 7 introduced in Eq. 2, but missing in Hof et al. [43], accounts for the omission of the double-



support phase of gait within the IPM and neuromotor control, i.e. issues related to the integration of sensory
information and the execution of motor activities enabling the pedestrian to remain balanced. Both these

issues are discussed in more detail in Section 3.1.4 in Czaplewski et al. [2].

The anthropometric characteristics defining o and 3 are the pedestrian height, H, leg length taken as the
distance between the lateral malleous and the top of greater trochanter, L, pelvis width taken as the lateral
distance between the points on the two sides of pedestrian body marking the top of greater trochanter, P
and shoulder width taken as the lateral distance between points on the two sides of pedestrian body marking

the glenohumeral axes, S, such that:

o; = 0.501/ H —1462,/ +13\/ +1 747\/ —0.808 (3)

B; = 0.07520 +N( 0.0106, 0.0015) (4)

where M (u, o) is a random variable drawn from normal distribution with mean p and standard deviation

0. The time offset, 7, is defined in terms of the stride frequency, f,:

= —0.0116 77" + 0.0476 f_ (5)
The CoM equation of motion, assuming the leg remains close to vertical during walking, is given by:

i () + — [t — 3 ()] =~ (1) (6)

%

and the total lateral force from the pedestrian onto the structure is given by:

Fy () = —m & (8) + 3 ()] = =5 [ui — 9 (2] (7)

i

The pedestrian-specific parameters, i.e. mass, m;, together with «;, 8; and 7; defined in Eqgs. 3, 4 and 5,
respectively, determine the long-term average self-excited forces at the modal frequency, AC; and AM;,

which are used in the generalised equation of motion in Eq. 1. These forces are defined in Section 2.2.

2.2 Closed-form solutions of the long-term average self-excited forces

The closed-form solutions for the long-term average lateral forces generated from the generalised IPM at
the structural oscillation frequency were derived in Czaplewski & Bocian [3] based on the formulation
of the original IPM porposed by Macdonald [1] introduced by McRobie [4]. Those solutions cover two
types of pedestrian stepping behaviour on laterally-oscillating structures: phase drift and synchronisation.
Phase drift occurs when pedestrian stride frequency is constant and different from the structural oscilla-
tion frequency, hence the phase between the pedestrian and structural motion evolves at a constant rate.
Synchronisation occurs when those two frequencies are exactly the same, hence the phase between the pedes-
trian and structural motion is constant. However, they do not cover phase pulling, i.e. the case when the
pedestrian stride frequency is modulated by the structural motion, hence the phase between the pedestrian
and structural motion evolves at a varying rate. Whether all these cases should be taken into account in

defining the structural lateral dynamic stability criteria is still an issue of debate.

Phase pulling mechanism was first discovered from the analysis of pedestrian-structure interaction on

vertically-oscillating structures using an inverted pendulum pedestrian model in Bocian et al. [44], [45]



and some empirical evidence for this was provided in Nessler et al. [46]. It was advocated by McRobie et al.
[47] that the same mechanism, albeit termed intermittency and limited to one mode of phase modulation
only, could explain the underestimation of the negative damping effect arising from pedestrian-structure
interaction on laterally-oscillating structures from laboratory measurements relative to that obtained from
measurements on full-scale bridges. Empirical evidence supporting this claim was provided from the exper-
imental campaign by Bocian et al. [19], although two modes of phase pulling were identified distinguished
based on whether f; falls below or above f, in line with the model predictions [44], [45]. Another expla-
nation was offered in McRobie [4] to reconcile the outputs from the IPM and measurements from the LMF
[6] in that a proportion of pedestrians in a crowd could synchronise their gait with the lateral structural

motion at phases increasing the detrimental damping effect.

Whether the phase-pulling mechanism and synchronisation should be incorporated in the provisions against
structural instability is still unclear. Bocian et al. [19] identified phase pulling in only 5 out of 137
conducted tests with pedestrians walking on a laterally-oscillating instrumented treadmill, although the
criterion adopted therein for the classification of this stepping behaviour was quite stringent. The same study
reported no evidence of preferential phase frequency entrainment (i.e. lock in), while very few occurrences
of synchronisation were reported from observations on full-scale structures [38]. Therefore, while neither
phase pulling nor synchronisation can be discounted at this point, it is difficult to argue their central role in
causing structural instability. Nevertheless, the IPM lends itself to modifications enabling this mechanism
to be captured, as shown in [47], [48], [49].

The parametric analyses of the generalised IPM in the case of phase drift presented in Czaplewski &
Bocian [3] suggest that pedestrians can generate the effective negative damping much more detrimental to
structural stability than the average estimates obtained from the LMF [6]. Therefore, even without making
any assumptions as to the occurrence of phase pulling or synchronisation, they can provide more onerous
structural (in)stability criteria than those currently available, e.g. [5], [35], [50], [51].

Taking all of the above into consideration, the structural stability criteria presented in this study are based
on the solutions of the self-excited forces for the case of phase drift. It needs to be borne in mind that these
solutions also contain the occurrence of synchronisation, however AC and AM are averaged in this case
over all possible phase angles. Therefore, for the general case of phase drift, according to [3], AC; and AM;
are defined by:

QmiA2
ACZ = —m (K1a1 — Kgag) (8)
m; A 2A
AM, = ="~ |1— K K 9
a?wg wai( 102 + Kaay) 9)
where:
1
A=1— ———
1+ a?w?
Kl =1- OéZdb Sil’l’(/JTﬂ‘

1
Ko =owp | 1— 1 cos wm-)

!
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a1 =1—e?i coss

T;
ap = e sint, ;

and 95 ; = ““’ZTi defines the phase offset per period of a single step, where T; = fi is the duration of the gait
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cycle, and 1, ; = wyT; defines the phase offset per time lag. As can be seen in Egs. 8 and 9, the long-term
solutions for the average self-excited forces are independent from S; included in the foot placement control

law in Eq. 2, but they are dependent on «; and ;.

Having defined AC; and AM; for any pedestrian with known anthropometric and gait characteristics, a
probabilistic framework is required to account for the distribution of the self-excited forces in the population

sample loading a structure. Such a framework is presented in Section 2.3.

2.3 Probabilistic stability criteria

A probabilistic framework defining the structural lateral dynamic stability criteria, suitable for use with the
generalised IPM, was presented in Bocian et al. [5]. The structural stability boundary for a given mode was

derived based on Eq. 1 by applying Fourier transforms and substituting for the structural angular natural

frequency w, = % and the damping ratio ¢ = 5 Mcwn [52]:
1< 1<
-1+ ;AMZ- (wn) 67 | Wi + | 2wn + 57 ; AC; (wp) ¢? | iwp + w2 =0 (10)

where i = +/—1. Therefore, on the stability boundary of the pedestrians-structure system the following
relationships apply [52], [53]:

Wy, :wb\/l—l—/]AM (wp) My (11)
(= _%,&AC (wp) M (12)

n

where m, = % is the pedestrians to structure mass ratio in which the modal mass of pedestrians is defined

as:

Ls
Mpz/ myd? ds (13)
0

where L; is the length of the structure, m, is the mass of pedestrians per unit length and s is the distance
along the structure. In Egs. 11 and 12, fiac and fiaps are the mean equivalent added damping and mass,
respectively, based on the considered population, normalised such that:

y pUAC

= 14
fac = 5o (14)
far = pau (15)

where p,, is the average mass of a pedestrian for the considered population.

