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Ideal efficacy photoswitching for 
chromocontrol of TRPC4/5 channel 
functions in live tissues
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Precisely probing the endogenous roles of target proteins is crucial for 
biological research. Photochemical tools can be photoactuated with 
high spatiotemporal resolution but often they are unreliable in vivo 
because spatiotemporal variations of reagent concentration result in 
inhomogeneous bioactivity. We now describe ideal efficacy photoswitching, 
a paradigm that internally compensates for reagent concentration 
by self-competitive binding, allowing purely wavelength-dependent 
chromocontrol over bioactivity that is consistent from cell culture to deep 
tissues. We demonstrate this with photoswitches for endogenous transient 
receptor potential (TRP) C4 and C5 ion channels, reproducibly delivering 
strong agonism under 360-nm illumination, weak agonism under 385-nm 
illumination and strong antagonism under 440-nm illumination. These 
ligands unlock a range of high-precision investigations in TRP biology, from 
neuronal activity to exocytosis, reproductive signaling and smooth muscle 
contractility. The ideal efficacy photoswitching paradigm should also unlock 
high-performance chromocontrol over a wide range of sensory or signaling 
channels and receptors even in vivo.

The 27 human transient receptor potential (TRP) proteins can assem-
ble to form tetrameric TRP cation channels, which have varied and 
highly tissue-dependent roles in cellular physiology, from sensing 
and signaling to mineralostasis1,2. Several environment-sensing TRP 
channels such as TRPV1 (heat), TRPM8 (cold) or TRPA1 (electrophiles) 
are well studied. The roles and importance of many other TRP channels 
remain unclear, even though their links with diseases make them hotly 
pursued as therapeutic targets3–5. The structurally similar TRPC4 and 
TRPC5 (TRPC4/5) are mainly expressed in the central nervous system, 
gut and kidneys6–8, where they are linked with pain9–11, reproductive 
signaling12, anxiety and depression13,14, kidney disease15 and digestion16; 
striking discoveries are still ongoing, for example, linking TRPC5 loss 

to postpartum depression and obesity17. TRPC4/5 form both homo-
tetrameric and heterotetrameric functional channels that can also 
include TRPC1 (ref. 18).

Insights into TRPC4/5 relevance were initially derived from knock-
out mice because potent and selective modulators were lacking19. 
Recently, small-molecule modulators of TRPC4/5 became available 
as tool compounds20: from the nanomolar-potent natural product 
(−)-englerin A (EA)21, a TRPC1/4/5 activator22,23, to drug candidate 
inhibitors (for example, TRPC4/5-targeting xanthines BI-1358894, 
HC-070 and Pico145/HC-608 developed by Hydra/Boehringer or 
TRPC5-targeting pyridazinones GFB-8438 and GFB-887 developed 
by GoldfinchBio) (Fig. 1a and Supplementary Note 1)24,25. However, TRP 
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Efficacy switching is the pharmacological41 approach we use here, 
although we will have to newly define an ‘ideal’ class of efficacy pho-
toswitch, with importantly distinct properties, to reach its potential. 
An efficacy photoswitch is a reagent whose E/Z photoisomers exert 
different efficacies on a target. Unhelpfully, this covers reagents of 
limited practical utility, for example, whose E/Z isomers have similar 
degrees of the same efficacy (for example, 60% versus 70% partial 
agonism), such that biologically applicable photocontrol is impossi-
ble, or whose E/Z isomers have very different affinity (typically ≥10×), 
such that, in practice, they act as affinity switches with their associated 
problems and/or whose E/Z isomers have such low affinity (for example, 
half-maximal effective concentration (EC50) > 1 µM) that the reagent 
cannot be reliably applied at saturation (>10 × EC50) and, thus, cannot 
overcome concentration inhomogeneities. Any one of these problems 
makes an efficacy photoswitch nonideal.

We, therefore, define an ideal efficacy photoswitch as a reagent 
whose E/Z isomers bind competitively to each other, with identical or 
very similar affinity, whose E/Z isomers have opposing activity, for exam-
ple, activator/inhibitor (or else one isomer is a silent binder) (Fig. 1h), 
and where both E/Z isomers have high potency such that plateau con-
centrations of 10–100 × EC50 can be reliable applied (for example, both 
EC50 < 50 nM). The novelty of creating such a nanomolar ideal efficacy 
switch on TRPC4/5-binding scaffolds is the chemical highlight of this 
paper and is the key to their biological utility. First however, it will be 
crucial to trace two advantages of ideal efficacy switching, as the phar-
macological issue of how a compound exerts its photocontrol has not yet 
received proper formal attention (especially compared to, for example, 
how much literature is devoted to easily measured but less critical aspects 
such as incremental tuning of photoresponse wavelengths and PSSs).

	(1)	 Chromocontrol is biologically practical: For an ideal efficacy 
switch, above a threshold for the total E/Z concentration where 
its target nears saturation by any E/Z mixture (~5 × EC50), there 
is no more concentration dependency of bioactivity. The only 
variable controlling bioactivity is the E/Z ratio of the competi-
tively binding isomers: that is, the applied color (wavelength) 
of light sets the PSS, which entirely controls the bioactivity on 
the target. Just shifting the wavelength can rheostat the target 
to, for example, strongly on, weakly on, baseline or strongly in-
hibited states. We now specifically term this target ‘chromocon-
trol’, from the Greek chromos (color); this distinguishes it from 
‘photocontrol’ that is used to indicate a general response to 
light often with affinity switches, but never with the implication 
of concentration-independent chromocontrol (Fig. 1g,i). Repro-
ducibly and homogeneously applying a specific wavelength of 
light is far easier than trying to achieve reproducible, homoge-
neous drug concentrations even across in vitro models, let alone 
in vivo, suiting efficacy switches to easy translation between 
model systems and making them ideal or even irreplaceable to 
tackle complex environments.

