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Abstract

Human activities in the marine environment are expanding rapidly, with
much of the growth in the Northeast Atlantic driven by offshore wind develop-
ment. While offshore wind is critical for achieving net zero carbon targets,
planning decisions must also address the twin challenge of conserving and
restoring biodiversity. We combined open-access data from hundreds of grab
and core surveys with random forest modeling to provide new insights into
patterns of benthic biodiversity across the Northeast Atlantic continental shelf.
Multiple dimensions of biodiversity were mapped using Hill numbers (g = 0,
1, 2) and raw abundance, assessed within the Whittaker framework (alpha-,
beta-, and gamma-diversity) to reveal patterns at different spatial scales. These
metrics were synthesized into a single biodiversity map using clustering, delin-
eating areas of seabed with shared biodiversity characteristics. This analysis
offers an evidence-based framework for safeguarding benthic biodiversity and
informing management decisions in an era of rapidly expanding offshore
development. Our results also highlight key environmental drivers, with
higher biodiversity consistently associated with greater gravel coverage and
moderate to high current speeds.
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Nations, 2023). Yet, offshore wind projects are associated
with various benthic effects, with implications for biodi-

Human activities in the marine environment are rapidly
increasing (Halpern et al., 2015; Jouffray et al., 2020),
with much of the recent growth associated with net zero
targets and the expansion of the offshore wind industry
(Birchenough & Degraer, 2020; IEA, 2019; Korpinen
et al., 2021). Adopting more sustainable and restorative
ways of conserving biodiversity is now a global priority
(Hooper et al, 2021; Maron et al, 2016; United

versity (Dannheim et al., 2020; Li et al., 2023). Thus, to
be sustainable, such development must be cognizant of
the twin challenges of climate change and biodiversity
loss (Arneth et al., 2020; Bellard et al., 2012), and the role
of the benthos in both (Solan et al., 2020). Biodiversity
loss impairs ecosystem services and negatively impacts
humanity (Cardinale et al., 2012; Naeem et al., 2016;
Worm et al., 2006). Improving understanding of spatial
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and temporal patterns in seabed biodiversity is key to sus-
tainable development (Clare et al., 2022; Kunzig, 2008;
Magurran, 2021; Pauly, 1995) and can help ensure that
future licensed activities avoid areas of importance.

Marine benthic fauna are critically important for both
ecosystem and human health, providing a range of
functions including ecosystem stability and resilience
(Duncan et al., 2015; Galparsoro et al., 2014; Snelgrove
et al., 2018). Despite its importance, marine benthic bio-
diversity is changing (Sala & Knowlton, 2006; Thompson
et al., 2020) because of factors including habitat destruc-
tion (Harris, 2020), demersal fishing (Kaiser et al., 2000),
pollution (Hale et al., 2018), climate change (Weinert
et al.,, 2021), and the introduction of non-native species
(Snelgrove, 1997). The challenge therefore is how to con-
serve biodiversity and, where degraded, recover it while
simultaneously accommodating ever-increasing human
activities in the marine ecosystem.

A range of measures have been implemented
to address this paradoxical tension, including the estab-
lishment of marine-protected areas (MPAs) (Kriegl
et al., 2021; Roberts et al., 2017; Sala et al., 2021), restric-
tions on fishing effort (Hiddink et al., 2006), and “net
gain” policies (Hooper et al., 2021), achieved through
initiatives like “building with nature” (de Vriend & Van
Koningsveld, 2012), restoration (Abelson et al., 2016; Cooper
et al., 2007; Cuvelier et al., 2018) and nature-based solutions
(Solan et al., 2020). A growing number of authors argue that
MPAs alone will not be sufficient to protect biodiversity
(Santangeli et al., 2023; Weinert et al., 2021). Therefore, new
approaches are needed to ensure decision-making
adopts a more ecosystem-wide perspective, aiming for
human activities to result in no net loss or, ideally, a net
gain in biodiversity. Such an approach will require
improved understanding of the benthos and its interac-
tions with other components of the system. One aspect
of the benthos that remains poorly understood is spatial
biodiversity patterns, with existing knowledge largely
derived from limited data and simple metrics (Barrio Frojan
et al., 2012; Reiss et al., 2010) or from physical habitat prox-
ies such as the European Nature Information System
(EUNIS) marine habitat classification (Davies et al., 2004).
Enhancing our understanding of benthic biodiversity at
management-relevant scales can aid in marine licensing,
ensuring that developments avoid impacting critical areas
and informing decisions on biodiversity recovery and con-
servation (Kunzig, 2008).

The abstract concept of biodiversity, defined as the
“variety of life” (Gaston, 1996), cannot be captured by
a single measure (Santini et al, 2017; Warwick &
Clarke, 1995). Building on this idea, Magurran (2021)
identifies two key facets of biodiversity assessment. The
first focuses on numbers of species, with different

commonly used metrics effectively “turning the dial” on
relative abundance. Accounting for abundance is impor-
tant, as given the same number of species, locations with
a more even spread of individuals between species are
considered more diverse than those where abundance is
dominated by a small number of taxa (Gotelli &
Chao, 2013). Hill numbers (Hill, 1973) provide a conve-
nient set of three such metrics within the same statistical
framework, with Hill (number) 0 being species richness,
Hill 1 the exponential form of Shannon diversity, and
Hill 2 the reciprocal form of Simpson diversity. Hill 1 and
2 can be interpreted, respectively, as the effective number
of frequent and highly frequent species in the assemblage
(Chao et al., 2023). Differences between these metrics
provide information on whether any change is driven by
rare or more abundant taxa. The second important facet
takes account of taxon identity, recognizing that two
areas can have the same number of species yet share
none in common. In this scenario, it could be misleading
to suggest that the biodiversity of these locations is the
same. This issue is addressed by Whittaker (1960, 1972),
who partitioned biodiversity into alpha, beta, and gamma
components. We define alpha-diversity as sample-level
species richness, gamma-diversity as regional species
richness estimated from a collection of samples, and
beta-diversity as the effective number of communities
within a region (i.e., gamma-diversity divided by mean
alpha-diversity), thereby capturing changes in species
richness and composition across spatial scales (Wang &
Loreau, 2014). Whilst there are other approaches for
quantifying biodiversity (e.g., Taxonomic Distinctness,
Clarke & Warwick, 1998; Phylogenetic diversity,
Cardillo, 2023; Biological Traits, Bremner et al., 2006;
Rao’s Quadratic Entropy, Botta-Dukat, 2005), we focus
on classic metrics as a starting point from which the
approach taken in this paper can be developed in
the future.

Biodiversity and its patterns in the marine benthos
have been extensively studied across various geographical
regions and spatial scales (e.g., Barrio Frojan et al., 2012;
Bolam et al., 2008; Heip et al., 1992; Rees et al., 1999;
Reiss et al., 2010; Renaud et al., 2009; Thompson
et al.,, 2020). The majority of these studies focus on
alpha-diversity (Vassallo et al., 2020), namely, the variety
of species found in the sampling device (e.g., grab), using
metrics like Shannon-Wiener (H') and Margalef’s diver-
sity. Far fewer studies have considered beta-diversity,
either in isolation or in combination with alpha-diversity
(Ellingsen & Gray, 2002), or alpha- and gamma-diversity
(Barros et al., 2014). The inability to integrate outcomes
from studies using different biodiversity scales and
metrics currently hampers our understanding of
benthic biodiversity across large spatial scales. This, in
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turn, hinders effective marine management decisions
regarding the potential ecological risks posed by future
offshore developments.

Improved access to data, together with new data science
techniques, like machine learning, makes it possible to cre-
ate high-resolution maps reflecting different aspects of the
benthos (e.g., Bolam et al., 2023; Cooper et al., 2019; Mazor
et al., 2017). In this study, we use open benthic data (see
OneBenthic, https://rconnect.cefas.co.uk/onebenthic_portal/),
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along with multiple environmental raster predictor
layers to map various aspects of biodiversity using a
random forest approach. This mapping is based on Hill
numbers, abundance, and the Whittaker framework.
Our aim was to develop an approach to synthesize
complex, multidimensional biodiversity information
into a single, holistic integrated assessment that can be
more readily used, particularly by decision-makers who
need clear guidance on priority areas. While individual
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FIGURE 1 Locations (in yellow) of 0.1-m? grab or core samples from OneBenthic. Although depth was not found to be a significant
factor in this study, the bathymetric map (source: GEBCO Grid; GEBCO Compilation Group, 2023) provides context for the seabed sampling
locations. Note that the data are disparate and not evenly distributed in space and time, which is a limitation of the dataset.
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TABLE 1 Equations used in this study for calculation of biodiversity metrics.
Metric Description Equation No
Hill no. (°D) Species richness (S) s = (1)
where D= <_leiq> ,4=0
iz
S: total no. species;
q: sensitivity to relative abundance;
Dp;: proportion of species belonging to ith species
Hill no. (*D) Exponential of Shannon entropy (e) s = )
iD= (Zpiq) q=
i=1
Hill no. (°D) Reciprocal of Simpson index (3) s = 3)
D= <Zpiq> ,q=2
i=1
Abundance (N) No. individuals summed over all taxa N=>(n) 4)
Alpha-diversity (o) Sample-level species richness s N q) T 5)
h ap IDjoint __ 1 Z Z Zik #1
where Z: species abundance o Nz 5z 7 -4
i=1k=
Beta-diversity () Effective no. communities 9Dy = ;%y g>0. (6)

Gamma-diversity (y) Regional species richness

s f1-g) s KRS @)
‘IDY:(Z (i—i)q) :<Zp?+> ,q#1.

biodiversity metrics provide valuable, but sometimes
contrasting, perspectives (e.g., alpha- vs. beta-diversity),
integrating them helps highlight areas where multiple
dimensions of biodiversity are consistently high. This
synthesis is intended to support marine spatial planning
by providing an accessible, practical output that comple-
ments the underlying detailed metrics. Understanding
where biodiversity is high—and thus where envi-
ronmental protection may be most warranted and
effective—is vital for future sustainable development.
This study provides a data-driven perspective based on
classic biodiversity metrics, an approach which can
inform marine spatial planning and management deci-
sions in the United Kingdom and in other regions facing
similar challenges.

