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—— Abstract

A Markov decision process (MDP) is a state-based dynamical system capable of describing probabil-
istic behaviour with rewards. In this paper, we view MDPs as coalgebras living in the category of
analytic spaces, a very general class of measurable spaces. Note that analytic spaces were already
studied in the literature on labelled Markov processes and bisimulation relations. Our results are
twofold. First, we define bisimulation pseudometrics over such coalgebras using the framework of
fibrations. Second, we develop a quantitative modal logic for such coalgebras and prove a quantitative
form of Hennessy-Milner theorem in this new setting stating that the bisimulation pseudometric
corresponds to the logical distance induced by modal formulae.
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1 Introduction

Markov decision processes (MDPs) are a well known mathematical model for decision-
theoretic planning [5] and reinforcement learning [37]. Informally, an MDP can be seen
as a generalisation of an automaton, where the transition function (for each action in the
alphabet) gives a probability distribution over the state space together with a reward function
that for each state and action gives a real-valued number.

Inspired from the previous work on bisimulation pseudometrics on labelled Markov
processes [8, 10] and probabilistic transition systems [39, 38|, Ferns et al. [17, 18] defined
(among other results) a notion of bisimulation pseudometric on the states of an MDP.
Unlike [17] and the previous work on bisimulation equivalence for MDPs [23], the systems
considered in [18] were MDPs with continuous state spaces. Conformances over continuous
state MDPs have found applications in representation learning [21, 43] (a topic studied within
the field of reinforcement learning).

In this paper, we propose a modal logic £ (cf. Section 5) with quantitative semantics, i.e.
the semantics of each formula is given by a real-valued function for MDPs with continuous
state space. We then prove a quantitative version of the Hennessy-Milner theorem (a well
known result [25] from concurrency theory), i.e. we show that the bisimulation pseudometrics
on continuous state MDPs coincide with the logical distance in our logic. A major obstacle
to overcome in the continuous setting is the definition of bisimulation pseudometrics itself.
Moreover, the fundamental question “what is a distance on a measurable space” (besides the
usual equations of a pseudometric, i.e. d is reflexive, symmetric, and satisfies the triangle
inequality) needs addressing. In [18] the authors had to invoke an additional Polish structure
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inducing the o-algebra as their methods forced them to work with lower semi-continuous
distance functions d. In this sequel, we work in a purely measure theoretic set-up with a far
more general class of distances, universally measurable distance functions, cf. Subsection 3.1
for details.

Although our approach is rooted in the theory of fibrations [26], the recent approaches
[1, 29, 30] to obtain expressive modal logic for coalgebras do not apply. For instance, our
fibration Pred of predicates' over a state space has only countable many meets; thus, it is
not a complete lattice fibration as required in [1, 29, 30]. As a result, the codensity lifting
used in [1, 29] to derive the Kantorovich lifting for the distribution endofunctor, cannot be
used to derive the Kantorovich lifting for the Giry endofunctor over measurable spaces.

In the sequel, we recalibrate the fibration infrastructure in Subsection 2.1. Our inspiration
is [4] which presented a coupling-based lifting for an endofunctor that — when instantiated
to distribution endofunctor — gives rise to the well-known Wasserstein lifting on probability
distributions. Analogously, we will show in Subsection 4.1 how to capture the Wasserstein
lifting on probability measures. For our definition to work, we will restrict to a full subcategory
of the category (X, A) of measurable spaces — the category Ana of analytic spaces. Note that
analytic spaces already appeared in the literature on labelled Markov processes (for instance,
see [9]) to show that logical equivalence induced by a modal logic given in [9] coincide with
probabilistic bisimilarity.

After having clarified our measure theoretic assumptions, we will define bisimulation
metrics for MDPs as the least fixpoint of the following functional:

Pred((X, A) x (X, A)) 255 Pred(Bypp (X, A) x Bupp (X, A)) 225 Pred((X, A) x (X, A)),

where Bypp is the endofunctor modelling MDPs as given in Section 3 and ¢ is a lifting of
distance functions (or put simply, a distance lifting) for Bypp as given in Section 4. The
definition of our distance lifting o is parameterised by a discount factor ¢ € [0, 1]. Furthermore,
thanks to the Kantorovich-Rubinstein duality for measurable spaces [33, Theorem 5], the
above functional corresponds to the functional given in [18, Theorem 3.12] whose least
fixpoint is the bisimulation pseudometric on the state space of an MDP.

Moving on to our modal logic and comparing with the expressive modal logic for probabil-
istic systems studied in [7, 10, 39], the key distinguishing feature of our work is the semantics
of our diamond modality ¢,p. Intuitively, the [o,p](z) (for a state z) gives the expected
value of landing in an a-successor from x with some fixed probability ¢ € [0, 1] combined
with the reward for a when staying in the state x with probability 1 — ¢. In other words, the
semantics of o4 is a convex combination of expected value of moving to an a-successor and
the reward for a at a state. Unlike the above references, we were unable (without breaking
the proof of the adequacy result) to further decompose this modality into the traditional
diamond modality and 0-ary reward modality as defined in [7, 10, 39].

This paper is organised as follows. In Section 2, we recall the preliminaries from measure
theory and calibrate our fibration setup for measurable spaces. In Section 3, we give the
concrete definition of behaviour endofunctors that model Markov reward processes (MRPs)
and MDPs and establish a bifibration of predicates. The former can be seen as unlabelled
version of an MDP. In Section 4, we capture the bisimulation pseudometrics for both MRPs
and MDPs as least fixpoint of a functional as explained above. In Section 5, we define our
modal logic and establish the adequacy and expressivity results. In Section 6, we end this
paper by a discussion on related work and potential topics for future work. The proofs of all
lemmas and theorems can be found in the clearly marked appendix.

I Note that a fibration of predicates is more fundamental than a fibration of conformances like pseudo-
metrics and equivalence relations, since the latter can be derived from the former.
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2 Preliminaries

2.1 Capturing behavioural conformances categorically

In this subsection, we refine the construction [4] of coupling-based lifting for an endofunctor
on Set by working with two different fibrations of predicates (cf. Assumptions A1 and A2).
Moreover, our presentation works in a category C having products; unlike, in [4], where
the coalgebras were living in Set. This will provide us a blueprint to define a bisimulation
distance for both MRPs and MDPs when viewed as coalgebras in Section 3.

Throughout this section, let Pos be the category of posets and order preserving maps;
and, let B: C — C be the functor modelling the branching type of systems of interest.

Al. There is an indexed category Pred: C°” — Pos such that Pred(X) (for X € C) is
a poset and Pred(f): Pred(Y) — Pred(X) (for f: X — Y € C) is order preserving.

Henceforth we write the reindexing f* (instead of Pred(f)) which is customary in the
literature on fibrations [26]. In the sequel, we will view an element p € Pred(X) intuitively
as a predicate over an object X € C. The idea is to view Pred as a semantic universe in
which we interpret the formulae of a modal logic. Thus, the operators of a modal logic (like
negation, conjunction etcetera) must be operators definable over the fibre Pred(X).

Furthermore, the authors in [4] required that Pred is rather a bifibration, which is difficult
to obtain in general for arbitrary measurable spaces (cf. Subsection 3.1). Our observation,
which leads to A2, is that we can arrange both universally measurable predicates and lower
semi-measurable predicates in such a way that the latter results in a bifibration structure
and the former acts as a semantic universe to interpret our modal formulae.

A2. there is an indexed category IsPred such that IsPred is a subfunctor of Pred. Moreover,
the indexed category IsPred has a bifibration structure, i.e. for every f: X - Y € C
the reindexing functor f* has a left adjoint 3;: IsPred(X) — IsPred(Y").

Now, following [4], one needs a predicate lifting to define a coupling-based lifting, which
in our setting due to the presence of two fibrations of predicates takes the following shape.