	(2)	Chromocontrol is biologically meaningful: Only plateau regions 
in dose–response curves can be used robustly when concen-
trations are variable. As an efficacy photoswitch’s bioactivity is 
equally controlled by wavelength at any concentration above 
its threshold, the working concentration window within which a 
biological effect is (identically) PSS dependent is vast (Fig. 1g,i). 
Furthermore, even a hypothetical ideal affinity switch only has 
two plateau effect values (full on/full off; Fig. 1f); hence, when 
concentrations are variable, the switch can only reliably be ap-
plied for full on and full off photocontrol. By contrast, ideal effi-
cacy switches, with wavelength-dependent plateaus across their 
full effect range (for example, strongly on, weakly on, baseline 
and strongly inhibited), allow reliable rheostatting of bioactiv-
ity, which can be more nuanced and biologically meaningful (for 
example Fig. 6g,h).

functionality varies according to tissue localization (spatial) and TRPs 
are best studied if their activity is reversibly modulated on short time-
scales (temporal). Therefore, photoresponsive chemical tools, whose 
activity can be spatiotemporally patterned by light, are particularly 
promising to resolve TRP biology26. Photoswitchable TRP ligands have 
been impactful, with azo-capsaicins for TRPV1 (refs. 27,28), TRPswitch 
for TRPA1 (ref. 29), OptoBI for TRPC3 (ref. 30) and azo-diacylglycerols 
(PhoDAGs and OptoDArGs) for TRPC2/3/6 (refs. 31–33). However, there 
is no photoresponsive ligand for TRPC4 and the sole compound for 
Trpc5 (BTDAzo, a lipophilic photoswitchable agonist) has low potency 
and is almost inactive on human TRPC5 (ref. 34).

Here we sought to create potent, selective, photoswitchable 
TRPC4/5 modulators for spatiotemporally resolved TRP studies in 
complex systems. Xanthines such as HC-070 and Pico145 were our 
choice for parent ligands, as small chemical changes switch them 
from activators to inhibitors35,36, in turn suggesting that a compound 
could be designed such that photoswitching it would likewise change 
its efficacy. We now report the design and experimental validation of 
this concept and use these tools for light-controlled high-precision 
elucidation of the separate roles of TRPC4 and TRPC5 from cell cul-
ture through to endogenous organ sections; as this efficacy switch 
paradigm solves systematic problems that have hampered the field 
of photopharmacology for decades, we argue for adopting it more 
broadly as a method to unlock high-precision in vivo chromocontrol 
of a range of biological systems.

Results
Design concept for efficacy switching
Azobenzenes are the best-explored chemical scaffolds for fully revers-
ible structural photoswitching (through E⇆Z isomerization)37 and we 
decided to use them in ligands to photoswitch TRPC4/5 bioactivity. 
However, azobenzene E⇆Z photoswitching is never complete in both 
directions: it operates between mostly Z and mostly E photostationary 
states (PSSs, typically ~90% Z for the mostly Z-PSS [Z*] and ~80% E for 
the mostly E-PSS [E*]).

Affinity switching is the typical pharmacological approach used for 
structure–activity relationship-based photopharmacology; for exam-
ple, differences in the steric fit of E and Z isomers drive a difference in 
their binding affinity, such that net E⇆Z photoswitching modulates the 
target’s biological activity. One well-known problem, even for a hypo-
thetical ‘ideal’ affinity switch (with a completely nonbinding E isomer 
but a high-agonist-potency Z isomer; Fig. 1e), is the high background 
activity after typical Z → E photoswitching ‘off’ because of the typically 
20% residual Z isomer in the mostly E-PSS. The generalized result is that 
bidirectional photocontrol of an affinity switch can only deliver a narrow 
functional dynamic range of bioactivity (FDR)38,39, that is, the bioactivity 
window between the best photoswitched on and best photoswitched 
off states (Fig. 1f; the FDR is limited by its PSSs in both directions). In 
theory, this could be remedied by making affinity switches with bidi-
rectionally complete photoswitching. Yet, there is a second systematic 
problem, which has long been ignored and cannot be fixed no matter 
how complete the photoswitching or, if fast Z → E relaxation is used, 
how extreme the affinity difference or how red-shifted the wavelengths. 
This problem is that the bioactivity applied under any given wavelength 
remains extremely sensitive to concentration (Fig. 1j), such that both 
dose and wavelength must be dynamically balanced to deliver a given 
effect. We suggest that this explains why the applicability of freely dif-
fusing affinity switches for bidirectional photocontrol has been and will 
remain limited to highly controlled cell culture settings40 where their 
concentration is effectively clamped (Supplementary Note 2). This is 
because, in tissue or in vivo, spatially variable reagent concentrations 
that also evolve heterogeneously over time (absorption, distribution, 
metabolism and excretion, pharmacokinetics, distance from blood 
vessels and interanimal variability) will prevent delivering a reliable, 
homogeneous effect.

http://www.nature.com/naturechemicalbiology
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These features should make efficacy photoswitches much bet-
ter suited for robust and sensitive use in biology, from cell culture 
through to in vivo (Figs. 3–6). However, only a dozen cases of efficacy 
photoswitching have been published openly (chemokine, adenosine, 
cannabinoid, adrenergic and serotonin receptors). Key contributions 
include those of Leurs, Decker, Gorostiza and coworkers (details in 
Supplementary Note 2)42–53. However, these all class as nonideal, typi-
cally because (1) the ligand efficacies were switched between more and 
less activating, rather than, for example, activating and inhibiting and 
(2) the isomers’ affinity was very different, which compromised the 
concentration independence of ideal efficacy switching. The closest to 
ideality was the Leurs chemokine photoswitch VUF16216 (refs. 43,48); 
however, it had micromolar activity that prevented it from exploiting 

effect plateaus for chromocontrol. Several other efficacy switches 
have been created but were not understood as such. For example, we 
published one reagent34 whose excellent bioactivity photocontrol 
despite E⇆Z photoswitching incompleteness (a hallmark of efficacy 
switching) we failed to understand. Moreover, we believe that many 
more instances of unsuspected efficacy switches may be found by 
reparsing the literature (Supplementary Note 2 has examples from 
Fuchter, Groschner, Pepperberg, Trauner, etc.29,30,54–56).