By analogy with the classical analysis of flutter instability using flutter derivatives in wind engineering
[54], [55], a convenient way of expressing the stability boundary in terms of the pedestrian Scruton number
was proposed by McRobie & Morgenthal [14]. Using a similar approach, the pedestrian Scruton number is
defined as:

D=(or (16)



which is effectively a mass-damping parameter. The same approach was adopted in Newland [53], except
that D in Eq. 16 is half of the pedestrian Scruton number defined therein. To avoid structural lateral

dynamic instability in the considered vibration mode, D should lie above the stability boundary.

Three loading scenarios were considered in [5], for which the pedestrian Scruton number was defined in a
probabilistic sense. To simplify the notation, parameters ®,, can be introduced defining the n-th power of

the mode shape integral:

L
o, = nd 17
/0 6" ds (17)

which can be evaluated for any mode shape. However, for a mode shape defined by p half sine waves, such
that:

pTs

. 18
6 =sin 2T (13)
based on Eq. 17, &, = % and &, = % for any integer p. To account for the variability of pedestrian
parameters, the standard deviation of the normalised equivalent added damping is used:
~ OAC
onc = 19
2wb/14m ( )

together with the confidence limits drawn from normal distribution, such that z, corresponds to the
100 (1 — ) percent one-sided upper confidence interval, such that for the 95% confidence limit zy=¢.05 =
1.645 and for the 99% confidence limit zy—¢.01 = 2.326.

For the uniform distribution of pedestrians on the structure:

- - 1
¢ > —fiac + 270A07¢2\/N\/ Dy (20)

Mp,nom

where the nominal modal mass of pedestrian, M, ,om, can be taken as:

Mp,nom = Nﬂmq)2 (21)

Therefore, for a sinusoidal mode shape, Eq. 20 simplifies to:

3
— Y — 22
CMp,nOm > THac Tt Hoac\ oy (22)
where:
Npim
Mp,nom = % (23)
For the random distribution of pedestrians on the structure:
M - z - ~
(G > hact g o\ [0ho®s + e (01— #3) (24)
p,nom 2



which for a sinusoidal mode shape simplifies to:

M . 1 -
CM > —pac + 2y \/2N (Ao +304¢) (25)
p,nom

For all pedestrians distributed at the maximum of the mode shape:

2
M -, fmax

- ~ 1
Sty e (o 7305 )
p,nom

For more details on the derivation of the probabilistic stability criteria the reader is referred to Bocian et al.
[5]. The remaining problem is the definition of fia¢, fiapy and Gac based on closed-form solutions presented
in Section 2.2 which, according to the generalised IPM presented in Section 2.1, depend on the considered

population of pedestrians and their anthropometric characteristics.

3 Results and discussion

To obtain outputs from the calibrated and generalised IPM based on the closed-form solutions presented in
Section 2.2, the pedestrian anthropometric data are required, which are defined in Section 3.1. These data
are used to establish statistical models of the pedestrian anthropometric parameters presented in Section
3.2. The validity of the calibrated and generalised IPM is then established in Section 3.3, before defining the
critical pedestrian-generated forces in terms of the equivalent added damping, AC, and equivalent added
mass, AM, in Section 3.4. To showcase the applicability of the proposed structural stability criteria, case
studies of two bridges susceptible to pedestrian-induced lateral instability are presented in Section 3.5.
Since these bridges are located in the UK and the USA, the critical stability criteria are established for
the two corresponding populations, and additionally for the population of Poland, although the presented
methodology can be applied for any population of pedestrians.

3.1 Anthropometric data

The anthropometric data required to define the probabilistic structural stability criteria based on the outputs
of the calibrated and generalised IPM were taken from publications reporting these data for the selected
countries in Europe, i.e. Poland and the UK [56], and the USA [57]. The data for the UK and the USA
will be used in the case studies of bridges prone to the lateral dynamic instability under the action of
pedestrians presented in Section 3.5. The anthropometric datasets reported in [56], [57] are given according
to ISO 7250 standard [58] providing a convention for describing the anthropometric measurements. Apart
from the stature, which was taken as equivalent to the height, H, and the hip breadth, which was taken as
equivalent to the pelvis width, P, the datasets also include the shoulder breadth, which is defined in ISO
7250 standard [58] in a different manner than the shoulder width, S, used in the generalised IPM [2]. To
account for this difference, a multiplier of 0.83 was applied to the values from [56], [57] to obtain S.

The remaining parameter to define is the leg length, L. Due to lack of suitable data defining this parameter
for the considered populations compatible with the measurement method in [18], [19], L was taken herein to
reflect the data from tests on the instrumented treadmill used to calibrate the IPM. The mean value of %
was 0.45 and the standard deviation was 0.0115, hence these values were adopted in all statistical models.

The pedestrian mass is correlated with the height [59], which is captured by the body mass index (BMI),
defined by the ratio 7%, where m is expressed in kg and H is expressed in m. According to the World
Health Organization (WHO) [60], in 2016 the mean BMI for men and women in Poland was 27.4 and 25.9

2

kg m~2, respectively, with the corresponding standard deviation of 3.85 and 4.85 kgm~2 [61]. According to
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Figure 2: Anthropometric parameters adopted in the calibrated and generalised IPM |[2].

Table 1: Anthropometric parameters for the populations of selected countries expressed according to the
convention of ISO 7250 [5§].

Should
Stature [m] Hip breadth [m] owaer
breadth [m]
Country  Gender - n -
percentile percentile percentile
5th  50th 95th 5th  50th 95th 5th  50th 95th

male (48%) 1.660 1.778 1.890 0.311 0.345 0.380 0.376  0.410 0.445

Poland
female (52%) 1.536 1.634 1.740 0.319 0.358 0.388 0.332 0.372 0.416

United male (49%) 1.641 1.775 1.869 0.316 0.363 0.411 0.376  0.412 0.447
Kingdom female (51%) 1.514 1.620 1.726 0.332  0.390 0.448 0.338 0.368 0.394

male (49%) 1.648 1.755 1.870 0.308 0.344 0.387 0.384 0.415 0.447

USA
female (51%) 1.525 1.626 1.740 0.311 0.353 0.400 0.335 0.365 0.396

the British National Health Service (NHS) [62], the mean BMI for men and women in the UK was 27.2 and
26.9 kgm™2, respectively, with the corresponding standard deviation of 4.45 and 5.53 kgm~2. According to
the Vital and Health Statistics [63], which provides official data of the United States Department of Health
& Human Services, in 2020 the mean BMI for men and women in the USA was 28.6 and 28.7 kgm™2,
respectively, with the corresponding standard deviation of 4.63 and 5.63 kg m~2.

3.2 Statistical modelling of pedestrian anthropometric parameters

To obtain the mean normalised equivalent added damping and mass defined in Eqs. 14 and 15, respectively,
and the standard deviation of the normalised equivalent added damping defined in Eq. 19, it is first necessary
to establish a statistical model of the anthropometric parameters representative of the considered population.

This procedure involves the following steps, making use of the data in Tables 1 and 2:
(i) Determination of gender based on the binomial distribution.

(ii) Determination of height, H, based on the normal distribution.

11



Table 2: Anthropometric parameters for the populations of selected countries expressed according to the

convention adopted in the calibrated and generalised IPM [2].