A3. there is an indexed morphism o: Pred = IsPred o B°P i.e. ¢ is a natural transform-
ation of type Pred = IsPred o B°P.

Thanks to the above three assumptions, every predicate lifting ¢ induces a lifting &, which
simplifies to the composition given in [4, Eq. 5] when IsPred = Pred).

Pred(X x X) 225, IsPred(B(X x X)) Zrx, IsPred(BX x BX) «— Pred(BX x BX), (1)

where mx: B(X x X) — BX x BX is the unique map such that pr?X oryx = B(pr{¥) and
pr;: X x X — X are the obvious projection maps (for ¢« € {1,2}). It is this lifting which will
give us the usual Wasserstein lifting for a Giry functor B defined in Section 3. Now, for a
given coalgebra v: X — BX € C, simply take the greatest fixpoint of the functional given
below to define a coupling-based lifting for the endofunctor B.

(yxy)*

Pred(X x X) ox, Pred(BX x BX) —— Pred(X x X). (2)
To ensure this fixpoint exists, we require the following assumption

A4. the indexed category Pred has countable fibred limits, i.e. each fibre of Pred has
countable meets and these countable meets are preserved by the reindexing operation.
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» Proposition 1. If the induced lifting 6 defined in (1) is (Scott) cocontiuous, then the
greatest fixpoint of the functional given in (2) exists.

» Remark 2. It should be noted that, in the above proposition, we use the dual version to
apply Kleene’s fixpoint theorem on the lattice Pred. However, our concrete predicates in
Section 3 will be ordered by pointwise lifting of the dual order (i.e. >) on the unit interval
[0, 1], which then leads to the application of the usual Kleene’s fixpoint theorem.

2.2 Measurable spaces

A measurable space is a pair (X,.A) consisting of a set X thought of as a space, e.g. state
space of an MDP, and a o-algebra A C P(X) (whose elements are called measurable sets) of
subsets of X stable under the complement operation (7)8 and countable union (including
empty union). In applications the o-algebra often contains a given topology, i.e. the collection
of open sets T, on the state space. Often one considers the minimal such o-algebra, the
Borel-o-algebra, denoted By. In this context, we use the notation o (P) to denote the minimal
o-algebra containing a given P C P(X). The elements of By = o(T) are called Borel sets
and (T, By) is called a Borel space. If a given measurable space (X, .4) stems from a Polish
space, a completely metrisable separable topological space, then (X, .A) is called standard.
The collection of all measurable spaces form a category Meas when endowed with maps that
inversely preserve measurable sets, so-called measurable maps. The term A-B-measurable for
a measurable morphism (X, A) — (Y, B) is also used to be specific about o-algebras. The
category Meas has arbitrary products; in particular, (X, A) x (Y, B) = (X x Y, A® B) where
A ® B is the o-algebra generated by the set {U xV |U € ANV € B}.

A probability measure m on a measurable space (X,.A) is a function of type A — [0, 1]
such that m(X) = 1 and m({J;cy Ai) = D,y Mm(A;) for any sequence of pairwise disjoint
sets (A; € A);en. We denote by G(X, . A) the collection of all probability measures on (X, .A)
endowed — going back to [22] — with the o-algebra generated by all the evaluation maps
eva: G(X,A) — [0,1] (one for each A € A) given by the mapping m — m(A), i.e. the
minimal o-algebra making all maps eva: G(X,A) — ([0, 1], Bjg 1)) measurable.

We restrict the exposition of this theory to it bare minimum with some additional
background given in Section A. We call a subset of a measurable space (X,.A) Suslin, if it
is the image of an element in Byr ® A along the projection N¥ x X — X. Let & A denote
the set of all Suslin subsets of (X,.4). A measurable space (X,.A) is called analytic if it
is homeomorphic to a Suslin set of a standard space (Y,B) endowed with the restricted
o-algebra, i.e. Blx = {BNX | B € B}. Such constructions are also a common subject in
descriptive set theory, cf. [27] and [20, Ch. 42]. By Ana we denote the full subcategory of
Meas of analytic spaces, which admits countable products. The endofunctor G restricts to
Ana. To provide full generality, cf. Remark 6, of our results, we also introduce the concept
of a smooth space [16]: (X, .A) is smooth, cf. Subsection A.2, if for any other measurable
space (Y, B) any projection to Y of a Borel (or equivalently Suslin) subset of (Y, B) x (X,.A)
is Suslin. Nevertheless, it is perfectly fine to assume analytic spaces throughout at least for
the first reading.

Given a measure space (i.e., a measurable space with a measure) (X,.A, m) one may wish
to extend .A. The m-completion of (X, .A), A" D A, is defined as the smallest o-algebra
containing AU{B C X | 3A € A. m(4) = 0and B C A}. A way to describe (X, A)m,
when m is a probability measure, is as the set of all A such that there are A_, A, with
m(A_) = m(A;) and A_ C A C A;. The measure m uniquely extends to a measure on

A"™. Given a measurable space (X, .A), the universal completion of A (denoted A) is the
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intersection of all completions of .4 with respect to any (probability) measure on (X,.4). The
universal completion is quite big; especially it contains & A (so every Suslin set is universally
measurable).

3 Markov decision processes

In this section we are going to instantiate our categorical parameters (cf. Assumptions A1 -
A4) in the setting of measurable spaces. We begin by recalling the definition of a Markov
decision processes from [18] and view them as coalgebras.

» Definition 3. A (continuous) Markov reward process (MRP) is a coalgebra v of type
(Xv A) — g(X7 A) X ([07 1]78[0,1]) € Meas.

In other words, «y is given by a pair (Y°,y) of maps satisfying the following properties:
7y2(z) (for each x € X ) is a probability measure;
Y )U): X — [0,1] (for each measurable set U € A) is a measurable function; and
~Y is a measurable function.

Moreover, given a countable set ¥ of actions, we define a Markov decision process (MDP) [18]

as a coalgebra v of type
(X, A) =[] (G(X,A) x ((0,1], Bjp,11)) € Meas.
b3l

In other words, the map v(x)(a) (for each state v € X and action a € ¥), is a Markov
process. Henceforth we write vq,5 to denote v(x)(a); so, 'yg’z corresponds to a probability
measure and 'yéyx corresponds to a “reward” at x for an action a.

Thus, the endofunctors of interest are the following:
Bumre = G %[0, 1] whose coalgebras correspond to Markov reward processes
Bwmpp = [ [, Bmrp whose coalgebras correspond to Markov decision processes.

3.1 Fibrations induced universally/l.s.m. predicates

Having fixed the type of systems, we now look into the issue of endowing a bifibration
structure on the space of all Boolean/quantitative predicates. Consider the indexed category
Pred(X, A) = Meas((X,.A), (2,82)) of Boolean predicates, i.e. a predicate p € Pred(X, .A)
is a measurable function of type X — 2. The reindexing functor f* (for a measurable
function f: (X, A) — (Y, B)) is given by the inverse image operation (since inverse image of
measurable sets is measurable). It is well known (originally due to Suslin [36]) that Borel
measurable sets even on standard spaces are not closed under direct images; thus as a result
the left adjoint to reindexing functor cannot exist in general. Nevertheless if we weaken
measurable sets to Suslin sets (which are equivalently analytic sets for analytic spaces, cf. [20,
421K] and [27, 13.3iii)]), then Suslin sets of analytic spaces are preserved by direct image
onto analytic spaces, cf. [6] for an in-depth discussion how to develop these concepts.