We give this level of detail as we believe that ideal efficacy photos-
witching is both necessary and sufficient to reach the naively popular 
picture of ‘light control over biology’, which motivated much of the 
photopharmacology over the last decades. We also did not find it col-
lected accessibly in the literature elsewhere. However, the conceptual 
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Fig. 1 | Ideal efficacy photoswitches for TRPC4/5. a, Known TRPC4/5 
modulators. b, Photoswitchable TRPC4/5 modulators AzPico and AzHC.  
c,d, Photoisomerization action spectra and E/Z isomer absorption spectra 
(derived for individual isomers from high-performance liquid chromatography) 
of AzPico and AzHC. e,f, For an ideal affinity switch, only one isomer binds the 
target. Within the FDR window, the binding site occupancy and, thus, biological 
effect E* depend on the total switch concentration cTOT and the PSS fraction 
of active isomer φλ. g,h, For an ideal efficacy switch, both isomers bind with 
similar affinities but with different efficacies. The dynamic range (DR) where the 

biological effect E*λ is PSS dependent but concentration independent covers all 
c > cmin. i,j, Chromocontrol in practice: for an efficacy switch, small variations 
in PSS(λ) sensitively control performance (whereas, in affinity switches, they 
are unimportant) but even large variations in concentration, which would ruin 
the performance of an affinity switch, are irrelevant. k,l, Reversible Ca2+ influx 
modulation with AzPico under 365/447-nm cycles, as time courses and peak 
amplitudes. m, E-AzPico binds competitively to EA. n, EC50 and half-maximal 
inhibitory concentration values of E/Z-AzPico and AzHC on TRPC4 and TRPC5. 
k–n, Fluo-4-loaded HEKmTRPC4β cells.

http://www.nature.com/naturechemicalbiology


Nature Chemical Biology | Volume 22 | February 2026 | 180–191 183

Article https://doi.org/10.1038/s41589-025-02085-x

importance of this framework goes deeper than pharmacology. As 
one example, we highlight that there are target-driven reasons to 
choose efficacy switching for proteins that are natively poised for 
steeply nonlinear dose–response switching between metastable 
states, such as receptors and ion channels with multiple binding sites. 
These ought to be ideal platforms where the competitive binding of 
similar-affinity E/Z isomers with opposing modes of action ought to 
allow concentration-independent, rheostatted chromocontrol over 
protein activity, even when E⇆Z photoswitching is incomplete (see 
Discussion). A separate theoretical paper will treat these aspects in 
detail; however, for now, we set out to test this concept in practice, by 
creating such ‘ideal efficacy switch’ reagents for TRPC4/5.

Creating xanthine efficacy switches
Xanthines Pico145 (also called HC-608) and HC-070 (ref. 57) are 
TRPC1/4/5 antagonists with picomolar potency58 and remarkable 
selectivity against hundreds of enzymes, receptors, transporters and 
other ion channels (including other TRP channels)24. Excitingly, the 
very similar AM237 (ref. 57) is instead a nanomolar agonist of homote-
trameric TRPC5, despite also being a nanomolar antagonist of homo-
tetrameric TRPC4 (full details of pharmacology in Supplementary 
Note 1)35. The structures of these compounds with different efficacy 
are nearly identical (Pico145: m-OCF3, HC-070: m-Cl; AM237: m-OCF3, 
p-Cl; Fig. 1a). This suggests that the meta/para positions are suitable as 
an ‘ideal efficacy tipping point’, whereby small modifications may flip 
the efficacy mode (activator or inhibitor) without changing the binding 

affinity. Overall, the xanthines seem to be an outstanding starting point 
for ideal efficacy switches that are also highly potent; thus, they can 
be reliably applied in vivo.

In brief, we synthesized a series of xanthines ‘extended’ with bidi-
rectionally switchable azobenzenes (Supplementary Fig. 3). Notewor-
thily, with a simple NNPh motif in para (where AM237 has a -Cl), we 
obtained AzPico (m-OCF3) and AzHC (m-Cl; Fig. 1b), which were soon 
identified as the most biologically useful candidates in our panel of 
eight. From here onward, we focus only on them, leaving the others 
to Supplementary Note 3. AzPico/AzHC could be reversibly photo-
switched between PSSs of ~82%E around 410 nm and 95%Z around 
360 nm (Fig. 1c,d, and Supplementary Table 3).

Parallel-throughput chromocontrol assessment in cells  
by FLIPR
We initially screened for the photoswitchability of activity in cells using 
a fluorometric imaging plate reader (FLIPR) calcium flux assay, with 
HEK293 cells stably expressing mouse TRPC4β or mouse TRPC5. Note, 
however, that the parallel-throughput FLIPR setup is limited to use fixed 
light-emitting diodes at 365 nm (good Z) and 447 nm (suboptimal E), 
which, combined with the slowness of the onset and recovery of the 
fluorescence readout for calcium, causes the FLIPR results to under-
estimate the reagents’ true speed, degree and completion of TRPC 
chromocontrol (shown later).