BMI
Country  Gender H [m] [kg.m~?] L/H [ P/HH S/H
mean+tstandard deviation
Poland male 1.7784+0.058 27.44+3.85 0.450+0.0115 0.194+0.0034 0.191£0.0024
female 1.634+0.051 25.94+4.75 0.450+0.0115 0.219+0.0063 0.189+0.0057
United male 1.7754+0.057 27.244.45 0.45040.0115 0.205+0.0068 0.19340.0025
Kingdom female 1.62040.053 26.9+5.53 0.450+0.0115 0.241£0.0126 0.189+0.0013
USA male 1.755+0.056 28.6+4.63 0.450£0.0115 0.196£0.0050 0.196+0.0015
female 1.626+0.054 28.7+5.63 0.450+0.0115 0.21740.0065 0.186-+0.0020

(iii) Determination of the BMI based on the gamma distribution, and subsequently determination of the

pedestrian mass, m.

(iv) Determination of the leg length, L, assuming the ratio % is characterised by the normal distribution.

(v) Determination of the ratios % and % assuming normal distributions and relationships of these ratios

with the BMI. The latter assumption was adopted to avoid outliers, e.g. pedestrians with wide pelvis
but low mass or narrow shoulders but high mass. This was achieved by applying linear relationships

expressed in Eq. 27, where p and o denote the mean and standard deviation, respectively.

OP/H

KP/H mod =HP/H T (BMI — ppnrr)

OBMI

0S/H
KS/Hmod =Hs/H + S (BMT — ppar)
OBMI

(27)
op/H
OP/H,mod :T
0S/H
0S/H,mod = 9

Due to availability, verification of the proposed statistical model was conducted based on the data from
the English population reported by the NHS [62]. It can be seen in Figure 3 (a) that the BMI for men is
only slightly skewed to the right, but the right tail is much longer for women, as seen in Figure 3 (b). This
shape of the data distribution is captured by the gamma distribution, as assumed in (iii). A comparison of
the output of the proposed statistical model in terms of body height, H, and mass, m, is shown in Figure
4. Tt can be seen that the body height and mass are captured by the statistical model very well for both
men and women, but there is slightly higher variability of the body height obtained from the model relative
to measurements. However, since the calibrated and generalised IPM gives more detrimental self-excited
forces for shorter and heavier pedestrians, and the statistical model is slightly biased in these directions,
it can be considered acceptable. This can be further understood by inspecting Figure 5, presenting the
relationship between the coefficient of proportionality in the foot placement control law, «, and the body
mass, m, based on the statistical model for the Polish population. The body mass, m, scales the magnitude
of the equivalent added damping directly, as can be seen in Eq. 8. The lower the value of «, assuming all
other relevant pedestrian anthropometric and gait characteristics, and structural lateral oscillatory motion
remain the same, the stronger the influence of the lateral structural motion on the step width, as can be

seen in Eq. 2.
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Figure 3: Distribution of the BMI of the English population according to the NHS data [62] and the

statistical model.
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Figure 4: Comparison of the data from the English population obtained from the NHS [62] with the outputs
from the statistical model in terms of the height, H, and body mass, m. The red and blue dots represent

women and men, respectively.

3.3 Generalised IPM validity study

Having established the procedure for obtaining a statistical model of the anthropometric parameters of the
considered population in Section 3.2, it is now possible to verify the applicability of the calibrated and
generalised IPM for the range of its defining parameters. The underlying rationale for this task is that the

predictions of the IPM are valid if the kinematic constraints associated with real walking gait are preserved.

The original IPM proposed by Macdonald [1] was derived based on the assumption of a small angle of the
pendulum leg from vertical at the step switchover. That angle, 6, is denoted in Figure 6, together with

the lateral distance between the locations of the CoP at consecutive steps, Au. For some combinations of

13



0.35

0.30 A

0.25 A

Slope « [s]

0.20

0.10 T T T
30 60 90 120 150

Body mass m [kg]

Figure 5: The relationship between the coefficient of proportionality in the foot placement control law, «,
and the body mass, m, according to the statistical model for the Polish population. The red and blue dots

represent women and men, respectively.

defining parameters, the IPM can generate the lateral CoM velocities translating into Au which are not seen
in real human gait, which violates the small angle assumption and invalidates the forces generated from the

IPM. This issue is treated rigorously in this section.

The step width is increased for higher structural oscillation amplitudes, X, lower coefficient of proportion-
ality, «, and higher free coeflicient, 8. The influence of the stride and structural oscillation frequencies, fs
and fp, respectively, is more complex. However, lower f typically translates into an increased step width.
Due to a relatively little influence on the setp width and to simplify the matter, 8 was taken as zero.
The parameters a and f;, are predetermined by the pedestrian anthropometric parameters and structural
characteristics (predominantly mass and stiffness), respectively. The structural oscillation amplitude, X, is
an independent variable which does not affect the magnitudes of self-excited forces in Egs. 8 and 9, how-
ever, it affects the step width. Since X during the instability period of the CMB [9] and CSB [10] reached
approximately 0.01 m, this value was adopted in the subsequent analysis of the IPM applicability.

mr m

mg

[

Figure 6: The IPM at the step transition — the lateral distance between the location of the centre of pressure

(CoP) for consecutive steps, Au, and the resulting angle of the stepping leg from vertical, 6.

14



A small angle approximation, enabling trigonometric functions to be avoided within the IPM solution,
typically applies for angles up to 15 degrees. Although the accuracy of small angle approximation keeps
decreasing beyond that value, a limit of 20 degrees was adopted herein reflecting the step widths which are
still easily achievable in real human gait while not overly compromising the accuracy of the IPM relative to
the exact solution. This can be understood by inspecting the Taylor series approximation for sin 6, which
contains only odd components, i.e. § — %3! + %T — (...). According to this assumption, § > 1—7871' which means
that 2% < cos &m ~ 0.342. Therefore, assuming | = 1.34L as taken in Macdonald [1], where [ is the

2l 18
pendulum length, the condition that must be satisfied is as follows:

|Au| < 0.9166L (28)

Adopting the assumption 5 = 0, the change in the lateral position of the CoP between consecutive steps

can be calculated according to Eq. 31 in Czaplewski & Bocian [3]:

Au = [A (i + 20) — o] eI _ Ay + 1) + oy (29)

where A =1 — m and:
2o = X sin (4 — 1)
to = Xwycos (¥ — p)
Ty = Xwycos (¥ — b, — )
r1 = Xsiny
1 = Xwycosy
i1 = Xwy cos (Y —1;)
where 1 is the bridge phase angle, and 1, = ;Tbs and v, = w7 are phase offsets as per period of a single

step and per time offset 7, respectively. Aw is at maximum when:

/2 2
=2 |fertaIl (W) +7| =¢* (31)
1

where:

Cy = (—Aawyp cosy, + Asin i, — awp, sin iy, sin; + aw cos Py, cos ;) eafs)™t 4 Aawy, + awp cos

Cy = (Aawy sini, + Acostp, — awy sin iy, cos P, — awy, cos Py, sin ;) G Ly Quwp Sin ¥,
(32)

The maximum separation between the lateral position of the CoP, Au*, is then:

