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A B S T R A C T 

We study overstable and unstable gravito-inertial waves in a weakly unstable polytropic atmosphere representing solar convection 

zone. We consider wave modes propagating at a small angle to the zonal direction near the equatorial region of the Sun. We 
find that the coriolis force plays an important role in stabilizing low radial order, long wavelength convective modes which 

otherwise would be unstable in the absence of rotation. Focusing solely on naturally trapped waves in the radial direction, we 
also compare the properties of these low frequency gravito-inertial wave modes with corresponding wave modes in a neutrally 

stable polytropic atmosphere in different sized finite domain. We find that the eigenfrequencies of gravito-inertial wave modes 
in a weakly unstable polytropic atmosphere are lower than those in a neutrally stable atmosphere, and that their propagation is 
confined to a narrower wavenumber range. These eigenfrequencies and the range of wavenumbers increase slightly as the angle 
of propagation increase. 
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 I N T RO D U C T I O N  

onvection zone in the Sun drives turbulence affected by gravi- 
ational stratification, rotation and magnetic field. Prograde propa- 
ating vorticity waves are recurring features in theories of rotating 
olar convection zone at convective onset. Many linear studies have 
ttributed them to compressional β-effect as well as conservation 
f law of potential vorticity in a stratified atmosphere (see G. A.
latzmaier & P. A. Gilman 1981 ; Y. Bekki, R. H. Cameron & L.
izon 2022b ; B. W. Hindman & R. Jain 2022 ; R. Jain & B. W.
indman 2023 ; R. Jain, B. W. Hindman & Blume. C. C. 2024 ).
imulation studies of non-linear rotating convection zone in spherical 
odies with various assumptions have also been carried out (see for
xample, Y. Bekki, R. H. Cameron & L. Gizon 2022a , b ; S. A. Triana
t al. 2022 , J. Bhattacharya & S. M. Hanasoge 2023 ; C. C. Blume, B.
. Hindman & L. I. Matilsky 2024 ). However, we have yet to fully

rasp the effects of gravitational stratification, rotation and magnetic 
eld on the low-frequency inertial waves that are driven by coriolis
orce in the Sun’s interior. The challenge has further intensified with 
ecent detection of equatorial Rossby waves (B. Löptien et al. 2018 ),
ritical and high-latitude inertial modes (L. Gizon et al. 2021 ) and
igh frequency retrograde modes (C. S. Hanson, S. M. Hanasoge & 

. R. Sreenivasan 2022 ). 
Helioseismology has revealed that the distribution of Buoyancy 

requency, N in the Sun’s interior is far from uniform (see for
xample, J. Christensen-Dalsgaard 2002 ). The lower region of the 
onvection zone shows different distribution of N from its upper 
egion and from the radiative zone below it. According to the standard 
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olar model S, the square of the buoyancy frequency N2 < 0 in the
un’s convection zone and therefore in general, the Sun’s convection 
one is globally unstable to convection. Noticing a layer in the solar
onvection zone where |N2 

�2 | << 1 where �2 is the square of the
otation rate, B. W. Hindman & R. Jain ( 2023 ) showed that the
ong wavelength (azimuthal order, m ≤ 30) gravito-inertial waves 
ropagating in the zonal direction are stabilized by the rotation 
n such a layer. It was shown explicitly by B. W. Hindman & R.
ain ( 2023 ) that the stability criterion for the prograde propagating
ravito-inertial waves in the solar convection zone near the equator 
lso depends on the acoustic cut-off frequency. In particular, 

2 > − �2 

( k2 + k2 
c )H 

2 (1) 

here k is the total wavenumber; H is a length scale that is related
o the density scale height H and buoyancy frequency N i.e. 

1 

H 

= 1 

H 

− 2 N2 

g 
. (2) 

ere, g is the constant gravitational acceleration and 

2 
c =

1 

4 H 2 

(
1 − 2

d H 

d r 

)
. (3) 

he above criterion ( 1 ) suggests that stable waves can exist for weakly
nstable stratification if | N | is comparable to the rotation rate, �.
ncouraged by this, B. W. Hindman & R. Jain ( 2023 ) investigated the
tability of radially trapped waves propagating in the zonal direction 
n a weakly unstably stratified atmosphere and found the waves 
ith small wavenumbers to be stable in such an atmosphere, due to
otation. 

is is an Open Access article distributed under the terms of the Creative
h permits unrestricted reuse, distribution, and reproduction in any medium,

http://orcid.org/0000-0002-0080-5445
mailto:R.Jain@sheffield.ac.uk
https://creativecommons.org/licenses/by/4.0/