E-AzPico from 12 pM to 1.6 µM gave no effect with TRPC4 or TRPC5; 
upon 365-nm illumination, strong agonism was evident with Ca2+ influx 
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a–g, Electrophysiological whole-cell recordings of TRPC4 currents in voltage 
clamp mode (a,b,d–g, Vh = −80 mV; c, Vh scan) in HEK293 cells with 10 nM AzPico 
during photoswitching. a,b, Reproducibility of 36 consecutive photoswitching 
cycles of 360/440 nm (a, time course; b, overlay of all cycles). c, I/V curves 
showing that 440 nm drives almost a full return to baseline currents throughout 
the applied voltage range. d–g, Spectral scans to extract the wavelength 

dependency of channel current photoswitching on (d,e, cycles of λON/440 nm) 
and photoswitching off (f,g, 360 nm/λOFF). In e,g, n = 12 biological replicates; data 
are presented as the mean values ± s.e.m. h–j, Electrophysiology action spectra 
of AzPico match PSS-based expectations for an efficacy switch (h) but not an 
affinity switch (i), which is an important distinction, as an affinity switch would 
have severely concentration-dependent activity (j) (full legend in Supplementary 
Information).
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rapidly evoked at low-nanomolar concentrations and this was rapidly 
photoreversible with 447-nm illumination, over many cycles (Fig. 1k). 
The remarkable observation that the maximum and minimum calcium 
signals are dose independent over a concentration range of >100-fold 
(from nanomolar to micromolar), even though the concentration 
of the agonistic Z isomer likewise increases >100-fold in this range, 
confirms it as an ideal efficacy switch (TRPC4 in Fig. 1g, l; TRPC5 in 
Supplementary Fig. 2 (E) and Supplementary Fig. 13 (Z)). Pleasingly, it 
inherits the high potency of its parent Pico145, with a 365-nm EC50 of 
just 3.0 nM on TRPC4 and 4.0 nM on TRPC5 (Fig. 1n). AzHC was also a 
Z-agonistic ideal efficacy switch for TRPC5 with a 365-nm EC50 of 6.4 nM. 
Excitingly, however, Z-AzHC was completely inactive on TRPC4 into 
the micromolar range (Supplementary Fig. 13). Competition assays 
supported that these compounds are indeed efficacy switches (Fig. 1m 
and Supplementary Note 1).

Taken together, these reagents are uniquely potent efficacy 
switches; AzPico is a photoswitchable tool addressing TRPC4; although 
AzPico acts on TRPC5 as well, the cellular role of TRPC4 can be tested by 
applying it comparatively to the TRPC5-selective AzHC, making them an 
outstanding reagent pair for probing these otherwise hard-to-resolve 
channels. Retaining the nanomolar potency of their optimized parent 
compounds is also a rarity among photopharmaceuticals because the 
extra moiety needed for photoisomerization usually sacrifices potency.

Photomodulated electrophysiology
We next performed electrophysiological patch clamp experiments 
to characterize the action and specificity of channel modulation in 
more detail. Although its throughput is lower, electrophysiology is 
more powerful than FLIPR in several respects. Firstly, the nonoptical 
electrophysiology readout does not cause unwanted photoswitch-
ing, unlike FLIPR. Secondly, electrophysiology readouts linearly and 
temporally resolve ionic currents through the activated channels, 
unlike the delayed and attenuated fluorometric Ca2+ influx analyses in 
FLIPR. Thirdly, the electrophysiology setup can use narrow-bandwidth 

monochromated light at any wavelength. These features allow measur-
ing the full power of the photoswitch reagents.

We thus recorded wavelength-dependent action spectra of 
AzPico and AzHC under fast photoswitching in electrophysiology in 
TRPC4/5-expressing cells (Fig. 2 and Supplementary Fig. 14), higlight-
ing the potential of ideal efficacy switches. For example, AzPico revers-
ibly photomodulated TRPC4 currents over >36 consecutive cycles 
with a fully constant activation profile, without fatigue (Fig. 2a,b). I/V 
curves showed a strong activation of ion flux at best Z (360 nm) PSS; 
yet, only at nonphysiological voltages (<−80 mV or >+60 mV) could 
any small differences between basal activity and good E (440 nm) PSS 
be detected (Fig. 2c), making them truly off–on TRPC modulators. 
Reversal potentials were close to 0 mV, indicating no gross changes in 
the permeabilities of monovalent versus divalent cations.

As native TRPC4/5-bearing TRPC complexes are mostly heteromeric 
TRPC1:TRPC4 or TRPC1:TRPC5 assemblies, we tested AzPico and AzHC in 
cells that coexpress TRPC1 with TRPC4/5 and found photoresponse I/V 
curves typical for the heteromeric complexes (Supplementary Fig. 15). 
This supports that AzPico and AzHC give comparable chromocontrol 
over the TRPC1-containing heteromeric TRPC complexes to that over 
homomeric channels. This is noteworthy, as AM237, for example, acts 
strictly on TRPC5 and does not activate heteromeric TRPC1:TRPC5 (ref. 
35). This flexibility favors the use of AzPico and AzHC as versatile reagents 
for endogenous settings (tested in Figs. 4–6).

The repeatability of on–off photocycling allowed us to extract 
action spectra for both (1) photoactivation (Fig. 2d,e) and (2) photode-
activation (Fig. 2f,g) in situ in live cells. Channel currents were optimally 
photoswitched on in a sharp wavelength range of 340–370 nm and full 
photoswitching off was triggered over the broad range of 400–480 nm 
(best: 430 nm). Such action spectra conclusively matched the highly 
wavelength-sensitive model expected from cell-free PSS measure-
ments for an ideal efficacy switch (bioactivity ∝ −log10([Z]/[E])) but mis-
matched the model for an affinity switch (bioactivity ∝ −log10([Z])); this 
(mis)match was visible even for single-concentration data (Fig. 2h,i).
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Fig. 3 | Structures of TRPC4/5 in complex with E/Z isomers of efficacy 
photoswitches. a–d, hTRPC5:E/Z-AzHC complexes (E: 2.6 Å, PDB 9G4Y, EMD-
51074; Z: 2.9 Å, PDB 9G50, EMD-51076; C1 symmetry). Note the flip of the distal 
azobenzene ring. e–h, TRPC4DR:E/Z-AzPico complexes (E: 3.0 Å, PDB 9FXL, 

EMD-50850; Z: 3.1 Å, PDB 9FXM, EMD-50851; C1 symmetry). Each complex’s best-
resolved xanthine-binding site is highlighted. Two-dimensional maps of ligand–
protein interactions are shown.
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Importantly, we recall that only the efficacy switch mechanism 
allows these reagents to deliver binary off–on bioactivity that is identi-
cally wavelength dependent at any concentration (Fig. 1g–i and Fig. 2h); 
for example, if they were classical affinity switches, even doubling 
their concentration would prevent photoswitching-off cell currents 
(Fig. 2j and Supplementary Note 1). Thus, the concentration-scan, 
fixed-wavelength FLIPR and the fixed-concentration, wavelength-scan 
electrophysiology (Fig. 1k,l, Fig. 2e,g,h and Supplementary Fig. 14) show 
that AzHC and AzPico are ideal efficacy switches, whose E/Z-competitive 
binding controls TRPC4/5 currents with exquisite wavelength sensitiv-
ity and concentration independence.

