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Abstract
Background  River–lake ecosystems are crucial for the rational allocation of water resources, but frequent water 
diversion can destabilize water quality due to hydraulic disturbance. Microbial communities can respond rapidly 
to such external perturbations and influence these systems through the effects on nutrient metabolism. Therefore, 
understanding how microbial communities respond to hydraulic shocks in aquatic systems and whether they can 
adapt to such disturbances is essential for maintaining the health of river–lake systems. We used 16S rRNA and 
metagenomic sequencing technologies to examine the metabolic regimes of microbial communities during water 
regulation and non-regulation periods in river–lake systems.

Results  We found that hydraulic disturbance tended to drive the microbial community toward homogenized 
selection, thereby weakening its stability. Flow velocity (V) and the nitrate (NO3

−–N) concentration significantly 
affected microbial community composition and abundance, with clear threshold effects. We established low 
(V = 0.284 m/s, NO3

−–N = 0.031 mg/L) and high (V = 0.461 m/s, NO3
−–N = 0.055 mg/L) thresholds. These thresholds 

categorize microbial communities into three distinct regimes: regime1 (R1), regime 2 (R2), and regime 3 (R3). The 
microbial abundances in R1 and R3 were significantly higher than those in R2 (p < 0.01), while the community in R3 
exhibited a strong denitrification capacity. In R3, the microbial community enhanced its denitrification metabolism by 
promoting the growth of denitrifying microbial genera (e.g., Pseudomonas and Flavobacterium) to counterbalance the 
impact of high V and NO3

−–N. These strains contributed the denitrification-related genes nasA, narB, nirB, and nirD to 
the community, thereby promoting the NO3

−–N metabolism and reducing environmental NO3
−–N concentrations. In 

addition, we predicted microbial community abundance using an artificial neural network to validate the thresholds 
we identified.

Conclusions  Our study provides theoretical support for understanding how microbial communities adapt to high-
frequency hydraulic disturbances and offer valuable insights for managers to adjust water diversion strategies in a 
timely manner, thereby safeguarding the integrity of river–lake ecosystems.
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Background
The river–lake systems are integral hydrological units 
consisting of lakes and their interconnected rivers, pro-
cessing the functions of material circulation, energy 
flow and ecological barrier [1, 2]. As globally distributed 
hydrological continuums [3, 4], river–lake systems are 
critical water conservation hubs that play a vital role in 
hydrological regulation while substantially contributing 
to socioeconomic development [5–7]. River–lake sys-
tems are important carriers of inter-basin water diver-
sion systems used to alleviate the uneven distribution of 
water resources (such as the California State Water Proj-
ect in USA, the West to East Water Transfer Project in 
Pakistan, the Colorado-Big Thompson Project and the 
South-to-North Water Diversion Project in China) [8, 9]. 
However, these frequent inter-basin water supply activi-
ties and the construction of water conservation facilities, 
such as gates and dams, have complicated the hydrody-
namic conditions within these systems [10]. Hydraulic 
engineering management may induce significant hydrau-
lic disturbance, potentially triggering sediment resus-
pension and consequent water quality deterioration 
[11]. These anthropogenic impacts on river–lake ecosys-
tems have emerged as a critical environmental attention 
worldwide [12].

Water diversion will also affect a wide range of organ-
isms within river–lake systems. Artificial regulation 
activities can fragment the habitats in these ecosystems, 
disrupt food chains, and threaten the survival of animals 
and plants [13, 14]. Moreover, the water quality degrada-
tion caused by regulation may trigger algal blooms, which 
can disrupt the ecological balance through impacts on 
phytoplankton and other communities [15, 16]. Further-
more, changes in the sediment deposition pattern during 
water diversion can lead to uneven nutrient distribution 
in the water. This poses a challenge for microbiomes that 
depend on specific nutrient ratios, as they must adapt to 
these altered conditions [17, 18]. It should be noted that 

among the many organisms affected by water diversion, 
microorganisms are sensitive and responsive to environ-
mental changes. Changes in the composition and struc-
ture of bacterial communities therefore provide clues to 
the overall state of an ecosystem [19, 20]. This makes it 
necessary to clarify the impact of water regulation on 
microbial communities and determine whether they can 
adapt to the hydraulic disturbance caused by water regu-
lation and can maintain the river–lake system’s ecological 
health.

As fundamental components of river–lake ecosystems, 
microorganisms drive nutrient cycling, and this cycling is 
essential for maintaining the stability of the aquatic eco-
systems [21–23]. Microorganisms can respond to pertur-
bations in their environment and can adapt by adjusting 
their metabolic pathways [24–26]. Ren et al. [27] studied 
the river–lake system of China’s Poyang Lake, and found 
that the deposition of organic matter and the input of 
exogenous nitrogen shaped microbial communities to 
promote organisms with strong metabolic potential for 
carbohydrates and nitrogen, both in the water and sedi-
ment. Similarly, Yuan et al. [28] found that microorgan-
ism in river channels were affected by concentrations of 
nitrite and dissolved oxygen. These environments can 
lead to proliferation of microorganisms that are efficient 
at denitrification and organic pollution degradation, 
thereby adapting to environmental disturbances caused 
by seasonal runoff. In addition, a recent study demon-
strated that the sinking of algae in lakes can introduce 
sources of carbon, nitrogen, and phosphorus to sur-
face sediments [29]. In response to this environmental 
change, the microbial community can adjust its meta-
bolic potential, contributing more genes related to the 
conversion of nitrogen, phosphorus and carbon [30].