METHODS

Our goal was to produce a single, holistic map of ben-
thic biodiversity to support marine spatial planning and
licensing. This map integrates multiple spatially explicit
metrics, synthesizing complex, multidimensional infor-
mation into a clear, reproducible output that guides pri-
oritization of protection or mitigation. Given the length
and complexity of the methods, this section provides a
high-level overview; full details are available in Appendix S1.
All analyses were conducted in R (R Development Core
Team, 2024), which provided a flexible and reproducible
environment for data processing, statistical modeling, and
map generation.

TABLE 2 Matrix of biodiversity metrics.

Whittaker framework
Metric o B Y
Hill no. (°D) °D, Dy °D,
Hill no. (*D) Dy Dy 'D,
Hill no. (*D) 2Dy ’Dy ’D,
Abundance (N) N Ny Niot

Abbreviations: °D,, Hill 0 alpha; °Dy, Hill 0 beta; °D,, Hill 0 gamma; ' Dy,
Hill 1 alpha; 'Dy, Hill 1 beta; 'D,, Hill 1 gamma; *D,,, Hill 2 alpha; *Dy, Hill
2 beta; ZDV, Hill 2 gamma; N, abundance; Ncv, abundance cv; Ny,
abundance total.

Dataset

Macrofaunal data were sourced from the OneBenthic
Grab and Core database (https://rconnect.cefas.co.uk/
onebenthic_portal/), which compiles publicly available
survey data on macrofaunal abundance, biomass, and
sediment particle size. Taxonomic nomenclature in the
database was standardized using the World Register of
Marine Species (WoRMS Editorial Board, 2024), with
each taxon linked to its AphialD; colonial taxa were
assigned a nominal abundance of 1. We retained all com-
parable samples—collected with a 0.1-m* grab or core
and processed with a 1-mm sieve—spanning 1985-2023,
yielding 37,909 samples. More than 90% of these were
collected between 2000 and 2023, ensuring the dataset
largely reflects contemporary conditions. Samples with
metadata or survey notes indicating localized,
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FIGURE 2 Legend on next page.
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nonrepresentative impacts (e.g., dredged material dis-
posal sites, aggregate extraction zones) were excluded.
Widespread activities such as demersal fishing, which
affect much of the region, were not grounds for exclu-
sion, as our aim was to remove only samples associated
with clear, localized acute impacts. Records used in biodi-
versity metrics were restricted to species, genus, or family
level. While inclusion of higher level identifications may
overlap with species entries, many benthic taxa cannot
be resolved further. Limiting records to family level and
below was therefore adopted as a practical compromise,
minimizing double counting while retaining meaningful
taxonomic information. To reduce spatial autocorrela-
tion, samples closer than 50 m to any other were
excluded (following Cooper et al., 2019), leaving 22,793
samples for analysis (Figure 1).

Biodiversity metrics

We calculated biodiversity metrics based on Hill numbers
(@ =0, 1, 2) and abundance within the Whittaker frame-
work (o-, p-, y-diversity), producing 12 core metrics. Hill
0 corresponds to species richness, Hill 1 to the exponential
of Shannon entropy, and Hill 2 to the inverse of Simpson
diversity, capturing differences in the influence of rare ver-
sus common species. Alpha-diversity quantifies diversity
within individual samples; beta-diversity describes composi-
tional turnover among samples within a region; and
gamma-diversity estimates regional diversity from multiple
samples.

Abundance was assessed independently, while
species-based metrics were statistically standardized to
control for variation in sample counts following
Thompson et al. (2020), with rarefaction and extrapola-
tion implemented in the iNEXT package in R (Hsieh
et al., 2016). Alpha-diversity was standardized to a single
grab sample, while beta- and gamma-diversity were
based on six grab samples drawn from within a 75-km
radius and +182 days of each focal cell.

Detailed equations for metric calculation are pro-
vided in Table 1, and the full list of calculated metrics is
summarized in Table 2. Technical steps for data
pretreatment (e.g., outlier handling, transformations) and
preparation of metrics for clustering (e.g., covariance assess-
ment) are provided in Appendix S1: Outlier removal, Data
transformation, and Covariation assessment and selection of
metrics.

TABLE 3 Mean and SD of model validation statistics over 10
random split sample runs.

Model n R?

Dy, 15,944 0.49 + 0.01
Dy 14,252 0.39 + 0.01
’D, 14,123 0.32 + 0.01
°Dg 15,755 0.51 + 0.01
'Dy 14,310 0.50 + 0.01
’Dg 12,585 0.41 + 0.01
°D, 15,891 0.69 = 0.01
'D, 12,955 0.69 + 0.01
’D, 11,469 0.69 = 0.01
N 15,012 0.32 + 0.02
Ny 15,834 0.47 £+ 0.01
Noot 14,876 0.48 + 0.02

Abbreviations: OD(,, Hill 0 alpha; ODﬁ, Hill 0 beta; ODy, Hill 0 gamma; Dy
Hill 1 alpha; 'Dy, Hill 1 beta; 'D,, Hill 1 gamma; >D,,, Hill 2 alpha; *Dy, Hill 2
beta; sz, Hill 2 gamma; N, abundance; Ncv, abundance cv; Ny, abundance
total.

Biodiversity clusters

To synthesize the multidimensional biodiversity metrics
into a single, usable classification, we applied k-means
clustering. This approach groups samples with similar
biodiversity characteristics across multiple metrics, help-
ing to highlight regions where multiple aspects of biodi-
versity are consistently high. The number of clusters was
determined using an elbow plot criterion. This synthesis
is intended to support decision-makers by simplifying
complex information into a form that can be directly used
in planning, while retaining access to the underlying met-
rics for detailed ecological interpretation. Technical steps
for clustering procedures are provided in Appendix S1:
Clustering procedure.

Spatial modeling

We used random forest models (Breiman, 2001) to predict
the spatial distribution of biodiversity metrics and cluster
groups across the study area, applying regression for con-
tinuous metrics and classification for cluster groups.
Models were trained and validated using repeated
cross-validation, with performance assessed using

FIGURE 2

Random forest models for a range of biodiversity metrics (°D,, Hill 0 alpha; °Dg, Hill 0 beta; °D,, Hill 0 gamma; 'D,,, Hill 1

alpha; 'Dy, Hill 1 beta; 'D,, Hill 1 gamma; >D,, Hill 2 alpha; *Dy, Hill 2 beta; °D,, Hill 2 gamma; N, abundance; N, abundance cv;
Niot, abundance total; for further details, see Table 2). Confidence plots for each model are shown in Appendix S1: Figure S5.
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appropriate metrics for regression and classification.
Variable importance and partial dependence plots were
used to explore the influence of key environmental pre-
dictors on biodiversity patterns. Environmental predic-
tors describing seabed substrate, topography,
hydrodynamics, and biogeochemical conditions were
compiled from multiple sources. To support interpreta-
tion and decision-making, we also considered spatially
explicit confidence assessment approaches applicable to
both categorical and numeric outputs (Mitchell et al., 2018).
Full details of predictor selection, model fitting, and evalua-
tion are provided in Appendix S1: Environmental predictors
and Random forest modeling.

Explaining patterns

We analyzed relationships between biodiversity metrics
and environmental predictors using random forest vari-
able importance and partial dependence plots. For biodi-
versity clusters, multivariate analyses (best and adonis
functions in R) were used to identify key environmental
drivers. Full methodological details are provided in
Appendix S1: Explaining patterns.

a) Optimal no. clusters
30004 !

2500 1

2000 1

Total Within SS

15001

10001

RESULTS
Biodiversity metrics

Spatial models for each metric (Figure 2) provide different
perspectives on biodiversity based on Hill numbers
(row 1 = Hill 0, row 2 = Hill 1, row 3 = Hill 2), abundance
(row 4) and the Whittaker (1960, 1972) framework of
alpha-, beta-, and gamma-diversity (columns 1-3). Model
performance was variable, with R® values ranging from
0.32 to 0.69 (Table 3). The highest values were obtained for
gamma-diversity models (°D,, 'D,, and °D,), which consis-
tently showed strong performance (R* = 0.69). In contrast,
alpha-diversity, beta-diversity and counts models exhibited
low to moderate performance (R> = 0.32-0.51), reflecting
the higher natural variability and stochasticity inherent in
these finer scale metrics. Associated model confidence maps
are provided in Appendix S1: Figure S3.

Building on model performance, we examined the
predicted spatial patterns for each diversity metric across the
region. Areas of moderate to high alpha-diversity occur
widely, with hotspots found in the English Channel and
Southwest Approaches, in the mid Celtic Sea and up
through the Irish Sea, and around Swallow Hole (see

b)
Bio-G

Bio-D

Bio-F

Bio-E

Bio-C

L@ sioA

Bio-B

Bio-H

12345678 91011121314 1516 17 18 19 20
No. clusters k

4 3 2 1 0
Height

FIGURE 3 (a)Elbow plot, and (b) dendrogram associated with the k-means clustering of selected biodiversity metrics: Hill 0 alpha
(°D,), Hill 0 beta (ODB), Hill 2 beta (2D|3), Hill 0 gamma (ODY), abundance (N), abundance cv (N,), and abundance total (Nyy,).
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Figure 1 for place names). In contrast, alpha-diversity is low
across much of the southern North Sea, and in many
inshore areas along the west coast of the United Kingdom.
In large part, beta-diversity patterns are the inverse of alpha,
with generally higher values present in the southern North
Sea and along coastal margins. Notable hotspots for
beta-diversity, indicating adjacent communities that are very
different from one another, are found in the Inner Silver Pit,
outer Thames Estuary, English Channel, Irish Sea, at
Jutland Bank/off west coast of Denmark, and in the
Norwegian Trench. Gamma-diversity is high in the English
Channel, mid Irish Sea, and Inner Silver Pit. The northern
North Sea, Celtic Sea, parts of the Sea of Hebrides, and the
Southwest Approaches are characterized by moderately high
gamma-diversity, whilst the south-eastern North Sea,
Fladen Ground (a small area of the northern North Sea),
and more offshore areas of the Hebrides have relatively
lower levels of gamma-diversity. Abundance plots show
higher values in the south-eastern part of the North Sea
(Oyster Ground and German Bight), and in patches across
the Irish Sea, English Channel, and Inner Silver Pit. Key

differences between metrics also reveal how biodiversity
hotspots can be generated, for example, although
alpha-diversity is relatively low at Inner Silver Pit, large
changes in species composition between samples
(beta-diversity) produce the highest gamma-diversity across
all Hill numbers in the North Sea. In the Irish Sea and
English Channel, both alpha- and beta-diversity were rela-
tively high, producing two spatially extensive areas of high
gamma-diversity.

