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The microbial community metabolic regime
adapts to hydraulic disturbance in river-lake
systems with high—frequency regulation
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Abstract

Background River—lake ecosystems are crucial for the rational allocation of water resources, but frequent water
diversion can destabilize water quality due to hydraulic disturbance. Microbial communities can respond rapidly

to such external perturbations and influence these systems through the effects on nutrient metabolism. Therefore,
understanding how microbial communities respond to hydraulic shocks in aquatic systems and whether they can
adapt to such disturbances is essential for maintaining the health of river—lake systems. We used 16S rRNA and
metagenomic sequencing technologies to examine the metabolic regimes of microbial communities during water
regulation and non-regulation periods in river-lake systems.

Results We found that hydraulic disturbance tended to drive the microbial community toward homogenized
selection, thereby weakening its stability. Flow velocity (V) and the nitrate (NO;"-N) concentration significantly
affected microbial community composition and abundance, with clear threshold effects. We established low
(V=0.284 m/s, NO;"-N=0.031 mg/L) and high (V=0.461 m/s, NO;"-N=0.055 mg/L) thresholds. These thresholds
categorize microbial communities into three distinct regimes: regime1 (R1), regime 2 (R2), and regime 3 (R3). The
microbial abundances in R1 and R3 were significantly higher than those in R2 (p <0.01), while the community in R3
exhibited a strong denitrification capacity. In R3, the microbial community enhanced its denitrification metabolism by
promoting the growth of denitrifying microbial genera (e.g., Pseudomonas and Flavobacterium) to counterbalance the
impact of high Vand NO5;™-N. These strains contributed the denitrification-related genes nasA, narB, nirB, and nirD to
the community, thereby promoting the NO; —N metabolism and reducing environmental NO; =N concentrations. In
addition, we predicted microbial community abundance using an artificial neural network to validate the thresholds
we identified.

Conclusions Our study provides theoretical support for understanding how microbial communities adapt to high-
frequency hydraulic disturbances and offer valuable insights for managers to adjust water diversion strategies in a
timely manner, thereby safeguarding the integrity of river-lake ecosystems.
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Background among the many organisms affected by water diversion,

The river—lake systems are integral hydrological units
consisting of lakes and their interconnected rivers, pro-
cessing the functions of material circulation, energy
flow and ecological barrier [1, 2]. As globally distributed
hydrological continuums [3, 4], river—lake systems are
critical water conservation hubs that play a vital role in
hydrological regulation while substantially contributing
to socioeconomic development [5-7]. River—lake sys-
tems are important carriers of inter-basin water diver-
sion systems used to alleviate the uneven distribution of
water resources (such as the California State Water Proj-
ect in USA, the West to East Water Transfer Project in
Pakistan, the Colorado-Big Thompson Project and the
South-to-North Water Diversion Project in China) [8, 9].
However, these frequent inter-basin water supply activi-
ties and the construction of water conservation facilities,
such as gates and dams, have complicated the hydrody-
namic conditions within these systems [10]. Hydraulic
engineering management may induce significant hydrau-
lic disturbance, potentially triggering sediment resus-
pension and consequent water quality deterioration
[11]. These anthropogenic impacts on river—lake ecosys-
tems have emerged as a critical environmental attention
worldwide [12].

Water diversion will also affect a wide range of organ-
isms within river—lake systems. Artificial regulation
activities can fragment the habitats in these ecosystems,
disrupt food chains, and threaten the survival of animals
and plants [13, 14]. Moreover, the water quality degrada-
tion caused by regulation may trigger algal blooms, which
can disrupt the ecological balance through impacts on
phytoplankton and other communities [15, 16]. Further-
more, changes in the sediment deposition pattern during
water diversion can lead to uneven nutrient distribution
in the water. This poses a challenge for microbiomes that
depend on specific nutrient ratios, as they must adapt to
these altered conditions [17, 18]. It should be noted that

microorganisms are sensitive and responsive to environ-
mental changes. Changes in the composition and struc-
ture of bacterial communities therefore provide clues to
the overall state of an ecosystem [19, 20]. This makes it
necessary to clarify the impact of water regulation on
microbial communities and determine whether they can
adapt to the hydraulic disturbance caused by water regu-
lation and can maintain the river—lake system’s ecological
health.