However, most previous studies focused on static water 
in river and lake systems. The lack of research on dynamic 
systems is an important gap in our knowledge, as there 
are complicated and dynamic hydrodynamic conditions 

Graphical abstract



Page 3 of 14Ding et al. Environmental Microbiome          (2025) 20:163 

in river–lake systems, and particularly in those that are 
primarily used for inter-basin water transfer (such as 
China's South-to-North Water Diversion Project) [5]. On 
the one hand, the hydraulic shock created by flow man-
agement may induce the migration and succession of the 
original microbial community, which leads to instability 
of community composition and structure [31]. On the 
other hand, water diversion and hydraulic shocks may 
introduce additional pollution sources, such as nitrogen 
and phosphorus, that affect microbial community stabil-
ity and alter the community’s metabolic trends [18]. How 
microbial communities respond to these multiple forms 
of disturbance caused by complex hydrodynamic condi-
tions, whether they can adapt to this environmental dis-
turbance, and by what mechanism remain unclear.

Our study focuses on the Dongping river–lake system, 
an important water regulation lake for the Eastern Route 
of the South-to-North Water Diversion Project in China. 
The system receives inflows from the Dawen River (east-
ern side of the lake) [32] and the Liuchang River (south-
ern side of the lake), and the lake sustains an aquaculture 
area near the outflow zone on its northern side. There-
fore, its internal hydraulic conditions are complex. Dur-
ing regulation (R) periods, dynamic hydraulic changes 
will alter the original microbial community composition, 
potentially weakening community’s stability [31]. In addi-
tion, internal pollution caused by hydraulic disturbances 
poses further challenges to microorganism survival [33]. 
Therefore, it is imperative to characterize the microbial 
community composition, its metabolic regime, and the 
driving mechanisms underlying community shifts dur-
ing both R and non-regulation (NR) periods. In the pres-
ent study of a Chinese river–lake system, our objectives 
were to (1) elucidate the community assembly patterns 

and stability of microbial communities during R and NR 
periods; (2) identify the key factors that affected the sta-
bility or changes of microbial communities; (3) explore 
the composition and metabolic patterns of microbial 
communities during the R and NR periods; and (4) 
reveal the key mechanisms by which microbial commu-
nities adapt to hydraulic disturbance. We hypothesized 
that the change between R and NR periods would drive 
changes in the water environment that would cause the 
microbial community to change in response. Our results 
provide insights into the identification and prediction of 
changes in microbial communities during different regu-
lation periods, and will support the maintenance of stable 
river–lake ecosystems during high-frequency hydraulic 
shock periods.

Materials and methods
Study area and sampling area division
Our study area was the Dongping river–lake ecosystem. 
Dongping Lake is the last lake used to regulate water 
flows in the eastern route of China's South-to-North 
Water Diversion Project (SNWDP) (Fig.  1). It experi-
ences an extended and high-frequency period of water 
transfer each year as water is channeled through diver-
sion routes into the river–lake system [34]. The Dong-
ping river–lake system has been conducting periodic 
water regulation every year since 2013 (China Ministry 
of Water Resources, CMWR) [35]. The most recent water 
regulation period, from September 23, 2022 to June 29, 
2023. Water from the lower reaches of the Yangtze River 
flowed through the diversion channel into Dongping 
Lake, with a total regulation volume of 282 million cubic 
meters (Shandong Provincial Water Resources Depart-
ment, SPWRD). We conducted sampling in April and 

Fig. 1  Study area and locations of sampling points. AC, aquaculture zone; DI, Dawen River inflow zone; LC, lake center zone; LI, Liuchang River inflow 
zone; LO, lake outflow zone
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August 2023 respectively, corresponding to the regula-
tion and no-regulation periods.

We divided the study area into five distinct zones for 
sampling, based on the functions of different zones in the 
Dongping river–lake system and the design of the South-
to-North Water Diversion Eastern Route. These zones 
were the Dawen River inflow zone (DI), the Liuchang 
River inflow zone (LI, which serves as the inflow chan-
nel from the SNWDP), the lake center zone (LC), an 
aquaculture zone (AC), and the lake’s outflow zone (LO). 
Importantly, our zoning method also accounted for the 
flow field characteristics of the Dongping river–lake sys-
tem (Fig.  1) [31]. This approach enhanced the scientific 
rigor and rationality of our sampling design.