In lieu of the above discussion, we restrict our state spaces to be analytic, i.e. our
working category for the remainder is the category Ana of analytic spaces and measurable
functions as morphisms. This is, on the one hand, a bit more general than Polish spaces as
required in [18] and on the other hand conceptually more elegant, as we are only working
with measurable spaces and do not require an underlying topology. Moreover, we consider
quantitative predicates on an analytic space (X,.A) to be lower semimeasurable (1.s.m.)
functions (a real-valued generalisation of Suslin sets) of type X — [0, 1].

13:5
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» Definition 4. Let (X, A) be an analytic space. Then a function p: X — [0,1] is lower
semi-measurable, 1.s.m. for short, (resp. universally measurable) predicate iff the preimage
of the interval [0,7] (for every r € [0,1]) under p is a Suslin set (resp. universally measurable
set), i.e. for every r € [0,1], p~1([0,7]) € & A (resp. p~1([0,7]) € A).

The term “lower semi-measurable” is chosen in parallel to the term “lower semi-continuous”
in topology which refers to a real-valued function which is continuous with respect to the
upper-interval topology { (r,00) | r € R}.

We can arrange 1.s.m. predicates in an indexed category as follows. Consider the mapping
IsPred: Ana®® — Pos such that IsPred(X,.A) is the set of all 1.s.m. predicates where the
ordering relation is the pointwise lifting of the “greater-than-equality” relation on the unit
interval?. The reindexing f* (for an arrow f: (X,.A) — (Y,B) € Ana) is given by pre-
composition, i.e.

f (@ =qof (for every q € IsPred(Y, B)).

» Lemma 5. The indezed category IsPred has countable fibred (co)limits, i.e. each fibre has
countable meets and countable joins which are preserved by the reindexing functor. Moreover,
IsPred has a bifibration structure, i.e., for every f: (X, A) — (Y,B) € Ana, the reindexing
functor has a left adjoint 3¢ given by:

Jr(p)(y) = f(iggf:yp(x) (for every p € IsPred(X, A),y € Y).

» Remark 6. It should be noted that the existence of a left adjoint can be stated in more
general terms by requiring that (X, .A) is a smooth space, cf. Subsection A.2, and (Y, B)
is countably separated, i.e. there is a countable family of measurable sets distinguishing
every pair of distinct points. Moreover, Axiom 2 could be weakened to maps of type
fi:BX Y eC:

Al the reindexing functor f* has a left adjoint 3 : IsPred(BX) — IsPred(Y").

Any universally measurable subset of a standard space is countably separated as a measurable
space, but also an analytic space. So our construction generalises to the full subcategory of
Meas of measurable spaces expressible in this form.

To show that A2 is satisfied, it remains to define an indexed category Pred: Ana°® — Pos
such that each fibre IsPred(X,.A) is contained in Pred(X,.A4). We disregard the trivial
definition, i.e. Pred = IsPred, since Suslin sets are not closed under complementation. As a
result, we cannot give semantics to the negation operator in our logic. Nonetheless, it is also
known that Suslin sets are universally measurable sets [11], so we simply let Pred(X,.4) be
the set of universally measurable predicates on the analytic space (X,.A).

» Proposition 7. Assumptions A1 and A2 are satisfied by Pred and IsPred, respectively.

2 In other words, we are viewing the unit interval as the Lawvere quantale ([0, 1], >, +) where + is the
truncated addition. So, p < ¢ <= V. p(z) > q(z).
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4 Bisimulation distance

The objective of this section is to define bisimulation pseudometrics (cf. Subsection 4.2) for
Markov reward processes and MDPs as the least® fixpoint of a functional given in (2) on
page 3 where B = {Bmrp, Bupp}- In both cases, the definition of a pseudometric rests on a
coupling-based lifting (1) for the Giry endofunctor G which we will work out in the following
subsection.

4.1 Wasserstein lifting categorically

We begin by defining a predicate lifting for G (i.e. when B = G in Assumption A3). Consider
the mapping o(x, 4y: Pred(X, A) — IsPred(G(X,.A)) given by

o (p)(m) = / pdm  (for every p € Pred (X, A),m € G(X, A)). 3)

Henceforth, we drop the sigma-algebra notation from the subscript whenever it is clear from
the context. Thus, ox(p)(m) is the expectation of random variable p under the measure m.

» Theorem 8. The mapping o defined in (3) is a natural transformation valued in IsPred;
thus, an indexed category morphism. Moreover, o preserves directed suprema which is a
consequence of the monotone convergence theorem well known in measure theory.

Note that predicate lifting improves universally measurable predicates even to Borel
measurable predicates for analytic spaces; the proof of this fact can be found in [2].

Thus, A3 is satisfied and invoking the & given in (1) gives the usual Wasserstein lifting
for the Giry endofunctor G as expected.

» Definition 9. A predicate d € Pred((X,.A) x (X,.A)) is a pseudometric on (X,.A) € Ana
iff d is reflexive, symmetric, and satisfies the triangle inequality.

Moreover, a probability measure ¢ € G((X, A) x (X, .A)) is a coupling for two probability
measures m,n iff G(pry)(c) = m and G(pry)(c) = n. We write K(m,n) to denote the set of
all couplings for the probability measures m,n.

» Proposition 10. Let d be a pseudometric on a space (X, A) € Ana. Then, the lifting &
given in (1) evaluates to the following well known formula associated with Wasserstein lifting
of probability measures. Moreover, &(d) is a pseudometric on G(X, A).

5(d)(m,n) = inf / dde

ceK(m,n)
4.2 Distance lifting for B = { Bmrp, Bwvpp }
One way to define the distance lifting oMRP for Burp, i.e. a map of type
o¥RP: Pred((X, A) x (X,.A)) = Pred(Burp(X,.A) X Bure (X, A)),

is to first define a predicate lifting for Bmgp and then use the equation in (1) where B = Byrp.
To this end one may follow [28, Subsection 5.6.2] in deriving a predicate lifting for Bugrp
in a compositional manner. These results (though stated for the category of sets) can

3 Recall the predicates are ordered by >, so the greatest fixpoint is actually least fixpoint under the usual
order <.
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be generalised to measurable spaces, but they are only applicable when the underlying
endofunctor preserves weak pullbacks. In particular, it is known that the Giry functor (a
composite functor in the case of Byrp) does not preserve weak pullbacks in Meas [41].

So instead of compositionally deriving predicate liftings for Bygrp and then invoking (1),
we derive the coupling based lifting for Byrp in three stages:

first, we view Bygrp as the composition of functors By o G where B;: Ana — Ana maps

every space to its product with the unit interval, i.e.

By =1d x ([07 1]78[071])'
second, for a fixed ¢ € [0, 1], we define
0% Pred((X, A) x (X, A)) = Pred(B;(X,A) x B;(X,.A))

as 0% (d)((z,r), (y,s)) = cd(z,y) + (L —¢)|r — s|, for z,y € X and r, s € [0, 1].
third, recall & from Proposition 10 and let ¢MRP be the composition:

Pred((X,.A) x (X, A)) 2% Pred(G(X, A)xG(X, A)) 2 Pred(Bure (X, A) x Buge (X, A)).

Note that ¢ may take the extremal values 0 and 1. This is possible — in contrast to [18] —
as the bisimulation distance is not obtained using a contraction-based fixpoint argument.
However, in the extreme cases the bisimulation distance would not take into account either
the transition or the reward part.

» Lemma 11. The above mapping ¢ is well defined. Moreover, for any pseudometric
d € Pred((X, A) x (X, A)), the lift oNRP(d) is given by

oWMRP(d)((m,7), (n,s)) = ¢ < inf /ddc> + (1 —0o)|r— s

ceK(m,n)
formmne G(X,A), and r,s € [0,1] and is a pseudometric.