Au* = X’{A[awb(sin WPy sin™ + cos Py, cos ™) + cos Yy sin ™ — sin ), cos 1/)*] +
— awy [(cos Yp sine, + siny, cos ;) sin™ + (cos ¥, cos P — sin ey, sin ;) cos ¢*] }e(mfs)_lJr

— A(awp cos ™ + sin ™) + awp(sin ¥, sin ™ + cos 1, cos ™)

(33)
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Au* defined in Eq. 28 is a characteristic value for any combination of o and wy,. It is now necessary to
reverse the problem and find the minimum f, for which Eq. 28 is satisfied. The exemplar results from the
analysis of the IPM validity are presented in Figure 7. The leg length, L, was established from « while
adopting the average L/H, P/H and S/H based on the representative sample of the Polish population. The
presented results can be evaluated in the context of typical pedestrian stride frequencies which fall between
0.6 and 1.1 Hz. It can be seen that the applicability of the IPM is generally limited at the combination
of the lowest « and f;, within the range of 0.3 to 1.3 Hz and, more significantly, at f, close to 2 Hz. The
importance of these parametric limits can be understood by considering the range of « for the representative
sample of the Polish population presented in Figure 5 and the stepping behaviour of pedestrians walking

on a laterally-oscillating instrumented treadmill reported in [18], [19].

Small values of «, below 0.17 s, can be seen in Figure 5 for the pedestrians having the lowest mass, who
comprise a small part of the whole population. Furthermore, when subjected to the lateral structural motion,
pedestrians have a tendency to speed up their steps, i.e. increase their stepping rate. The results from the
tests reported in [18], [19] show that the lowest average stride frequency was above 0.8 Hz. Importantly, those
results come from an experimental setup enabling pedestrians to freely adjust their walking speed, hence
stride frequency, due to the incorporated automatic treadmill belt speed feedback mechanism. This justifies
the cases for which the combination of parameters defining the IPM violates the lateral CoP separation
condition to be treated as outliers and omitting them from further analyses.

0.30 ' > 0.7
- 0.6 N
)
025 -
2, - 0.5 >
g =
9 - 0.4 &
% 0.20 A
i
-
03 &

0.15 < 0.2

0.0 0.5 1.0 1.5 2.0

Structural oscillation frequency f3, [Hz]

Figure 7: The minimum stride frequency, fs, for which the IPM provides valid solutions based on the

representative sample of the Polish population.

3.4 Critical structural dynamic stability parameters

The critical structural dynamic stability parameters were established following the methodology introduced
in Bocian et al. [5]. The normalised mean equivalent added damping, fianc, normalised standard deviation
of the equivalent added damping, Ga¢, and mean normalised equivalent added mass, fiaps, were obtained
using Eqs. 8, 9 and 19, respectively. The range of structural oscillation frequency, f;, was taken as [0.001 Hz,
2.0 Hz]. The upper limit of f, was chosen conservatively since no cases of pedestrian-induced lateral dynamic
instability have been reported beyond f;, =~ 1.12 Hz (see Table 1 in [38]), except from a single case of the
Cragside Bridge opened in 1875, which is a wrought iron arch bridge having extremely low lateral stiffness
and the main lateral mode at approximately 2.8 Hz [64]. Furthermore, the UK National Annex to Eurocode
1 [35], which arguably contains the most sophisticated provisions for designing structures against pedestrian-
induced lateral instability currently available, states that it may be assumed that unstable lateral response
will not occur for structures not having significant lateral modes below 1.5 Hz. The range of pedestrian
walking speed, v, was taken as [0.6 ms™!, 1.7 ms~!]. The lower limit of v represents the pedestrian walking

speed in a crowd at density of approximately 2 people/m? [6], [52] beyond which walking is heavily impaired.
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The upper limit represents the speed at which a pedestrian is highly likely to change their gait from walking
to running. The stride frequency, fs, for each pedestrian from a representative sample of the considered
population of the size N = 10000 was obtained from the relationship established in Dean (1965) [65]:

1}0‘5
fs = 13502 (34)

The stride frequency was verified and corrected, if necessary, according to the procedure outlined in Sec-
tion 3.3. The values of —jianc, 0ac and fians, together with their corresponding extreme values for each
considered f; are shown in Figure 8. It needs to be pointed out that fianc, defined in Eq. 14, is presented
in Figure 8 with a reversed sign, since this is how it enters the probabilistic stability criteria presented in
Section 2.3.
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Figure 8: (a) The normalised mean equivalent added damping, (b) the corresponding standard deviation of
the equivalent added damping, and (c) the normalised mean equivalent added mass. The plots in the top
row present the results relative to the walking speed and the plots in the bottom row present the envelopes

of the minimum and maximum values.

In general, the extreme values of parameters shown in Figure 8 were obtained for the lowest walking speeds.
The extreme values of —fianc are always positive for f; smaller than approximately 0.7 Hz, and —fianc can
take values above 4 for f; between approximately 0.2 Hz and 0.3 Hz. For f; above 0.7 Hz, the maximum
and minimum values of —fianc are always positive and negative, respectively, having magnitude below 1,

except for fi, at around 1.2 Hz for which the maximum is 0.

The maximum &a¢ at approximately 1.6 is found for f;, corresponding to the maximum of —jianc. For fj

above 0.6 Hz gac¢ is generally below 0.5.

For f, below 0.3 Hz fiaps is always negative, but for f, between approximately 0.5 Hz and 1 Hz it is always
positive. The global minimum of fiays at approximately —10 is found for the lowest considered f; close to
0 Hz, and the global maximum of fiays at approximately 5 is found for f, at approximately 0.6 Hz. For f3
beyond approximately 0.8 Hz jia s takes values between —0.5 and 2.
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3.4.1 Frequency shifts due to the equivalent added mass effect

The effect of the equivalent added mass is to shift the vibration frequency of the structure subjected to
the loading from pedestrians. Having obtained the envelopes of minimum and maximum values of fiaas
presented in Figure 8, it was possible to determine the corresponding frequency shifts, r = %, according
to Eq. 11. For clarity of the presentation, the pedestrian-to-structure mass ratio, m,, was taken as 0.1,
0.3 and 0.5. Since the maximum mass ratio observed on bridges during the lateral dynamic structural
instability period was approximately 0.23 for the LMF [6] (assuming uniform distribution of pedestrians on
the bridge), the value of m, = 0.3 conservatively covers all known cases. The results of this analysis are
shown in Figure 9. It needs to be borne in mind that the presented frequency shifts may not correspond to
the critical conditions for structural instability. However, they are indicative of the possible changes in the
structural vibration frequency due to the presence of pedestrians. For f, below 0.3 Hz, r is always higher
than 1 or it is undefined. In all these cases the presence of pedestrians increases the structural vibration
frequency, fp, relative to the natural frequency, f,,, meaning that pedestrians act in this case as a source of
significant negative mass to the structure. For f,, between approximately 0.5 Hz and 1.5 Hz, r is usually
smaller than 1, dropping to as little as 0.5, which means that the pedestrians act in this case as a source of

significant additional mass to the structure.