Sampling and sequencing
According to the schedule of the SNWDP, the April was 
designated as the R period, and the August fell within the 
NR period [31]. In each zone, we established 10 sampling 
points to collect water samples. After three replicates, all 
subsamples were mixed into a composite sample. Water 
samples used for physicochemical property determina-
tion were stored at 4℃ and transported to the labora-
tory for testing within 6 h. For microbiological analysis, 
water samples were immediately pumped and filtered 
(see supplementary material for details), and the filter 
membranes were stored at -80℃ within 48 h [5]. Trans-
parency (SD) was measured using Secchi disk. pH and 
dissolved oxygen (DO) were measured in situ using a 
HACH HQ30d portable measuring instrument (HACH, 
Loveland, CO, USA). Flow velocity (V) and water depth 
(D) were also determined on-site by using a Doppler 
current meter (SF-6526  J-21, Oriental Glass (Beijing) 
and a SpeedTech depth finder (SM-5A, Beijing, China), 
respectively. For water chemistry, total phosphorus (TP) 
was analyzed by the ammonium molybdate spectropho-
tometric method; phosphate (PO4

3−), nitrate nitrogen 
(NO3

−–N), and nitrite nitrogen (NO2
−–N) by ion chro-

matography; total nitrogen (TN) through the alkaline 
potassium persulfate digestion-UV spectrophotomet-
ric method; ammonia nitrogen (NH4

+–N) by Nessler’s 
reagent spectrophotometry; total organic carbon (TOC) 
by the combustion oxidation-nondispersive infrared 
absorption method; and chemical oxygen demand (COD) 
by the dichromate method. All water sample analyses 
adhered to the testing standards and specifications of 
the Ministry of Ecology and Environment of the Peo-
ple's Republic of China [5]. Details testing standards and 
detection limits are provided in Table S1. We integrated 
16S rRNA sequencing and metagenomic sequencing 
technologies to identify the microbial community’s spe-
cies composition and abundances, and performed gene 
annotation of the microbial communities during different 
periods. For 16S rRNA sequencing, we first extract the 

microbial DNA from samples. Using the extracted DNA 
as templates, we used primers 515F (5'-GTGCCAGC-
MGCCGCGGTAA-3') and 806R (5'-GGACTACH-
VGGGTWTCTAAT-3') to perform PCR amplification 
on the V3-V4 variable region of the 16S rRNA gene 
and constructed a sequencing library. Then we conduct 
sequencing data analysis. For metagenomic sequenc-
ing, we first extract the sample DNA, then construct the 
paired-end library, and then sequence and analyze the 
data. Details are provided in the supplementary material.

Statistical analyses
β nearest-taxon index (βNTI) based on a null model 
was used to assess the relative importance of determin-
istic and stochastic processes in microbiome assem-
bly. According to the βNTI index, microbial assembly 
mechanisms were categorized into homogeneous selec-
tion (HoS), heterogeneous selection (HeS), homogeniz-
ing dispersal (HD), dispersal limitation (DL), and drift 
(DR) [36, 37]. Detailed calculation and classification cri-
teria of βNTI are provided in the Supplementary mate-
rial. The analysis was performed on the Majorbio cloud 
platform (https://cloud.majorbio.com/), a professional 
service platform in the microbiomics field specializing 
in high-throughput sequencing, multi-omics integra-
tion, and bioinformatics analysis technologies [38]. See 
supplementary material for a specific description. We 
calculated the average variation degree (AVD) to evalu-
ate microbial community stability [39]. See supplemen-
tary material for specific calculations. Mantel test and 
Pearson correlation analysis were utilized on the Major-
bio cloud platform to identify the driving factors that 
exhibited a significant association with the AVD [31]. 
To further explore the relationships between AVD and 
its influencing factors and assess the model goodness of 
fit [40, 41], we utilized the mgcv package for the R soft-
ware to construct a generalized additive model and the 
ggplot2 package for visualization [42]. The threshold is 
the critical level of the intensity of environmental distur-
bances that trigger significant nonlinear and persistent 
state changes in a system [43]. For microbial community, 
it refers to the critical point of environmental factors at 
which the community exhibits distinctly different spe-
cies composition and abundance [44]. Accordingly, we 
defined the points where microbial abundance undergoes 
significant changes as threshold points. We conducted 
segmented regression analysis using the segmented pack-
age in R software to identify these threshold points (See 
supplementary material, Fig. S4 for details) [45, 46]. Fol-
lowing threshold determination, we used the rug plot 
features in the Origin software and the fitting regres-
sion and contour plots to characterize the distribution 
of microbial abundance related to environmental factors, 
thereby defining the microbial regimes [47]. We used the 