In a similar vein, we can now define a distance lifting PP for Bypp (whose coalgebras
model MDPs) by letting Bupp = Bx, o Burp, where By, = [[;Id. Now consider the distance
lifting 0'(27) for By, as follows:

o (d)(7,9) = sup d(Z(a), §(a)), (for 7€ ] X).
ac )

» Lemma 12. The above mapping o> is well defined. Moreover, the mapping oMPP =

O.EMRP(_) o oMRP for a distance d € Pred((X, A) x (X, .A)) evaluates to

oMPP(d)((ni,7), (7, 5)) = sup [c ( inf /ddc> + (1 = ¢o)|7(a) — s(a)|
acy ceK (mi(a),i(a))
Now composing the two distance liftings o (for B € {Bwrp, Bupp}) with a B-coalgebra
is the desired functional as given in (2). Clearly, A4 is satisfied since Pred has countable
suprema and they are preserved by reindexing functors. We end this subsection by showing
that the least fixpoint exists for both of these functionals; thus, also paving a way to
compute bisimulation pseudometrics for these systems. To this end we need a general
result, whose proof is based on some classical results comprising a non-topological version of
Riesz—Markov—Kakutani representation theorem [13, IV.5.1], Banach-Alaoglu theorem [13,
V.4.2] and Sion’s minimax theorem [35, Thm. 3].
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» Theorem 13. Let v: (X, A) — G(X,A) € Ana. Then the functional vy o & is w-cpo
continuous w.r.t. <, i.e. for any <-increasing sequence d; € Pred((X, A) x (X,.A)) of
pseudometrics with i € N, we have (for each x,y € X ):

inf /sup d;dc=sup inf /di de.

€K (v2,vy) J ieN i€EN €K (Y2,7y)

» Remark 14. The above theorem can be stated for general measurable spaces as well, but
by restricting the coalgebra map so that v(z) (for each x € X) is a perfect measure (see
Subsection A.1). Perfect measures were introduced by Kolmogorov [24, 22-23] and have
many different equivalent definitions. For us a measure space (X,.4, m) is called perfect, if
for any separable metrisable space (Y, 7T) and every measurable map f: X — Y we have the
following property: For every A € A and r < m(A) there is a compact set K C im f with
m(AN f71K) > r, cf. [20, 4510(a)]. In this case, the measure m is called perfect.

» Remark 15. Let p € [1,00) and recall the p-Wasserstein distance between probability
measures m,n € G(X, A). Below we argue how to capture this lifting in our setup.

Wy (d)(m,n) = p1 ,celi(r(lti n)/cﬁ" de, for a pseudometric d € Pred((X,.A) x (X, A)).

Note that any monotonously increasing lower semicontinuous function f: [0,1] — [0,1]
induces a w-cpo-continuous map f o _ : Pred(X,A) — Pred(X,.A). It is monotone by
monotonicity of f and for any increasing sequence (p; € Pred(X, A));en we have

sup f(pi(z)) = f <s_upp,-(;z:)> (for each z € X).
€N €N

Note that both (__)? and v/ __ are monotonously increasing lower-semicontinuous functions.
So W, = v/ _ob6o (__)P is w-cpo-continuous as a composition of w-cpo-continuous functions.

» Corollary 16. Let vp: (X, A) — B(X,.A) € Ana be a coalgebra where B € { Burp, Bmpp }-

Then the least fizpoint for the functionals yg o 0P exists.

Using the fact that any w-cpo-continuous endofunction has a least fixpoint by Kleene’s
fixpoint theorem, we write bd? (or simply bd whenever the coalgebra structure is clear from
the context) to denote the least fixpoint of the functionals in the above corollary.

Note that by using Kleene fixed point theorem we require weaker assumptions than [17,
3.12], who use the Banach fixed point theorem to define their bisimulation pseudometric
restrict themselves to a set-up with contractions.

5 A quantitative modal logic and its expressivity

The signatures of the (logical) languages considered in this paper are parametrised by a set
{fiy | y € Y;} of w-indexed families of ¥;-indexed function symbols of arity n, as follows:

Tl=_ | _AN_ |0 _,a€Al|fiy,yeYicw (4)

In other words, the signature we are using extends the semi-lattice signature (T, A) with
negation (—), modalities ¢, (one for each action a) and additional function symbols f;,, (each
fiy could be viewed as n;-ary predicate on the unit interval). We simply write £ to denote the
set of formulae generated by the above signature. The restriction to countably many families
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of function symbols will become important when we construct a second-countable topology
on L. Note that we can also view the logical symbols, T,—~_, A _, as (singleton index
families of) function symbols. This will be very handy for proofs by structural induction
over L. Throughout this section, we let 2 = [0,1] and consider only MDPs (the modal logic
for MRPs can be derive by letting the set 3 of actions to be a singleton set).

The reason to choose this general formulation with index sets Y; are twofold. First, to
endow a topology on £ which is needed to prove both adequacy (i.e. the distance induced by
formulae in £ is below than the bisimulation distance bd for MDPs) and expressivity (which
is the converse of adequacy). Second, it allows greater flexibility in applications, cf. (6), by
accommodating additional operators for which adequacy and expressivity still hold.

5.1 Interpretation of modal formulae in £

We give semantics to each formulae ¢ € £ by defining an interpretation [¢] as a predicate
in Pred(X,.A). This is done by structural induction over ¢ in the following way. The
logical symbols, i.e. T (truth), = (negation), and _ A _ (conjunction), respectively, are
interpreted as the functions

1, Azl—=z, Azy. min{z,y} respectively. (5)

Next we consider function symbols f;, of arity n; > 0 (for some y € Y;) and a sequence
(pj)1<j<n,- Its interpretation is given as

[[fiy]](@la o 730%:) = fiy([[cplﬂv o 7[[@m]]) for some fixed fly : [Ov 1]’”1 - [07 1]

whilst, [fiy] = fiy € [0,1] when n; =0 (i.e. fiy is a constant). Besides the logical symbols
we introduce the following basic families of function symbols indexed by r, ¢ € [0,1] and
a € (0,00): Scalar addition (__ + r), scalar subtraction (_ —r), scalar multiplication (r _),
and convexr combination (_ +. _ ) are interpreted as the function assigning to x (and y)

min{l,z +r}, max{0,z—r}, rz, z+.vy, (6)

respectively, throughout this paper. Note that only the first two basic operations are required
for our main results.

Finally, for the modal operators we fix a parameter ¢ € Q (which was also used to
define bisimulation pseudometrics bd in the previous section) and a coalgebra v: (X, A) —
Bumpp (X, A) € Ana to define the interpretation of [og¢] as:

[oulh(z) = / [0 +e s (7)

where r 4+, s := ¢r 4+ (1 — ¢)s denotes convex combination of r, s € €. Intuitively, this means
that the value of ¢, is determined by a convex combination of the expected value of ¢ and
the utility after performing a.

The defined interpretation function [__ ] gives rise a (quantitative) theory map qTh: X —
QF defined by

qTh(z)(¢) = [¢](x) (for every ¢ € L). (®)

The question whether the theory map lives in our working category Ana is an important
step for expressivity (cf. Theorem 28). However, for adequacy (cf. Theorem 22), we only
require that the function symbols f;; in £ are nonexpansive w.r.t. the suprema distance
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doo (%, Y) = maxi<;<n,|Z(j), ¥(j)|. Nonetheless, before attempting these results we need the
definition of a logical distance, which at this stage is purely a set-theoretic assignment. Later,
in next subsection, we will show that the logical distance defined below is indeed a predicate
over the product of a state space with itself (cf. Lemma 21).

» Definition 17 (Logical distance). Given an interpretation [__]: L — Set(X,[0,1]), we
define the logical distance as follows (for every xz,y € X ):

de(z,y) = sup [[](z) — [¢](y)| = sup [¢](x) - [](y) - 9)
peLl peLl
Note that the absolute value is redundant since the negation operator = is in our logic L.