2 R. Jain

M

 

i  

w  

c  

e  

s
 

t  

s  

c  

t  

e  

c  

t  

d
 

d  

f  

r  

H  

w  

u  

l  

t  

z
 

i  

f  

t  

F  

w  

t  

c  

H  

t  

c  

G  

c  

s
 

g  

f  

T  

s  

t  

u  

s  

p  

f  

t

2

W  

w  

t  

c  

e  

t  

l  

r  

J  

p

w

k

i  

p

δ

H  

k

d  

t  

o  

w  

d  

d  

t  

s  

i  

(
 

d  

N

N

w  

s  

r
 

i

ω

 

k  

p  

t  

o
 

w  

i

k

N  

T  

(

k

i  

i  

J  

l  

g  

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/545/2/staf2017/8323163 by guest on 28 January 2026
It is thus, believed that strong density stratification has influence
n the Sun’s convection zone and it is important to consider its effect
ithout the assumption of Boussinesq fluid. In this paper, we will

onsider density stratification without Boussinesq approximation and
xamine waves in a neutrally stable as well as weakly unstably
tratified polytropic atmosphere. 

Gravito-inertial waves are likely to also propagate at an angle to
he zonal direction. The numerical simulations of rotating spherical
hells by B. W. Hindman, N. A. Featherstone & K. Julien ( 2020 )
learly indicate the presence of Taylor columns and vorticity waves at
he onset of the convection. These prograde propagating waves persist
ven when the flow becomes turbulent and although the columns are
onfined to the equatorial band, the waves are not always aligned to
he zonal direction. At times, they are slightly inclined to the zonal
irection with small latitudinal component. 
Recently, R. Jain & B. W. Hindman ( 2023 ) investigated the latitu-

inal propagation of wave modes in a neutrally stable atmosphere and
ound that the low radial order wave modes are naturally trapped in
adial direction for some inclination angles in a semi-infinite domain.
ere, we want to explore the properties of such radially trapped
ave modes, at a small angle to the zonal direction, in a weakly
nstable polytropic atmosphere. Thus, in this paper, we focus on
ow-frequency gravito-inertial waves that propagate at a small angle
o the zonal direction and compare their properties with the purely
onal wave-modes. 

The properties of gravito-inertial waves in this study, will be
nfluenced by rotation and gravitational stratification. The low-
requency gravito-inertial waves have been studied in various con-
exts and are referred to with different names in different literature.
or example, in Geophysics, they are called as Thermal Rossby
aves whereas in Astrophysics, these waves are generally referred

o as overstable convective modes. The waves require either a
urvature in the boundaries to have topological β-effect (see P.
. Roberts 1968 ; F. H. Busse 1970 ) or density stratification in

he radial direction to produce compressional β-effect in fluid
olumns or vortices (see R. Hide 1966 ; G. A. Glatzmaier & P. A.
ilman 1981 ; B. W. Hindman & R. Jain 2022 ). In this paper, we

onsider plane parallel geometry and compressional β-effect due to
tratification. 

The paper is organized as follows. In Section 2 , we describe our
eneric model and the assumptions. The governing equations derived
or a polytropic atmosphere from this model are in Section 3 .
hese equations are valid irrespective of whether the polytropic
tratification is stable, unstable, or neutrally stable. We, first, examine
he potentially complex eigenfrequencies that apply for globally
nstable stratification in the limit of slow rotation. This is in the
ubsection Semi-infinite domain . Secondly, we compare the wave
roperties between neutrally stable and a weakly unstable polytrope
or radially trapped waves in the subsection Finite domain . Finally,
he brief conclusions are reported in Section 4 . 

 T H E  M O D E L  

e investigate radial and latitudinal propagation of gravito-inertial
ave modes near the equatorial region of the Sun. We thus, neglect

he curvature of the Sun and consider a local plane-parallel Cartesian
oordinate system whose origin is at the outer surface of the Sun’s
quator. We assume a constant gravity in the radial direction ( z = 0 is
he surface) i.e. g = −g ˆ z with ˆ z pointing in the radial direction. The
ongitudinal and latitudinal directions point in the ˆ x and ˆ y directions,
espectively. The rotation vector is � = � ˆ y . As was shown by R.
ain & B. W. Hindman ( 2023 ), the propagation of small amplitude
NRAS 545, 1–7 (2026)
lanar waves in such a model is governed by 

d2 � 

d z2 
+ k2 

z ( z) � = 0 , (4) 

here 

2 
z ( z) = ω2 − ( ω2 

ac + 4 �2 ) 

c2 
s 

− k2 
h 

(
1 − N2 

ω2 

)
+ 2 �kx 

ωH 

+ 4 k2 
y �

2 

ω2 
(5) 

s a function of depth. In equation ( 4 ), � is a scaled Lagrangian
ressure fluctuation δP of the wave, i.e 