Paired pairs of cryo-electron microscopy TRPC4/5:E/Z 
structures indicate activation mechanism
Single-particle cryo-electron microscopy (cryo-EM) studies of TRPC4 
(refs. 59–61) and TRPC5 (refs. 62–65) have given important insights 
into the structures of these channels and their complexes with lipids, 
metals, proteins and small-molecule modulators. These include 
TRPC5 structures with Pico145 (ref. 64) and HC-070 (ref. 62), bind-
ing in near-identical pose to the same lipid-binding pocket, adjacent 
to the pore helices. However, no channel-open structures are known 
and all reported ligand structures are with inhibitors36. As AzHC and 
AzPico should bind with high affinity in both E and Z forms, this offered 
an opportunity to elucidate the structural basis of inhibitory versus 
activating efficacy on TRPC4/5, as well as the remarkable differential 

of TRPC4 activity induced by the -Cl/-OCF3 swap. E/Z structure pairs 
could also be valuable for rational photopharmacology, as only two 
protein–ligand structure pairs with an azobenzene reagent bound as 
both E and Z isomers49,66 are known to date.

We now studied TRPC5:E/Z-AzHC and TRPC4:E/Z-AzPico com-
plexes by cryo-EM, hoping to acquire the ‘paired pair’ of both inhibited 
and activated structures for both channels. This work was run fully inde-
pendently for TRPC4 at one site and TRPC5 at another, yet the results 
aligned, giving confidence in their interpretations. We could deter-
mine all four structures at high resolution (human (h)TRPC5:E-AzHC, 
2.6 Å; hTRPC5:Z-AzHC, 2.9 Å; TRPC4DR (Danio rerio):E-AzPico, 3.0 Å; 
TRPC4DR:Z-AzPico, 3.1 Å) without imposing symmetry during data pro-
cessing (Fig. 3, Supplementary Figs. 16–20, Supplementary Tables 4–7 
and Supplementary Videos 1–4). We used 365 nm for Z ligand structures 
and dark or 440 nm for E structures; furthermore, we excluded DTT 
from all buffers to avoid diazene reduction.

Supplementary Note 4 contains full details of the structural biol-
ogy results. Briefly, E/Z-AzHC/AzPico could be built into the expected 
lipid-binding or xanthine-binding site, with near-identical positions 
to that of Pico145 (ref. 64) for the conserved ligand portion and dif-
ferences between the E and Z isomers only at the azobenzene. For 
example, the distal ring of E-AzHC is projected outward to make a 
π–π interaction with Phe522 of TRPC5, whereas, in Z-AzHC, it folds 
deeply inward to make a π–π interaction with Y524; AzPico behaves 
similarly on TRPC4 (Fig. 3 and Supplementary Figs. 4–6). Most protein 
residues in the ligand-binding site are in similar positions in the E/Z 
structures; the exceptions are that, for hTRPC5, Phe520 is flipped ‘in’ or 
‘out’ depending on whether the antagonistic E or agonistic Z isomer is 
bound (Supplementary Fig. 4b), while, in TRPC4DR, the cognate Phe521 
is much less shifted, although its neighboring L520 is notably displaced 
(Supplementary Videos 1–4). All E and Z structures had the channel pore 
closed (potential reasons for this in Supplementary Figs. 5–7); thus, 
caution in interpreting the agonist structures is needed. Nevertheless, 
these data offer structural insight into how closely related xanthines 
can have opposite effects on TRPC4/5 function (that is, inhibition 
versus activation).

With these binding modes confirmed, we tested whether the selec-
tive activation of TRPC5 but not TRPC4 by Z-AzHC could be the result of 
the single-amino-acid difference in their binding sites (Val579 in TRPC5 
versus Ile575 in TRPC4 at the cognate position). However, neither the 
Val579Ile nor the Ile575Val substitution in TRPC5 and TRPC4, respec-
tively, changed their activity profiles for E/Z-AzHC or for control activa-
tor AM237. This suggests that the basis for Z-AzHC’s TRPC5-selective 
activation is more complex than the immediate residues it contacts 
(Supplementary Note 4).

Photoswitching endogenous TRPC4/5 in primary cells to 
photoreversibly actuate cell function
We next moved to test whether AzPico can directly chromocontrol 
endogenous TRPC4/5, using autaptic hippocampal neurons (neurons 
cultured in isolation, which only make synapses back onto themselves, 
as a model for simultaneously monitoring presynaptic and postsyn-
aptic responses). The 365/460-nm cycles reversibly activated inward 
currents in wild-type (WT) neurons, just as was seen in heterologously 
TRPC4/5-(over)expressing HEK cells (Fig. 2). These WT neurons consist 
of a fraction of cells expressing TRPC channels that can be directly acti-
vated by AzPico plus about 50% of neurons that do not express TRPC 
channels67. Matching expectations, average currents were larger when 
acquired exclusively from TRPC5-bearing cells (5ki), strongly depressed 
with TRPC5 single knockout (5ko) and almost abolished with TRPC1/
C4/C5 triple knockout (145tko), supporting that TRPC[1]4/5 channels 
are the central contributor to AzPico’s photomodulation of membrane 
conductance (Fig. 4a)68. This shows that AzPico can optically control the 
activity of native TRPC[1/4/]5 channels in primary nerve cells without 
channel overexpression.