Biodiversity clusters

The elbow plot relating to the biodiversity data did not
suggest an obvious number of groups for k-means clus-
tering (Figure 3a). We chose a solution based on eight
groups, as this number coincided with a slight leveling
out of the plot and explained >80% of the inherent vari-
ability. Whilst cluster groups are categorical in nature,
they can be ordered in terms of relative biodiversity, with
coloring used to create a simple heat map based on the

TABLE 4 Biodiversity cluster group centers for the metrics used in clustering.

Cluster
Metric Bio-A Bio-B Bio-C Bio-D Bio-E Bio-F Bio-G Bio-H
0DOC 0.47 0.58 0.48 0.21 0.29 0.43 0.17 0.23
Dy 0.60 0.48 0.55 0.61 0.46 0.35 0.49 0.31
ZDﬁ 0.81 0.46 0.53 0.77 0.58 0.34 0.41 0.21
ODY 0.70 0.71 0.66 0.58 0.49 0.48 0.44 0.31
N 0.79 0.80 0.56 0.41 0.75 0.60 0.35 0.40
N 0.68 0.56 0.76 0.76 0.61 0.52 0.73 0.54
Niot 0.78 0.75 0.74 0.72 0.67 0.57 0.55 0.39
Total 4.83 4.34 4.27 4.06 3.85 3.28 3.14 2.39

Note: Values represent the group mean for each metric, with column totals provided in the bottom row. These totals were used to assign colors to cluster groups in
Figure 4, following the BiodiversityStripes palette (https://biodiversitystripes.info/global), where the highest values correspond to dark green and the lowest to gray.

Abbreviations: ODa, Hill 0 alpha; ODL,, Hill 0 beta; 0Dy, Hill 0 gamma; 'D,, Hill 2 alpha; ZD[;, Hill 2 beta; sz, Hill 2 gamma; N, abundance; Ncv, abundance cv;

Nio, abundance total.

TABLE 5 Mean and SD of model validation statistics for cluster groups 1-8 and overall based on 10 random split sample runs.

Cluster n Sensitivity
Bio-A 481 0.53 +£0.02
Bio-B 416 0.55 + 0.02
Bio-C 335 0.25 + 0.02
Bio-D 319 0.33 + 0.02
Bio-E 518 0.52 + 0.02
Bio-F 619 0.62 + 0.01
Bio-G 359 0.42 +0.03
Bio-H 298 0.49 + 0.03
Overall 13,106 0.49 + 0.01

Specificity Balanced accuracy
0.90 + 0.01 0.72 £ 0.01
0.93 + 0.00 0.74 + 0.01
0.95 + 0.00 0.60 + 0.01
0.94 + 0.00 0.63 £ 0.01
0.90 + 0.01 0.71 £ 0.01
0.90 + 0.01 0.76 + 0.01
0.93 + 0.01 0.68 + 0.01
0.95 + 0.00 0.72 + 0.01
0.93 + 0.00 0.71 £+ 0.00
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color palette used by the BiodiversityStripes initiative (see
https://biodiversitystripes.info/global). Accordingly, clus-
ter centers were summed across all the metrics used in
clustering, with highest values colored dark green and
lowest in gray (see Table 4). The dendrogram (Figure 3b)
reveals the similarity/dissimilarity between groups in
terms of patterns in the range of metrics considered. It is
these patterns, rather than the overall level of biodiversity
that determines each group’s position in the plot.

Performance statistics for the biodiversity cluster
model show high values of Specificity, indicating the
model correctly identifies negative instances in
the majority of cases (Table 5). Values for sensitivity,
indicating correct group prediction, are predictably lower,
but still average ~0.5. The lowest values of sensitivity are
shown for groups Bio-C and Bio-D, although the confu-
sion matrix (Appendix S1: Figure S4) indicates that incor-
rect predictions for these groups are typically of a similar

60° N o

58° N A

56° N -

Latitude

54°N

52° N4

50°N -

10°W 5°W

0° 5°E
Longitude

FIGURE 4 (a) Modeled biodiversity groups Bio-A to Bio-H based on a k-means clustering of individual metrics: Hill 0 alpha (°D,), Hill
0 beta (ODB), Hill 2 beta (2Dﬁ), Hill 0 gamma (ODY), abundance (N), abundance cv (N,,), and abundance total (Ny,). Whilst categorical in
nature, cluster groups are colored using a “heat map” scale in which the most diverse group (Bio-A) is dark green and the least diverse group
(Bio-H) is gray (see https://biodiversitystripes.info/global). The level of biodiversity, and hence color, is based on a summing of the cluster

group centers across the different metrics.
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higher biodiversity group. The spatial distribution of bio-
diversity cluster groups is shown in Figure 4, with group
characteristics outlined in Table 4. An associated model
confidence map is provided in Appendix S1: Figure S5.

The highest biodiversity groups (Bio-A, Bio-B, and
Bio-C) are found throughout large parts of the Inner Silver
Pit, English Channel, Irish Sea, Celtic Sea, Sea of
Hebrides, north of Scotland (including parts of Orkney),
and to the east of the Firth of Forth (Figure 4). These
groups show high values across all metrics but differ in
the relative contribution of each. For instance, Bio-A
shows high species turnover and abundance, indicating a
dynamic community. Bio-B has the highest local richness
and abundance but lower turnover, suggesting more
homogeneous communities, whereas Bio-C presents a
more balanced profile (Table 4). Intermediate levels of bio-
diversity are associated with groups Bio-D, Bio-E, and
Bio-F. Bio-D, characterized by particularly high
beta-diversity but low alpha-diversity and counts (N), is
found at Inner Silver Pit, Jutland Bank and the north coast
of Denmark, off The Netherlands, in the southern
Hebrides, and in coastal areas of the United Kingdom and
Ireland. Bio-E, characterized by moderate values across
most metrics and representing a transitional assemblage
with balanced yet reduced diversity, occurs in the southern
North Sea, parts of the Celtic Sea, and around the north-
ern coasts of the United Kingdom and Ireland. Bio-F has
slightly higher alpha-diversity than Bio-D and Bio-E, but
lower turnover and abundance (Niy), indicating a more
homogeneous and less diverse community. This group is
found across much of the northern North Sea, Norwegian
Trench, Southwest Approaches, outer Celtic Sea and shelf
margins.

Bio-G and Bio-H represent the lowest biodiversity clus-
ters, distinguished by low richness, abundance, and turn-
over. Bio-G shows slightly higher beta-diversity than Bio-H,
suggesting sparse communities with some compositional
variation. It occupies large areas of the Southern Bight and
Bristol Channel, indicating broad but low-diversity cover-
age. In contrast, Bio-H exhibits consistently low values
across all metrics, reflecting the most homogeneous and
least diverse assemblage. It is found off the east coast of the
United Kingdom, Dogger Bank, Fladen Ground, Skagerrak,
and in deeper water in the Sea of Hebrides.

By comparing across Hill numbers, we can identify
which areas of high biodiversity (Bio-A, Bio-B, Bio-C) are
especially influenced by rare taxa and distinguish these
from areas where biodiversity is driven by more common
species (see Appendix S1: Figure S6).

Explaining patterns
Individual metrics

Variable importance varied among metrics, but broad simi-
larities were evident within alpha-, beta-, gamma-diversity,
and count groups (Table 6). Using Hill 1 and count CV as
midpoints, the alpha-diversity model was most strongly
influenced by current speed, gravel, and relative slope posi-
tion, with values positively associated with current speed
and gravel, and negatively with relative slope position
(Figure 5a). Beta-diversity was most strongly influenced by
phytoplankton, gravel, and dissolved iron, with values posi-
tively associated with phytoplankton and dissolved iron,
and negatively with gravel (Figure 5b).

TABLE 6 Top three ranked predictor variables for each biodiversity metric model.

Metric 1 2 3
°Dy Current speed Wave velocity Gravel

D, Current speed Gravel Rel. slope pos.
Dy Current speed Gravel Bottom temp.
ODB Gravel pH Salinity range
lDﬁ Phytoplankton Gravel Diss. iron

ZDB Phytoplankton Mean Suspended Particulate Matter Salinity range
0Dy Salinity range Phytoplankton Bottom temp. range
lDy Salinity mean Salinity range Mud

2Dy Salinity range Salinity mean Wave velocity
N Gravel Bottom temp. range Chlorophyll
Nev Phosphate Gravel Valley depth
Niot Phytoplankton Gravel Silicate

Note: Ranks identified from Variable Importance plots (not shown).

Abbreviations: °D,, Hill 0 alpha; °Dj, Hill 0 beta; °D,, Hill 0 gamma; 'D,, Hill 1 alpha; 'Dj, Hill 1 beta; 'D,, Hill 1 gamma; D, Hill 2 alpha; *Dj, Hill 2 beta;

ZDy, Hill 2 gamma; N, abundance; Ncv, abundance cv; Ny, abundance total.
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FIGURE 5 Partial dependence plots for the three most important environmental predictor variables across biodiversity metrics: (a) Hill
1 alpha (1D,), (b) Hill 1 beta (1Dp), (c) Hill 1 gamma (1D,) and (d) abundance cv (N,).

Gamma-diversity was driven by mean salinity, salin-
ity range, and mud, with values positively associated with
mean salinity above 32.5 ppt and negatively with mud. It
also showed a nonlinear relationship with salinity range,
peaking around values of 1 ppt (Figure 5c).

Counts were influenced by phosphate, gravel, and
valley depth (Figure 5d). For phosphate, values declined
slightly at low concentrations before increasing sharply
and plateauing at higher levels. Counts peaked at

intermediate gravel cover (~30%-60%) and at valley
depths greater than ~25 m.

Biodiversity clusters
The best analysis identified a six-variable model (phyto-

plankton, current speed, channel network distance,
LS-factor, gravel, and mud) as providing the highest
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TABLE 7 Results of a best analysis identifying the subset of
environmental variables that are most correlated with the
biodiversity data. LS-factor refers to the slope length and steepness
factor derived from SAGA-GIS.