As fundamental components of river—lake ecosystems,
microorganisms drive nutrient cycling, and this cycling is
essential for maintaining the stability of the aquatic eco-
systems [21-23]. Microorganisms can respond to pertur-
bations in their environment and can adapt by adjusting
their metabolic pathways [24—26]. Ren et al. [27] studied
the river—lake system of China’s Poyang Lake, and found
that the deposition of organic matter and the input of
exogenous nitrogen shaped microbial communities to
promote organisms with strong metabolic potential for
carbohydrates and nitrogen, both in the water and sedi-
ment. Similarly, Yuan et al. [28] found that microorgan-
ism in river channels were affected by concentrations of
nitrite and dissolved oxygen. These environments can
lead to proliferation of microorganisms that are efficient
at denitrification and organic pollution degradation,
thereby adapting to environmental disturbances caused
by seasonal runoff. In addition, a recent study demon-
strated that the sinking of algae in lakes can introduce
sources of carbon, nitrogen, and phosphorus to sur-
face sediments [29]. In response to this environmental
change, the microbial community can adjust its meta-
bolic potential, contributing more genes related to the
conversion of nitrogen, phosphorus and carbon [30].

However, most previous studies focused on static water
in river and lake systems. The lack of research on dynamic
systems is an important gap in our knowledge, as there
are complicated and dynamic hydrodynamic conditions
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in river—lake systems, and particularly in those that are
primarily used for inter-basin water transfer (such as
China's South-to-North Water Diversion Project) [5]. On
the one hand, the hydraulic shock created by flow man-
agement may induce the migration and succession of the
original microbial community, which leads to instability
of community composition and structure [31]. On the
other hand, water diversion and hydraulic shocks may
introduce additional pollution sources, such as nitrogen
and phosphorus, that affect microbial community stabil-
ity and alter the community’s metabolic trends [18]. How
microbial communities respond to these multiple forms
of disturbance caused by complex hydrodynamic condi-
tions, whether they can adapt to this environmental dis-
turbance, and by what mechanism remain unclear.

Our study focuses on the Dongping river—lake system,
an important water regulation lake for the Eastern Route
of the South-to-North Water Diversion Project in China.
The system receives inflows from the Dawen River (east-
ern side of the lake) [32] and the Liuchang River (south-
ern side of the lake), and the lake sustains an aquaculture
area near the outflow zone on its northern side. There-
fore, its internal hydraulic conditions are complex. Dur-
ing regulation (R) periods, dynamic hydraulic changes
will alter the original microbial community composition,
potentially weakening community’s stability [31]. In addi-
tion, internal pollution caused by hydraulic disturbances
poses further challenges to microorganism survival [33].
Therefore, it is imperative to characterize the microbial
community composition, its metabolic regime, and the
driving mechanisms underlying community shifts dur-
ing both R and non-regulation (NR) periods. In the pres-
ent study of a Chinese river—lake system, our objectives
were to (1) elucidate the community assembly patterns
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and stability of microbial communities during R and NR
periods; (2) identify the key factors that affected the sta-
bility or changes of microbial communities; (3) explore
the composition and metabolic patterns of microbial
communities during the R and NR periods; and (4)
reveal the key mechanisms by which microbial commu-
nities adapt to hydraulic disturbance. We hypothesized
that the change between R and NR periods would drive
changes in the water environment that would cause the
microbial community to change in response. Our results
provide insights into the identification and prediction of
changes in microbial communities during different regu-
lation periods, and will support the maintenance of stable
river—lake ecosystems during high-frequency hydraulic
shock periods.

Materials and methods

Study area and sampling area division

Our study area was the Dongping river—lake ecosystem.
Dongping Lake is the last lake used to regulate water
flows in the eastern route of China's South-to-North
Water Diversion Project (SNWDP) (Fig. 1). It experi-
ences an extended and high-frequency period of water
transfer each year as water is channeled through diver-
sion routes into the river—lake system [34]. The Dong-
ping river—lake system has been conducting periodic
water regulation every year since 2013 (China Ministry
of Water Resources, CMWR) [35]. The most recent water
regulation period, from September 23, 2022 to June 29,
2023. Water from the lower reaches of the Yangtze River
flowed through the diversion channel into Dongping
Lake, with a total regulation volume of 282 million cubic
meters (Shandong Provincial Water Resources Depart-
ment, SPWRD). We conducted sampling in April and
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August 2023 respectively, corresponding to the regula-
tion and no-regulation periods.

We divided the study area into five distinct zones for
sampling, based on the functions of different zones in the
Dongping river—lake system and the design of the South-
to-North Water Diversion Eastern Route. These zones
were the Dawen River inflow zone (DI), the Liuchang
River inflow zone (LI, which serves as the inflow chan-
nel from the SNWDP), the lake center zone (LC), an
aquaculture zone (AC), and the lake’s outflow zone (LO).
Importantly, our zoning method also accounted for the
flow field characteristics of the Dongping river—lake sys-
tem (Fig. 1) [31]. This approach enhanced the scientific
rigor and rationality of our sampling design.