3.4.2 Critical added damping

Having established the frequency shifts for the considered range of pedestrian walking speeds, v, and
pedestrian-to-bridge mass ratios, m,., it is now possible to define —fia¢c accounting for the frequency shifts
and expressed relative to the natural structural frequency, f,,. Due to the frequency shifts associated with
the equivalent added mass effect discussed in Section 3.4.1, the critical —jinc was sometimes found at mul-
tiple values for a single f,,. In these cases the maximum (positive) value of —finc was preserved, since it
is the most detrimental to structural stability. The results for —fianc are shown in Figure 10 (a), and the
corresponding Ga¢ is shown in Figure 10 (b). The most interesting results are obtained for f, up to 1.2
Hz, i.e. for the range of f,, containing modal frequencies for which instability was identified from full-scale
bridges. In this case, the higher m,., the wider the range of f,, for which —jia¢ is positive. Beyond f, ~ 1
Hz, there is relatively little variation of —fia¢, of which magnitude is generally low. As could be expected
(see the discussion of Figure 8 in Section 3.4), the critical —fian¢ is found, in most cases, for the lowest
v. The exception is the interval of f, defined by the intersection points of curves representing the lowest
and the highest walking speeds. Therefore, results for the lowest and highest v (0.6 ms™* and 1.7 ms™!,
respectively) only need to be considered to derive simplified envelopes of —jianc and Ga¢ for use with the

probabilistic stability criteria presented in Section 2.3.
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Figure 10: The relationship between the structural natural frequency, f,, and (a) —fiac and (b) dac
accounting for the considered range of walking speeds, v, and mass ratios, m,.. The legends apply to both

plots.

3.4.3 Piecewise-linear envelopes for the critical added damping

The results presented in Figure 10 are defined by curves which cannot be expressed using simple functions.
However, simplicity is a desired characteristic of any structural design guidelines since it generally makes
them easier to apply hence prevents from making errors. Therefore, simplified envelopes were established
for the relationships between —jiac and f,, and Ga¢c and f,. A systematic approach was adopted in
this process, according to the procedure introduced hereafter, to avoid arbitrariness and ensuring universal
applicability, e.g. for various populations of pedestrians. The development of piecewise-linear envelopes for
—jiianc and Gac based on m, = 0.3, which encompasses all known mass ratios for the recorded cases of

lateral structural instability, is presented in Figure 11.

The piecewise-linear envelope of —fianc presented in Figure 11 (a) consists of five sections, three of which
describe linearly varying values and the remaining two set at constant values. These constant values, denoted
—[AC,const,1 and —[IAC, const,2, Were determined by finding the first two local maxima of —fiac expressed
relative to fp, as shown in Figure 12 (a). Deriving these values from the relationship of —fin¢ with f, rather
than f,, was convenient and acceptable, since the local maxima within the considered range of f;, and f,

are independent of m,..

The first section describing linearly varying values was obtained by finding a tangential line to —fia¢ for
v = 0.6 ms~! at the first f,, for which —jiac = 0, as denoted in Figure 11 (a) by the green dot. That
tangential line is denoted in Figure 11 (a) in green and it is given by:

,[LAC,lin,l(fn) = au,l(mr)fn + b,u,l(mr) (35)

where the parameters a,,; and b, 1 are dependent on m,..
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Figure 12: Characteristic values of —jinc and dac used in the derivation of the piecewise linear envelopes

of —finc and Gac presented in Figure 11.

The second section describing linearly varying values was obtained by finding a tangential line to —jia¢ for
v = 0.6 ms~! passing through the point denoted in Figure 11 (a) by the purple dot. That point is at the
intersection of the green tangential line previously obtained and —fiac,const,3 Obtained from Figure 11 (a).
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The ordinate of that point was taken as a fraction &, of max(—fiac), where k, was adopted as 0.35. The

second section describing linearly varying values is denoted in Figure 11 (a) in purple and it is given by:

ﬂAC,lin,Q(fn) = au,Z(mr)fn + bp,,2(m'r) (36)

where the parameters a,,» and b, 2 are dependent on m,..

The third section describing linearly varying values was obtained by connecting the first two intersection

1

points of the curves for —fiac for v = 0.6 ms™' and —jiac for v = 1.7 ms~!. This section is delimited

within Figure 11 by the two yellow dots and it is given by:

ﬁAC,lin,?»(fn) = a,u,S(mr)fn + b,u,3 (37)

The crossing points of the first line describing linearly varying values with the line set at a constant value of
—fiac representing the second local maximum, and the second line describing linearly varying values with
the line set at a constant value of —fiac representing its maximum, all presented in Figure 11 (a), denote
the limiting values of f,, used in defining the envelope of Ga¢ presented in Figure 11 (b). To make it clear,
dashed vertical lines were denoted therein, linking the specified values. For f, on the left and right side of
the crossing points described above, the envelope of Ga¢ takes constant values equal to the first and third
local maximum of Ga¢, respectively, which are denoted in Figure 12 (b) by green dots. The second local
maximum in Figure 12 (b) is discarded since it corresponds to the range in which —fian¢ is negative (see
Figures 11 and 12). The section describing linearly varying values of 5a¢, denoted in Figure 11 (b) in green,

is constructed by linking the sections for which the envelope of Ga¢ is constant, and it is given by:

&AC,lin(fn) = aa(mr)fn + ba(mr) (38)

where the parameters a, and b, depend on m,..

The parameters a1, by.1, Gp.2, bu2, au 3, a0, by, used in Egs. 35, 36, 37 and 38, were obtained for each m,.
within the range [0.10, 0.11, (...) , 0.50], by approximation with 3rd order polynomials. The parameter b, 3

was taken as constant and invariant of m,..

For the given f,, and m,., the envelopes of the critical mean equivalent added damping, fiac, and the critical
standard deviation of the mean equivalent added damping, 6ac, are obtained from equations presented in
Table 3. Exemplar envelopes based on data for the Polish population are presented in Figure 13 for mass
ratios m, = 0.1 in (a) & (d), m, = 0.3 in (b) & (e) and m, = 0.5 in (¢) & (f). It can be seen that the
higher the mass ratio, m,, the wider the range of frequencies, f,, for which significant negative damping

effect can occur.

3.5 Validation study

This section presents exemplar applications of the proposed lateral dynamic stability criteria based on the
case studies of the Clifton Suspension Bridge (CSB) in the UK [10], [12] and the Squibb Park Bridge (SPB)
in the USA [66]. These two bridges — CSB and SPB — differ with respect to their primary function — as
they carry mixed and pedestrian traffic only, scale — having the main span of 194 m and 37 m, structural
arrangement — supported by classical chain suspension system and underslung system, and the construction
era — industrial revolution and recent decades. However, they were both found susceptible to pedestrian-

induced lateral dynamic instability, although for different loading intensities — hundreds of pedestrians and
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Table 3: The piecewise-linear envelopes of the critical mean equivalent added damping, fianc, and standard deviation, oda¢, for the populations of Poland, the UK
and the USA.