https://cloud.majorbio.com/
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Kruskal–Wallis non-parametric test to statistically vali-
date the robustness of these threshold delineations (Fig. 
S5) [48]. We constructed a microbial co-occurrence net-
work using the molecular ecological network analyses 
pipeline (MENAP) platform (http://ieg4.rccc.ou.edu/
mena) based on stochastic matrix theory [49]. Specifi-
cally, the correlation matrix among microbial species was 
treated as a random matrix. By analyzing the statistical 
properties of its eigenvalues, we distinguished between 
genuine ecological relationships and randomly generated 
correlations [50, 51]. Genera with the top 1% in terms 
of the degree were classified as keystone microorgan-
isms [31]. We used the neuralnet package for R to build 
an artificial neural network (ANN) model, and validated 
our microbial abundance predictions using the trained 
ANN model [52]. R2 = 0.62 indicated that the model fit-
ting effect was good [53]. Additionally, we used ggplot2 
to generate contour line plots, then we determined the 
threshold points predicted by the ANN model via identi-
fying local extremums [54, 55]. One-way analysis of vari-
ance (ANOVA) was used to test the significance of the 
differences among the datasets.

Results
Assembly patterns and stability of the microbial 
communities
The results showed that during the R period, the pri-
mary assembly mechanism of the microbial community 
was HoS (Fig.  2A). The relative importance of HoS was 
0.56 ± 0.11 (mean ± SE) across all zones, which was 0.19 
higher than the value observed during the NR period 
(0.37 ± 0.14) (Fig.  2C). The mean βNTI value during the 
R period was 2.92 ± 1.71 (Fig.  2B), which illustrates the 
main role of HoS during this period. During the NR 
period, DR was the predominant assembly mechanism, 
with a mean relative importance of 0.49 ± 0.14, which was 
0.11 higher than that during the R period (0.39 ± 0.09). In 
addition, the βNTI values of all zones except the LI zone 
during the NR period fell between − 2 and 2 (Fig.  2D), 
indicating that DR was the primary driver of commu-
nity dynamics. It is noteworthy that even during the NR 
period, HoS remained the dominant community assem-
bly mechanism in the LI zone, where water transfer into 
the lake occurred, with a relative importance of 0.64.

Fig. 2  Microbial community assembly patterns in the A, B R and C, D NR periods. Homogeneous selection (HoS), heterogeneous selection (HeS), homog-
enizing dispersal (HD), dispersal limitation (DL) and drift (DR)
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The mean AVD index of the microbial community 
(Fig.  3A) was significantly higher during the R period 
(0.53 ± 0.03) than during the NR period (0.48 ± 0.02) 
(p < 0.05). Specifically, during the R period, no significant 
differences in AVD were found among zones (p > 0.05). 
However, the highest AVD values were observed in 
the LI zone (0.59 ± 0.06), which was 0.01, 0.09, 0.10 and 
0.12 higher those in DI (0.58 ± 0.03), LO (0.50 ± 0.07), 
LC (0.49 ± 0.01), and AC (0.47 ± 0.02) zones, respec-
tively. During the NR period, the LI zone (0.51 ± 0.06) 
remained the highest AVD value. Similarly, no significant 
differences were found among zones (p > 0.05), but the 
AVD value in the LI zone was 0.01, 0.03, 0.05 and 0.07 
higher than those in AC (0.50 ± 0.02), DI (0.48 ± 0.05), LO 
(0.46 ± 0.04), and LC (0.44 ± 0.03) zones, respectively.

The key factors affecting the stability of microbial 
communities
We found that the trends of V (Fig.  3B) and NO3

−–N 
(Fig.  3C) were consistent with the AVD values of the 
microbial community, while the other environment fac-
tors were not significantly correlated with AVD (p > 0.05) 
(Fig. S1). Therefore, determining key factors influencing 
microbial community AVD values was essential for our 
study. We ultimately identified NO3

−–N, V, water depth 
(D), and pH as the key factors that influenced the AVD 
of the microbial community. During the R period (Fig. 
S2A), there was a significant positive correlation between 
NO3

−–N and AVD (r = 0.24, p < 0.05), as was V (r = 0.35, 
p < 0.01). In the NR period (Fig. S2B), NO3

−–N and V 

continued to show significant positive correlations with 
AVD (r = 0.22 and 0.27, respectively; both p < 0.05). And 
in the NR period, the correlation between pH and AVD 
showed a significant positive trend (r = 0.28, p < 0.05), 
but D was significantly negatively correlated with AVD 
(r = 0.55, p < 0.01) in the NR period. In addition, V and 
NO3

−–N were strongly and significantly positively corre-
lated during both the R period (r = 0.73, p < 0.001) and the 
NR period (r = 0.79, p < 0.001).

We further analyzed these variables using generalized 
additive models (Fig.  4). The results revealed weak but 
significant correlations between V and AVD (R2 = 0.29, 
p < 0.05; Fig.  4A) and between NO3

−–N and AVD 
(R2 = 0.21, p < 0.05; Fig.  4C). In contrast, there were no 
significant correlations between D and AVD (Fig. 4B) or 
between pH and AVD (p > 0.05; Fig.  4D). However, the 
correlation between V and NO3

−–N was significant and 
well-fitted (R2 = 0.66, p < 0.05; Fig.  4E). Overall, V and 
NO3

−–N most strongly influenced AVD, which suggests 
that AVD may be influenced by a combination of these 
variables rather than being controlled by a single variable.