Sampling and sequencing

According to the schedule of the SNWDDP, the April was
designated as the R period, and the August fell within the
NR period [31]. In each zone, we established 10 sampling
points to collect water samples. After three replicates, all
subsamples were mixed into a composite sample. Water
samples used for physicochemical property determina-
tion were stored at 4°C and transported to the labora-
tory for testing within 6 h. For microbiological analysis,
water samples were immediately pumped and filtered
(see supplementary material for details), and the filter
membranes were stored at -80°C within 48 h [5]. Trans-
parency (SD) was measured using Secchi disk. pH and
dissolved oxygen (DO) were measured in situ using a
HACH HQ30d portable measuring instrument (HACH,
Loveland, CO, USA). Flow velocity (V) and water depth
(D) were also determined on-site by using a Doppler
current meter (SF-6526 J-21, Oriental Glass (Beijing)
and a SpeedTech depth finder (SM-5A, Beijing, China),
respectively. For water chemistry, total phosphorus (TP)
was analyzed by the ammonium molybdate spectropho-
tometric method; phosphate (PO,*"), nitrate nitrogen
(NO3™=N), and nitrite nitrogen (NO, —N) by ion chro-
matography; total nitrogen (TN) through the alkaline
potassium persulfate digestion-UV spectrophotomet-
ric method; ammonia nitrogen (NH,*-N) by Nessler’s
reagent spectrophotometry; total organic carbon (TOC)
by the combustion oxidation-nondispersive infrared
absorption method; and chemical oxygen demand (COD)
by the dichromate method. All water sample analyses
adhered to the testing standards and specifications of
the Ministry of Ecology and Environment of the Peo-
ple's Republic of China [5]. Details testing standards and
detection limits are provided in Table S1. We integrated
16S rRNA sequencing and metagenomic sequencing
technologies to identify the microbial community’s spe-
cies composition and abundances, and performed gene
annotation of the microbial communities during different
periods. For 16S rRNA sequencing, we first extract the

Page 4 of 14

microbial DNA from samples. Using the extracted DNA
as templates, we used primers 515F (5-GTGCCAGC-
MGCCGCGGTAA-3") and 806R (5-GGACTACH-
VGGGTWTCTAAT-3") to perform PCR amplification
on the V3-V4 variable region of the 16S rRNA gene
and constructed a sequencing library. Then we conduct
sequencing data analysis. For metagenomic sequenc-
ing, we first extract the sample DNA, then construct the
paired-end library, and then sequence and analyze the
data. Details are provided in the supplementary material.

Statistical analyses

S nearest-taxon index (SNTI) based on a null model
was used to assess the relative importance of determin-
istic and stochastic processes in microbiome assem-
bly. According to the SNTI index, microbial assembly
mechanisms were categorized into homogeneous selec-
tion (HoS), heterogeneous selection (HeS), homogeniz-
ing dispersal (HD), dispersal limitation (DL), and drift
(DR) [36, 37]. Detailed calculation and classification cri-
teria of SNTI are provided in the Supplementary mate-
rial. The analysis was performed on the Majorbio cloud
platform (https://cloud.majorbio.com/), a professional
service platform in the microbiomics field specializing
in high-throughput sequencing, multi-omics integra-
tion, and bioinformatics analysis technologies [38]. See
supplementary material for a specific description. We
calculated the average variation degree (AVD) to evalu-
ate microbial community stability [39]. See supplemen-
tary material for specific calculations. Mantel test and
Pearson correlation analysis were utilized on the Major-
bio cloud platform to identify the driving factors that
exhibited a significant association with the AVD [31].
To further explore the relationships between AVD and
its influencing factors and assess the model goodness of
fit [40, 41], we utilized the mgcv package for the R soft-
ware to construct a generalized additive model and the
ggplot2 package for visualization [42]. The threshold is
the critical level of the intensity of environmental distur-
bances that trigger significant nonlinear and persistent
state changes in a system [43]. For microbial community,
it refers to the critical point of environmental factors at
which the community exhibits distinctly different spe-
cies composition and abundance [44]. Accordingly, we
defined the points where microbial abundance undergoes
significant changes as threshold points. We conducted
segmented regression analysis using the segmented pack-
age in R software to identify these threshold points (See
supplementary material, Fig. S4 for details) [45, 46]. Fol-
lowing threshold determination, we used the rug plot
features in the Origin software and the fitting regres-
sion and contour plots to characterize the distribution
of microbial abundance related to environmental factors,
thereby defining the microbial regimes [47]. We used the
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Kruskal-Wallis non-parametric test to statistically vali-
date the robustness of these threshold delineations (Fig.
S5) [48]. We constructed a microbial co-occurrence net-
work using the molecular ecological network analyses
pipeline (MENAP) platform (http://ieg4.rccc.ou.edu/
mena) based on stochastic matrix theory [49]. Specifi-
cally, the correlation matrix among microbial species was
treated as a random matrix. By analyzing the statistical
properties of its eigenvalues, we distinguished between
genuine ecological relationships and randomly generated
correlations [50, 51]. Genera with the top 1% in terms
of the degree were classified as keystone microorgan-
isms [31]. We used the neuralnet package for R to build
an artificial neural network (ANN) model, and validated
our microbial abundance predictions using the trained
ANN model [52]. R?=0.62 indicated that the model fit-
ting effect was good [53]. Additionally, we used ggplot2
to generate contour line plots, then we determined the
threshold points predicted by the ANN model via identi-
fying local extremums [54, 55]. One-way analysis of vari-
ance (ANOVA) was used to test the significance of the
differences among the datasets.
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Results