5.2 Endowing a topology on L through its shapes

As we are dealing with more than countably many function symbols, we will have to impose
some structure on the set of function symbols in order to prove our expressivity theorem
(cf. Theorem 28). Technically, we need a topology 7. on L so that the theory map qTh (8)
becomes topologisable in the following sense.

» Definition 18. Let (X, A) € Ana. Then the theory map qTh: X — QF is topologisable iff
there is a topology Tz on L such that the preimage of every open set U C QF (in the compact
open topology on the function space Q) is a universal measurable set, i.e. th_l(U) €A

To be able to do this, we switch our focus from the uncountable language £ to the countable
language Sh(L) of shapes induced by the language £. This language Sh(L) of shapes is
constructed by collapsing all function symbols indexed by the same index set, i.e.

Tl-_ | _AN_|o_,a€A|fi,icw. (10)

To each formula ¢ on £ one can assign a formula in Sh(L) by replacing each f;, by f;.
This defines an equivalence relation on £. For each ¢ € Sh(L) denote by {b\ C L the
corresponding equivalence class. For instance, for an n;-ary function symbol f; the set 12 for
¥ = fi(T,...,T) is in canonical bijection to Y;, and the shape r—T ArT (when £ allows
for scalar multiplication) corresponds to Q X ), as each r ranges over Q) = [0, 1]. Through
this equivalence relation we can subdivide £ into countably many chunks, each of which
associated to a finite product of Y;’s. If for a family { f, },cy of n-ary function symbols the set
Y is endowed with a o-algebra (resp. topology), we call [__] jointly measurable (resp. jointly
continuous), if the function [0,1]™ x Y — [0, 1] is measurable (resp. continuous) with respect
to the respective product o-algebra (resp. product topology).

For the remainder of this subsection Q(X:7) will denote the set of continuous functions
from (X,7T) to Q, which will be endowed with the compact-open topology [14, 3.4] if not
explicitly stated otherwise. Recall that a Hausdorff topological space (X, T) is called locally
compact, if each point admits a compact neighbourhood.

» Lemma 19 ([14], 3.4.16). Let (X, T) be a locally compact second countable space. Moreover
if Q is second countable, then QX5T) is second countable w.r.t. the compact-open topology.

» Remark 20. Lemma 19 will be used only once but at a crucial point in Theorem 28, which
is our main result. One could ask if one can extend the classes of spaces for which Lemma 19
holds. For instance, does it hold for arbitrary second countable Hausdorff spaces? An ansatz
would be to weaken the notion of compactness further. The promising notion is a k-space, the
quotient space of some locally compact space, i.e. there is a quotient map ¢: (Y, 7y ) = (X, T)
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for some locally compact space (X, 7T) [14, p. 152]. The reason is that in this case there
is a decomposition QY-7¥) = 1lim ;Q% for any directed system of of compact sets K; C X
—

with |J; K; = X [14, 3.4.11]. Second countability follows as soon as i can be chosen to range
over a countable set. Unfortunately, this already implies hemicompactness of (Y, 7y ) in case
of regular spaces, cf. [40, 8.1(d)] and [14, 3.4.E(c)]. [40] also discusses other weakenings of
compactness, but the mentioned Fact 8.1 therein do not provide a remedy.

We end this subsection by the main results of this section; namely that the logical distance
d. is a predicate on (X, A) x (X,.A) and the logic L is adequate w.r.t. bd..

» Lemma 21. If qTh on (X, A) is topologisable, then d. is measurable.

» Theorem 22. If the function symbols f;, are interpreted by [__] as nonezpansive functions
w.r.t. doo, then the logic L is adequate, i.e. bd > d..

Moreover, the language consisting of logical symbols, modalities, scalar addition, subtrac-
tion, multiplication, and convexr combination is always adequate.

» Remark 23. With the aim to develop continuous version of first order logic, Yaacov and
Berenstein studied metric structures and their model theory in [42]. Simply put, a metric
structure consists of a complete bounded metric space (M, d) with a set of R-valued predicates,
a set of operators on the metric space (which are uniformly continuous of type M™ — M
for some n > 0), and a set of distinguished elements of M. It is worthwhile to note that
the operators defined by our signature (4) is a special case of a metric structure on the unit
interval with an empty set of predicates.

5.3 A general expressivity theorem for £

Our main expressivity result (cf. Theorem 28) is based on the well known Stone-Weierstrafl
theorem and Kantorovich-Rubinstein duality. This follows the tradition of expressivity
results from recent papers [29, 1, 19] on coalgebraic modal logic; however, the proof of
Theorem 28 does not follow from the abstract results established in the aforementioned
articles. In contrast, we need an extra condition that the theory map qTh is topologisable
(cf. Lemma 21).

» Definition 24. A set L of functions X — [0, 1] approximates a function f: X — R at a
pair z,y € X up to & (for some e > 0) if there is a g € L with |g(z) — f(z)|, |9(y) — f(y)| < e.
We further say that L approximates f at x,y if L approzimates f at x,y for each € > 0.

Henceforth we write [£] = {[¢] | ¢ € £}. It turns out that the operators (truth,
conjunction, positive, and negative scaling) in our logic £ approximate any predicate over a
state space. The following lemma is taken from [7, Lemma 10].

The following lemma is a continuous (and thus simpler) version of [7, Lem. 10].

» Lemma 25. Assume T, _A_, 47, —reL forallr € Qand[_]: L — Pred(X, A)
an interpretation on predicates on some measurable space (X, A). Let p € Pred(X,A),
z,y € X and e > 0. Then

Jp € L:0<p(x)—p(y) < [l(z) - [£l(y) +¢ (11a)
= (v € L:p(2) — [¥](x) € 0,¢) and p(y) — [¥](y) = 0) (11b)
= [L] approximates p at x,y up to €. (11c)
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With the help of this lemma, we can approximate any short (aka nonexpansive) predicates
w.r.t. logical distance dz by formulae in our logic £. Given a measurable space (X, .A), we
define the set of short predicates with respect to logical distance dy be

Pred(X, A,dz) == {h € Pred(X, A) | Vz,y € X: dg(z,y) > h(z) — h(y) }. (12)

» Corollary 26. As long as the scalar addition is allowed in the signature of L in (4), every
short predicate can be approximated by the interpretation of modal formulae in [L].

Proof. Take h € Pred(X,A,dj ). As - € L we have for each z,y € X by (9) that
h(x) —h(y) < supsepeg f(2) — f(y). This implies (11a) for any € > 0. Thus [£] approximates
h at x,y for any € > 0 by Lemma 25. Hence the claim follows. <

The next lemma is the well-known Kantorovich-Rubinstein duality extended to perfect
measures. We provide a proof in the appendix, since the rather sketchy proof in [33, Thm. 5]
considers only distances on their induced Borel-o-algebra, while other known proofs, especially
[12, 11.8.2&6], chose a topological instead of a purely measure theoretic set-up.

» Lemma 27 (Kantorovich-Rubinstein theorem). Let m,n € G(X,.A) be perfect measures and
d: (X, A) x (X, A) = ([0,1], Bo,11) a l.s.m. pseudo-metric such that (X, A) is analytic (or
smooth, or Ty, the topology induced by d, is contained in A) and d(__,xq) is integrable for
every xg € X . Then

inf /ddc: sup /hd(m—n).
c€K (m,n) hePred(X,A,d)

» Theorem 28. Let L be a language with a coalgebra v: (X, A) = Bupp(X,.A) so that [__]

1s well defined. Assume the following restrictions:

1. every measure 'ygya (for every x € X, a € X)) is perfect,

2. the theory map qTh is topologisable by a locally compact and second countable topology,
and

3. the scalar addition is in the signature of our language L,

then dg is a fizpoint of the functional oP¥P o~. As a consequence, we have that the language

d. is expressive w.r.t. bd (i.e., bd <d.).