Poland

United Kingdom

USA

ﬂAC’,calc (f'ru mr)

= max{/lAC,const,% min{ﬂAC,lin,l (fn7 mr)7 ﬂAC,lin,Q (f'ru mr)a /lAC,const,l}7 ﬂAC,lin,S(fna mr)}

6-AC,calc (fn7 mr) = maX{&AC7const,2; min{&AC,lin(fna mr)a 6AC,const,1 }}

LAC,const,1 = 4.41
AAC,const,2 = 0.19
OAC,const,1 = 1.62
OAC,const,2 = 0.19

ﬂAC,const,l =3.17
ﬂAC,const,Q =0.14
OAC,const,1 = 1.18
&Ac,const,2 =0.13

[LAC,const,l =4.16
ﬂAC,constQ =0.17
OAC,const,1 = 0.98
&AC,const,Z =0.29

un (mr)fn =+ bxul(mr)
ap,2 2(my) fn + bu,Z(mr)
au3(me) fr + b3
o (M) fr + bo (M)

,LNLAC,lin,l S My

( )
Aaciin2(frn, mr)
( r)

fac,iin,s(fn, m
GAC,tin(fr,my)

ap1(my) = 16.97m3 — 4.14m?2 — 10.02m,. — 9.94
bu1(my) = —20.19m3 + 8.29m? + 20.3m,. + 6.75
ap2(m,) = 135.39m? — 165.72m?2 + 73.43m,. — 16.67
b.2(m,) = —63.48m? + 76.32m?2 — 32.23m,. + 11.35
au3(my) = 0.17m3 — 0.43m?2 4 0.63m,. — 1.45

bus =174

ag(m,) = 27.61m3 — 34.94m?2 + 16.82m,. — 5.07
by (my) = —14.53m3 + 17.78m2 — 7.8m, + 3.75

au1(m,) = 82.05m3 — 85.9m?2 + 22.25m,. — 9.27
b1 (my) = —40.95m3 + 46.45m? — 5.47m,. + 6.14
ap2(m,) = —61.23m3 + 37.67m?2 + 6.46m, — 9.0
bu2(m,) = 49.65m? — 39.32m?2 + 4.73m,. + 6.08
au3(m,) = 0.47m3 — 0.6m?2 + 0.5m, — 1.13

ay(m,) = —16.63m3 + 11.14m?2 + 1.1m,. — 2.95
be (my) = 18.49m2 — 16.27m2 + 3.19m,. + 2.03

a#’ 1(my) = 57.2m3 — 43.97m2 + 2.3m,. — 9.94
w1 (my) = —20.3m3 + 14.71m2 + 14.53m,. + 6.6
au 2(m,) = 120.91m3 — 149.34m? + 67.3m, — 15.69
bu2(m,) = —49.5Tm? + 63.14m?2 — 28.42m,. + 10.68
au3(m,.) = —0.23m3 4+ 0.03m?2 + 0.44m,. — 1.35
bus =167

ag(m,) = 11.99m3 — 15.3m2 + 7.55m,. — 2.4
by (my) = —5.31m? + 7.01m? — 3.35m, + 1.99
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Figure 13: Exemplar piecewise linear envelopes of —jianc and da¢, respectively, for m,. = 0.1 in (a) & (b),
m, = 0.3 1n (¢) & (d), and m, = 0.5 in (e) & (f), based on a representative sample of the Polish population,
as defined in Table 3.

few pedestrians only for the CSB and SPB, respectively. The SPB is introduced herein in more detail, since
it is relatively little known in the structural engineering community. The results from direct (CSB) and
indirect (SPB) measurements of the dynamic behaviour of these bridges and simulations described herein
served to evaluate the proposed structural lateral dynamic stability criteria. For each bridge, numerous
simulations were run to determine lateral structural response due to walking pedestrians in the same way
as in [52] and [2], considering each mode independently and pedestrian force accounting for all components,
i.e. self-excited forces and Fyen as defined in Eq. 1. According to the calibrated and generalised IPM [2],

the behaviour of each pedestrian is given by:

i + 7’;2 Yo gk (39)
where X is the generalised displacement of analysed mode, and ¢ is the mode shape amplitude denoted here
such that ¢; is the mode shape amplitude at the location of i-th pedestrian. The behaviour of the bridge is

given by:

N
. . 1
2y
X 4 2w, (X + w2 X = ;1

dim;
2
1

o - (Uz‘,j —¥i) (40)

where ( is the damping ratio, M is the modal mass and N is the number of pedestrians on the bridge.
The distributions of pedestrians’ anthropometric parameters were obtained from the statistical models of
relevant populations according to the procedures presented in Section 3.2. The distribution of pedestrian
walking speed, v, was taken according to the normal distribution, A'(v, 0.05v) ms~!. All simulations were
run in Python 3.11. The results were compared with the formulas defining the lateral dynamic stability
criteria presented in Section 2.3 based on —fiac and Ga¢ derived from the relevant populations, such as

those presented in Figure 10, and also based on the piecewise linear envelopes of —fiac and dac proposed
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in Section 3.4.3, and measurements from the relevant bridges. Structural instability was identified in simu-
lations when the lateral vibration amplitudes reached above 10 mm. This corresponds to the modal lateral
oscillation amplitude of the CSB during the instability period reported in [10]. It needs to be noted that
the self-excited forces derived from the calibrated and generalised IPM are independent of the structural

oscillation amplitude, hence they can be expressed as equivalent added damping and mass.

Determination of the stability criteria was conducted according to the pedestrian Scruton number defined
in Eq. 16, accounting for various pedestrians’ distributions on the bridge as captured by Egs. 20, 24 and 26.
This is a multi-step process due to the dependency of these equations on the mass ratio, m,., and the number
of pedestrians on the bridge, N, but also due to back-calculation of the natural frequency of the bridge given
the response frequency. Therefore, to streamline this process, the approach to obtaining stability criteria
will be individually tailored to the considered case studies. To establish a relationship between D and N,
denoting the critical number of pedestrians, i.e. the minimum number of pedestrians for which instability

will occur, the stability boundaries for each bridge are expressed it terms of D and N,,..

3.5.1 Clifton Suspension Bridge

Clifton Suspension Bridge (CSB) inaugurated in 1864 in Bristol, UK, is a chain suspension bridge designed
by one of the forefathers of modern bridge engineering - Isambard Kingdom Brunel. The behaviour of
the CSB during crowd loading was investigated by Macdonald [10] and others [12]. The bridge repeatedly
suffered from excessive lateral vibrations when occupied by pedestrians during the annual International
Baloon Fiesta. The instability was identified during this event in 2003 for two lateral modes at frequencies
of 0.524 Hz (second lateral mode) and 0.746 Hz (third lateral mode), having damping ratios of 0.58% and
0.68%, respectively [10]. The dynamic stability of these modes is investigated herein. The length of the
bridge was taken as 194 m and the mode shapes were taken from Figure 2 and Table 1 in [12]. The modal
mass was obtained from a finite element model as 691.9 t and 698.7 t for the second and third lateral
mode, respectively [10]. The distributions of pedestrians’ anthropometric parameters for use within the
calibrated TPM were obtained from the statistical model of the British population presented in Section 3.2.
To ensure validity of the generalised IPM, excessive separation between the lateral foot placement and the
CoM position was prevented using the procedure introduced in the parametric study presented in Section
3.3. However, the lateral vibration amplitude was adopted herein directly from the simulations rather than
fixed as in Eq. 33. Exactly 100 simulations were conducted for each mode, randomly sampling the walking

1

speed from the closed interval from 0.6 ms~! to 1.7 ms~! and the number of pedestrians on the bridge from

the closed intervals from 35 to 235 and 100 to 500 for the second and third lateral mode, respectively.