Assembly patterns and stability of the microbial
communities

The results showed that during the R period, the pri-
mary assembly mechanism of the microbial community
was HoS (Fig. 2A). The relative importance of HoS was
0.56+0.11 (mean+ SE) across all zones, which was 0.19
higher than the value observed during the NR period
(0.37 £0.14) (Fig. 2C). The mean SNTI value during the
R period was 2.92+1.71 (Fig. 2B), which illustrates the
main role of HoS during this period. During the NR
period, DR was the predominant assembly mechanism,
with a mean relative importance of 0.49 + 0.14, which was
0.11 higher than that during the R period (0.39 £ 0.09). In
addition, the SNTT values of all zones except the LI zone
during the NR period fell between -2 and 2 (Fig. 2D),
indicating that DR was the primary driver of commu-
nity dynamics. It is noteworthy that even during the NR
period, HoS remained the dominant community assem-
bly mechanism in the LI zone, where water transfer into
the lake occurred, with a relative importance of 0.64.
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The mean AVD index of the microbial community
(Fig. 3A) was significantly higher during the R period
(0.53+0.03) than during the NR period (0.48+0.02)
(p<0.05). Specifically, during the R period, no significant
differences in AVD were found among zones (p>0.05).
However, the highest AVD values were observed in
the LI zone (0.59 +0.06), which was 0.01, 0.09, 0.10 and
0.12 higher those in DI (0.58+0.03), LO (0.50+0.07),
LC (0.49+0.01), and AC (0.47+0.02) zones, respec-
tively. During the NR period, the LI zone (0.51+0.06)
remained the highest AVD value. Similarly, no significant
differences were found among zones (p>0.05), but the
AVD value in the LI zone was 0.01, 0.03, 0.05 and 0.07
higher than those in AC (0.50 £0.02), DI (0.48 +0.05), LO
(0.46 +0.04), and LC (0.44 + 0.03) zones, respectively.

The key factors affecting the stability of microbial
communities

We found that the trends of V (Fig. 3B) and NO;-N
(Fig. 3C) were consistent with the AVD values of the
microbial community, while the other environment fac-
tors were not significantly correlated with AVD (p>0.05)
(Fig. S1). Therefore, determining key factors influencing
microbial community AVD values was essential for our
study. We ultimately identified NO; =N, V, water depth
(D), and pH as the key factors that influenced the AVD
of the microbial community. During the R period (Fig.
S2A), there was a significant positive correlation between
NO; =N and AVD (r=0.24, p<0.05), as was V (r=0.35,
p<0.01). In the NR period (Fig. S2B), NO;"—-N and V
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continued to show significant positive correlations with
AVD (r=0.22 and 0.27, respectively; both p<0.05). And
in the NR period, the correlation between pH and AVD
showed a significant positive trend (r=0.28, p<0.05),
but D was significantly negatively correlated with AVD
(r=0.55, p<0.01) in the NR period. In addition, V and
NO; N were strongly and significantly positively corre-
lated during both the R period (r=0.73, p<0.001) and the
NR period (r=0.79, p<0.001).

We further analyzed these variables using generalized
additive models (Fig. 4). The results revealed weak but
significant correlations between V and AVD (R*=0.29,
p<0.05; Fig. 4A) and between NO;-N and AVD
(R*=0.21, p<0.05; Fig. 4C). In contrast, there were no
significant correlations between D and AVD (Fig. 4B) or
between pH and AVD (p>0.05; Fig. 4D). However, the
correlation between V and NO; —N was significant and
well-fitted (R*>=0.66, p<0.05; Fig. 4E). Overall, V and
NO; -N most strongly influenced AVD, which suggests
that AVD may be influenced by a combination of these
variables rather than being controlled by a single variable.