• Photocontrol of primary hippocampal neurons (AzPico)

• Photocontrol of primary chromaf	n cells (AzPico)
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We then tested the photopharmacology of AzPico in isolated pri-
mary chromaffin cells (the neuroendocrine cells in the adrenal gland 
that secrete adrenaline by exocytosis in response to electrical activa-
tion and functionally express TRPC1/4/5 channels)69. The 360-nm illu-
mination of AzPico photoreversibly triggered robust inward currents 
that caused an increase in membrane capacitance (CM) in WT cells, 
indicative of exocytosis (Fig. 4b). Neither response was observed in 
145tko cells, confirming the TRPC specificity of this photopharmacol-
ogy. By supporting that direct activation of endogenous TRPC channels 
in chromaffin cells can trigger exocytosis, this again suggests how 
AzPico may be used to exert functional control over endogenous biol-
ogy (here, for optically controlled release of adrenaline).

TRPC4/5 photoswitches are effective in tissue slices and can 
reveal channel-specific biology
We believed that AzHC and AzPico’s efficacy switch mechanism and 
high potency should make them effective chromocontrol reagents for 
deeper tissues and moved to test it. The hypothalamic arcuate nucleus 
(ARC) (Fig. 5a) is a signaling center in the brain where most dopamine 
(Th+) neurons are known to express TRPC5, which contributes not 
only to spontaneous oscillatory burst-firing activity and Ca2+ burst 
responses34 but also to sustained activation following stimulation with 
the hormone prolactin (a mechanism of reproductive signaling that has 
been conserved for >300 million years)12,34. The temporal distinction 
between these activation modes is striking and suggests the possibil-
ity of using either AzHC or AzPico as a time-resolved TRPC5 probe. 
However, we remain ignorant even of whether the most closely related 

congener TRPC4 has a role in this circuitry; hence, we were particu-
larly drawn to apply these reagents comparatively, hoping that their 
intersecting C4/C5 selectivities could deliver new information about 
TRPC4 biology in endogenous systems.

We therefore took 275-µm-thick mouse brain slices through the 
dorsomedial ARC (Fig. 5a) and imaged the Ca2+ indicator GCaMP6f in 
Th+ neurons while photoswitching AzHC or AzPico to study TRPC[4]/5 
photoactuation in situ. Ca2+ influx should be seen across several inde-
pendent parameters: from time-resolved aspects such as longer Ca2+ 
burst durations and lower Ca2+ burst frequency to simply larger areas 
under the curve of the fluorescent Ca2+ signal (AUC), which translate 
into a ‘response index’ > 1 (details in Supplementary Fig. 22). Pleasingly, 
we again found that AzHC and AzPico can strongly photoswitch Ca2+ 
responses at endogenous TRPC levels by all these metrics. A single 
≥23-ms pulse of 355-nm light (E→Z) induced dramatically sustained 
high-Ca2+ signals lasting up to ≥3 min (42% of cells; Fig. 5b,d,g,h). 
TRPC5 was sufficient for this signal, as TRPC5-knockout slices did 
not respond to AzHC photoswitching (Fig. 5c,e). However, Z-AzPico 
Ca2+ photoresponses were maintained despite TRPC5 knockout, pro-
viding functional evidence for a role of TRPC4 or TRPC1/C4 in the 
Ca2+ response in dorsomedial Th+ neurons of the ARC (Fig. 5f–h and 
Supplementary Fig. 22c,d), which can now be further explored12.

This discovery underscores the utility of this pair of photos-
witches for deconvoluting the roles of TRPC4 from TRPC5. We also 
stress how important it was for these studies that the reagents were 
high-potency and ideal efficacy photoswitches. This allowed inter-
nally baselining signals after compound application (to overcome 
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Fig. 5 | AzHC and AzPico are potent photoswitchable activators of TRPC-
dependent Ca2+ responses in mouse hypothalamus. a, Coronal brain slice: 
cartoon with ARC region in red and microscopy image with Trpc5 immunostained 
in green and Th+ neurons in red (representative image from n = 4 mice).  
b–h, Ca2+ responses in Th+ neurons of Th-GCaMP6f (WT) or Th-GCaMP6f-
ΔTrpc5 (Trpc5-ko or 5ko) mice. b,c, Single-cell Ca2+ traces before (E) and after 
(Z) a 355-nm pulse. d,e, ΔAUCλ, light dependency of the AUC as acquired in 
b,c. f, AzHC only chromocontrols TRPC5-dependent Ca2+ responses; AzPico 
can chromocontrol Ca2+ responses by another route (likely TRPC4). g,h, mean 
Ca2+ burst durations and frequencies in WT and 5ko upon E→Z photoswitching. 

AzHC/AzPico, 500 nM (except in dose–response study); BTDazo, 10 µM. In 
d–h, each point represents one cell with n cells per group. Box plots show the 
interquartile ranges, median (line), mean (black rhombus) and s.d. (whiskers). 
In f–h, statistical analysis was conducted using a Kruskal–Wallis analysis of 
variance (ANOVA) and Dunn’s P values are shown. In g,h, if no P value is indicated, 
then the data were not significantly different between the E and Z isomers of 
AzHC or BTDAzo (P = 0.052–0.999; g, Kruskal–Wallis ANOVA: χ2 (11) = 132.71744, 
P < 0.0001; h, Kruskal–Wallis ANOVA: χ2 (11) = 142.9224, P < 0.0001). Min–max 
values and all other details are provided in Supplementary Fig. 22 (full legend in 
Supplementary Information).
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expression heterogeneity) and then photoswitching activity on from 
zero background at a precisely defined time in a fully reproducible 
wavelength-dependent manner (all needed for reliable statistics). Tem-
porally modulated studies beyond the scope of this report are already 
underway, motivated by the xanthines’ sustained (low-frequency) Ca2+ 
bursts that contrast the photoswitchable TRPC5 activator BTDazo 
(burst frequency barely affected; Fig. 5h). This points to a rich interplay 
of pharmacology and spatiotemporally resolved biology in complex 
tissues, which photoswitchable reagents are uniquely poised to tackle.