To obtain the analytical solutions based on —jiac and dac presented in Figure 10, m, was first established
for a given N to determine corresponding —pac already including the added mass effect. Such obtained
—fiac is analogous to the pedestrian Scruton number, D, for uniform pedestrians’ distribution on the bridge
at 50% confidence limit, i.e. taking z,—¢.5 = 0. In this case, Eq. 22 can be expressed in terms of the critical

number of pedestrians, N, by substituting Eq. 23:

20M

Ncr = — =
HAC Hm

(41)
The stability boundaries for the second and third lateral mode of the CSB, respectively, are presented in
Figure 14 (a) and (b) in terms of pedestrian Scruton number, D, and in Figure 15 (a) and (b) in terms of

the critical number of pedestrians, N... Instability will occur for any D below the stability boundary in
Figure 14 and for N > N, in Figure 15.

It can be seen in Figure 14 that for both modes and all considered pedestrian distributions, the results based

on piecewise-linear envelopes, denoted with the subscript env on the plots, are invariant with respect to the
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Figure 14: Pedestrian Scruton number, D, relative to the walking speed of pedestrians for the (a) second
and (b) third lateral mode of the CSB based on the analytical solutions of —fianc and Gac, and their

piecewise-linear envelopes.

walking speed, v. These results are almost always conservative relative to the corresponding results obtained
from the exact solutions of —fianc and Ga¢. In the latter case, the highest and lowest D for the second lateral
mode occurs for the lowest and highest v, respectively. However, the opposite relationship is found for the
third lateral mode. As can be expected from the results for D obtained from the exact solutions for —fiac
and 6ac, Ner is the lowest for the lowest and highest v for the second and third lateral mode, respectively,
as shown in Figure 15. The most demanding stability requirements are found for all pedestrians distributed
at the antinode of the mode shape. Although these conditions are unlikely to occur during normal bridge
use and can even be unrealistic for large number of pedestrians, they can be considered representative of
conditions during controlled crowd loading tests conducted to examine the structural dynamic stability
boundaries with the least possible effort (i.e. the lowest number of pedestrians), or to excite a bridge to the
levels sufficient to obtain meaningful data for calibration of FE models. Uniform and random distribution
of pedestrians on the bridge yield the same expected damping demand at Dso yni = Ds0,rand. However,

Dgs rand is higher than Dys ,; due to the higher variance.

The lateral dynamic stability requirements expressed in terms of D are generally much higher for the second
lateral mode of the CSB. This agrees with the results from measurements on the CSB in 2003 [10] during
which the instability of the second lateral mode was more pronounced under the action of a crowd having
average density up to 1.1 people/m? corresponding to 488 pedestrians confined to walking within two narrow
footways. Furthermore, a more demanding bridge damping provision is required to meet 95% confidence
limit in D for the second lateral mode. This is due to —fiac and Gac being generally higher for smaller

natural frequencies, f,,, as can be seen in Figure 10.

The results from numerical simulations of CSB response under the action of pedestrians generally corroborate
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Figure 15: Stability boundaries expressed in terms of the critical number of pedestrians, N, relative to
the walking speed of pedestrians for the (a) second and (b) third lateral mode of the CSB based on the
analytical solutions of —finc and Gac, their piecewise-linear envelopes, and numerical simulations of the
CSB response.

the results obtained from the stability criteria. It can be seen in Figure 15 that instability occurs for most —
but not all, IV above the most lenient ... This is expected, since the proposed stability criteria are expressed
in a probabilistic sense, making allowance for confidence limits. The results for the third lateral mode, shown
in Figure 15 (b), are less conservative then those for the second lateral mode, shown in Figure 15 (a), because
there are more unstable cases falling below N, corresponding to the most lenient stability requirements.
Closer inspection of this result revealed that the main reason for this is the condition adopted to identify
instability, relying on vibration amplitude only, and a finite simulation period adopted to make the best
use of available computational resources. The pedestrian force components other than that at the bridge
vibration frequency can add or extract energy to/from the bridge depending on the instantaneous phase
difference between the pedestrian and bridge motion, causing short-term variations in vibration amplitude.
This can lead to spurious identification of instability. Furthermore, for some simulations — typically close
to the stability boundaries, the vibration amplitude evolves very slowly, leading to the adopted instability
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threshold at 10 mm being reached after 10 minutes of the bridge response build-up. This can lead to spurious
identification of stability.

3.5.2 Squibb Park Bridge

The Squibb Park Bridge (SPB) is located on the revitalised waterfront along the East River near the
Brooklyn Bridge in the USA. It was opened in 2013 and demolished in 2019 due to the excessive dynamic
response under pedestrian loading, after a failed retrofitting attempt. The drama that unfolded is perhaps
best captured by the words of Eric Landau, president of the Brooklyn Bridge Park Corporation (BBPP)
managing the SPB site: "(...) you would certainly never hope you’d have to replace something not only that

you just built, but that you just fixed." [67]. The SPB superstructure was almost completely rebuilt in 2020.

Figure 16: The original SPB inaugurated in 2013, located near the Brooklyn Bridge in the USA. Source:
flickr.com; left: gigi nyc (17/11/2013), right: Dave Pinter (8/4/2013); CC BY-NC-ND 2.0.

The original SPB, shown in Figure 16, consisted of four noncolinear rectilinear sections with a total length
of approximately 137 m resting on reinforced concrete pillars via multi-arm supports. The load-bearing
elements of the two central spans, each about 37 m long, were space trusses supported through saddles
enabling slight slip displacements by four tendons made of galvanised steel stretching underneath the deck.
The tendons were led in pairs with the separation reducing from the pillars towards midspan. The trusses’
height increased towards midspan in line with the distribution of bending moments for a simply-supported
structural arrangement. The wooden trusses, deck and railing posts were made from robinia pseudoacacia.
The fasteners and deviators were made of steel brackets, caps and plates, while steel mesh was used to fill
the balustrade. The chosen structural solution ensured unobstructed views of the park and, in the longer
perspective, of Lower Manhattan, while the choice of materials and lightweight construction were to evoke
the experience of walking among the treetops among which the SPB was set. A consequence of the adopted
structural solution and the choice of materials was high susceptibility of the SPB to pedestrian-induced
vibrations. The initial reports on the dynamic behaviour of the SPB are inconclusive as to the nature of the
dynamic response, although most sources quote bounciness [68] and some other quote sway [69], implying the
SPB predominantly vibrated in the vertical or lateral direction, respectively. To verify these prepositions,
the video footage obtained from [70], taken during a period of instability observed approximately three
months after the original SPB opening, was analysed in [66]. The same video is re-analysed herein, but
this time applying an image stabilisation procedure to remove the camera motion components prior to
the application of optical-flow motion tracking algorithm. The displacement of a point at the midspan of
the deck, close to the outermost location in the transverse cross section, was calculated in two orthogonal

directions as shown in Figure 17.

The response of the SPB during instability period is shown in Figure 18 (a) in terms of the time histories of
displacement filtered with 4th order bandpass Butterworth filter with cut-off frequencies at 0.7 Hz and 1 Hz,

and in Figure 18 (b) in terms of the magnitude of fast Fourier transform (FFT) of the displacement. It can
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Figure 17: A snapshot from a video showing the dynamic behaviour of the SPB during instability period
[70], stabilised prior to the application of motion tracking algorithm to remove camera motion, with the
point of measurement of displacement in two orthogonal directions — lateral and vertical.

be seen that the SPB responded predominantly in the lateral direction. The dominant harmonic components
occur at a frequency of approximately 0.84 Hz. It can be assumed that this frequency corresponds to one of
the modal frequencies of the considered span. During the vibration cycle corresponding to this frequency, the
maximum positive displacement in the lateral axis of the bridge occurs simultaneously with the maximum
positive displacement in the vertical axis, according to the coordinate system for the measurement point
shown in Figure 17.
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Figure 18: Response of the SPB during instability period in terms of (a) time history of displacement and
(b) magnitude of FFT of signals presented in (a) from the measurement point indicated in Figure 17.