Proof. Let m, , =79 , (for each z € X,a € ¥), let r¢ =~} , and 1% = |rs — r|. Recall
the distance liftings & and ¢MRP from Proposition 10 and Lemma 11, respectively. The
claim bd < d/ is — using order preservation of P o 4, Theorem 13 — equivalent to
Ve > 0: oBwor o y(z,y) < dg(z,y) + ¢ for all z,y € X. From the definition of oBvP this
translates to the condition

Ve >0:VaeX: U%Rp(dg) o y(m,y)(Ma,a,75)s (My a,7y)) < dg +e. (13)

To this end, we begin by expanding the left hand side of the above inequality:

oXR(de) o v(,y)(Mya, 75), (My,a, 7))

= inf / dede 4,78, (14)

cEK(mg,q,my,q)

we push this expression to [0,1]¢ by letting d; = SUPycim(qTh) Pe a distance on [0, 1]¢

inf dde+. 7 s
ceK(th*(mlgf,la),th(my,a))/ £dete Ty (15)
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As [0, 1] is second countable, cf. Lemma 19, we can (depending on qTh, (m, ,) and qTh(m,_,))
restrict the integral to A x A for some standard (and thus analytic) subspace A € By q)z [15,
Thm. 6] (using that qTh,(m; ) and qTh(m, ,) again are perfect). (Note that this argument
actually requires only second countability of £ as it can be refined using [14, 3.8.D], [3, 2.1.15]
and [15, § 8 Remark].) As d. is bounded, so dz(__, ) is certainly integrable for any = € X.
Thus we can finally apply Kantorovic-Rubinstein duality Lemma 27, using Lemma 21 and
Item 1

— sup . hd(mLa - my,a) +c r;y (16)
hePred([0,1]%,8;, ;2,dz)

< swp [ hd(QTh(me) - aTh(my.0) o, (1)
hePred(X,A,d)

By applying Corollary 26 we can approximate any short predicate h by the interpretation of

formulae in our logic [£].

Define S C A to be § = {U, Ut ’ U eqTh 'S ] Uh™[Sq] } Let 7 denote the
topology generated by S and (X', T’) the Kolmogorov quotient, cf. Section C, of (X,T)
with unit map n: (X,7) — (X, T'). Both m’ , == G(n)(m.,) (for z € {x,y}) are perfect
since the push-forward measures of perfect measures [20, 451Ea| is perfect and using 1
we know m, , is perfect. By [20, 451M] both measures are inner regular with respect to
compact sets; thus we find compact sets K., K, C X' with mi’a((Kw)C),mby’a((Ky)c) < 4.
Thus K, U K, is compact and so is K :=n~'(K, U K,) by Lemma 38. Moreover we have
m, o (K)8), m, . ((K,)) < 8. As S is closed under complement, (X’,7") is Ry.

So finally, the Stone-Weierstrafi Theorem, Lemma 37, is applicable to (K, T|k); thus,
every nonexpansive predicate h can be approximated on K by a function from the family
{lellx | ¢ € L}. Let 55 € L denote a witness of a d-approximation from [L]|x of h|k.

Continuing at (17) we obtain (for all 6 > 0):

U(dﬁ)(mx,aa my,a) +c Tg,y

< ( sup / hd(mgq, —myq) +/ hd(mg . — myya)> +e Ty
h€Pred(X,A,ds) J K K¢C

< ( sup / [ensl d(me,a —mya) +5+5~1> T Tay
h€Pred(X,A,ds) J K

< ( sup /[[@h,5ﬂ d(mg,q —myq) + 36> +e Ty
h€Pred(X,A,d)

< (sup [1eatmea —mya) + 36) s,

peLl

- (;gg ([itamenort) = ( [Tebamaorg) ) 30 )

= sup [ea](x) = [oat](y) + 3co

9)
<dg(z,y) + 3co.

Choosing 3¢d < €, (13) follows — finishing the proof. <

It should be noted that the restrictions on perfect measures in the above theorem is
redundant when the coalgebra map v € Ana. Moreover, the second restriction from the
previous theorem can also be discarded by imposing the following restrictions on the function
symbols (fiy)icw yey;, which belong to the signature of our language L.
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» Theorem 29. Assume that L given in (4) is such that each family Y; is endowed with
a second countable Hausdorff topology T; and the interpretation of function symbols f;,
are jointly continuous with respect to T;, then qTh is topologisable by a second countable
Hausdorff topology. This topology can be chosen to be locally compact, if each T; has this
property.

Recalling that [0,1] is compact, thus the assumptions of Theorem 29 are fulfilled.

» Lemma 30. For a language L with the following signature in which the set ¥ of actions is
countable, the theory map qTh is topologisable.

Li=A[=|T| _+rrel01]] _—rref01]]o,acs.

Now combining Lemma 30 and Theorems 22 and 28 we get that the modal language £
defined in Lemma 30 is both adequate and expressive for bisimulation pseudo-metrics bd
defined in Corollary 16 for MDPs.

» Corollary 31. Let L be the language as given in Lemma 30 and let v: (X, A) —
Bmpp(X, A) € Ana be an MDP. Then the bisimulation pseudometric (defined in Corol-
lary 16) coincides with the logical distance d.

One may anticipate, following [7], to decompose the semantics of our diamond modality
into two modalities: one modelling the expectation modality ¢/, and the O-ary reward
modality rew,. The semantics of these two modalities given below in £’ is taken from [7].
We argue next that this is unfortunately not possible without jeopardizing the adequacy
result.

» Remark 32. Assume c € [0, 1] and a language £’ with signature
Tl=_ | _A_|rewg,a€X |0, aeX|r_,rel0,1]] _+ _ (19)

and an interpretation depending on v: (X, A) — Bupp(X,.A) € Ana defined by:

fourl(e) =c [Tl il and  rewal() =,

Then the language £’ is expressive w.r.t. bd (i.e., bd < d,/). However, £ is not adequate
since the binary (truncated) addition is not nonexpansive w.r.t. suprema distance.

6 Related work and concluding remarks

6.1 Related work

Our work is inspired by [18] and establishes a quantitative version of Hennessy-Milner
theorem for the therein defined bisimulation pseudometric. To the best of our knowledge,
such a generalisation is novel and has not been studied elsewhere in the literature. The key
technical differences between the two works are as follows. First, our notion of conformance on
continuous state MDPs is based on universal measurability; whilst, it is based on lower semi-
continuity in [18]. Note that every lower semi-continuous function is universally measurable.
Second, our MDPs are coalgebras living in Ana and the state space of an MDP is thus
an analytic space in our paper; whilst, it is a Polish space in [18]. Third, the bisimulation
pseudometric bd defined in this paper is based on Wasserstein lifting; whilst, the bisimulation
pseudometric (denoted bdrpp) of Ferns et al. is based on Kantorovich lifting. Note that
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the pseudometrics bd and bdrpp are equivalent due to the Kantorovich-Rubinstein duality
(Lemma 27). Finally, we employ the Kleene’s fixpoint theorem to define bd, whilst, Ferns et
al. employed Banach fixed point theorem to define their bisimulation pseudometric bdgpp.

The recent work of Chen et al. [7] on continuous time Markov processes (i.e. a family of
Bnirp-coalgebras indexed by non-negative real numbers) is also insightful, where a quantitative
version of Hennessy-Milner theorem is also proven. The mathematical development followed
in [7] is worth comparing, especially when this family is restricted to a singleton coalgebra
(say, for instance, v: (X, A) = Burp(X,.A)) and the o-algebra A is generated by a Polish
topology on X. The functional F. (for some 0 < ¢ < 1) defined in [7] is not an endofunction
in general on the lattice of lower semi-continuous functions on (X,.4). Using the notations
of this paper, F, can be rewritten as: F.(d)(z,y) = ¢ 6(d)(7°(z),7°(y)) for every x,y € X.