Microbial community regimes and metabolic potential
during different regulation periods

Our study revealed a distinct bimodal distribution
of microbial abundance in response to changes in V
(Fig. S3A) and NO; -N (Fig. S3B). Specifically, micro-
bial abundance was high at both low and high val-
ues of V and NO; —N. Segmented regression analysis
showed that the microbial community could be divided
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into three intervals, with corresponding environmen-
tal thresholds identified (Fig. S4). The critical points of
the regions with significant changes in abundance were
shown in Fig. 5A. The impacts of V and NO; -N on
microbial abundance had significant threshold effects,
with low (V=0.284 m/s, NO;-N=0.031 mg/L) and
high (V=0.461 m/s, NO;"-N=0.055 mg/L) thresholds.
The microbial abundance was higher below the low

threshold and above the high threshold, but decreased
greatly between these two thresholds. We defined three
microbial community regimes based on these thresholds:
regime 1 (R1) below the low threshold, regime 2 (R2)
between the two thresholds, and regime 3 (R3) above
the high threshold, which were abundance aggregation
intervals based on the microbial community abundance.
The Kruskal-Wallis test revealed significant differences
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Table 1 Characteristics of microbial co-occurrence networks
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Number of Number of Average degree  Average clustering Modularity Average
points links coefficient path
length
Regulation (R) period 171 276 4.700 443 0.70 443
Non-regulation (NR) period 160 326 3.223 5.46 0.72 546
A B Regulation (R) period
Aeromonas | 77 TN Positive links
Pseudomonas Negative links
Flavobacterium —
Acinetobacter Module 1
Arthrobacter o)
Arenimonas ®
............................. Q
Fluviicola [y
Desulfobulbus {__] o
Sediminibacterium ] Module 2 _g s
Thiobacillus ® of Module 2
............................. 8‘ +/ 797%
Pseudoxanthomonas {] Q v
Streptomyces {]
Thauera Module 3
Hyphomicrobium 4]
Rhodococcus {—
Nocardia{ ] Module 4
Sphingomonas g
.............................. = s
Desulfovibrio {| © X7
Sphaerotilus ] Module 5 = i
Desulfosarcinaceae o b Y AR
----------------------------- ©'| Module 4 Rk
Shewanella {] .3 721% .
Geobacter Module 6 ® \
............................. o " 3 y \
Acinetobacter {] o % NS (42
Curgbacter | Module 7 N '3‘0;364}“3, // Modie 6
acillus ISR A
S RREERREERRRRERRRRERE 2 o . 5.06%
0.0 2x10° 4x10° 6x10° 8x10% 1x10* Non-regulatlon (NR) perlod

Microbial abundance (OTU number)

Fig.6 A Composition of keystone taxa and B and C the proportions of connectivity within each module of the microbial co-occurrence networks during
the R and NR periods, respectively. The number represents the microbial OUT serial number. Modules with similar functional potential are assigned the

same color. OTU, operational taxonomic unit

in microbial abundance between R1 and R2 (p<0.001),
as well as between R2 and R3 (p<0.01) (Fig. S5). How-
ever, no significant difference was observed between R1
and R3 (p>0.05), which was consistent with our find-
ing that microorganisms abundance showed a trend of
increasing first and then decreasing with the elevation of
V and NO; -N concentration. These results confirmed
the validity of our regime division. We found substantial
differences in the composition of the microbial commu-
nities among these regimes (Fig. 5B). In R1, the micro-
bial community was dominated by Pirellula, Bacillus,
Cavicella, Dinghuibacter, and Sporichthyaceae. In R2,
the dominant taxa were hgcl _clade, Arenimonas, Bre-
vundimonas, Aeromonas, and Chloroplast was relatively
abundant. In R3, the dominant microorganisms were
Flavobacterum, Comamonadaceae, Rhodoferax, Pseu-
domonas and Acinetobacter. These results reveal clear
differences in the composition of microbial communi-
ties across the three regimes. In particular, there was no
significant difference (p>0.05) in the abundance of the
dominant microbial community in R3 and during the R
period (Fig. S6).

We found that the microbial co-occurrence network
showed different characteristics between R and NR peri-
ods (Table 1). Specifically, the microbial co-occurrence
network during the NR period exhibited more links
numbers (326) than in the R period (276). In addition,
the number of points, the average degree, the average
clustering coefficient (5.46), modularity (0.72), and aver-
age path length (5.46) were higher during the NR period.
Furthermore, during the R period, the keystone microbial
taxa were primarily clustered in three modules, which
we designated as modules 1, 2, and 3 (Fig. 6B), in which
a module refers to a group of microbial community sub-
groups with tight internal connections and sparse exter-
nal connections, acting as the “functional units” of the
network. These modules accounted for 11.8, 8.0, and 8.9%
of the total microbial co-occurrence network, respec-
tively. Module 1 included the keystone taxa Aeromonas,
Pseudomonas, Flavobacterium, Acinetobacter, Arthro-
bacter, and Arenimonas (Fig. 6A). Module 2 was com-
posed of Fluviicola, Desulfobulbus, Sediminibacterium,
and Thiobacillus. Module 3 consisted of Pseudoxan-
thomonas, Streptomyces, Thauera, and Hyphomicrobium.
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In contrast, during the NR period, the keystone microor-
ganisms were mainly clustered into four modules, which
we designated as Modules 4, 5, 6, and 7. The proportions
of the keystone microbial degrees for these four mod-
ules in the whole network were 7.2, 10.3, 5.1, and 3.8%,
respectively (Fig. 6C). The potential metabolic trends
associated with the keystone taxa in each module are
presented in Table S2.