Photoswitching tissue-level physiology via TRPC4-based 
chromocontrol of intestinal motility
After observing chromocontrol in thin tissue slices by microscopy, we 
next tested for photoactuation of macroscopic downstream processes 
in thick tissue sections of the intestine. Landmark papers by Freichel70 
and Zholos16 used irreversible suppression assays to suggest that 
TRPC4 activation, downstream from muscarinic acetylcholine recep-
tors (mAChRs, the target of atropine), should be a critical component 
controlling small intestine peristalsis. Intestinal segment contractions 
are macroscopically coordinated oscillatory motions overlaid on a 
‘tonic’ baseline contractile force. A subthreshold oscillatory pacemaker 
potential is amplified by mAChR through phospholipase C and TRPC4 
activation to surpass the threshold potential of voltage-gated Ca2+ 
channels, leading to peristaltic contractions (Fig. 6a). We, therefore, 
expected that direct TRPC4 activation by Z-AzPico might hijack the 

pacemaker signal to drive oscillatory contractility, even with upstream 
signaling by mAChR blocked, and aimed to test this so as to directly 
elucidate the role of TRPC4 activation in intestinal contractility in 
endogenous tissues.

We took fresh 8–12-mm-long segments of mouse small intestine 
( jejuneal and ileal), added low atropine concentrations (300 nM) to 
paralyze their spontaneous motility and monitored their contractility 
by macroscopic video imaging while photoswitching AzPico (Fig. 6b). 
Indeed, even with just 10 nM AzPico, ultraviolet (UV) illumination initiated 
vigorous motions that were stopped rapidly by applying 447-nm light and 
then restarted with UV; the on–off chromocontrol could be cycled many 
times (Fig. 6c and Supplementary Video 5). No intestinal light responses 
were evident without AzPico and, highlighting the tissue-specificity 
involved, AzPico-treated colon segments also had no photoresponse.

We next analyzed intestinal contractility quantitatively, monitor-
ing contractile muscle force in 3-mm-long ileal or jejuneal segments 
by myography during AzPico photoswitching with UV and blue light 
(Fig. 6d). With moderate AzPico concentrations (for example, 3 nM), 
365-nm UV illumination not only increased tonic forces but also dou-
bled oscillatory forces (1.9×) without changing oscillatory frequency, 
indicating that Z-AzPico ‘rides’ the circuit to drive typical contractility. 
Basal tension was then restored under 447-nm light and 365/447-nm 
cycling could be repeated many times (Fig. 6e). We assigned this intes-
tinal chromocontrol to TRPC4 as segments of TRPC4-deficient mice71 
never responded to E/Z-AzPico (Fig. 6f), while tonic and oscillatory 
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Fig. 6 | AzPico chromocontrol of intestinal contractility shows the key role of 
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for TRPC4-dependent intestinal contractility75, which is directly testable using 
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whose motility was blocked by atropine but treated with AzPico were driven  
into phases of fast macroscopic motions by UV photoswitching (longitudinal 
and ring muscle contractility) and then returned to immobility by blue light, 

reversibly over many cycles (Supplementary Video 5). d–f, Physiological-like ring 
contractility is reversibly stimulated and suppressed by alternating UV and blue 
illumination of segments treated with AzPico in a TRPC4-dependent manner.  
g,h, The ideal efficacy switch paradigm allows fully reproducible control of deep 
tissue bioactivity, by leveraging the saturation of dose and photon flux (hard to 
titrate) but the selection of wavelength (easy to choose) (Supplementary Fig. 23) 
(full legend in Supplementary Information).
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force photoresponses in TRPC5-deficient mice were indistinguishable 
from those in matched control mice.

Our findings, thus, support that TRPC4 activation is both necessary 
and sufficient to convert subthreshold oscillatory signals into effec-
tive peristaltic motility in the small intestine. On an applied level, the 
AzPico-induced, optically tunable reactivation of atropine-paralyzed 
intestinal segments suggests potential experimental therapies to treat 
intestinal motility insufficiency conditions such as toxic or postop-
erative paralytic ileus. On a more conceptual level, the full and rapid 
photoreversibility of both gross motility and myographic readouts, 
assessed on the tissue level in WT samples, gives high confidence in 
the molecular TRPC4 specificity of intestinal contractility. We stress, 
however, that this simple and direct result is only possible for the ideal 
efficacy photoswitch, whereas classical high-affinity compounds such 
as EA or Pico145 practically cannot be washed out; hence, internally 
baselined, reversible experimentation without fatigue-based rundown 
or gross toxicity72 was previously impossible. We also highlight that 
we used a small-molecule photoswitch to elucidate a target through 
hypothesis-driven research, instead of creating and using a photos-
witch after target identification.

However, given the in vivo potential of ideal efficacy photos-
witches, we are certain that this will not be the last such case. A practical 
example of the value of chromocontrol that such photoswitches finally 
enable is illustrative. Our protocols converged to the use of 365 nm for 
high-completion E→Z switching and best channel activation; however, 
with moderate to high concentrations of AzPico (30 nM), this resulted 
in rictus-like intestinal tensioning and rundown, presumably through 
overstimulation (Fig. 6g). This seems to be a regular biological situa-
tion, whereby a desired, physiological effect is only reached when a 
target protein is partially but not fully stimulated. This overstimulation 
could be avoided in a classical way by titrating AzPico concentrations 
down to ~3 nM (Supplementary Information) but ideal efficacy switch-
ing should allow the much simpler workaround of merely changing 
the illumination wavelength. To test the ideal model in Fig. 1g–i as 
stringently as possible, we saturated tissues using 300 nM AzPico but 
adopted 385 nm instead for UV illumination (also applied as saturating 
illumination). This 20-nm wavelength shift perfectly and reproducibly 
drove only partial channel activation, giving the physiology-like oscil-
latory intestinal contractions we sought (Fig. 6h). We feel that using 
both saturating ligand concentration and saturating light fluence is 
key for avoiding the practical irreproducibilities of ‘tuned compound 
and light dosing’ that is required for affinity switches to operate and 
illustrates why a paradigm shift to ideal efficacy photoswitching can 
empower deep tissue or in vivo research, even for targets (for example, 
TRPC4/5) that are nonlinearly responsive and have time-dependent 
and dose-dependent bioactivity.