Size Variables Correlation (p)

1 Current speed 0.1250

2 Current speed, gravel 0.1542

3 Current speed, LS-factor, gravel 0.1649

4 Current speed, LS-factor, 0.1656
gravel, mud

5 Current speed, Ch. network 0.1662

distance, LS-factor, gravel, mud

6 Phytoplankton, current speed, 0.1665
Ch. network distance,
LS-factor, gravel, mud

Note: Bold indicates the best output.

correlation with patterns in the biodiversity data
(p =0.17; Table 7). Although the correlation between
biological and environmental resemblance matrices was
moderate, results from the adonis test indicated that these
predictors accounted for a total of 20.8% of the total variabil-
ity. The strongest contributors were gravel (8.0%, p < 0.001)
and phytoplankton (6.7%, p < 0.001), followed by mud
(3.1%, p = 0.001), current speed (2.2%, p = 0.001), LS-factor
(0.6%, p =0.001), and channel network distance (0.2%,
p = 0.01). Importantly, gravel and current speed were con-
sistently retained in all of the higher performing best
models, suggesting they represent the most robust predic-
tors, while phytoplankton, mud, LS-factor, and channel net-
work distance provided smaller, context-dependent
contributions.

When considered alongside the dbRDA ordination
(Figure 6) and heat maps of the most consistent predic-
tors, gravel and current speed (Appendix S1: Figure S7),
these results provide ecological insight into the spatial
distribution of biodiversity cluster groups (Figure 4).
High-biodiversity clusters (Bio-A, Bio-2, Bio-C) were
associated with elevated gravel and higher current
speeds, while other variables such as phytoplankton and
mud appeared to exert weaker, context-dependent influ-
ences on community structure.

DISCUSSION

This study presents the first integrated, high-resolution
maps of benthic biodiversity across alpha-, beta-, and
gamma-diversity scales, alongside a synthesis into a single
holistic output. By combining Hill numbers (Hill, 1973),
abundance, and the Whittaker framework (1960, 1972), we

offer a novel approach to biodiversity mapping that sim-
plifies complex, multidimensional data into actionable
insights. While previous studies have compared biodiversity
patterns across metrics (e.g., Santini et al., 2017), we are not
aware of any that have merged these metrics into a single,
usable entity. Our holistic map therefore represents a signif-
icant advancement in biodiversity assessment, offering a
practical tool for marine spatial planning and environmen-
tal decision-making.

Understanding where biodiversity is high—and
where protection may be most warranted—is essential
for sustainable development. The biodiversity maps
produced here provide new insights that can inform
licensing decisions for activities including offshore
wind, aggregate extraction, cable installation, and other
developments that may affect the seabed. By identifying
areas of high conservation value and integrating biodi-
versity considerations into management processes, we
can help ensure that human activities are conducted in
ways that minimize ecological impacts and promote
biodiversity conservation. Importantly, our approach
also highlights the role of rare taxa in supporting biodi-
versity in certain areas, underscoring the need for con-
servation strategies that account for both overall
diversity and the protection of rare species. This
approach is applicable not only in the United Kingdom,
but also in other regions experiencing rapid offshore
development.

Our findings are supported by earlier studies
documenting benthic biodiversity patterns (e.g., Barrio
Frojan et al., 2012; Bolam et al., 2008; Kroncke et al., 2011;
Reiss et al., 2010). However, those studies typically relied on
limited sampling and did not interpolate between points,
limiting their utility for planning decisions that require
full-coverage, high-resolution maps (Baker & Harris, 2020;
Brown et al., 2012).

To better understand the drivers of biodiversity, we
applied a best analysis, which identified a six-variable
model—phytoplankton, current speed, channel network
distance, LS-factor, gravel, and mud—as most informa-
tive. Among these, gravel and current speed consistently
emerged as the strongest predictors, reflecting the influ-
ence of hydrodynamic forces on sediment distribution.
These forces help shape the availability of stable coarse
habitats, which are known to promote higher biodiversity
by providing persistent, heterogeneous substrates that
support diverse benthic assemblages (Cooper & Barry, 2017;
Gutow et al., 2022; Kaiser & Spencer, 1996). The smaller
contributions of phytoplankton, mud, LS-factor, and chan-
nel network distance suggest additional, context-dependent
influences, with phytoplankton reinforcing the importance
of primary productivity as a driver of benthic biodiversity
(Saeedi et al., 2022).
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FIGURE 6 Distance-based redundancy analysis (dbRDA) ordination showing sampling sites (colored by biodiversity cluster group) and
vectors for the main environmental predictor variables. Axes CAP1 and CAP2 represent the first and second canonical axes from the
Canonical Analysis of Principal coordinates (CAP), summarizing variation in biodiversity constrained by the environmental variables.

Limitations and future directions

Several limitations should be acknowledged. Firstly, the
dataset spans 39 years (1983-2023), though most sam-
ples (>90%) were collected post-2000. While biodiversity
patterns may have shifted due to climate change or local
pressures such as demersal fishing (Kréncke et al., 2011),
this concern is more relevant to species distribution models

than to the biodiversity metrics used here, which integrate
across species within samples. Supporting this, Cooper &
Barry (2017) found that assemblage distributions across the
UK shelf remained broadly consistent between 1976 and
2016. Temporal shifts may slightly reduce the performance
of our models, but are unlikely to bias spatial patterns.
Secondly, data density varies across the study area,
contributing to differing levels of confidence in the
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mapped outputs. Thirdly, while we carefully selected
biodiversity metrics (e.g., Magurran, 2021), we acknowl-
edge that others could have been included. This study is
intended as a proof of concept, and we encourage fur-
ther exploration using alternative or additional metrics
(e.g., Taxonomic Distinctness, Clarke & Warwick, 1998;
Phylogenetic diversity, Cardillo, 2023; Biological Traits,
Bremner et al, 2006; Rao’s Quadratic Entropy,
Botta-Dukat, 2005).

Although we applied a correlation threshold (r > 0.7)
to exclude highly redundant metrics prior to clustering,
moderate correlations remained among those retained.
This led to uneven representation of Hill numbers across
diversity components, potentially introducing bias in clus-
tering and summary outputs (e.g., Table 4). However, our
selection was guided by the principle of complementarity—
prioritizing metrics that offer distinct ecological insights
rather than overlapping information. By including descrip-
tors that differ in sensitivity to abundance, richness, and
turnover, we aimed to capture a broader picture of benthic
biodiversity. Future studies might adopt a more focused a
priori selection—for example, using only °D (species rich-
ness) across all diversity scales, combined with abundance
(N)—to enhance consistency and interpretability, though
this may come at the cost of ecological nuance.

Broader implications

This study, alongside others (Arvanitidis et al., 2009; Bolam
et al., 2023; Cooper & Barry, 2017; Escaravage et al., 2009;
Grémare et al, 2009; O’Brien et al., 2022; Renaud
et al., 2009; Runting et al., 2020; Somerfield, Arvanitidis,
Faulwetter, et al.,, 2009; Somerfield, Arvanitidis, Vanden
Berghe, et al,, 2009; Vanden Berghe et al., 2009; Webb
et al., 2009), demonstrates how new insights can be gener-
ated from existing data. The expansion of big data
approaches in ecology offers a pathway to understanding
organism-environment interactions across scales (Farley
et al., 2018). As new data become available, it should be
possible to update existing models to ensure decisions are
based on the best available evidence. In parallel, future
work can begin to address the important issue of temporal
change in biodiversity patterns. Increasing resolution in
future iterations of the holistic layer could involve more
cluster groups, offering a more nuanced view of biodiversity
patterns. As highlighted by Canhos et al. (2015), this new
way of working will require ongoing support for
maintaining infrastructure, and continued ingestion of data.

We advocate the development of similar outputs for
other benthic components, such as epifauna from trawl
samples. In the United Kingdom, current tools
(e.g., Marine Life Information Network, https://www.

marlin.ac.uk/) reference biodiversity but typically focus
on individual species or habitats. Our approach treats
biodiversity as a comprehensive, quantitative entity, help-
ing to avoid neglecting areas critical for ecosystem ser-
vices and overall biodiversity maintenance.

Building on earlier work (Thompson et al., 2020),
future research should also assess how biodiversity
hotspots respond to pressures such as demersal fishing,
offshore wind, aggregate dredging, dredge disposal, oil
and gas, and cable installation. Not all high-biodiversity
areas are equally vulnerable—some may host taxa that
are resilient to disturbance, while others may be highly
sensitive. Assemblage sensitivity can be assessed using
biological traits responsive to specific pressures (Bolam
et al., 2014, 2021; Certain et al., 2015; Kenny et al., 2018)
and this perspective can be usefully brought into any
assessment of risk to the benthos posed by offshore devel-
opment (Bolam et al., 2025).

CONCLUSION

Improving the understanding of benthic biodiversity is
critical for restoration and conservation, especially in the
context of increasing seabed use and offshore wind
expansion. This study shows how benthic big data can be
used to generate biodiversity maps, and how multiple
complementary metrics can be combined into a single
decision-support output. Our findings underscore the
importance of integrating biodiversity into marine spatial
planning and licensing to ensure sustainable develop-
ment. As new data emerge, models can be rerun to reflect
the best available evidence—though this requires ongo-
ing infrastructure support and data harvesting. Finally,
work is needed to ensure these insights are incorporated
into decision-making alongside existing measures, and to
assess biodiversity sensitivity to anthropogenic pressures.

AUTHOR CONTRIBUTIONS

Keith M. Cooper developed the initial concept for this
paper, with input from Stefan G. Bolam and Murray S. A.
Thompson. The manuscript and R code were drafted by
Keith M. Cooper, Murray S. A. Thompson (R script
for calculating biodiversity metrics), Anna-Leena Downie
(random forest modeling), and Connor M. Peach. All
authors reviewed and contributed to the final manuscript.