P ( x , y , z, t) = ρ
1 / 2 
0 �( z) ei ( kx x + ky y −ωt) . (6) 

ere, ω is the temporal frequency and k2 
h = k2 

x + k2 
y with kx ( =

h cos χ ) and ky ( = kh sin χ ) as the wavenumbers in the x and y 
irections, respectively. The parameter χ denotes the angle between
he propagation wave vector and the x-axis (also referred to as zonal
r longitudinal direction). We only consider positive longitudinal
avenumbers, kx > 0 and so the waves propagate in the prograde
irection if the frequency is positive, ω > 0, and in the retrograde
irection for negative frequencies, ω < 0. Thus χ = 0 indicates
he direction of horizontal (zonal) propagation, with positive phase
peed, corresponding to pure prograde propagation and χ = π/ 2
ndicates pure northward propagation. The notation ρ0 in equation
 6 ) is the background density. 

It is apparent from equation ( 5 ) that the vertical wavenumber kz is
epth (radially) dependent. The square of the buoyancy frequency,

2 , is defined as follows 

2 ( z) = g

(
1 

H 

− g 

c2 
s 

)
; H−1 =

(
1 

ρ0 

d ρ0 

d z 

)
, (7) 

here H is the density scale height and c2 
s is the square of the sound

peed. The scale height H in the third term in equation ( 5 ) is also
elated to H and N2 as shown in equation ( 2 ). 

The square of the acoustic cut-off frequency, ωac in equation ( 5 )
s defined as 

2 
ac ≡

c2 
s 

4 H 2 

(
1 − 2

d H 

d z 

)
. (8) 

We can obtain the wave cavity for trapped modes by considering
2 
z = 0 from equation ( 4 ). Note that equation ( 5 ) is a fourth order
olynomial equation in ω and hence there are four solutions. Two of
he solutions correspond to high-frequency acoustic waves and the
ther two are low-frequency gravito-inertial waves. 
Since we are interested in the low frequency gravito-inertial waves,

e consider the low-frequency limit , ω 
2 � << 1, of equation ( 5 ), and

gnore ω2 −4 �2 

c2 
s 

term to yield 

2 
z = −ω2 

ac 

c2 
s 

+ 2 �kx 

ωH 

− k2 
h 

(
1 − N2 

ω2 

)
+ 4 k2 

y �
2 

ω2 
. (9) 

ote that the density scale height H decreases with radius in the Sun.

herefore, ω2 
ac 

c2 
s 

> 0 from equation ( 8 ). This suggests from equation
 9 ) that the wave cavity can exist if 

2 
z =

[ 

2 �kx 

ωH 

+ k2 
h 

N2 

ω2 
+ 4 k2 

y �
2 

ω2 

] 

−
(

k2 
h +

ω2 
ac 

c2 
s 

)
, (10) 

s positive, i.e. the terms inside the square bracket exceeds the terms
n the round brackets. As was pointed out by B. W. Hindman & R.
ain ( 2022 ), the first term, 2 �kx 

ωH 

, is due to the coriolis term and is
arge for low frequencies i.e. ω 

�
< 1. This term is responsible for

ravito-inertial wave cavities in radial direction. Also, the direction
f waves depends on the wave speed ω/kx . The second term in the
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quare bracket is a buoyancy term and is responsible for internal 
ravity wave cavity, provided N2 > 0. Both retrograde and prograde 
aves are possible. Even for kx → 0, we can have internal gravity
ave cavity if the buoyancy term dominates or inertial waves in the

bsence of stratification. If all three terms in the square bracket are
arge, we can have a cavity for the gravito-inertial waves. Even in the
olar convection zone where N2 ≤ 0, the coriolis term and the last
erm inside the square bracket can be large for large kx and for rapid
otation respectively. 

For | N | 
�

>> 2, equation ( 10 ) yields 

ω 

�
≈ kx 

K2 H 

[ 

1 ±
(

1 + k2 
h 

k2 
x 

N2 

�2 
K2 H2 

)1 / 2 
] 

. (11) 

here K2 = ω2 
ac 

c2 
s 

+ k2 
z + k2 

h . 
These are internal-gravity waves that propagate in prograde or 

etrograde direction. Clearly, the prograde waves propagate faster 
ompared to the retrograde waves for kx �= 0. For kx = 0, both waves
ave the same magnitude, and we have northward and southward 
ropagating waves with the same speed. 
On the other hand, for rapid rotation such that kh 

ky 

| N | 
�

<< 1, we 
nce again obtain two solutions: 

ω 

�
≈ kx 

K2 H 

±
( 

k2 
x 

K4 H2 
+ 4

k2 
y 

K2 

) 1 / 2 

. (12) 