Nevertheless, to capture their bisimulation pseudometric (denoted bdcep) by a fixpoint
argument, the authors had to work with continuous distance functions on X. The usual
Knaster-Tarski fixpoint theorem is inapplicable and the authors constructed bdgccp as the
limit of following pseudometrics d;: 6o = (v* x ¥1)*(dg); 6ix1 = F.(5;). As a result, the two
bisimulation pseudometrics bdeep and bd (Lemma 11) are different.

The recent works [1, 30, 29, 19] on developing expressive modal logic for a behavioural
conformance that are defined by codensity lifting (called Kantorovich lifting in [19]) can,
unfortunately, not be directly applied to the current setting. This is due to the underlying
assumption of behavioural conformances defined internally in a complete lattice fibration
(or equivalently using the language of topological functors [19]). To this end, we adopted a
coupling-based lifting approach (inspired from [4]) to define our bisimulation pseudometric.
This adoption required significant effort in recasting old results from measure theory in our
framework as outlined in Assumptions A1-A4.

6.2 Concluding remarks

To summarise, we model both MRPs and MDPs with continuous state spaces as coalgebras
in Ana and define the notion of bisimulation pseudometric using the well known Kleene’s
fixpoint theorem. The latter was based on a given coalgebra v: (X, 4) — G(X,.A) € Ana and
the fact that a functional yoé: Pred(X,.A) — Pred(X,.A) is w-cpo-continuous (Theorem 13),
whose proof was in turn based on classical results from functional analysis. In addition, we
also presented a “quantitative” modal logic £ whose formulae are interpreted as universally
measurable predicates over the state space of an MDP and the logical distance d - generated by
L coincides with the bisimulation distance bd. To prove the expressivity result (Theorem 28)
is, certainly, more involved than the adequacy result (Theorem 22); nonetheless, they both
require that the theory map qTh (8) is topologisable.

For future work the fact that in the expressivity result a topological structure on the
formulas instead of any requirement on the statement was the key assumption may stipulate
new perspectives. A more concrete worthwhile enterprise would be to generalise the Stone-
Weierstrafl theorem for measurable spaces. This will help in directly invoking the argument
to approximate a nonexpansive map h by logical formulae in the proof of Theorem 28; thus,
avoiding the topological arguments used here.
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A Notations and background

The power set of a set X is denoted by P(X). For a function f: X — Y we denote for a
subset A C X its direct image under f by f.(U) or f[U] and for a V' C Y the inverse image
by fH(V).

A.1 Perfect measures

Perfect measures were introduced by Kolmogorov [24, 22-23]. The aim was to provide a
convenient subclass of measures general enough for all applications. There are many different
equivalent definitions. We choose the following one: A measure space (X, .4, m) is called
perfect, if for any separable metrisable space (Y, 7) and every measurable map f: X — Y we
have the following property: For every A € A and r < m(A) there is a compact set K C im f
with m(AN f~1K) > r, cf. [20, 4510(a)]. Also m is called perfect in this case. As a direct
consequence of the definition, perfectness is functorial, i.e. the push-forward of a perfect
measure is perfect.

In typical real-world applications two points of a measurable space should only be
distinguished by the o-algebra if they can be distinguished by an observation. As only a finite
amount of observations with limited precision can be made per unit of time, there should
be a countable subset S C A distinguishing as strong a A does (Vz,y € XVA € A: z €
ANy¢ A = (IS e S: #SN{z,y} =1)). A measurable space enjoying this property is
called countably fibered. Perfect countably fibered probability spaces are actually — despite
being a very general notion, including, e.g. analytic spaces — quite close to standard spaces
[15, § 8 Rem.]: Any such space is almost pre-standard with respect to some sub-o-algebra
A’ C A. Almost pre-standard means that a space is standard when restricted to a Borel set
of full measure and identifying all point not distinguished by .A [15]. For countably generated
spaces perfectness can even be characterised equivalently by being almost pre-standard [15,
Thm. 6].
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A.2 Suslin operation and smooth spaces

For a function f( y:w — X let f(_|<; denote the restriction to the first & indices. Further
let w<* denote the set of all finite sequences in w. The Suslin operation, cf. [27, 25.4] or [20,
421B], is denoted by &; we recall that it is defined by

eP= | N4 - (20a)

n(_)Ew icw

for a Suslin scheme A ): w<“. Further, we remind of its elementary properties: that for
any paving P and countable family S C &P

Useesr (20b)
(SseeP (20¢)

[20, 421E], also for any function f: X — Y and paving Q on Y that
e Q) =6(f71Q)) (20d)

[20, 421Cc], as well as monotonicity [20, 421Ca] and idempotence [20, 421D], that for any
paving P
PCSP (20e)
G(6P)=67P. (201)
Denote the Giry monad by G(X, A) = (M(x, 4), A(x,4))-

We also recall a generalisation of analytic spaces: smooth spaces as introduced by
Falkner [16]. It can be defined as follows [16, 1.3]:

» Definition 33. A measurable space (X, A) is called smooth if for any measurable space
(X, A) and any A € S(B® A) the projection on the first component pry A is in & B.

Note the following fact [16, 1.3]:

» Lemma 34. Every analytic space is smooth.

B Proof of Theorem 13

The proof of Theorem 13 is based on Sion’s minmax theorem [35, Thm. 3] which we recall
first.

» Lemma 35. Let U be a convex subset of a linear topological space, V' a compact convex
subset of a linear topological space, and f: U x V — R be upper semicontinuous on U and
lower semicontinuous on V. Suppose that

VyeV,AeR: {xeU| flx,y) > A} is convex and (21a)
Ve e U A e R: {ye V] flz,y) <A} is conver. (21b)
Then inf sup f(z,y) = sup inf f(z,y).
yeV zeU zelU yeV

In addition, we also need some important results from functional analysis; in particular,
non-topological version of Riesz—Markov—Kakutani representation theorem [13, IV.5.1] and
Banach-Alaoglu theorem [13, V.4.2].
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The vector space B(X) of bounded functions f: X — R is endowed with the uniform
norm given by

[1flle = sup{ [f(2)[ |z € X }.

It is well-known that this space B(X) is complete [13, IV.5].

Let B(X,.A) denote the Banach space [13, IV.5] consisting of limits of simple functions
on (X, .A) with respect to the uniform norm || _||,. It is also functorial. Moreover, we recall
that B* denotes the dual of a Banach space B, i.e. all bounded linear functionals B — R.
This dual can be either endowed with the uniform norm obtaining a Banach space or with
the weak-* topology. The assignment (__)* is functorial with respect to both choices. We
write the dual vector space of B(X,.A4) simply as B*(X, A).

Recall that a charge is the same thing as a measure but only finitely additive. Denote
by Charge(X,.A) the set of all charges on (X,.A). We may also view Charge as a functor
Meas — Meas by endowing Charge(X,.4) with the same o-algebra as G(X, .A), i.e. the one
making all evy with A € A measurable. There is the following classical duality between
charges and positive functionals given by the isometric (with respect to the uniform norm)
isomorphism [13, IV.5.1]

Int: Charge(X,A) — B"(X,A), m— A f. /fdm. (22)

The above duality given by Int can be viewed as a non-topological version of the Riesz-
Markov-Kakutani representation theorem. Note that probability charges m are characterised
by being positive, i.e. [ fdm = Int(m)(f) > 0 for any f € B(X,.A) with f > 0, and normed,
ie. [1dm=Int(m)(1) =1.

We are now ready to prove Theorem 13. Actually, we prove the following slight general-
isation (recall that every probability measure on an analytic space is perfect).