ACKNOWLEDGMENTS

This work, conducted under the POSEIDON (Planning
Offshore Wind Strategic Environmental Decisions) pro-
ject, contributes to the Offshore Wind Evidence and
Change Programme funded by The Crown Estate. The
views expressed are those of the authors, and neither

858017 SUOWIWOD SAIERID 3(dedl|dde ) Aq peussnob afe ssppiie YO ‘8sh Jo sejni 1o} Akeid18ul|UQ AB|IA UO (SUOTIPUOD-PUE-SWBYLIO" A3 IMAleIq 1 UIIUO//:StY) SUOIIPUOD PUe SWie | 8U1 89S *[9202/T0/62] U0 AriqiTaulluo A8 IM ‘A T3 1443HS 40 ALISHIAINN Ad ¥610. 2S99/200T 0T/I0p/W0D" A8 | M AReud 18Ul JUO'S feuIno fese//:sdny woly papeojumod ‘T ‘9202 ‘SZ680STZ


https://www.marlin.ac.uk/
https://www.marlin.ac.uk/

ECOSPHERE

15 of 18

The Crown Estate nor other project partners are responsi-
ble for any use of the information contained herein. We
express our gratitude to Dr. David Clare (Cefas) for pro-
viding an internal review and helpful comments on an
earlier version of this manuscript. Connor M. Peach is
supported by the Adapting to the Challenges of a
Changing Environment (ACCE) Doctoral Training
Partnership, funded by NERC grant number NE/S00713X/1.
Murray S. A. Thompson was supported via the Natural
Environment Research Council and the Economic and
Social Research Council grant NE/V017039/1 (Pyramids of
Life), and by the European Research Executive Agency
(REA) under the European Union’s Horizon 2020 research
and innovation program under grant agreement number
101059823 (B-USEFUL).

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data and code (Cooper et al., 2025) are available from the
Cefas Data Hub (https://doi.org/10.14466/CefasDataHub.
187). This record includes links to the primary datasets,
associated R scripts, and an API for accessing the modeled
biodiversity layers. A small number of third-party datasets
used under data-sharing agreements are not publicly avail-
able; summary information for these datasets is provided in
Appendix S1: Table S3. Qualified researchers may contact
EDF Energy (hello@edfenergy.com) for permission to
access the datasets and the corresponding author (keith.
cooper@cefas.gov.uk) for the datasets.

ORCID
Stefan G. Bolam ‘© https://orcid.org/0000-0001-6604-4741

REFERENCES

Abelson, A., B. S. Halpern, D. C. Reed, R. J. Orth, G. A. Kendrick,
M. W. Beck, J. Belmaker, et al. 2016. “Upgrading Marine
Ecosystem Restoration Using Ecological-Social Concepts.”
BioScience 66(2): 156-163. https://doi.org/10.1093/biosci/biv171.

Arneth, A., Y. J. Shin, P. Leadley, C. Rondinini, E. Bukvareva,
M. Kolb, G. F. Midgley, T. Oberdorff, I. Palomo, and O. Saito.
2020. “Post-2020 Biodiversity Targets Need to Embrace
Climate Change.” Proceedings of the National Academy of
Sciences of the United States of America 117(49): 30882-91.
https://doi.org/10.1073/pnas.2009584117.

Arvanitidis, C., P. J. Somerfield, H. Rumohr, S. Faulwetter,
V. Valavanis, A. Vasileiadou, G. Chatzigeorgiou, et al. 2009.
“Biological Geography of the European Seas: Results from the
MacroBen Database.” Marine Ecology Progress Series 382:
265-278.

Baker, E. K., and P. T. Harris. 2020. “Chapter 2 — Habitat Mapping
and Marine Management.” In Seafloor Geomorphology as
Benthic Habitat, 2nd ed., edited by P. T. Harris and E. Baker,

17-33. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-
12-814960-7.00002-6.

Barrio Frojan, C. R. S., S. G. Bolam, J. D. Eggleton, and C. Mason.
2012. “Large-Scale Faunal Characterisation of Marine Benthic
Sedimentary Habitats around the UK.” Journal of Sea Research
69: 53-65. https://doi.org/10.1016/j.seares.2012.02.005.

Barros, F., H. Blanchet, K. Hammerstrom, P.-G. Sauriau, and
J. Oliver. 2014. “A Framework for Investigating General
Patterns of Benthic f-Diversity along Estuaries.” Estuarine,
Coastal and Shelf Science 149: 223-231. https://doi.org/10.
1016/j.ecss.2014.08.025.

Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller, and
F. Courchamp. 2012. “Impacts of Climate Change on the
Future of Biodiversity.” Ecology Letters 15(4): 365-377. https://
doi.org/10.1111/j.1461-0248.2011.01736.x.

Birchenough, S. N. R, and S. Degraer. 2020. “Science in Support of
Ecologically Sound Decommissioning Strategies for Offshore
Man-Made Structures: Taking Stock of Current Knowledge
and Considering Future Challenges.” ICES Journal of Marine
Science 77(3): 1075-78. https://doi.org/10.1093/icesjms/fsaa039.

Bolam, S. G., J. Eggleton, R. Smith, C. Mason, K. Vanstaen, and
H. Rees. 2008. “Spatial Distribution of Macrofaunal
Assemblages along the English Channel.” Journal of the
Marine Biological Association of the United Kingdom 88(4):
675-687. https://doi.org/10.1017/S0025315408001276.

Bolam, S. G., K. Cooper, and A.-L. Downie. 2023. “Mapping Marine
Benthic Biological Traits to Facilitate Future Sustainable
Development.” Ecological Applications 33: €2905. https://doi.
org/10.1002/eap.2905.

Bolam, S. G., K. M. Cooper, and A.-L. Downie. 2025. “Developing
an Ecological Risk-Based Approach to Facilitate Licensing
Offshore Wind Development.” Ecosphere: in press.

Bolam, S. G., P. Mcllwaine, and C. Garcia. 2021. “Marine
Macrofaunal Traits Responses to Dredged Material Disposal.”
Marine Pollution Bulletin 168: 112412. https://doi.org/10.1016/
j-marpolbul.2021.112412.

Bolam, S. G.,, R. C. Coggan, J. Eggleton, M. Diesing, and
D. Stephens. 2014. “Sensitivity of Macrobenthic Secondary
Production to Trawling in the English Sector of the Greater North
Sea: A Biological Trait Approach.” Journal of Sea Research 85:
162-177. https://doi.org/10.1016/j.seares.2013.05.003.

Botta-Dukat, Z. 2005. “Rao’s Quadratic Entropy as a Measure of
Functional Diversity Based on Multiple Traits.” Journal
of Vegetation Science 16: 533-540. https://doi.org/10.1111/j.
1654-1103.2005.tb02393.x.

Breiman, L. 2001. “Random Forests.” Machine Learning 45(1):
5-32. https://doi.org/10.1023/A:1010933404324.

Bremner, J., S. I. Rogers, and C. L. J. Frid. 2006. “Matching
Biological Traits to Environmental Conditions in Marine
Benthic Ecosystems.” Journal of Marine Systems 60: 302-316.
https://doi.org/10.1016/j.jmarsys.2006.02.004.

Brown, C. J, J. A. Sameoto, and S. J. Smith. 2012. “Multiple
Methods, Maps, and Management Applications: Purpose Made
Seafloor Maps in Support of Ocean Management.” Journal of
Sea Research 72: 1-13. https://doi.org/10.1016/j.seares.2012.
04.009.

Canhos, D. A. L., M. S. Sousa-Baena, S. de Souza, L. C. Maia, J. R.
Stehmann, V. P. Canhos, R. de Giovanni, M. B. M. Bonacelli, W.
Los, and A. T. Peterson. 2015. “The Importance of Biodiversity

858017 SUOWIWOD SAIERID 3(dedl|dde ) Aq peussnob afe ssppiie YO ‘8sh Jo sejni 1o} Akeid18ul|UQ AB|IA UO (SUOTIPUOD-PUE-SWBYLIO" A3 IMAleIq 1 UIIUO//:StY) SUOIIPUOD PUe SWie | 8U1 89S *[9202/T0/62] U0 AriqiTaulluo A8 IM ‘A T3 1443HS 40 ALISHIAINN Ad ¥610. 2S99/200T 0T/I0p/W0D" A8 | M AReud 18Ul JUO'S feuIno fese//:sdny woly papeojumod ‘T ‘9202 ‘SZ680STZ


https://doi.org/10.14466/CefasDataHub.187
https://doi.org/10.14466/CefasDataHub.187
mailto:hello@edfenergy.com
mailto:keith.cooper@cefas.gov.uk
mailto:keith.cooper@cefas.gov.uk
https://orcid.org/0000-0001-6604-4741
https://orcid.org/0000-0001-6604-4741
https://doi.org/10.1093/biosci/biv171
https://doi.org/10.1073/pnas.2009584117
https://doi.org/10.1016/B978-0-12-814960-7.00002-6
https://doi.org/10.1016/B978-0-12-814960-7.00002-6
https://doi.org/10.1016/j.seares.2012.02.005
https://doi.org/10.1016/j.ecss.2014.08.025
https://doi.org/10.1016/j.ecss.2014.08.025
https://doi.org/10.1111/j.1461-0248.2011.01736.x
https://doi.org/10.1111/j.1461-0248.2011.01736.x
https://doi.org/10.1093/icesjms/fsaa039
https://doi.org/10.1017/S0025315408001276
https://doi.org/10.1002/eap.2905
https://doi.org/10.1002/eap.2905
https://doi.org/10.1016/j.marpolbul.2021.112412
https://doi.org/10.1016/j.marpolbul.2021.112412
https://doi.org/10.1016/j.seares.2013.05.003
https://doi.org/10.1111/j.1654-1103.2005.tb02393.x
https://doi.org/10.1111/j.1654-1103.2005.tb02393.x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.jmarsys.2006.02.004
https://doi.org/10.1016/j.seares.2012.04.009
https://doi.org/10.1016/j.seares.2012.04.009

16 of 18

COOPER ET AL.

E-Infrastructures for Megadiverse Countries.” PLoS Biology 13(7):
€1002204. https://doi.org/10.1371/journal.pbio.1002204.

Cardillo, M. 2023. “Phylogenetic Diversity in Conservation: A Brief
History, Critical Overview, and Challenges to Progress.”
Cambridge Prisms: Extinction 1: ell. https://doi.org/10.1017/
ext.2023.8.

Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings,
P. Venail, A. Narwani, et al. 2012. “Biodiversity Loss and its
Impact on Humanity.” Nature 486(7401): 59-67. https://doi.
org/10.1038/nature11148.