Prograde wave is faster than Retrograde for kx �= 0 and ky �= 0.
rograde propagating waves are also sometimes referred to as 

hermal Rossby waves. 
For ky = 0, we only have prograde propagating waves, 

(ω 

�

)
+ 

≈ 2 kx 

K2 H 

, (13) 

hich are studied in detail, in B. W. Hindman & R. Jain ( 2022 ). The
econd term inside the parenthesis in equation ( 12 ) is the modification
o thermal Rossby waves due to non-zero ky . For kx = 0,

(
ω 
�

)
± ≈

2 ky 

K 

from equation ( 12 ), resulting in Northward and Southward 
ropagating waves with same magnitude but primarily an inertial 
scillation. 
The competing effects of coriolis force, buoyancy and the angle of

ropagation leads to either gravito-inertial waves or internal gravity 
aves or acoustic waves. In the next section, we focus on the
roperties of low frequency gravito-inertial waves in a polytropic 
tmosphere relevant to low-mass stars such as the Sun. 

 PO LY TROP IC  ATMO SPH ER E  

e consider a polytropic atmosphere in the domain z ∈ ( −∞ , 0]
uch that all thermodynamic parameters are power-law functions of 
he height coordinate, z. Equation ( 4 ) can thus be transformed into

hittaker’s Equation (see for details, R. Jain & B. W. Hindman 
 2023 )) 

d2 � 

d ξ 2 
+

[
κ

ξ
− 1 

4 
− ν( ν − 1) 

ξ 2 

]
� = 0 , (14) 

here 

= −2 kh 

√ 

1 − � 2 z (15) 
s a non-dimensional depth and 

= 

1 √ 

1 − � 2 

[(
α + 1 

2 γ

)
ω2 − 4 �2 

gkh 

+ ( α − ˆ α) 

2 γ ˆ α

(
gkh 

ω2 

)

+
(

α − 2( α − ˆ α) 

γ ˆ α

)(
�

ω 

)
kx 

kh 

]
. (16) 

The parameter ν
(= α+ 2 

2 

)
depends on stratification through the 

olytropic index α. For an adiabatic exponent γ , a neutrally stable
tmosphere is ˆ α ≡ ( γ − 1)−1 . Thus, a polytropic atmosphere is 
eutrally (un)stable to convective overturning if α( < ) > ˆ α. 
The parameter � 2 used in equations ( 15 ) and ( 16 ) is defined as 

2 ≡ k2 
y 

k2 
h 

4 �2 

ω2 
= 4 �2 

ω2 
sin 2 χ, (17) 

nd governs the nature of the low frequency gravito-inertial waves 
n a polytropic atmosphere. For � 2 < 1, we have radially trapped
odes where as � 2 > 1 gives rise to continuous spectrum of

etrograde propagating waves into solar interior. Note that the radial 
igenvalue κ can be obtained by applying appropriate boundary 
onditions. 

The general solution of equation ( 14 ) is given by the sum of Kum-
er’s Confluent hypergeometric functions of the first and second 

ind, namely M and U functions. In the following subsections, we
ill investigate the solution separately in a semi-infinite domain 
 ∈ ( −∞ , 0] and a finite domain z ∈ [ −D, 0] with D denoting
he depth of the convection zone from the surface z = 0. For
ppropriate boundary conditions in the radial direction, Whittaker’s 
quation generates a discrete spectrum of eigenmodes, with κ as the 
igenvalue. Since κ is a function of the frequency, each eigenmode 
ill possess a specific eigenfrequency, ωn with n as the radial order
f the mode and κn = κn ( kh ) the nth eigenvalue. 
In a non-dimensional form, the local dispersion relation ( 16 ) can

e written as 
[

1 − 4 sin 2 χ

˜ ω2 

]1 / 2 

κ = A
(

˜ ω2 − 4
) ε

m 

+ mS 

˜ ω2 
+

[
( α − 4 Sε) 

˜ ω 

]
cos χ, 

(18) 

here 

˜  = ω 

�
, m = kh R, ε = �2 R 

g 
, S = ( α − ˆ α) 

2 γ ˆ αε
, A = α + 1 

2 γ
. 