Discussion
We rationally developed AzHC and AzPico as ideal efficacy photos-
witches for TRPC[4]/5. Their photoisomerization flips them between 
E inverse agonists and Z agonists, with both forms having excellent 
binding affinity, resulting in a pair of lit-active low-nanomolar-potency 
tools that can be used together to elucidate TRPC5-selective or 
TRPC4-selective biology. To date, there have only been two reports 
of protein–ligand structures where both E and Z isomers of the same 
azobenzene reagent were bound49,66; we now report two more, with both 
TRPC4 and TRPC5 E/Z structure pairs, which will help progress design 
rules for efficacy switches on other targets. Unlike nearly all photop-
harmaceuticals, the bioactivity of AzHC and AzPico is fully determined 
by the illumination wavelength used but not their concentration. This 
makes them suitable for reliable and reproducible chromocontrol 
across diverse model systems, from overexpression in HEK cells to 
endogenous expression in primary neurons, adrenalin-secreting cells, 
brain slices and intact segments of intestine, where they elegantly sup-
port a hypothesis for TRPC4-dependent contractility.

Importantly for the TRPC field, the tissue-level chromocontrol by 
nanomolar AzPico and AzHC marks these reagents as exceptionally 
effective optical tools for precisely and reversibly manipulating endog-
enous TRPC biology17 in situ. Their likely applications, thus, stretch far 
beyond the muscular and neuronal applications shown here, toward 
elucidating TRPC4/5’s rich and largely still cryptic biology. Lastly, the 
rapid macroscopic photoswitchability of AzPico’s downstream second-
ary and tertiary effects (that is, not only ion flux but also integration in 
the native cascade controlling tissue-scale muscle movement) is highly 
unusual if not unique in photopharmacology (Fig. 6).

For biology and chemistry in general, we showed that the ideal effi-
cacy photoswitching paradigm can be rationally chemically designed 
and rationally biologically exploited to achieve robust high-precision 
control of endogenous systems that is purely directed by light rather 
than drug dosing and distribution. This feature combination makes 
it suited excellently for deep tissue and in vivo work. We introduced 
some general biological target considerations and general chemical 
design concepts to ground the wider introduction of efficacy photo-
switching (Supplementary Note 2). Of course, the pharmacological 
requirement to design an efficacy photoswitch is that an efficacy ‘cliff’ 
should be plausible and this is not the case for many families of highly 
active drugs. For example, substrate or cosubstrate mimics that inhibit 
enzymes in their active site cannot be made to instead agonize enzyme 
activity while still binding; thus, they are not convertible into efficacy 
photoswitches. By contrast, allosteric modulatory sites (which, in 
many cases, are already known to allow both positive and negative 
allosteric modulation) seem ideally feasible candidates from the 
pharmacological perspective. Furthermore, our perception is that this 
target-based design opportunity is closely matched to real, biologi-
cally based needs. We define ‘poised targets’ as being those proteins 
that need to rapidly and spatiotemporally modulate their functions 
to support life (ion channels, receptors, sensory or signaling integra-
tors, etc.). We perceive that such poised targets are most likely to be 
addressable by the efficacy switch paradigm, as they are often evolved 
to allow small modulators or ligands to bias their activity. Moreover, 
we perceive that these are also the targets that most urgently require 
modulatory reagents delivering high spatiotemporal resolution across 
the scales even to in vivo settings (as efficacy photoswitch reagents 
promise) to understand their endogenous biology. That match of need 
to opportunity is not accidental; it simply reflects how biology has 
evolved and perfected its own ligand-based or protein-based regula-
tory mechanisms to operate in complex environments. Accordingly, 
efficacy photoswitching can be an ideal way to harness this potential 
to the fullest.

Lastly, we encourage chemists to take up awareness of this possibil-
ity, to rigorously test for it even where it was not a design aim29,54,55 and 
to work toward rationally using the efficacy photoswitching paradigm 
to generate a cornucopia of reagents that are more in vivo competent 
rather than remaining locked to affinity photoswitching approaches. 
We foresee that such efficacy photoswitches can unlock a new era for 
chromocontrolled biology, in ways that not only deeply impact chemi-
cal or cell culture proof-of-principle studies but translate seamlessly 
across to basic physiology and medical research, enabling researchers 
to noninvasively probe and modulate endogenous pathways in deep 
tissues and in vivo.

Data and material availability
All data needed to evaluate the conclusions in the paper are present 
in the paper and/or the Supplementary Information. Data were also 
deposited and are freely available on bioRxiv73 and figshare74. Cryo-EM 
structures were deposited to the Protein Data Bank and EM Data Bank 
under the following accession codes: TRPC4DR:E-AzPico, 3.0 Å, PDB 
9FXL, EMD-50850; TRPC4DR:Z-AzPico, 3.1 Å, PDB 9FXM, EMD-50851; 
hTRPC5:E-AzHC, 2.6 Å, PDB 9G4Y, EMD-51074; hTRPC5:Z-AzHC, 2.9 Å, 
PDB 9G50, EMD-51076.
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Materials and methods including chemical synthesis, photophysical 
data and NMR spectra are available in the Supplementary Information.
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