Certain, G., L. L. Jorgensen, I Christel, B. Planque, and
V. Bretagnolle. 2015. “Mapping the Vulnerability of Animal
Community to Pressure in Marine Systems: Disentangling
Pressure Types and Integrating their Impact from the
Individual to the Community Level.” ICES Journal of Marine
Science 72(5): 1470-82. https://doi.org/10.1093/icesjms/fsv003.

Chao, A., S. Thorn, C.-H. Chiu, F. Moyes, K.-H. Hu, R. L. Chazdon,
J. Wu, et al. 2023. “Rarefaction and Extrapolation with Beta
Diversity under a Framework of Hill Numbers: The iNEXT.
beta3D Standardization.” Ecological Monographs 93(4): e1588.
https://doi.org/10.1002/ecm.1588.

Clare, D. S., F. Culhane, and L. A. Robinson. 2022. “Secondary
Production Increases with Species Richness but Decreases
with Species Evenness of Benthic Invertebrates.” Oikos 2022:
€08629. https://doi.org/10.1111/0ik.08629.

Clarke, K. R., and R. M. Warwick. 1998. “A Taxonomic Distinctness
Index and its Statistical Properties.” Journal of Applied Ecology
35(4): 523-531.

Cooper, K. M. 2025. Benthic Invertebrate and Sediment Data from
1985 to 2023 for Mapping Benthic Biodiversity to Facilitate
Future Sustainable Development. Weymouth: Cefas. https://
doi.org/10.14466/CefasDataHub.187.

Cooper, K. M., and J. Barry. 2017. “A Big Data Approach to
Macrofaunal ~ Baseline  Assessment, Monitoring  and
Sustainable Exploitation of the Seabed.” Scientific Reports 7:
12431. https://doi.org/10.1038/s41598-017-11377-9.

Cooper, K. M., S. E. Boyd, J. D. Eggleton, D. S. Limpenny, H. L.
Rees, and K. Vanstaen. 2007. “Recovery of the Seabed
Following Marine Aggregate Dredging on the Hastings
Shingle Bank off the Southeast Coast of England.” Estuarine,
Coastal and Shelf Science 75: 547-558. https://doi.org/10.1016/
j-css.2007.06.004.

Cooper, K. M., S. G. Bolam, A. L. Downie, and J. Barry. 2019.
“Biological-Based Habitat Classification Approaches Promote
Cost-Efficient Monitoring: An Example Using Seabed
Assemblages.” Journal of Applied Ecology 56: 1085-98. https://
doi.org/10.1111/1365-2664.13381.

Cuvelier, D., S. Gollner, D. O. B. Jones, S. Kaiser, P. M. Arbizu,
L. Menzel, N. C. Mestre, et al. 2018. “Potential Mitigation and
Restoration Actions in Ecosystems Impacted by Seabed
Mining.” Frontiers in Marine Science 5: 467. https://doi.org/10.
3389/fmars.2018.00467.

Dannheim, J., L. Bergstrom, S. N. R. Birchenough, R. Brzana, A. R.
Boon, J. W. P. Coolen, J.-C. Dauvin, et al. 2020. “Benthic
Effects of Offshore Renewables: Identification of Knowledge
Gaps and Urgently Needed Research.” ICES Journal of Marine
Science 77(3): 1092-1108. https://doi.org/10.1093/icesjms/fsz018.

Davies, C. E.,, D. Moss, and M. O. Hill. 2004. EUNIS Habitat
Classification Revised 2004. Report to the European Topic

Centre on Nature Protection and Biodiversity. Copenhagen:
European Environment Agency.

de Vriend, H. J., and M. Van Koningsveld. 2012. Building with
Nature: Thinking, Acting and Interacting Differently.
Dordrecht: EcoShape, Building with Nature. 39 p.

Duncan, C., J. R. Thompson, and N. Pettorelli. 2015. “The Quest for
a Mechanistic Understanding of Biodiversity-Ecosystem
Services Relationships.” Proceedings of the Royal Society B:
Biological Sciences 282: 20151348. https://doi.org/10.1098/rspb.
2015.1348.

Ellingsen, K. E., and J. S. Gray. 2002. “Spatial Patterns of Benthic
Diversity: Is there a Latitudinal Gradient along the Norwegian
Continental Shelf?” Journal of Animal Ecology 71: 373-389.
https://doi.org/10.1046/j.1365-2656.2002.00606.X.

Escaravage, V., P. M. J. Herman, B. Merckx,
M. Wtodarska-Kowalczuk, J. M. Amouroux, S. Degraer, A.
Grémare, et al. 2009. “Distribution Patterns of Macrofaunal
Species Diversity in Subtidal Soft Sediments:
Biodiversity—Productivity Relationships from the MacroBen
Database.” Marine Ecology Progress Series 382: 253-264.

Farley, S. S., A. Dawson, S. J. Goring, and J. W. Williams. 2018.
“Situating Ecology as a Big-Data Science: Current Advances,
Challenges, and Solutions.” BioScience 63(8): 563-576. https://
doi.org/10.1093/biosci/biy068.

Galparsoro, I, A. Borja, and M. C. Uyarra. 2014. “Mapping
Ecosystem Services Provided by Benthic Habitats in the
European North Atlantic Ocean.” Frontiers in Marine Science
1: 23. https://doi.org/10.3389/fmars.2014.00023.

Gaston, K. J. 1996. “What Is Biodiversity?”” In Biodiversity. A Biology
of Numbers and Difference, edited by K. J. Gaston, 1-9. Oxford:
Blackwell Science.

GEBCO Compilation Group. 2023. “GEBCO 2023 Grid.” https://
doi.org/10.5285/f98b053b-0cbc-6¢23-e053-6¢86abcOat7b.

Gotelli, N. J,, and A. Chao. 2013. “Measuring and Estimating
Species Richness, Species Diversity, and Biotic Similarity from
Sampling Data.” In Encyclopedia of Biodiversity, 2nd ed., Vol.
5, edited by S. A. Levin, 195-211. Waltham, MA: Academic
Press.

Grémare, A., C. Labrune, E. Vanden Berghe, J. M. Amouroux,
G. Bachelet, M. L. Zettler, J. Vanaverbeke, et al. 2009.
“Comparison of the Performances of Two Biotic Indices Based
on the MacroBen Database.” Marine Ecology Progress Series
382:297-311.

Gutow, L., M. Gusky, J. Beermann, L. Gimenez, R. Pesch,
T. Bildstein, K. Heinicke, and B. Ebbe. 2022. “Spotlight on
Coarse Sediments: Comparative Characterization of a Poorly
Investigated Seafloor Biotope in the German Bight (SE North
Sea).” Estuarine, Coastal and Shelf Science 275: 107996.
https://doi.org/10.1016/j.ecss.2022.107996.

Hale, S. S., H. W. Buffum, and S. M. M. Hughe. 2018. “Six
Decades of Change in Pollution and Benthic Invertebrate
Biodiversity in a Southern New England Estuary.” Marine
Pollution Bulletin 133: 77-87. https://doi.org/10.1016/j.marpolbul.
2018.05.019.

Halpern, B., M. Frazier, J. Potapenko, K. S. Casey, K. Koenig,
C. Longo, J. Stewart Lowndes, et al. 2015. “Spatial and
Temporal Changes in Cumulative Human Impacts on the
World’s Ocean.” Nature Communications 6: 7615. https://doi.
0rg/10.1038/ncomms8615.

858017 SUOWIWOD SAIERID 3(dedl|dde ) Aq peussnob afe ssppiie YO ‘8sh Jo sejni 1o} Akeid18ul|UQ AB|IA UO (SUOTIPUOD-PUE-SWBYLIO" A3 IMAleIq 1 UIIUO//:StY) SUOIIPUOD PUe SWie | 8U1 89S *[9202/T0/62] U0 AriqiTaulluo A8 IM ‘A T3 1443HS 40 ALISHIAINN Ad ¥610. 2S99/200T 0T/I0p/W0D" A8 | M AReud 18Ul JUO'S feuIno fese//:sdny woly papeojumod ‘T ‘9202 ‘SZ680STZ


https://doi.org/10.1371/journal.pbio.1002204
https://doi.org/10.1017/ext.2023.8
https://doi.org/10.1017/ext.2023.8
https://doi.org/10.1038/nature11148
https://doi.org/10.1038/nature11148
https://doi.org/10.1093/icesjms/fsv003
https://doi.org/10.1002/ecm.1588
https://doi.org/10.1111/oik.08629
https://doi.org/10.14466/CefasDataHub.187
https://doi.org/10.14466/CefasDataHub.187
https://doi.org/10.1038/s41598-017-11377-9
https://doi.org/10.1016/j.ecss.2007.06.004
https://doi.org/10.1016/j.ecss.2007.06.004
https://doi.org/10.1111/1365-2664.13381
https://doi.org/10.1111/1365-2664.13381
https://doi.org/10.3389/fmars.2018.00467
https://doi.org/10.3389/fmars.2018.00467
https://doi.org/10.1093/icesjms/fsz018
https://doi.org/10.1098/rspb.2015.1348
https://doi.org/10.1098/rspb.2015.1348
https://doi.org/10.1046/j.1365-2656.2002.00606.x
https://doi.org/10.1093/biosci/biy068
https://doi.org/10.1093/biosci/biy068
https://doi.org/10.3389/fmars.2014.00023
https://doi.org/10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b
https://doi.org/10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b
https://doi.org/10.1016/j.ecss.2022.107996
https://doi.org/10.1016/j.marpolbul.2018.05.019
https://doi.org/10.1016/j.marpolbul.2018.05.019
https://doi.org/10.1038/ncomms8615
https://doi.org/10.1038/ncomms8615

ECOSPHERE

| 17 of 18

Harris, P. T. 2020. “Chapter 3 — Anthropogenic Threats to Benthic
Habitats.” In Seafloor Geomorphology as Benthic Habitat, 2nd
ed., edited by P. T. Harris and E. K. Baker, 35-61. Amsterdam:
Elsevier. https://doi.org/10.1016/B978-0-12-814960-7.00003-8.

Heip, C., D. Basford, J. Craeymeersch, J. M. Dewarumez, J. Dorjes,
P. De Wilde, G. Duineveld, et al. 1992. “Trends in Biomass,
Density and Diversity of North Sea Macrofauna.” ICES
Journal of Marine Science 49: 13-22. https://doi.org/10.1093/
icesjms/49.1.13.