Microbial community regimes and metabolic potential 
during different regulation periods
Our study revealed a distinct bimodal distribution 
of microbial abundance in response to changes in V 
(Fig. S3A) and NO3

−–N (Fig. S3B). Specifically, micro-
bial abundance was high at both low and high val-
ues of V and NO3

−–N. Segmented regression analysis 
showed that the microbial community could be divided 

Fig. 3  A Average variation degree of microbial community and the changes in the B flow velocity and C nitrate concentration in the R and NR periods
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into three intervals, with corresponding environmen-
tal thresholds identified (Fig. S4). The critical points of 
the regions with significant changes in abundance were 
shown in Fig.  5A. The impacts of V and NO3

−–N on 
microbial abundance had significant threshold effects, 
with low (V = 0.284  m/s, NO3

––N= 0.031  mg/L) and 
high (V = 0.461  m/s, NO3

−–N = 0.055  mg/L) thresholds. 
The microbial abundance was higher below the low 

threshold and above the high threshold, but decreased 
greatly between these two thresholds. We defined three 
microbial community regimes based on these thresholds: 
regime 1 (R1) below the low threshold, regime 2 (R2) 
between the two thresholds, and regime 3 (R3) above 
the high threshold, which were abundance aggregation 
intervals based on the microbial community abundance. 
The Kruskal–Wallis test revealed significant differences 

Fig. 5  Distribution of microbial community abundance under the different regimes: R1, below the low threshold, R2, between the two thresholds; and 
R3, above the high threshold. A Simultaneous effects of the two variables. B The community composition under the three regimes

 

Fig. 4  Predicted relationships derived from generalized additive models for the relationships between A flow velocity (V) and the average variation 
degree (AVD), B water depth (D) and AVD, C nitrate (NO3

−–N) concentration and AVD, and D pH and AVD. E Relationship between V and the NO3
−–N 

concentration
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in microbial abundance between R1 and R2 (p < 0.001), 
as well as between R2 and R3 (p < 0.01) (Fig. S5). How-
ever, no significant difference was observed between R1 
and R3 (p > 0.05), which was consistent with our find-
ing that microorganisms abundance showed a trend of 
increasing first and then decreasing with the elevation of 
V and NO3

−–N concentration. These results confirmed 
the validity of our regime division. We found substantial 
differences in the composition of the microbial commu-
nities among these regimes (Fig.  5B). In R1, the micro-
bial community was dominated by Pirellula, Bacillus, 
Cavicella, Dinghuibacter, and Sporichthyaceae. In R2, 
the dominant taxa were hgcl_clade, Arenimonas, Bre-
vundimonas, Aeromonas, and Chloroplast was relatively 
abundant. In R3, the dominant microorganisms were 
Flavobacterum, Comamonadaceae, Rhodoferax, Pseu-
domonas and Acinetobacter. These results reveal clear 
differences in the composition of microbial communi-
ties across the three regimes. In particular, there was no 
significant difference (p > 0.05) in the abundance of the 
dominant microbial community in R3 and during the R 
period (Fig. S6).

We found that the microbial co-occurrence network 
showed different characteristics between R and NR peri-
ods (Table  1). Specifically, the microbial co-occurrence 
network during the NR period exhibited more links 
numbers (326) than in the R period (276). In addition, 
the number of points, the average degree, the average 
clustering coefficient (5.46), modularity (0.72), and aver-
age path length (5.46) were higher during the NR period. 
Furthermore, during the R period, the keystone microbial 
taxa were primarily clustered in three modules, which 
we designated as modules 1, 2, and 3 (Fig. 6B), in which 
a module refers to a group of microbial community sub-
groups with tight internal connections and sparse exter-
nal connections, acting as the “functional units” of the 
network. These modules accounted for 11.8, 8.0, and 8.9% 
of the total microbial co-occurrence network, respec-
tively. Module 1 included the keystone taxa Aeromonas, 
Pseudomonas, Flavobacterium, Acinetobacter, Arthro-
bacter, and Arenimonas (Fig.  6A). Module 2 was com-
posed of Fluviicola, Desulfobulbus, Sediminibacterium, 
and Thiobacillus. Module 3 consisted of Pseudoxan-
thomonas, Streptomyces, Thauera, and Hyphomicrobium. 