The nitrogen metabolism pathways and related genes
of the microbial community during the R and NR periods
were shown in Fig. 7A. The abundance of denitrification-
related genes was significantly higher during the R period
(p<0.01). This was particularly evident for the genes
narB, nasA, nirK, nirS, nirA, nirB, and nirD, which exhib-
ited notable abundances values of 1544, 3218, 8743, 6265,
12342 3546, and 3076 (OTUs), respectively. The numbers
of other genes were shown in Table S3. Among them,
narB is related to the coding for the NO;™—N assimilation
system (Nas) enzyme and dissimilatory NO; —N reduc-
tase (Nar) enzyme, and nasA is linked to the NO;-N
assimilation system (Fig. 7B). In addition, nirA, nirB,
nirD, nirK, and nirS are all involved in the synthesis of
nitrite reductase (Nir). These genes promote assimilatory
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NO;-N reduction to ammonium, dissimilatory
NO; -N reduction to ammonium, anaerobic ammonium
oxidation and denitrification metabolic processes, which
reduced NO; —-N concentration. In addition, an interest-
ing observation was that the relative abundances of the
amoA (120), amoB (55), amoC (43), hao (22), nxrA (872),
and nxrB (567) genes were significantly lower during
the R period than those during the NR period (p <0.05).
Notably, all these genes were related to the nitrification
process. Among these genes, amoA, amoB, and amoC are
responsible for the synthesis of ammonia monooxygen-
ase (Amo) enzyme, the hao gene is related to the synthe-
sis of hydroxylamine oxidoreductase (Hao) enzyme, and
nxrA and nxrB are involved in the synthesis of nitrite
oxidoreductase (Nxr) enzyme (Fig. 7C). Under the action
of these enzymes, the concentrations of ammonium and
NO, —N increased during the R period. Furthermore,
we identified several microbial taxa, such as Pseudo-
monas, Curvibacter, Acidovorax, and Flavobacterium,
these strains collectively contributed three or more genes
related to denitrification metabolism (Fig. 7D). These
taxa may play a crucial role in driving community-level
nitrogen cycling during the R period.

A D
. nirA| R
Cyanobium
Nitrospira nasAl R
g:ﬁi
i Pesudomonas
----------------------------- — narB| R
Nitrogen fixtation Anammox: Nitrification A Cinetobacter
Denitrification DNRA ANRA hao|NR
B T e
nxrB|NR
o T BHERAE R Curvibacter
NO; N N
Nap Nir ~—NO_ Nos & [~~ - rrmmemmememmemeeee nirD R
Nas periplasm
e T e e Acidovorax
cytoplasm
SELIEL! ' ‘ WL \Flavobacterium nirB| R
NO;
Hao _/KJ
periplasm | T
QG N LSRR Arthrobacter
cytoplasm nasB| R

Fig. 7 A Nitrogen metabolism process of the microbial communities during the water R and NR periods. Anammox, anaerobic ammonium oxidation;
ANRA, assimilatory nitrate (NO;™-N) reduction to ammonium; DNRA, dissimilatory NO; =N reduction to ammonium. B important enzymes involved in
nitrogen metabolism during the water regulation period: Nap, periplasmic nitrate reductase; Nar, nitrate reductase; Nas, assimilatory nitrate reductase;
Nir, nitrite reductase; Nor, nitric-oxide reductase; and Nos, nitric-oxide synthase. Cimportant enzymes involved in nitrogen metabolism during the water
non-regulation period: Amo, ammonia monooxygenase; Hao, hydroxylamine oxidoreductase; and Nxr, nitrite oxidoreductase. D microorganisms that
contributed genes related to nitrogen metabolism during the regulation (R) and non-regulation (NR) period
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Table 2 Thresholds (T1 to T3) predicted by the artificial neural
network model for flow velocity (V) and nitrate (NO;™-N)
concentration

Threshold point V(m/s) NO;™-N (mg/L)
T1 0.325 0.038
T2 0.448 0.034
T3 0453 0.043

Identification and prediction of microbial community
status

We developed an ANN model to predict and evaluate the
structure of the microbial community and abundance of
various taxa. The input layer consisted of two key vari-
ables (V and the NO; —N concentration), which we had
previously identified as significantly influencing micro-
bial abundance. The input layer comprised two neurons,
the hidden layer comprised six neurons, and the out-
put layer represented microbial community abundance
(Fig. 8A). The model’s predictions showed a good cor-
relation with the actual values of microbial abundance
(R*=0.62 Fig. 8A) (r=0.69, p<0.05; Fig. 8B). In addi-
tion, we used the trained model to simulate microbial
abundance values under various V and NO; -N condi-
tions to identify potential critical threshold points. We
detected three possible thresholds (Fig. 8C), which we
labeled as T1 (V=0.325 m/s, NO;"—N=0.038 mg/L),
T2 (V=0448 m/s, NO;—-N=0.034 mg/L), and T3
(V=0.453 m/s, NO; =N =0.043 mg/L) (Table 2).