Hiddink, J. G., T. Hutton, S. Jennings, and M. J. Kaiser. 2006.
“Predicting the Effects of Area Closures and Fishing Effort
Restrictions on the Production, Biomass, and Species Richness
of Benthic Invertebrate Communities.” ICES Journal of
Marine Science 63(5): 822-830. https://doi.org/10.1016/j.
icesjms.2006.02.006.

Hill, M. O. 1973. “Diversity and Evenness: A Unifying Notation and
its Consequences.” Ecology 54(2): 427-432. https://doi.org/10.
2307/1934352.

Hooper, T., M. Austen, and A. Lannin. 2021. “Developing Policy
and Practice for Marine Net Gain.” Journal of Environmental
Management 277: 111387. https://doi.org/10.1016/j.jenvman.
2020.111387.

Hsieh, T. C., K. H. Ma, and A. Chao. 2016. “iNEXT: An R Package
for Rarefaction and Extrapolation of Species Diversity (Hill
Numbers).” Methods in Ecology and Evolution 7(12): 1451-56.
https://doi.org/10.1111/2041-210X.12613.

International Energy Agency. 2019. Offshore Wind Outlook 2019:
World Energy  Outlook  Special Report. Paris: IEA
Publications. 96 p.

Jouffray, J.-B., R. Blasiak, A. V. Norstrom, H. Osterblom, and
M. Nystrom. 2020. “The Blue Acceleration: The Trajectory of
Human Expansion into the Ocean.” One Earth 2(1):
2590-3330. https://doi.org/10.1016/j.oneear.2019.12.016.

Kaiser, M. J., and B. E. Spencer. 1996. “The Effects of Beam-Trawl
Disturbance on Infaunal Communities in Different Habitats.”
Journal of Animal Ecology 65(3): 348-358. https://doi.org/10.
2307/5881.

Kaiser, M. J., K. Ramsay, C. A. Richardson, F. E. Spence, and A. R.
Brand. 2000. “Chronic Fishing Disturbance Has Changed
Shelf Sea Benthic Community Structure.” Journal of Animal
Ecology 69: 494-503. https://doi.org/10.1046/.1365-2656.2000.
00412.x.

Kenny, A. J., C. Jenkins, D. Wood, S. G. Bolam, P. Mitchell,
C. Scougal, and A. Judd. 2018. “Assessing Cumulative Human
Activities, Pressures, and Impacts on North Sea Benthic
Habitats Using a Biological Traits Approach.” ICES Journal of
Marine Science 75(3): 1080-92. https://doi.org/10.1093/
icesjms/fsx205.

Korpinen, S., L. Laamanen, L. Bergstrom, M. Nurmi, J. H.
Andersen, J. Haapaniemi, E. T. Harvey, et al. 2021.
“Combined Effects of Human Pressures on Europe’s Marine
Ecosystems.” Ambio 50: 1325-36. https://doi.org/10.1007/
$13280-020-01482-x.

Kriegl, M., X. E. Elias Ilosvay, C. von Dorrien, and D. Oesterwind.
2021. “Marine Protected Areas: At the Crossroads of Nature
Conservation and Fisheries Management.” Frontiers in Marine
Science 8: 676264. https://doi.org/10.3389/fmars.2021.676264.

Kroncke, I., H. Reiss, J. D. Eggleton, J. Aldridge, M. J. N. Bergman,
S. Cochrane, J. A. Craeymeersch, et al. 2011. “Changes in

North Sea Macrofauna Communities and Species Distribution
between 1986 and 2000.” Estuarine, Coastal and Shelf Science
94: 1-15. https://doi.org/10.1016/j.ecss.2011.04.008.

Kunzig, R. 2008. “Are Hotspots the Key to Conservation.” SA
Special Editions 18(4s): 42-49. https://doi.org/10.1038/
scientificamericanearth0908-42.

Li, C.,J. W. P. Coolen, L. Scherer, J. M. Mogollén, U. Braeckman, J.
Vanaverbeke, A. Tukker, and B. Steubing. 2023. “Offshore
Wind Energy and Marine Biodiversity in the North Sea: Life
Cycle Impact Assessment for Benthic Communities.”
Environmental Science & Technology 2023: 6455-64. https://
doi.org/10.1021/acs.est.2c07797.

Magurran, A. E. 2021. “Measuring Biological Diversity.” Current
Biology 31(19): R1174-R1177. https://doi.org/10.1016/j.cub.
2021.07.049.

Maron, M., C. D. Ives, H. Kujala, J. W. Bull, F. J. Maseyk,
S. Bekessy, A. Gordon, et al. 2016. “Taming a Wicked Problem:
Resolving Controversies in Biodiversity Offsetting.” BioScience
66(6): 489-498. https://doi.org/10.1093/biosci/biw038.

Mazor, T. K., C. R. Pitcher, N. Ellis, W. Rochester, S. Jennings, J. G.
Hiddink, R. A. McConnaughey, et al. 2017. “Trawl Exposure
and Protection of Seabed Fauna at Large Spatial Scales.”
Diversity and Distributions 23: 1280-91. https://doi.org/10.
1111/ddi.12622.

Mitchell, P. J., A.-L. Downie, and M. Diesing. 2018. “How Good Is
my Map? A Tool for Semi-Automated Thematic Mapping and
Spatially Explicit Confidence Assessment.” Environmental
Modelling & Software 108: 111-122. https://doi.org/10.1016/j.
envsoft.2018.07.014.

Naeem, S., R. Chazdon, J. E. Duffy, C. Prager, and B. Worm. 2016.
“Biodiversity Andhuman Well-Being: An Essential Link
Forsustainable Development.” Proceedings of the Royal Society
B: Biological Sciences 283: 20162091. https://doi.org/10.1098/
rspb.2016.2091.

O’Brien, J. M., R. R. E. Stanley, N. W. Jeffery, S. G. Heaslip,
C. DiBacco, and Z. Wang. 2022. “Modeling Demersal Fish and
Benthic Invertebrate Assemblages in Support of Marine
Conservation Planning.” Ecological Applications 32(3): €2546.
https://doi.org/10.1002/eap.2546.

Pauly, D. 1995. “Anecdotes and the Shifting Baseline Syndrome of
Fisheries.” Trends in Ecology & Evolution 10: 430. https://doi.
0rg/10.1016/S0169-5347(00)89171-5.

R Core Team. 2024. R: A Language and Environment for Statistical
Computing. Vienna: R Foundation for Statistical Computing.

Rees, H. L., M. A. Pendle, R. Waldock, D. S. Limpenny, and S. E.
Boyd. 1999. “A Comparison of Benthic Biodiversity in the
North Sea, English Channel, and Celtic Seas.” ICES Journal of
Marine Science 56: 228-246. https://doi.org/10.1006/jmsc.1998.
0438.

Reiss, H., S. Degraer, G. C. A. Duineveld, I. Kroncke, J. Aldridge, J.
Craeymeersch, J. D. Eggleton, et al. 2010. “Spatial Patterns of
Infauna, Epifauna, and Demersal Fish Communities in the
North Sea.” ICES Journal of Marine Science 67: 278-293.
https://doi.org/10.1093/icesjms/fsp253.

Renaud, P. E., T. J. Webb, A. Bjergeseter, 1. Karakassis, M. Kedra,
M. A. Kendall, C. Labrune, et al. 2009. “Continental-Scale
Patterns in Benthic Invertebrate Diversity: Insights from the
MacroBen Database.” Marine Ecology Progress Series 382:
239-252. https://doi.org/10.3354/meps07963.

858017 SUOWIWOD SAIERID 3(dedl|dde ) Aq peussnob afe ssppiie YO ‘8sh Jo sejni 1o} Akeid18ul|UQ AB|IA UO (SUOTIPUOD-PUE-SWBYLIO" A3 IMAleIq 1 UIIUO//:StY) SUOIIPUOD PUe SWie | 8U1 89S *[9202/T0/62] U0 AriqiTaulluo A8 IM ‘A T3 1443HS 40 ALISHIAINN Ad ¥610. 2S99/200T 0T/I0p/W0D" A8 | M AReud 18Ul JUO'S feuIno fese//:sdny woly papeojumod ‘T ‘9202 ‘SZ680STZ


https://doi.org/10.1016/B978-0-12-814960-7.00003-8
https://doi.org/10.1093/icesjms/49.1.13
https://doi.org/10.1093/icesjms/49.1.13
https://doi.org/10.1016/j.icesjms.2006.02.006
https://doi.org/10.1016/j.icesjms.2006.02.006
https://doi.org/10.2307/1934352
https://doi.org/10.2307/1934352
https://doi.org/10.1016/j.jenvman.2020.111387
https://doi.org/10.1016/j.jenvman.2020.111387
https://doi.org/10.1111/2041-210X.12613
https://doi.org/10.1016/j.oneear.2019.12.016
https://doi.org/10.2307/5881
https://doi.org/10.2307/5881
https://doi.org/10.1046/j.1365-2656.2000.00412.x
https://doi.org/10.1046/j.1365-2656.2000.00412.x
https://doi.org/10.1093/icesjms/fsx205
https://doi.org/10.1093/icesjms/fsx205
https://doi.org/10.1007/s13280-020-01482-x
https://doi.org/10.1007/s13280-020-01482-x
https://doi.org/10.3389/fmars.2021.676264
https://doi.org/10.1016/j.ecss.2011.04.008
https://doi.org/10.1038/scientificamericanearth0908-42
https://doi.org/10.1038/scientificamericanearth0908-42
https://doi.org/10.1021/acs.est.2c07797
https://doi.org/10.1021/acs.est.2c07797
https://doi.org/10.1016/j.cub.2021.07.049
https://doi.org/10.1016/j.cub.2021.07.049
https://doi.org/10.1093/biosci/biw038
https://doi.org/10.1111/ddi.12622
https://doi.org/10.1111/ddi.12622
https://doi.org/10.1016/j.envsoft.2018.07.014
https://doi.org/10.1016/j.envsoft.2018.07.014
https://doi.org/10.1098/rspb.2016.2091
https://doi.org/10.1098/rspb.2016.2091
https://doi.org/10.1002/eap.2546
https://doi.org/10.1016/S0169-5347(00)89171-5
https://doi.org/10.1016/S0169-5347(00)89171-5
https://doi.org/10.1006/jmsc.1998.0438
https://doi.org/10.1006/jmsc.1998.0438
https://doi.org/10.1093/icesjms/fsp253
https://doi.org/10.3354/meps07963

18 of 18

COOPER ET AL.