For a regular solution in the semi-infinite domain ( −∞ , 0], the
igenvalue κ takes on discrete values that depend on the radial order
 and the polytropic index α, i.e. 

n = n + 1 + α

2 
, (19) 

nd the eigenfunction (see equations 6 ) is given by 

P ( z, x, y, t) = Cn z
α+ 1 ekh 

√ 

1 −� 2 z L( α+ 1) 
n 

(
−2

√ 

1 − � 2 kh z
)

ei( kx x+ ky y−ωt) . (20) 

ere Cn is an arbitrary constant and Lα+ 1 
n is the nth-order Associated 

aguerre Polynomial. For radially trapped waves, we require � 2 < 1 
see also R. Jain & B. W. Hindman 2023 ). In what follows, we will
onsider such radially trapped waves in detail. In particular, we want
o investigate if the modes that are unstable in the absence of rotation,
ould be stabilized in the presence of coriolis force. If so, for what
avelengths? 
MNRAS 545, 1–7 (2026)



4 R. Jain

M

3

I  

t  

d  

T

 ∣∣∣

w

a

a

a

I  

f  

(  

r  

p  

i  

e

ω

D  

a  

k  

s

k

T  

b  

t  

a
c  

z  

w

a  

d  

a  

n  

o  

c  

c  

s  

o  

f  

c  

c  

r  

Figure 1. Complex eigenfrequencies of fast (filled circles) and slow (dashed) 
radially trapped gravito-inertial modes as a function of Spherical Harmonic 
Degree, kh R in a semi-infinite domain. All curves are for n = 0 mode. Differ- 
ent colours are for different angles of propagation χ = 0◦, 5◦, 10◦, 15◦, and 
20◦. The assumption of radially trapped mode in a slow rotating atmosphere 
(see equations ( 23 ) and ( 24 )) allows only certain eigenfrequencies. Low to 
moderate wavenumbers show overstable convective modes with purely real 
eigenfrequencies whereas for the higher wavenumbers, we have unstable 
wave modes. 

Figure 2. Complex eigenfrequencies of fast (filled circles) and slow (dashed) 
radially trapped gravito-inertial modes as a function of Spherical Harmonic 
Degree, kh R in a semi-infinite domain. Only first five radial order modes 
are shown with different colour and for different angles of propagation χ = 

0◦ (top), 10◦ (middle) and 20◦ (bottom). The assumption of slow rotation 
allows only certain eigenfrequencies. Low to moderate wavenumbers show 

overstable convective modes with purely real eigenfrequencies whereas for 
the higher wavenumbers, we have unstable wave modes. 
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.1 Semi-infinite domain: slow rotation 

n this subsection, we investigate eigenfrequencies of the radially
rapped gravito-inertial waves in a slowly rotating atmosphere in the
omain ( −∞ , 0]. For slowly rotating atmosphere, ε is very small.
hus, we expand ωn 

�n 
in powers of ε. Ignoring O( ε2 ), 

ωn 

�n 

≈ a0 + a1 ε. (21) 

We investigate only the radially trapped modes in this section i.e.
ωn 

�n 

∣∣∣2 
>> 4 sin 2 χ . In this limit 

⎡ 

⎢ ⎣ 

1 − 4 sin 2 χ∣∣∣ ωn 

�n 

∣∣∣2 

⎤ 

⎥ ⎦ 

1 / 2 

≈ 1 − 2 sin 2 χ∣∣∣ ωn 

�n 

∣∣∣2 , (22) 

hich yields, using equation ( 18 ) 

0 =
α cos χ ± [

α2 cos 2 χ + 4 κn (2 κn sin 2 χ + mS)
]1 / 2 

2 κn 

, (23) 

nd 

1 =
4 a0 S cos χ − A 

m 

a2 
0 ( a

2 
0 − 4) 

( α cos χ − 2 a0 κn ) 
. 

n the above equations, κn is the n th eigenvalue and ωn is the
requency of n th radial order mode. The’ + ( −)’ sign in equation
 23 ) yield fast(slow) gravito-inertial trapped waves in a slowly
otating, polytropically stratified atmosphere. For a weakly unstable
olytropic atmosphere S < 0. Thus, depending on the discriminant
n equation ( 23 ), we can obtain complex eigenfrequencies. From
quations ( 21 ) and ( 23 ), we have 

n = α� cos χ

2 κn 

±
⎡ 

⎣ 

α2 �2 cos 2 χ

4 κ2 
n 

+
(

g kh ( α− ˆ α) 
2 γ ˆ α�2 + 2 sin 2 χκn 

)
�2 

κn 

⎤ 

⎦ 

1 / 2 

. (24) 

espite the atmosphere being neutrally unstably stratified ( ˆ α > α),
 mode can be stabilized by rotation if the mode has sufficiently low
h R and low radial order n . The mode is unstable for a threshold
pherical harmonic degree, kh R that exceeds 

h R > −
(
α2 cos 2 χ + 8 sin 2 χκ2 

n 

)
4 κn S 

. (25) 

his threshold kh R increases as the unstably stratified atmosphere
ecomes stronger (i.e. | S| becomes smaller). Also note that the
hreshold kh R increases with increasing χ . Thus, a mode propagating
t an angle to the zonal direction has increased threshold kh R 

ompared to a mode with same radial order propagating purely in the
onal direction. We now examine how stability of the mode varies
ith different χ for a given S. 
We consider a weakly unstable atmosphere with S = −5 × 10−3 

nd investigate the stability of the n = 0 modes propagating at
ifferent angles χ to the zonal axis. Fig. 1 shows real (left panel)
nd imaginary (right panel) parts of ωn 