Discussion

Flow velocity significantly affected the microbial
community composition

Our research revealed that hydraulic disturbances led
to a shift in the microbial community assembly mecha-
nisms towards homogeneous selection, thereby mak-
ing the community composition more similar. High V
reduced the stability of the microbial community. During
the water regulation period, a substantial influx of water
from the SNWDP increased flow velocity, thereby creat-
ing hydraulic disturbance and altering the existing water
levels [56]. This short-term increase in V'led to sediment
resuspension, which in turn cause elevated nitrogen con-
centrations in the water [31]. This resulting high nitrogen
loads created a homogenous selection environment for
microorganisms, and potentially promoted species adap-
tation or elimination within the microbial community
[57]. This process led to a more similar microbial com-
munity composition in areas affected by the hydraulic
disturbance.

Even during the non-regulation period, microbial com-
munities in the Liuchang River inflow zone were still
dominated by homogeneous selection processes, which
confirmed the influence of high V on community com-
position. In addition, we found that during the non-reg-
ulation period, the microbial community assembly in
most zones was mainly driven by drift; that is, cell divi-
sion, replication, lysis, mortality, growth, and survival of
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microbial individuals affected the community composi-
tion [58]. This may be due to the relatively stable water
flow during this period, which would have exerted lower
environmental selection pressure on the microbial com-
munity. As a result, species would exhibit similar com-
petitiveness for resource acquisition [59]. Therefore, the
species turnover and community composition changes
were largely dominated by the stochastic processes
related to drift.

During the regulation period, the microbial commu-
nities had high AVD values, but this means that com-
munity stability was low [60]. In addition, the microbial
communities exhibited shorter average path lengths and
high average degrees under high V, which suggested
closer interactions among species and a rapid response
to external disturbance [61]. However, this also indi-
cated that community composition was highly dynamic,
and that the original structure was unable to persist in
the face of intense hydraulic disturbances, resulting in
weak community stability [62]. In addition, during the
regulation period, high V increased nitrogen loads in the
water body, shortened the contact time between micro-
organisms and pollutants, and affected the discharge of
microbial metabolites [63]. These changes likely favored
the persistence of genera that can tolerate or benefit from
high NO; -N concentrations while eliminating those
with low tolerance. Furthermore, the microbial commu-
nity might change to increase the number of new genera
that could adapt to or take advantage of elevated nitro-
gen loads [64], leading to significant shifts in community
composition and reduced community stability. Therefore,
the effect of V on microbial community composition is
substantial and should not be overlooked.

Microorganisms adapt to hydraulic pulses through
changes in the metabolic balance

We found that microbial communities can adapt to water
disturbance by balancing their metabolic processes, with
Vand the NO; —N concentration emerging as key factors
that influenced the entire process. During the regulation
period, hydraulic shocks increased V, which may cause
the sediment to be suspended again, thereby increasing
the NO; —N concentration [5]. Confronted with high V'
and NO; N levels, microbial communities may exhibit
changes in their metabolic process to enhance nitrogen
resource utilization efficiency [65-67]. This adjustment
lets them achieve metabolic process balance, improve
survival and growth, and better adapt to the new envi-
ronmental conditions. It's worth emphasizing that, com-
pared to the non-regulation period that is characterized
by low V, microbial communities during the regulation
period exhibited distinct metabolic patterns, with signifi-
cant changes in community composition and function.
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In addition, the dominant and keystone species showed
stronger nitrogen metabolic potential, especially with
the appearance of genera capable of denitrification. The
microbial community also showed high expression of
genes related to denitrification processes. During the reg-
ulation period, several dominant microorganisms in the
community, including Flavobacterium [68], Rhodoferax
[69], Comamonadaceae [70], Arenimonas [71], Pseudo-
monas [72], and Thiobacillus [73] have been confirmed to
exhibit an ability to remove nitrogen. Importantly, Aren-
imonas, Pseudomonas, and Flavobacterium also served
as keystone microorganisms during this period. In addi-
tion, Pseudomonas and Flavobacterium were important
contributors of genes related to nitrogen metabolism,
as they provided narB, nirB, nirD, and nasA, which are
associated with denitrification. This agrees with similar
previous studies [68, 74, 75]. These genes are involved
in the synthesis of Nar, Nir and Nas enzymes that pro-
mote NO; —N metabolism [76, 77]. Therefore, NO3; N
was transformed to NO, —N under the catalysis of Nar
and Nas enzymes, then converted to NO and N,O by Nir
enzymes, and finally converted to N,. Meanwhile, the
expression levels of genes such as hao, nxrA, and nxrB
decreased. This inhibited the synthesis of Amo, Hao, and
Nxr enzymes by these genes, so restricting the nitrifi-
cation process, and reducing the utilization of ammo-
nium and nitrites [78]. These metabolic processes enable
microorganisms to metabolize excess NO;™—N and adapt
to the hydraulic disturbance caused by water regulation.