Roberts, C. M., B. C. O’Leary, D. J. McCauley, P. M. Cury, C. M.
Duarte, J. Lubchenco, D. Pauly, et al. 2017. “Marine Reserves
Can Mitigate and Promote Adaptation to Climate Change.”
Proceedings of the National Academy of Sciences of the
United States of America 114: 6167-75. https://doi.org/10.1073/
pnas.1701262114.

Runting, R. K., S. Phinn, Z. Xie, O. Venter, and J. E. M. Watson.
2020. “Opportunities for Big Data in Conservation and
Sustainability.” Nature Communications 11(1): 2003. https://
doi.org/10.1038/s41467-020-15870-0.

Saeedi, H., D. Warren, and A. Brandt. 2022. “The Environmental
Drivers of Benthic Fauna Diversity and Community
Composition.” Frontiers in Marine Science 9: 804019. https://
doi.org/10.3389/fmars.2022.804019.

Sala, E., and N. Knowlton. 2006. “Global Marine Biodiversity
Trends.” Annual Review of Environment and Resources 31:
93-122. https://doi.org/10.1146/annurev.energy.31.020105.100235.

Sala, E., J. Mayorga, D. Bradley, R. B. Cabral, T. B. Atwood,
A. Auber, W. Cheung, et al. 2021. “Protecting the Global
Ocean for Biodiversity, Food and Climate.” Nature 592:
397-402. https://doi.org/10.1038/s41586-021-03371-z.

Santangeli, A., B. Weigel, L. H. Antdo, E. Kaarlejdrvi, M. Hillfors,
A. Lehikoinen, A. Lindén, et al. 2023. “Mixed Effects of a
National Protected Area Network on Terrestrial and
Freshwater Biodiversity.” Nature Communications 14: 5426.
https://doi.org/10.1038/s41467-023-41073-4.

Santini, L., J. Belmaker, M. J. Costello, H. M. Pereira, A. G.
Rossberg, A. M. Schipper, S. Ceausu, et al. 2017. “Assessing
the Suitability of Diversity Metrics to Detect Biodiversity
Change.” Biological Conservation 213: 341-350. https://doi.
org/10.1016/j.biocon.2016.08.024.

Snelgrove, P. V. R. 1997. “The Importance of Marine Sediment
Biodiversity in Ecosystem Processes.” Ambio 26(8):
578-583.

Snelgrove, P. V. R., K. Soetaert, M. Solan, S. Thrush, C.-L. Wei,
R. Danovaro, R. W. Fulweiler, et al. 2018. “Global Carbon
Cycling on a Heterogeneous Seafloor.” Trends in Ecology &
Evolution 33(2): 96-105. https://doi.org/10.1016/j.tree.2017.
11.004.

Solan, M., E. M. Bennett, P. J. Mumby, J. Leyland, and J. A.
Godbold. 2020. “Benthic-Based Contributions to Climate Change
Mitigation and Adaptation.” Philosophical Transactions of the
Royal Society B 375: 20190107. https://doi.org/10.1098/rstb.2019.
0107.

Somerfield, P. J., C. Arvanitidis, E. Vanden Berghe, P. H. Avesaath,
H. Hummel, and C. H. R. Heip. 2009. “MarBEF, Databases,
and the Legacy of John Gray.” Marine Ecology Progress Series
382: 221-24. https://doi.org/10.3354/meps08045.

Somerfield, P. J., C. Arvanitidis, S. Faulwetter, G. Chatzigeorgiou,
A. Vasileiadou, J. M. Amouroux, N. Anisimova, et al. 2009.
“Assessing Evidence for Random Assembly of Marine
Benthic Communities from Regional Species Pools.” Marine
Ecology Progress Series 382: 279-286. https://doi.org/10.3354/
meps07934.

Thompson, M. S. A., E. Couce, T. Webb, M. Grace, K. M. Cooper,
and M. Schratzberger. 2020. “What’s Hot and What’s Not:
Making Sense of Biodiversity ‘Hotspots’.” Global Change
Biology 27(3): 521-535.

United Nations. 2023. The Sustainable Development Goals Report
2023: Special Edition Towards a Rescue Plan for People and
Planet. New York: United Nations Publications. 76 p.

Vanden Berghe, E., S. Claus, W. Appeltans, S. Faulwetter, C.
Arvanitidis, P. J. Somerfield, I. F. Aleffi, et al. 2009.
“MacroBen Integrated Database on Benthic Invertebrates of
European Continental Shelves: A Tool for Large-Scale Analysis
across Europe.” Marine Ecology Progress Series 382: 225-238.

Vassallo, P., C. Paoli, S. Aliani, S. Cocito, C. Morri, and C. N.
Bianchi. 2020. “Benthic Diversity Patterns and Predictors: A
Study Case with Inferences for Conservation.” Marine
Pollution Bulletin  150: 110748. https://doi.org/10.1016/j.
marpolbul.2019.110748.

Wang, S., and M. Loreau. 2014. “Ecosystem Stability in Space: a,
and vy Variability.” Ecology Letters 17(8): 891-901. https://doi.
org/10.1111/ele.12292.

Warwick, R. M., and K. R. Clarke. 1995. “New ‘Biodiversity’
Measures Reveal a Decrease in Taxonomic Distinctness with
Increasing Stress.” Marine Ecology Progress Series 129: 301-5.

Webb, T., F. Aleffi, J. Amouroux, G. Bachelet, S. Degraer,
C. Dounas, D. Fleischer, et al. 2009. “Macroecology of the
European Soft Sediment Benthos: Insights from the MacroBen
Database.” Marine Ecology Progress Series 382: 287-296.
https://doi.org/10.3354/meps07754.

Weinert, M., M. Mathis, I. Kroncke, T. Pohlmann, and H. Reiss.
2021. “Climate Change Effects on Marine Protected Areas:
Projected Decline of Benthic Species in the North Sea.” Marine
Environmental Research 163: 105230. https://doi.org/10.1016/j.
marenvres.2020.105230.

Whittaker, R. H. 1960. “Vegetation of the Siskiyou Mountains,
Oregon and California.” Ecological Monographs 30: 279-338.
https://doi.org/10.2307/1943563.

Whittaker, R. H. 1972. “Evolution and Measurement of Species
Diversity.” Taxon 21(2/3): 213-251. https://doi.org/10.2307/
1218190.

Worm, B., E. B. Barbier, N. Beaumont, J. E. Duffy, C. Folke, B. S.
Halpern, J. B. C. Jackson, et al. 2006. “Impacts of Biodiversity
Loss on Ocean Ecosystem Services.” Science 314(5800):
787-790. https://doi.org/10.1126/science.1132294.

‘WoRMS Editorial Board. 2024. “World Register of Marine Species.”
https://www.marinespecies.org.

SUPPORTING INFORMATION

Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Cooper, Keith M.,
Murray S. A. Thompson, Stefan G. Bolam, Connor
M. Peach, Thomas J. Webb, and

Anna-Leena Downie. 2026. “Mapping Benthic
Biodiversity to Facilitate Future Sustainable
Development.” Ecosphere 17(1): €70494. https://
doi.org/10.1002/ecs2.70494

858017 SUOWIWOD SAIERID 3(dedl|dde ) Aq peussnob afe ssppiie YO ‘8sh Jo sejni 1o} Akeid18ul|UQ AB|IA UO (SUOTIPUOD-PUE-SWBYLIO" A3 IMAleIq 1 UIIUO//:StY) SUOIIPUOD PUe SWie | 8U1 89S *[9202/T0/62] U0 AriqiTaulluo A8 IM ‘A T3 1443HS 40 ALISHIAINN Ad ¥610. 2S99/200T 0T/I0p/W0D" A8 | M AReud 18Ul JUO'S feuIno fese//:sdny woly papeojumod ‘T ‘9202 ‘SZ680STZ


https://doi.org/10.1073/pnas.1701262114
https://doi.org/10.1073/pnas.1701262114
https://doi.org/10.1038/s41467-020-15870-0
https://doi.org/10.1038/s41467-020-15870-0
https://doi.org/10.3389/fmars.2022.804019
https://doi.org/10.3389/fmars.2022.804019
https://doi.org/10.1146/annurev.energy.31.020105.100235
https://doi.org/10.1038/s41586-021-03371-z
https://doi.org/10.1038/s41467-023-41073-4
https://doi.org/10.1016/j.biocon.2016.08.024
https://doi.org/10.1016/j.biocon.2016.08.024
https://doi.org/10.1016/j.tree.2017.11.004
https://doi.org/10.1016/j.tree.2017.11.004
https://doi.org/10.1098/rstb.2019.0107
https://doi.org/10.1098/rstb.2019.0107
https://doi.org/10.3354/meps08045
https://doi.org/10.3354/meps07934
https://doi.org/10.3354/meps07934
https://doi.org/10.1016/j.marpolbul.2019.110748
https://doi.org/10.1016/j.marpolbul.2019.110748
https://doi.org/10.1111/ele.12292
https://doi.org/10.1111/ele.12292
https://doi.org/10.3354/meps07754
https://doi.org/10.1016/j.marenvres.2020.105230
https://doi.org/10.1016/j.marenvres.2020.105230
https://doi.org/10.2307/1943563
https://doi.org/10.2307/1218190
https://doi.org/10.2307/1218190
https://doi.org/10.1126/science.1132294
https://www.marinespecies.org
https://doi.org/10.1002/ecs2.70494
https://doi.org/10.1002/ecs2.70494

	Mapping benthic biodiversity to facilitate future sustainable development
	Abstract
	INTRODUCTION
	METHODS
	Dataset
	Biodiversity metrics
	Biodiversity clusters
	Spatial modeling
	Explaining patterns

	RESULTS
	Biodiversity metrics
	Biodiversity clusters
	Explaining patterns
	Individual metrics
	Biodiversity clusters


	DISCUSSION
	Limitations and future directions
	Broader implications

	CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