�n 
as a function of kh R for such

 = 0 modes. The real and imaginary part of eigenfrequencies are
btained from equations ( 23 ) and ( 24 ) for n = 0. Various coloured
urves are for different values of χ . On the left panel, the filled
ircle (dashed) curves are for fast (slow) modes. Only the points that

atisfy 2 sin χ <

∣∣∣ ωn 

�n 

∣∣∣ < 1 are shown in both panels. As the angle

f propagation increases, the real part of eigenfrequencies increase
or a given kh R. Also, the threshold kh R beyond which we have the
omplex conjugate pair increases with χ . The fast and slow modes
orrespond to overstable convective modes when they have purely
eal frequencies. Such modes have been convectively unstable and
NRAS 545, 1–7 (2026)
ithout any oscillatory part in the absence of rotation. When the
wo solutions are complex, we have unstable, oscillatory convective
odes that have same speed and they propagate in the prograde

irection. All modes are overstable for low-to-moderate kh R. 
Now we consider other radial order modes for different χ for

he same value of S. Fig. 2 displays the real (left column) and
maginary part (right column) of the complex eigenfrequencies for
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ow-frequency radially trapped gravito-inertial waves in the limit of 
low rotation. For clarity, we only show the first five radial orders
 n = 0 , 1 , 2 , 3 , 4) and denote them with different colors black, green,
lue, red and light-blue. 
The top row in Fig. 2 is for χ = 0◦. The left-hand panel shows

wo types of gravito-inertial waves: fast waves with thick filled 
ircles and slow waves with dashes. Once again, both types of
aves are prograde propagating and their real frequencies merge 

t some wavenumber. As mentioned, at this threshold wavenumber 
nd beyond, the two waves have conjugate pair with the same real
requencies and oppositely signed imaginary parts. It is clear that 
or low to moderate wavenumbers, both types of waves propagating 
n zonal direction are infact overstable convective modes. The right- 
and panel illustrates the positive imaginary root i.e. the growth rate. 
he waves are unstable when they have complex eigenfrequencies. 
hese unstable waves have a growth rate for moderate values of
zimuthal order ( kh R = kx R for χ = 0◦) as shown in the top right
anel. This was also reported in B. W. Hindman & R. Jain ( 2023 ),
here only the case of χ = 0◦ was considered. Recall that the fast

nd slow gravito-inertial waves have been referred to as Thermal 
ossby waves at and beyond the threshold in F. H. Busse ( 1986 )

.e. the unstable and marginally stable modes collectively have been 
alled as Thermal Rossby waves, whereas B. W. Hindman & R. Jain
 2022 ) referred the entire solution (stable + unstable) as Thermal
ossby wave. 
Since we are only focusing on the radially trapped waves in 

he limit of slow rotation, we only display the stable and unstable
olutions for waves that satisfy 2 sin χ � | ω 

�
| � 1. These are shown 

n the middle row for χ = 10◦ and in the bottom for χ = 20◦. Only
ow-order, fast gravito-inertial waves are found to be radially trapped 
n this limit. Once again, for low to moderate spherical harmonic 
egrees kh R, we have overstable convective modes (with purely real 
igenfrequencies) and unstable modes for higher kh R. However, the 
agnitude of the eigenfrequencies for χ �= 0 are higher compared 

o the waves that propagate in purely zonal direction ( χ = 0◦). The
hreshold kh R beyond which the wave modes are unstable is also 
arge as expected from equation ( 25 ). 

.2 Finite domain 

he solar convection zone is believed to be about 200 Mm in depth
nd as specified by model S (J. Christensen-Dalsgaard et al. 1996 ),
he square of the buoyancy frequency, N2 , shows a sharp rise at the
ottom of the convection zone (see fig. 1 in B. W. Hindman & R.
ain 2023 ). We consider the thin layer where this sudden change in

2 occurs at the interface where the gravito-inertial waves undergo 
otal reflection. We thus apply a reflective boundary condition at this
nterface, and adopt a condition of vanishing lagrangian pressure 
uctuation at this interface, i.e. δP ( z = −D ) = 0. We will examine

he effect of different depth of the interface on eigenfrequencies 
f waves and so we consider three different depths, D = 100 Mm,
00 Mm, and 300 Mm. Along with the regularity condition at the
rigin ( z = 0), we now obtain the following dispersion relation: 

( −η, α + 2 , 2
√ 

1 − � 2 kh D) = 0 , (26) 

here η = κ − α
2 + 1 with κ is given by equation ( 16 ). We are

nterested in the eigenfrequencies of gravito inertial waves that 
ropagate at an angle to the zonal direction in a finite domain
ith N2 < 0 and also want to compare them with the corresponding
ravito-inertial waves in a neutrally stable atmosphere i.e. N2 = 0. 
or both these atmospheres, we consider wave frequencies that 
atisfy 2 sin χ ≤ ω 

�
. This enables us to have a direct comparison 
ith the corresponding waves in a weakly unstably stratified semi- 
nfinite region discussed in previous section (see also, R. Jain & B.

