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ABSTRACT

We study overstable and unstable gravito-inertial waves in a weakly unstable polytropic atmosphere representing solar convection
zone. We consider wave modes propagating at a small angle to the zonal direction near the equatorial region of the Sun. We
find that the coriolis force plays an important role in stabilizing low radial order, long wavelength convective modes which
otherwise would be unstable in the absence of rotation. Focusing solely on naturally trapped waves in the radial direction, we
also compare the properties of these low frequency gravito-inertial wave modes with corresponding wave modes in a neutrally
stable polytropic atmosphere in different sized finite domain. We find that the eigenfrequencies of gravito-inertial wave modes
in a weakly unstable polytropic atmosphere are lower than those in a neutrally stable atmosphere, and that their propagation is
confined to a narrower wavenumber range. These eigenfrequencies and the range of wavenumbers increase slightly as the angle

of propagation increase.
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1 INTRODUCTION

Convection zone in the Sun drives turbulence affected by gravi-
tational stratification, rotation and magnetic field. Prograde propa-
gating vorticity waves are recurring features in theories of rotating
solar convection zone at convective onset. Many linear studies have
attributed them to compressional B-effect as well as conservation
of law of potential vorticity in a stratified atmosphere (see G. A.
Glatzmaier & P. A. Gilman 1981; Y. Bekki, R. H. Cameron & L.
Gizon 2022b; B. W. Hindman & R. Jain 2022; R. Jain & B. W.
Hindman 2023; R. Jain, B. W. Hindman & Blume. C. C. 2024).
Simulation studies of non-linear rotating convection zone in spherical
bodies with various assumptions have also been carried out (see for
example, Y. Bekki, R. H. Cameron & L. Gizon 2022a, b; S. A. Triana
etal. 2022, J. Bhattacharya & S. M. Hanasoge 2023; C. C. Blume, B.
W. Hindman & L. I. Matilsky 2024). However, we have yet to fully
grasp the effects of gravitational stratification, rotation and magnetic
field on the low-frequency inertial waves that are driven by coriolis
force in the Sun’s interior. The challenge has further intensified with
recent detection of equatorial Rossby waves (B. Loptien et al. 2018),
critical and high-latitude inertial modes (L. Gizon et al. 2021) and
high frequency retrograde modes (C. S. Hanson, S. M. Hanasoge &
K. R. Sreenivasan 2022).

Helioseismology has revealed that the distribution of Buoyancy
frequency, N in the Sun’s interior is far from uniform (see for
example, J. Christensen-Dalsgaard 2002). The lower region of the
convection zone shows different distribution of N from its upper
region and from the radiative zone below it. According to the standard
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solar model S, the square of the buoyancy frequency N2 < 0 in the
Sun’s convection zone and therefore in general, the Sun’s convection
zone is globally unstable to convection. Noticing a layer in the solar
convection zone where |€2’—§| << 1 where Q2 is the square of the
rotation rate, B. W. Hindman & R. Jain (2023) showed that the
long wavelength (azimuthal order, m < 30) gravito-inertial waves
propagating in the zonal direction are stabilized by the rotation
in such a layer. It was shown explicitly by B. W. Hindman & R.
Jain (2023) that the stability criterion for the prograde propagating
gravito-inertial waves in the solar convection zone near the equator
also depends on the acoustic cut-off frequency. In particular,

2 Qz

R @

where k is the total wavenumber; H is a length scale that is related
to the density scale height H and buoyancy frequency N i.e.

1 1 2N?
H-H g @

Here, g is the constant gravitational acceleration and

kZ_L 1_2% 3)
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The above criterion (1) suggests that stable waves can exist for weakly
unstable stratification if |N| is comparable to the rotation rate, 2.
Encouraged by this, B. W. Hindman & R. Jain (2023) investigated the
stability of radially trapped waves propagating in the zonal direction
in a weakly unstably stratified atmosphere and found the waves
with small wavenumbers to be stable in such an atmosphere, due to
rotation.
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It is thus, believed that strong density stratification has influence
in the Sun’s convection zone and it is important to consider its effect
without the assumption of Boussinesq fluid. In this paper, we will
consider density stratification without Boussinesq approximation and
examine waves in a neutrally stable as well as weakly unstably
stratified polytropic atmosphere.