Table 1  Characteristics of microbial co-occurrence networks
Number of 
points

Number of 
links

Average degree Average clustering 
coefficient

Modularity Average 
path 
length

Regulation (R) period 171 276 4.700 4.43 0.70 4.43
Non-regulation (NR) period 160 326 3.223 5.46 0.72 5.46

Fig. 6  A Composition of keystone taxa and B and C the proportions of connectivity within each module of the microbial co-occurrence networks during 
the R and NR periods, respectively. The number represents the microbial OUT serial number. Modules with similar functional potential are assigned the 
same color. OTU, operational taxonomic unit
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In contrast, during the NR period, the keystone microor-
ganisms were mainly clustered into four modules, which 
we designated as Modules 4, 5, 6, and 7. The proportions 
of the keystone microbial degrees for these four mod-
ules in the whole network were 7.2, 10.3, 5.1, and 3.8%, 
respectively (Fig.  6C). The potential metabolic trends 
associated with the keystone taxa in each module are 
presented in Table S2.

The nitrogen metabolism pathways and related genes 
of the microbial community during the R and NR periods 
were shown in Fig. 7A. The abundance of denitrification-
related genes was significantly higher during the R period 
(p < 0.01). This was particularly evident for the genes 
narB, nasA, nirK, nirS, nirA, nirB, and nirD, which exhib-
ited notable abundances values of 1544, 3218, 8743, 6265, 
12342 3546, and 3076 (OTUs), respectively. The numbers 
of other genes were shown in Table S3. Among them, 
narB is related to the coding for the NO3

−–N assimilation 
system (Nas) enzyme and dissimilatory NO3

−–N reduc-
tase (Nar) enzyme, and nasA is linked to the NO3

−–N 
assimilation system (Fig.  7B). In addition, nirA, nirB, 
nirD, nirK, and nirS are all involved in the synthesis of 
nitrite reductase (Nir). These genes promote assimilatory 

NO3
−–N reduction to ammonium, dissimilatory 

NO3
−–N reduction to ammonium, anaerobic ammonium 

oxidation and denitrification metabolic processes, which 
reduced NO3

−–N concentration. In addition, an interest-
ing observation was that the relative abundances of the 
amoA (120), amoB (55), amoC (43), hao (22), nxrA (872), 
and nxrB (567) genes were significantly lower during 
the R period than those during the NR period (p < 0.05). 
Notably, all these genes were related to the nitrification 
process. Among these genes, amoA, amoB, and amoC are 
responsible for the synthesis of ammonia monooxygen-
ase (Amo) enzyme, the hao gene is related to the synthe-
sis of hydroxylamine oxidoreductase (Hao) enzyme, and 
nxrA and nxrB are involved in the synthesis of nitrite 
oxidoreductase (Nxr) enzyme (Fig. 7C). Under the action 
of these enzymes, the concentrations of ammonium and 
NO2

−–N increased during the R period. Furthermore, 
we identified several microbial taxa, such as Pseudo-
monas, Curvibacter, Acidovorax, and Flavobacterium, 
these strains collectively contributed three or more genes 
related to denitrification metabolism (Fig.  7D). These 
taxa may play a crucial role in driving community-level 
nitrogen cycling during the R period.

Fig. 7  A Nitrogen metabolism process of the microbial communities during the water R and NR periods. Anammox, anaerobic ammonium oxidation; 
ANRA, assimilatory nitrate (NO3

−–N) reduction to ammonium; DNRA, dissimilatory NO3
−–N reduction to ammonium. B important enzymes involved in 

nitrogen metabolism during the water regulation period: Nap, periplasmic nitrate reductase; Nar, nitrate reductase; Nas, assimilatory nitrate reductase; 
Nir, nitrite reductase; Nor, nitric-oxide reductase; and Nos, nitric-oxide synthase. C important enzymes involved in nitrogen metabolism during the water 
non-regulation period: Amo, ammonia monooxygenase; Hao, hydroxylamine oxidoreductase; and Nxr, nitrite oxidoreductase. D microorganisms that 
contributed genes related to nitrogen metabolism during the regulation (R) and non-regulation (NR) period
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Identification and prediction of microbial community 
status
We developed an ANN model to predict and evaluate the 
structure of the microbial community and abundance of 
various taxa. The input layer consisted of two key vari-
ables (V and the NO3

−–N concentration), which we had 
previously identified as significantly influencing micro-
bial abundance. The input layer comprised two neurons, 
the hidden layer comprised six neurons, and the out-
put layer represented microbial community abundance 
(Fig.  8A). The model’s predictions showed a good cor-
relation with the actual values of microbial abundance 
(R2 = 0.62 Fig.  8A) (r = 0.69, p < 0.05; Fig.  8B). In addi-
tion, we used the trained model to simulate microbial 
abundance values under various V and NO3

−–N condi-
tions to identify potential critical threshold points. We 
detected three possible thresholds (Fig.  8C), which we 
labeled as T1 (V = 0.325  m/s, NO3

−–N = 0.038  mg/L), 
T2 (V = 0.448  m/s, NO3

−–N = 0.034  mg/L), and T3 
(V = 0.453 m/s, NO3

−–N = 0.043 mg/L) (Table 2).