. Hindman 2023 for neutrally stable atmosphere). In Fig. 3 , we plot
igenfrequencies as a function of spherical harmonic degree kh R for 
hree different values for depths D = 100 Mm (dashed), 200 Mm
solid), and 300 Mm (dotted). The top, middle and bottom rows are
or angle of propagation, χ = 0◦, 10◦, and 20◦, respectively. The left
olumn shows curves for a neutrally stable polytropic atmosphere 
 N2 = 0) and the right column for a weakly unstable polytropic
tmosphere. In all figures, the uppermost curve corresponds to modes 
hat lack nodes in radius i.e. n = 0. The radially trapped modes with
 > 0 also have positive frequencies with even higher radial order
odes showing accumulation at zero frequencies for the neutrally 

table atmosphere. On the other hand, the nature of gravito-inertial 
aves is very different in the weakly unstable atmosphere as shown

n the right column. The corresponding waves have relatively lower 
igenfrequencies and restricted range of kh R. 

As was also noted in the semi-infinite domain solutions (see the
revious subsection), here also only low radial order trapped modes 
xist for χ = 0◦ regardless of the type of stratification. The modes
f very low kh R are not naturally trapped except when waves have
urely zonal propagation i.e. for χ = 0◦. However, both types of
aves, slow and fast, are prograde propagating for χ = 0◦ where as
nly fast modes exist for χ > 0◦ with 2 sin χ < ω 

�
. 

It is noticeable that as the depth increases, there are more higher
adial order modes that satisfy ω 

�
> 2 | sin χ | as is shown in Fig.

 (for example, compare the dotted curves with dashed). The 
igenfrequencies are slightly higher for D = 300 Mm compared to
 = 100 Mm and the modes with relatively low wavenumbers also

xist. 
MNRAS 545, 1–7 (2026)
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.3 g-modes coupling 

s was mentioned in the earlier section, the distribution of N2 with
epth, shows a sudden increase in N2 between the convection zone
nd the radiative interior (see fig. 1 in J. Christensen-Dalsgaard
t al. 1996 ; see also B. W. Hindman & R. Jain 2023 ). Thus, at
his interface, it is possible that coupling between g-modes and the
ravito-inertial waves occur. In other words, the dispersion curves
f prograde propagating g-modes that reside in the stable radiative
one beneath the interface, and the gravito-inertial modes that reside
bove the interface, are expected to cross at certain eigenfrequencies
ith avoided crossings at these eigenfrequencies. 
With a view to investigate these avoided crossings further, we con-

ider a two-layer model as was also studied in B. W. Hindman & R.
ain ( 2023 ) for χ = 0◦. We attach a sheet of isothermal atmosphere,
imicking radiative zone, below the weakly unstable polytropic layer

f finite depth D. The thickness L of the isothermal atmosphere is
ssumed to be 500 km. We keep the parameters D and S fixed as in
revious sections D = 200 Mm and S = −5 × 10−3 . The boundary
onditions for this two layer model is δP = 0 (at z = 0) and d δP 

d z = 0
at z = −( D + L )). Across the interface, z = −D we require δP 

nd d δP 
d z to be continuous. Using these boundary conditions and

he matching across z = −D, we obtain the following dispersion
elation: 

Kiso sin ( Kiso L ) + [
kh cos χ − (

α+ 2 
2 D 

)]
cos ( Kiso L ) 

cos ( Kiso L ) 

2 kh 

√ 

1 − � 2 M
′ 
(
ν − κn , 2 ν, 2 kh 

√ 

1 − � 2 D
)

M
(
ν − κn , 2 ν, 2 kh 

√ 

1 − � 2 D
) = 0 , (27) 

here the radial wavenumber, denoted by Kiso , within the isothermal
tmosphere now has all the terms constant with depth (see equation
 ) i.e. 

2 
iso =

ω2 − ω2 
ac − 4 �2 

c2 
s 

− k2 
h 

(
1 − N2 

ω2 

)
+ 2 �kx 

ωH 

+ 4 k2 
y �

2 

ω2 
. (28) 

n equation ( 27 ), M
′ 
is the derivative of the M Kummer function with

espect to z (refer to equation 15 ). We solve this dispersion relation
or a set of fixed parameters to obtain eigenfrequencies ωn /�n for
arying kh R. 