Gravito-inertial waves are likely to also propagate at an angle to
the zonal direction. The numerical simulations of rotating spherical
shells by B. W. Hindman, N. A. Featherstone & K. Julien (2020)
clearly indicate the presence of Taylor columns and vorticity waves at
the onset of the convection. These prograde propagating waves persist
even when the flow becomes turbulent and although the columns are
confined to the equatorial band, the waves are not always aligned to
the zonal direction. At times, they are slightly inclined to the zonal
direction with small latitudinal component.

Recently, R. Jain & B. W. Hindman (2023) investigated the latitu-
dinal propagation of wave modes in a neutrally stable atmosphere and
found that the low radial order wave modes are naturally trapped in
radial direction for some inclination angles in a semi-infinite domain.
Here, we want to explore the properties of such radially trapped
wave modes, at a small angle to the zonal direction, in a weakly
unstable polytropic atmosphere. Thus, in this paper, we focus on
low-frequency gravito-inertial waves that propagate at a small angle
to the zonal direction and compare their properties with the purely
zonal wave-modes.

The properties of gravito-inertial waves in this study, will be
influenced by rotation and gravitational stratification. The low-
frequency gravito-inertial waves have been studied in various con-
texts and are referred to with different names in different literature.
For example, in Geophysics, they are called as Thermal Rossby
waves whereas in Astrophysics, these waves are generally referred
to as overstable convective modes. The waves require either a
curvature in the boundaries to have topological S-effect (see P.
H. Roberts 1968; F. H. Busse 1970) or density stratification in
the radial direction to produce compressional B-effect in fluid
columns or vortices (see R. Hide 1966; G. A. Glatzmaier & P. A.
Gilman 1981; B. W. Hindman & R. Jain 2022). In this paper, we
consider plane parallel geometry and compressional g-effect due to
stratification.

The paper is organized as follows. In Section 2, we describe our
generic model and the assumptions. The governing equations derived
for a polytropic atmosphere from this model are in Section 3.
These equations are valid irrespective of whether the polytropic
stratification is stable, unstable, or neutrally stable. We, first, examine
the potentially complex eigenfrequencies that apply for globally
unstable stratification in the limit of slow rotation. This is in the
subsection Semi-infinite domain. Secondly, we compare the wave
properties between neutrally stable and a weakly unstable polytrope
for radially trapped waves in the subsection Finite domain. Finally,
the brief conclusions are reported in Section 4.

2 THE MODEL

We investigate radial and latitudinal propagation of gravito-inertial
wave modes near the equatorial region of the Sun. We thus, neglect
the curvature of the Sun and consider a local plane-parallel Cartesian
coordinate system whose origin is at the outer surface of the Sun’s
equator. We assume a constant gravity in the radial direction (z = O1is
the surface) i.e. g = —gZ with Z pointing in the radial direction. The
longitudinal and latitudinal directions point in the ¥ and y directions,
respectively. The rotation vector is 2 = Q3. As was shown by R.
Jain & B. W. Hindman (2023), the propagation of small amplitude
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planar waves in such a model is governed by

d>w 2
G tRov=o @
where
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is a function of depth. In equation (4), ¥ is a scaled Lagrangian
pressure fluctuation § P of the wave, i.e

BP(x.y.z.1) = py  W(e)etrrionmen, ©)

Here, o is the temporal frequency and kj = k2 + kZ with k(=
kj, cos x) and ky(= kj sin x) as the wavenumbers in the x and y
directions, respectively. The parameter x denotes the angle between
the propagation wave vector and the x-axis (also referred to as zonal
or longitudinal direction). We only consider positive longitudinal
wavenumbers, k, > 0 and so the waves propagate in the prograde
direction if the frequency is positive, @ > 0, and in the retrograde
direction for negative frequencies, w < 0. Thus x = O indicates
the direction of horizontal (zonal) propagation, with positive phase
speed, corresponding to pure prograde propagation and x = /2
indicates pure northward propagation. The notation p, in equation
(6) is the background density.