Our results also revealed that V and the NO; N con-
centration exerted significant threshold effects on the
microbial community abundance. Specifically, lower
and higher V thresholds corresponded to two distinct
NO; -N concentration thresholds. This suggests that at
lower V, most microorganisms can adapt and maintain
normal function, resulting in no clear metabolic prefer-
ence by the community for any particular substance. For
instance, at low V, the community comprises a diverse
array of microorganisms involved in a range of metabolic
processes: Module 4 is associated with carbon metabo-
lism, Module 5 with sulfur metabolism, Module 6 with
iron reduction, and Module 7 with nitrogen and phos-
phorus conversion. However, once V exceeded the higher
threshold, those microorganisms that could not adapt
quickly to the high V and nitrogen load would be elimi-
nated, leaving only highly resilient genera to survive [64].

Consistent with this, we found that as the V and
NO; -N concentration increased, the abundance of
microorganisms decreased significantly between the
low and high threshold intervals (i.e., in R2). When flow
V and the NO; —N concentration reached the higher
threshold, the competitive dynamics among microorgan-
isms shifted to favor the proliferation of dominant gen-
era capable of resisting external stresses. For example,
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at the higher threshold (R3), genera such as Flavobacte-
rum, Comamonadaceae, Pseudomonas, and Rhodoferax
emerged, driving an increase in the microbial commu-
nity abundance. These highly resilient microorganisms
drove the whole community’s nitrogen cycling towards
denitrification through adjustments of their metabolic
patterns. This, in turn, decreased the external NO;—-N
concentrations. This confirmed our finding that during
the R period, microorganisms tend more to assimilatory
nitrate reduction to ammonium, dissimilatory NO;"—N
reduction to ammonium, anaerobic ammonium oxida-
tion, and denitrification process. Conversely, the nitri-
fication process was weakened, which lead to a certain
degree increase in the concentrations of ammonium and
NO, -N, while the concentration of NO; —N decreased.
This also explains why the NO; N concentration in our
study did not consistently increase with increasing V.

In addition, we developed an ANN model based
on actual measurements and used it to predict com-
munity abundance under various combinations of V
and NO3; —N concentration. The model confirmed the
threshold effects of the two variables on microbial abun-
dance, with predicted results closely aligning with mea-
sured results. This further enhances our understanding
of the microbial community dynamics. Our findings pro-
vide valuable insights for river—lake system managers, as
they will help them to tailor water diversion strategies
to account for nutrient loads. This approach can maxi-
mize microbial community metabolism and stabilize the
aquatic environment.

Conclusions

In our study, we examined the metabolic dynamics of
microbial communities during different regulation peri-
ods in the Dongping river—lake system. We confirmed
our hypothesis that the environmental change between
regulation and non-regulation periods changed the water
environment in ways that caused the microbial com-
munity to change in response. During these periods,
high-frequency hydraulic disturbances caused increased
NO; -N concentrations. These external environmental
perturbations drove microbial community assembly pat-
terns toward homogenization, which decreased the sta-
bility of the community composition.

In addition, we found that the microbial commu-
nity abundance was primarily influenced by V and
the NO; —N concentration, with distinct thresholds
observed for their effects. Specifically, microbial abun-
dance was higher in regions with low and high threshold
values, but lower in regions between these thresholds.
The variation in abundance was likely due to the emer-
gence of genera such as Pseudomonas and Flavobacte-
rium, which possess high nitrogen metabolic capacities.
These genera proliferated in response to disturbances
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caused by high V'and NO;™—N concentrations. Finally, we
employed an artificial neural network to predict micro-
bial abundance based on V and the NO; —N concentra-
tion, thereby validating the identified thresholds. Our
study provides novel insights into assessing the health
of river—lake ecosystems through the lens of microbial
metabolism. However, our study only compared the
microbial metabolic differences between water regulation
and non-regulation periods of river—lake systems, and
lacks long-term dynamic monitoring data on the exter-
nal environment. This limitation makes it difficult for our
conclusions to reflect the impacts of long-term interan-
nual hydrological and climatic changes on the microbial
communities, thereby restricting the extrapolation of
this study’s finding to some extent. It will be necessary
to carry out continuous observation and analysis in the
future to obtain more generalizable inferences.
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