Fig. 4 displays the eigenfrequencies as a function of kh R for
rograde propagating g modes and the gravito-inertial modes of
he finite domain. These are blue curves in the left column indicated
y panels (a). The gravito-inertial modes that have been obtained by
gnoring the g-mode cavity are also superimposed with black dotted
urves (refer to subsection 3.2). The top, middle and bottom rows
re for χ = 0◦, 10◦ and 20◦, respectively. As expected, an avoided
rossing can be seen wherever the eigenfrequencies of the two types
f modes cross each other. These avoided crossings are shown in the
ight column in panels (b) for each of the three angles of propagation,
. The range of eigenfrequencies where the two types of modes, the g 
odes and the gravito-inertial modes, have resonance appears quite

mall. The eigenfrequencies and the spherical harmonic degree kh R,
here such avoided crossing occur increases with angle χ . Note that

h R = kx R = m for χ = 0◦ (see also, B. W. Hindman & R. Jain
023). 

 C O N C L U S I O N  

n this paper, we have investigated the low-frequency gravito-inertial
aves propagating at a small angle, χ to the zonal direction in a

ompressible, polytropically stratified atmosphere representing the
NRAS 545, 1–7 (2026)
un’s convection zone. Using an analytical model valid for a general
olytropic index, we explored eigenfrequencies of radially trapped
ave modes in a weakly unstable polytrope. We found that in the

emi-infinite domain, both slow and fast wave modes are naturally
rapped in the radial direction for χ = 0◦ and they propagate in
he prograde direction but only fast wave-modes persist for an
ngle of propagation χ = 0◦. In order to compare with previous
tudies, we also examined the eigenfrequencies of the wave-modes
n a finite domain for a neutrally stable and a weakly unstable
olytropic atmosphere. In a neutrally stable atmosphere, for a zonal
ropagation (i.e. χ = 0◦), the slow waves become degenerate with
 zero frequency wave and only the fast wave perseveres as a
rograde propagating wave and is naturally trapped in the radial
irection (see also, B. W. Hindman & R. Jain 2022 ). However, when
on-parallel propagation to the zonal direction is considered in a
eutrally stable polytropic atmosphere, waves with both, prograde
nd retrograde propagation exist but only prograde propagating
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aves are naturally trapped in the radial direction (see R. Jain & B. W.
indman 2023 ). 
B. W. Hindman & R. Jain ( 2023 ) studied the properties of the

verstable and unstable wave modes that exist when the polytrope is
eakly unstable to convective overturning. They considered purely 

onal propagating wave modes, i.e. χ = 0◦. They found that both, 
low and fast wave modes of low radial orders and long wavelengths
an be stabilized due to rotation. These were also naturally trapped 
aves in the radial direction. Here, we extended the study to explore

he possibility of χ = 0◦, in the limit of slow rotation and found
hat only fast wave modes of low radial orders exist such that
sin χ < | ω 

�
| < 1 and these are stabilized by rotation for moderate

o long wavelengths. Note that these wavelengths are longer for 
= 0◦ compared to for χ = 0◦. As illustrated in Fig. 2 , there

xists a wavelength threshold of convergence (at marginal stability) 
nd beyond, the fast and slow wave-modes become a complex 
onjugate pair (only the positive imaginary root is illustrated) for 
igher orders. When the fast and slow wave-modes have purely real 
requencies, the modes correspond to overstable convective modes. 
n the absence of rotation, both the fast and slow waves would have
een otherwise convectively unstable and non-oscillatory. When the 
ode frequencies are complex, the two solutions correspond to 

nstable, oscillatory convective modes that travel prograde at the 
ame speed. These unstable modes have a growth rate comparable 
ith their oscillation frequency for moderate values of the spherical 
armonic degree kh R (for χ = 0◦, kh R = kx R = m ). For non-
arallel propagation, only low radial-order fast modes that are 
aturally trapped in the radial direction were considered. These 
ere found to be overstable convective modes for low to moderate 
avenumbers kh R unlike for parallel propagation where both slow 

nd fast gravito-inertial waves are overstable convective modes in a 
eakly unstable polytropic atmosphere. As was shown in equation 

 25 ), this threshold wavenumber increases for χ > 0◦. 
We also investigated the possibility of coupling of g-modes with 

rograde propagating gravito-inertial modes that reside in the lower 
egion of the convection zone. The common frequencies of the two 
odes may be useful for studying the g-mode cavity if the gravito-

nertial waves (Thermal Rossby waves) can be observed. 
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