Discussion
Flow velocity significantly affected the microbial 
community composition
Our research revealed that hydraulic disturbances led 
to a shift in the microbial community assembly mecha-
nisms towards homogeneous selection, thereby mak-
ing the community composition more similar. High V 
reduced the stability of the microbial community. During 
the water regulation period, a substantial influx of water 
from the SNWDP increased flow velocity, thereby creat-
ing hydraulic disturbance and altering the existing water 
levels [56]. This short-term increase in V led to sediment 
resuspension, which in turn cause elevated nitrogen con-
centrations in the water [31]. This resulting high nitrogen 
loads created a homogenous selection environment for 
microorganisms, and potentially promoted species adap-
tation or elimination within the microbial community 
[57]. This process led to a more similar microbial com-
munity composition in areas affected by the hydraulic 
disturbance.

Even during the non-regulation period, microbial com-
munities in the Liuchang River inflow zone were still 
dominated by homogeneous selection processes, which 
confirmed the influence of high V on community com-
position. In addition, we found that during the non-reg-
ulation period, the microbial community assembly in 
most zones was mainly driven by drift; that is, cell divi-
sion, replication, lysis, mortality, growth, and survival of 

Table 2  Thresholds (T1 to T3) predicted by the artificial neural 
network model for flow velocity (V) and nitrate (NO3

−–N) 
concentration
Threshold point V (m/s) NO3

−–N (mg/L)
T1 0.325 0.038
T2 0.448 0.034
T3 0.453 0.043

Fig. 8  A Structure of the artificial neural network model. B Prediction of the microbial abundance (MA) using an artificial neural network model. CMA as 
a function of the nitrate (NO3

−–N) concentration and flow velocity (V). T1 to T3 represent three potential thresholds
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microbial individuals affected the community composi-
tion [58]. This may be due to the relatively stable water 
flow during this period, which would have exerted lower 
environmental selection pressure on the microbial com-
munity. As a result, species would exhibit similar com-
petitiveness for resource acquisition [59]. Therefore, the 
species turnover and community composition changes 
were largely dominated by the stochastic processes 
related to drift.

During the regulation period, the microbial commu-
nities had high AVD values, but this means that com-
munity stability was low [60]. In addition, the microbial 
communities exhibited shorter average path lengths and 
high average degrees under high V, which suggested 
closer interactions among species and a rapid response 
to external disturbance [61]. However, this also indi-
cated that community composition was highly dynamic, 
and that the original structure was unable to persist in 
the face of intense hydraulic disturbances, resulting in 
weak community stability [62]. In addition, during the 
regulation period, high V increased nitrogen loads in the 
water body, shortened the contact time between micro-
organisms and pollutants, and affected the discharge of 
microbial metabolites [63]. These changes likely favored 
the persistence of genera that can tolerate or benefit from 
high NO3

−–N concentrations while eliminating those 
with low tolerance. Furthermore, the microbial commu-
nity might change to increase the number of new genera 
that could adapt to or take advantage of elevated nitro-
gen loads [64], leading to significant shifts in community 
composition and reduced community stability. Therefore, 
the effect of V on microbial community composition is 
substantial and should not be overlooked.

Microorganisms adapt to hydraulic pulses through 
changes in the metabolic balance
We found that microbial communities can adapt to water 
disturbance by balancing their metabolic processes, with 
V and the NO3

−–N concentration emerging as key factors 
that influenced the entire process. During the regulation 
period, hydraulic shocks increased V, which may cause 
the sediment to be suspended again, thereby increasing 
the NO3

−–N concentration [5]. Confronted with high V 
and NO3–N levels, microbial communities may exhibit 
changes in their metabolic process to enhance nitrogen 
resource utilization efficiency [65–67]. This adjustment 
lets them achieve metabolic process balance, improve 
survival and growth, and better adapt to the new envi-
ronmental conditions. It’s worth emphasizing that, com-
pared to the non-regulation period that is characterized 
by low V, microbial communities during the regulation 
period exhibited distinct metabolic patterns, with signifi-
cant changes in community composition and function.

In addition, the dominant and keystone species showed 
stronger nitrogen metabolic potential, especially with 
the appearance of genera capable of denitrification. The 
microbial community also showed high expression of 
genes related to denitrification processes. During the reg-
ulation period, several dominant microorganisms in the 
community, including Flavobacterium [68], Rhodoferax 
[69], Comamonadaceae [70], Arenimonas [71], Pseudo-
monas [72], and Thiobacillus [73] have been confirmed to 
exhibit an ability to remove nitrogen. Importantly, Aren-
imonas, Pseudomonas, and Flavobacterium also served 
as keystone microorganisms during this period. In addi-
tion, Pseudomonas and Flavobacterium were important 
contributors of genes related to nitrogen metabolism, 
as they provided narB, nirB, nirD, and nasA, which are 
associated with denitrification. This agrees with similar 
previous studies [68, 74, 75]. These genes are involved 
in the synthesis of Nar, Nir and Nas enzymes that pro-
mote NO3

−–N metabolism [76, 77]. Therefore, NO3
−–N 

was transformed to NO2
−–N under the catalysis of Nar 

and Nas enzymes, then converted to NO and N2O by Nir 
enzymes, and finally converted to N2. Meanwhile, the 
expression levels of genes such as hao, nxrA, and nxrB 
decreased. This inhibited the synthesis of Amo, Hao, and 
Nxr enzymes by these genes, so restricting the nitrifi-
cation process, and reducing the utilization of ammo-
nium and nitrites [78]. These metabolic processes enable 
microorganisms to metabolize excess NO3

−–N and adapt 
to the hydraulic disturbance caused by water regulation.