» Theorem 36. Let v: (X, A) — G(X, A) € m such that y(x) is a perfect measure (for each
x € X). Then the & is w-cpo-continuous with respect to <.

Proof. Assume an <-increasing sequence (d;);en of pseudometrics over (X, A), then we need
to show that the following equation for every x,y € X.

inf /sup d;d¢ =sup inf /di de. (23)
€K (Y2,7y) J ieN ieN ce K (z,7y)
Let z,y € X and let m; = v, and my = vy,. Recall the notion of charge which is the same
thing as a measure but only finitely additive and note that
{ ¢ measure on A ® A | G(pry)c = my,G(pry)c =my }
= { ¢ charge on A® A | G(pry)c = my,G(pry)c =mgy }
as my, mg are perfect [32, D5] (see also [31, Prop. 3], original result [34, Thm. VIII]). Now

applying the duality (22) and by suppress A below in favour of readability (i.e. X x X as a
shorthand for the measurable space (X,.A) x (X,.A)).

Int

= {ce (B*(X x X))

¢ is positive, ¢(1) = 1 and
for i =1,2: (B pr;)c = Int(m;)

= [Nevi '([0,00) | f€B(X x X),f>0}nev; ' ({1}) (24)
N, (B pr)~ ({Int mi})

13:21

CALCO 2025



13:22

Expressivity of Bisimulation Pseudometrics over Analytic State Spaces

where evy: ¢ — ¢(f) is the evaluation function.
= Voo’

From the last representation it is apparent that V.- is an intersection of weak-*-closed subsets
of B*(X x X) as B(pry),B(pry): BX — B(X x X) are continuous by functoriality. Hence
Vo is closed. Moreover the set { ¢ € B*(X x X) | ¢(f) € [-1,1] for any f with ||f|l. <1}

is compact by Banach-Alaoglu theorem [13, V.4.2]. This set also contains any positive
c € B*(X x X) with ¢(1) = 1 (for any f with |Ju|l < 1 note that |c(f)] < |c(If])] =
c linear

c positive
[1flde < [1de=1). Thus V,, is compact.

c positive,

[13, 111.2.22, p. 119; II1.1.5]

Set U = [0,00) and define d,: U — [0,1] by d, = d; if 2 € [i,i 4+ 1). Note that d,
is an increasing function in z. Further define f: U x Vv — [0,1] € Set by f(z,c) =
c(ciz) = d, de. For upper semi-continuity of f in its first argument fix a ¢ € V,,s and take
any r € R. Observe that f(_,¢) " ([0,r) ={z e U |Jicw:z <i+1Ac(d;) <r}is
open. As r was chosen arbitrarily, upper-semicontinuity is proven. For lower semi-continuity
of f in its second argument fix an z € U and take again any r € [0,00). Let ¢ be the
element of w with z € [i,i + 1). Observe that f(z, ) '((r,00)) = f(i, ) '((r,00)) =
{c € Vyw | e(d;) > 1} =evg,~1((r,0)) is open by definition of weak-*-topology. Since z
and r were chosen arbitrarily, lower-semicontinuity is proven. For each ¢ and A € R the level
set {z €U | f(z,¢) > A} is of form [i,00) C R and thus obviously convex. Convexity of
Ve 1s also quickly confirmed by noting that every operand in (24) is closed under convex
combination. For each z € U and A € R the level set {c¢ € B*(X x X) | ¢(d,) < \} is
convex by linearity of the ¢’s. As the intersection of convex sets is convex, the level set
{¢ € Viw | e(dy) < A} is convex.

Then by Lemma 35, infcev,,,, SUp,e(o,00) c(d,) = SUP,e0,00) I0feev, ¢(d,). By definition
of d this becomes inf.cy_, sup;cy c(d;) = sup;ey infeev. , ¢(d;). By the canonical isomorph-
ism and applying Levi’s theorem (monotone convergence theorem) [20, 123A] the claim
in (23) follows. <

C Topology

Recall that a topological space is Ry if any pair of topologically distinct point (i.e. 3U €
T:UN{z,y} € {{z},{y}}) are separated by disjoint open sets (i.e. WV, V € T: x € UANy €
VAUNV =0). Also recall that a topological space is called Ty if it is Hausdorff and Ty if
any pair of distinct point is separated by an open set. Obviously, a Ts-space is precisely an
Ra-space that is Ty. Any topological space can be transformed canonically into a T space
by identifying all point that are not topologically distinct point, resulting in the so-called
Kolmogorov quotient Kol. We now generalise a bit the well-known Stone-Weierstrafl theorem
using the fact that Ty-spaces form a reflective subcategory of topological spaces by the
Kolmogorov quotient construction. Proofs of the following theorems are found in [2].

» Lemma 37. Stone-Weierstrafs Let (X,T) a compact Ra-space. Let L be a set of continuous
functions X — R such that min{f, g}, max{f, g} € L for all f,g € L. If some continuous
function f: X — R can be approximated at each pair of points by functions in L, then f
itself can also be approximated by functions in L with respect to the uniform norm || __ ..

» Lemma 38. The unit of the Kolmogorov construction nx: X — Kol X is proper, i.e.
preimages of compact sets are compact.
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D Proof of adequacy, Theorem 22

Proof. Set [ ] =[_],. We prove bd > [¢]*dg for each ¢ € L by structural induction
over ¢, where [¢]* = ([¢] x [[go]])_l. Recall again that all logical symbols are also function
symbols, so the proof consists of two cases: Function symbols and modal operators.

Take a formula ¢ = f(p1,...,p,) for an arbitrary n-ary function symbol f — interpreted
by a function also denoted by f: [0,1]" — [0, 1] — and formulas ¢; with i = 1,...,n with
bd > [¢;]*dE for each i. Given two states z,y € X we find

[e]*d(z,y) Z " 5 | f([oa] (@), - -, [nl (2)) = F(Te1)®)s - - -, [oal ()]

f nonexpansive

< doo ((H@lﬂ(x)v ceey [[‘pn]](x))v [[(Pl]](y% RN [[Qpn]] (y))

Vi: bd>[e,]*de,
definition of do

< bd(z,y).

As z,y had been chosen arbitrarily, it follows that bd > [¢]*dE.
Turning in the final step to modal operators, take any a € ¥ and assume that for a
formula ¢ we already know that bd > [¢)]*dg. Observe for any two states x,y € X

o) = | [0 ama o rewate) - ( [Tdmay + mua)

definition of +.,

linearity of integral (/[W]] dm, , — /[[z/;]} dmmy) +¢ (rewg (x) — rewa(y))‘

¢,1—c>0; definition of +.;

triangle inequality
S /W]] dma,z - /qub]] dma,y

- | [wram,. - [,

+c \rewa(:c) - rewa(y”

+e [rewg (de)(z, y)|

let ¢ always range over all coupling K (mg 5, Mg )

definition of coupling
Definition 9

+e rewg (de)(z, )

inf [[ul(e) - [9]()e(de’ )

Jensen’s inequality

<t [ [l(e) - [91)] (e’ dy) +. reut(de) o)
= iIclf/[WJﬂ'dE de +. rew} (dg)(z, y)

<supinf [ [¢]*dgdc+. rew](dg)(z,y)
a€X ¢

definition of O'B: ('VB ° UB([WJ]].dE)) (!E7 y)
monotonicity from

Theorem 13; bd>[¢]*de < ('VB ooP (bd))(aj, y)
= bd(z,y).

As x,y had been chosen arbitrarily, it follows that bd > [¢,¢]*dE. <

Note that the usage of Jensen’s inequality could be avoided using (9). But we chose to
conduct the proof this way in view of possible further research into logics without negation.

E Remaining proofs
The remaining proofs in this paper and its appendices are found in [2].
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