It is apparent from equation (5) that the vertical wavenumber & is
depth (radially) dependent. The square of the buoyancy frequency,
N2, is defined as follows

2o (L _8Y. - (Lde
vomi(h-2) (1)

where H is the density scale height and c? is the square of the sound
speed. The scale height H in the third term in equation (5) is also
related to H and N? as shown in equation (2).

The square of the acoustic cut-off frequency, w,. in equation (5)
is defined as

’ cs2 ! 2dH (8)
@ae = g2 dz /) °

We can obtain the wave cavity for trapped modes by considering
k2 = 0 from equation (4). Note that equation (5) is a fourth order
polynomial equation in w and hence there are four solutions. Two of
the solutions correspond to high-frequency acoustic waves and the
other two are low-frequency gravito-inertial waves.

Since we are interested in the low frequency gravito-inertial waves,
we consider the low-frequency limit, 75 << 1, of equation (5), and

’2Q
ignore “’_;73“72 term to yield
w? 29k N2\ | 4eQ?
= 25 2 (- ) 9
‘ c2 wH " w? ? ©

Note that the density scale height H decreases with radius in the Sun.
2
Therefore, %4 > 0 from equation (8). This suggests from equation

ct

(9) that the wave cavity can exist if

2 a)z.
_ (kh +s ) , (10)

s
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k= K—
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is positive, i.e. the terms inside the square bracket exceeds the terms
in the round brackets. As was pointed out by B. W. Hindman & R.

Jain (2022), the first term, 2372‘, is due to the coriolis term and is
large for low frequencies i.e. § < 1. This term is responsible for

gravito-inertial wave cavities in radial direction. Also, the direction
of waves depends on the wave speed w/k,. The second term in the
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square bracket is a buoyancy term and is responsible for internal
gravity wave cavity, provided N> > 0. Both retrograde and prograde
waves are possible. Even for k, — 0, we can have internal gravity
wave cavity if the buoyancy term dominates or inertial waves in the
absence of stratification. If all three terms in the square bracket are
large, we can have a cavity for the gravito-inertial waves. Even in the
solar convection zone where N2 < 0, the coriolis term and the last
term inside the square bracket can be large for large k, and for rapid
rotation respectively.
For lszM >> 2, equation (10) yields

kiNz 2172 12
11(1+Q§K7{ ) (11)

w ky

Q KM

where K2 = % 4+ k2 + k2.

These are iﬁtemal-gravity waves that propagate in prograde or
retrograde direction. Clearly, the prograde waves propagate faster
compared to the retrograde waves for k, # 0. For k, = 0, both waves
have the same magnitude, and we have northward and southward
propagating waves with the same speed.

On the other hand, for rapid rotation such that 'Iz—"%‘ << 1, we
once again obtain two solutions:
1/2
o by (K5 / (12)
Q  K? K4H? K? '

Prograde wave is faster than Retrograde for k, # 0 and k, # 0.
Prograde propagating waves are also sometimes referred to as
thermal Rossby waves.

For k, = 0, we only have prograde propagating waves,

( w ) 2k (13)
Q)+  KH’
which are studied in detail, in B. W. Hindman & R. Jain (2022). The

second term inside the parenthesis in equation (12) is the modification

to thermal Rossby waves due to non-zero k,. For k, =0, (%) L

:I:Z% from equation (12), resulting in Northward and Southward
propagating waves with same magnitude but primarily an inertial
oscillation.

The competing effects of coriolis force, buoyancy and the angle of
propagation leads to either gravito-inertial waves or internal gravity
waves or acoustic waves. In the next section, we focus on the
properties of low frequency gravito-inertial waves in a polytropic
atmosphere relevant to low-mass stars such as the Sun.

3 POLYTROPIC ATMOSPHERE

We consider a polytropic atmosphere in the domain z € (—o0, 0]
such that all thermodynamic parameters are power-law functions of
the height coordinate, z. Equation (4) can thus be transformed into
Whittaker’s Equation (see for details, R. Jain & B. W. Hindman
(2023))

d2\11+ ko1
dg> ¢ 4 &

where

E=2kV/1-w?z (15)

v =0, (14)

Overstable convective modes in the Sun 3

is a non-dimensional depth and
1 a+1 a)2—4522+((x—6¢) gk,
K =
NI 2y gk 2ya \ o?