Our results also revealed that V and the NO3
−–N con-

centration exerted significant threshold effects on the 
microbial community abundance. Specifically, lower 
and higher V thresholds corresponded to two distinct 
NO3

−–N concentration thresholds. This suggests that at 
lower V, most microorganisms can adapt and maintain 
normal function, resulting in no clear metabolic prefer-
ence by the community for any particular substance. For 
instance, at low V, the community comprises a diverse 
array of microorganisms involved in a range of metabolic 
processes: Module 4 is associated with carbon metabo-
lism, Module 5 with sulfur metabolism, Module 6 with 
iron reduction, and Module 7 with nitrogen and phos-
phorus conversion. However, once V exceeded the higher 
threshold, those microorganisms that could not adapt 
quickly to the high V and nitrogen load would be elimi-
nated, leaving only highly resilient genera to survive [64].

Consistent with this, we found that as the V and 
NO3

−–N concentration increased, the abundance of 
microorganisms decreased significantly between the 
low and high threshold intervals (i.e., in R2). When flow 
V and the NO3

−–N concentration reached the higher 
threshold, the competitive dynamics among microorgan-
isms shifted to favor the proliferation of dominant gen-
era capable of resisting external stresses. For example, 
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at the higher threshold (R3), genera such as Flavobacte-
rum, Comamonadaceae, Pseudomonas, and Rhodoferax 
emerged, driving an increase in the microbial commu-
nity abundance. These highly resilient microorganisms 
drove the whole community’s nitrogen cycling towards 
denitrification through adjustments of their metabolic 
patterns. This, in turn, decreased the external NO3

−–N 
concentrations. This confirmed our finding that during 
the R period, microorganisms tend more to assimilatory 
nitrate reduction to ammonium, dissimilatory NO3

−–N 
reduction to ammonium, anaerobic ammonium oxida-
tion, and denitrification process. Conversely, the nitri-
fication process was weakened, which lead to a certain 
degree increase in the concentrations of ammonium and 
NO2

−–N, while the concentration of NO3
−–N decreased. 

This also explains why the NO3
−–N concentration in our 

study did not consistently increase with increasing V.
In addition, we developed an ANN model based 

on actual measurements and used it to predict com-
munity abundance under various combinations of V 
and NO3

−–N concentration. The model confirmed the 
threshold effects of the two variables on microbial abun-
dance, with predicted results closely aligning with mea-
sured results. This further enhances our understanding 
of the microbial community dynamics. Our findings pro-
vide valuable insights for river–lake system managers, as 
they will help them to tailor water diversion strategies 
to account for nutrient loads. This approach can maxi-
mize microbial community metabolism and stabilize the 
aquatic environment.

Conclusions
In our study, we examined the metabolic dynamics of 
microbial communities during different regulation peri-
ods in the Dongping river–lake system. We confirmed 
our hypothesis that the environmental change between 
regulation and non-regulation periods changed the water 
environment in ways that caused the microbial com-
munity to change in response. During these periods, 
high-frequency hydraulic disturbances caused increased 
NO3

−–N concentrations. These external environmental 
perturbations drove microbial community assembly pat-
terns toward homogenization, which decreased the sta-
bility of the community composition.

In addition, we found that the microbial commu-
nity abundance was primarily influenced by V and 
the NO3

−–N concentration, with distinct thresholds 
observed for their effects. Specifically, microbial abun-
dance was higher in regions with low and high threshold 
values, but lower in regions between these thresholds. 
The variation in abundance was likely due to the emer-
gence of genera such as Pseudomonas and Flavobacte-
rium, which possess high nitrogen metabolic capacities. 
These genera proliferated in response to disturbances 

caused by high V and NO3
−–N concentrations. Finally, we 

employed an artificial neural network to predict micro-
bial abundance based on V and the NO3

−–N concentra-
tion, thereby validating the identified thresholds. Our 
study provides novel insights into assessing the health 
of river–lake ecosystems through the lens of microbial 
metabolism. However, our study only compared the 
microbial metabolic differences between water regulation 
and non-regulation periods of river–lake systems, and 
lacks long-term dynamic monitoring data on the exter-
nal environment. This limitation makes it difficult for our 
conclusions to reflect the impacts of long-term interan-
nual hydrological and climatic changes on the microbial 
communities, thereby restricting the extrapolation of 
this study’s finding to some extent. It will be necessary 
to carry out continuous observation and analysis in the 
future to obtain more generalizable inferences.
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