To verify this assessment, a finite element (FE) model of the same span of the SPB was built in SOFiSTiK
2022, as shown in Figure 19. The top chord of the truss, cross bracing, lower struts and floor beams
transferring the load from the deck to the truss were modelled with beam elements. The deck itself was
modelled with shell elements with zero stiffness in the direction of the planks. The bottom chord of the
truss was modelled with cable elements. The geometry of the structure and its materials’ properties were
based on information provided in [71]. The main mode of the span at 0.95 Hz, obtained from the FE model,
was characterised by torsional motion with a strong lateral translational component, thus qualitatively
confirming the results obtained from the video footage. The modal mass for this mode obtained from the
FE model was 9400 kg.

The approach to simulations of the dynamic behaviour of the SPB under the action of pedestrians according
to Eqgs. 39 and 40 was different to that adopted for the CSB. This is due to the relatively low modal mass of
the considered mode hence high sensitivity of m,. — which needs to be updated during the iterative process of

finding N, — to the number of pedestrians on the bridge, N. The simulations commenced with N = 1, and
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Figure 19: The dominant mode of one of the main spans of the SPB based on the finite element model
generated in SOFiSTiK.

continued with unitary increase until N = N,,., as defined in Eq. 41. Due to the unavailability of empirical

data, the damping ratio of 1.5% was adopted based on the results reported for a similar footbridge [72].

The distribution of results for the SPB in terms of the pedestrian Scruton number, D, presented in Figure 20
is similar to that for the third lateral mode of the CSB presented in Figure 14 (b). However, the confidence
limits are generally much wider, which is related to a higher variance in —jia¢c associated with the lower
N,. The most detrimental effect to the structural stability occurs for pedestrians walking at normal and
high speeds. As in the case of the CSB, for all considered pedestrian distributions, the results based on
piecewise-linear envelopes, denoted with the subscript env on the plots, are invariant with respect to the
walking speed, v. These results are almost always conservative relative to the corresponding results obtained

from the analytical solutions of —finc and Gac.

The results of analysis of the critical number of pedestrians, N, are presented in Figure 21. It can be said
with 95% confidence that lateral instability will occur for 18 randomly distributed pedestrians on the SPB
walking at the slowest considered speeds. However, as few as 4 pedestrians are sufficient to drive the bridge
to instability if they happen to walk at normal or high speeds. The results from simulations generally
support these findings. Good correspondence of results is also found for the piecewise-linear envelopes.
Taken together, the presented results suggest extremely high susceptibility of the SPB to the excessive
lateral dynamic response under the action of walking pedestrians. Indeed, this can also be deducted from
the inspection of the analysed video footage where the SPB seems to be excessively excited by relatively
few pedestrians [70]. Considering each of the main spans of the SPB could accommodate dozens of freely
walking pedestrians at any given time, it should not be surprising that the original structure remained

opened for less than 18 months after inauguration and, ultimately, had to be replaced.

4 Conclusions

Probabilistic criteria for lateral dynamic stability of structures under the loading from walking pedestrians
were derived in this study based on outputs from the generalised inverted pendulum pedestrian model
(IPM). This required statistical models of the anthropometric parameters defining the generalised IPM to
be first determined for the considered population of pedestrians. A methodology for carrying out this task
was proposed and demonstrated to provide data of sufficient quality. A methodology was also proposed for
identifying an excessive lateral separation between the contralateral foot placements within the analytical
solutions of the generalised IPM. This allowed spurious outputs from the generalised IPM to be avoided.

Having established the parameters defining the generalised IPM for a given pedestrian population, the
pedestrians-induced self-excited forces were defined for a range of pedestrian walking speeds in terms of the
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Figure 21: Stability boundaries expressed in terms of the critical number of pedestrians, N, relative to
the walking speed of pedestrians for the SPB based on the analytical solutions of —jinc and Ga¢, their
piecewise-linear envelopes, and numerical simulations of the SPB response.

mean equivalent added damping and the corresponding standard deviation, and the mean equivalent added
mass. The extreme structural vibration frequency shifts were then determined based on the added mass
effect, taking into account the pedestrians-to-structure mass ratio. They were used to find the critical mean
equivalent added damping over all considered walking speeds for each natural frequency up to 2 Hz, together
with the corresponding standard deviation. An algorithm was then developed to generate piecewise-linear
envelopes of these parameters. This step served to simplify their definition, thus making the proposed
probabilistic criteria suitable for the inclusion in codified design guidelines. The probabilistic stability
conditions were defined in terms of the pedestrian Scruton number, which is a dimensionless mass-damping
parameter, and the critical number of pedestrians. Three types of pedestrian distribution on the structure
were considered, namely the uniform distribution, random distribution, and all pedestrians distributed at
the antinode of the mode shape.
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A validation study was carried out using two bridges prone to pedestrian-induced lateral dynamic instability,
namely the Clifton Suspension Bridge (CSB) in the UK and the Squibb Park Bridge (SPB) in the USA. The
latter case was studied in more detail as it is relatively little known in the structural engineering community.
A forensic investigation was therefore conducted to identify the causes of the excessive dynamic behaviour
of the SPB, based on the analysis of video footage taken shortly after its opening, and the outputs of a
purpose-built finite element model. Good agreement was found between the stability boundaries derived
from the critical mean added damping obtained from the generalised IPM and those obtained from numerical
simulations of the dynamic response of these two bridges to pedestrian loading, taking into account all
pedestrian force components. The stability boundaries obtained from the piecewise linear envelopes of
the critical mean equivalent added damping and its standard deviation were shown to capture the most
detrimental loading conditions, taking into account the effect of walking speed, whilst not being overly

conservative.

The proposed probabilistic stability criteria provide a powerful tool for the design of structures, particularly
bridges, against pedestrian-induced lateral instability. They are based on a fundamental model of pedestrian
gait for walking on a laterally-oscillating structure calibrated against empirical data, are traceable since they
are derived from the closed-form long term solutions of the generalised IPM, and can be easily defined for
any population of pedestrians according to the proposed algorithm. They take into account the intensity
of the load, the influence of the mode shape and the distribution of pedestrians. They therefore allow
different loading conditions to be distinguished and evaluated, enabling the designer to make informed
choices, balancing the risk of structural instability against the considered structural solution. Despite their
obvious power, they are also easy to apply, as they use the familiar concept of the Scruton number — an
index originally used to capture the effects of wind-structure interaction. They can even be expressed in a

more intuitive way in terms of the critical number of pedestrians on the bridge.

The main remaining challenge is for the proposed probabilistic stability criteria to find their way beyond the
academic discourse. Cases of laterally unstable bridges are regularly reported in the media. Many of these
bridges require costly retrofitting solutions, leading to legal disputes over liability, as exemplified herein
by the case of the SPB. This can damage the reputation of their designers and lead to high social costs
associated with the closure of these structures. This could be avoided, or at least reduced, if appropriate

design provisions were included in the national or international structural design standards.
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