( 2(a—d)) (Q) kx]
+ la—— — | —=1. (16)
ya w ) ky

The parameter v (: “‘T”) depends on stratification through the
polytropic index «. For an adiabatic exponent y, a neutrally stable
atmosphere is & = (y — 1)~!. Thus, a polytropic atmosphere is
neutrally (un)stable to convective overturning if ¢(<) > &.

The parameter w2 used in equations (15) and (16) is defined as

, k4aQr a2 .
w:kiwz—wzsmx, a7
and governs the nature of the low frequency gravito-inertial waves
in a polytropic atmosphere. For @w? < 1, we have radially trapped
modes where as @? > 1 gives rise to continuous spectrum of
retrograde propagating waves into solar interior. Note that the radial
eigenvalue « can be obtained by applying appropriate boundary
conditions.

The general solution of equation (14) is given by the sum of Kum-
mer’s Confluent hypergeometric functions of the first and second
kind, namely M and U functions. In the following subsections, we
will investigate the solution separately in a semi-infinite domain
7z € (—00,0] and a finite domain z € [—D, 0] with D denoting
the depth of the convection zone from the surface z = 0. For
appropriate boundary conditions in the radial direction, Whittaker’s
Equation generates a discrete spectrum of eigenmodes, with « as the
eigenvalue. Since « is a function of the frequency, each eigenmode
will possess a specific eigenfrequency, w, with n as the radial order
of the mode and «,, = «,(k;,) the nth eigenvalue.

In a non-dimensional form, the local dispersion relation (16) can
be written as

4si 2 1/2 S — 48
{1_ S[“ZX} x:A(@2—4)i+m—+[L~E)]COSX’
& w

where

Q*R — & 1
&):8, m==k,R, €= s S:(a Aa), :(x+ .
Q g 2ybe 2y
For a regular solution in the semi-infinite domain (—oo, 0], the
eigenvalue « takes on discrete values that depend on the radial order
n and the polytropic index «, i.e.

o
K,,=n+l+§, (19)
and the eigenfunction (see equations 6) is given by

SP(z,x,y.1) = Cuzotl MV 1= plat) (—2\/1 - w2khz)
ei(k;x%»kvyfa)r) . (20)

Here C, is an arbitrary constant and £¢*! is the nth-order Associated
Laguerre Polynomial. For radially trapped waves, we require o> < 1
(see also R. Jain & B. W. Hindman 2023). In what follows, we will
consider such radially trapped waves in detail. In particular, we want
to investigate if the modes that are unstable in the absence of rotation,
could be stabilized in the presence of coriolis force. If so, for what
wavelengths?
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3.1 Semi-infinite domain: slow rotation

In this subsection, we investigate eigenfrequencies of the radially
trapped gravito-inertial waves in a slowly rotating atmosphere in the
domain (—oo, 0]. For slowly rotating atmosphere, € is very small.
Thus, we expand S—Z in powers of €. Ignoring O(€?),

n
— X + €. 21
Qn ap ap ( )

We investigate only the radially trapped modes in this section i.e.
2

9| > 4sin® x. In this limit

Qn
1/2
4sin? 2sin? x
BT TR 22)
which yields, using equation (18)
acos y + [az cos? x + 4k, (2k, sin® x + mS)] 12
ag = , (23)
2K,
and
4ayS cos x — Aad(al —4)
a) =

(acos x — 2apky,)

In the above equations, «, is the nth eigenvalue and w, is the
frequency of nth radial order mode. The’ + (—)’ sign in equation
(23) yield fast(slow) gravito-inertial trapped waves in a slowly
rotating, polytropically stratified atmosphere. For a weakly unstable
polytropic atmosphere S < 0. Thus, depending on the discriminant
in equation (23), we can obtain complex eigenfrequencies. From
equations (21) and (23), we have

12

af2cos x a?Q? cos?

(24)

Wy =

(72";”;255) + 25sin? XKn) Qz:|

2k, 4k Kn

Despite the atmosphere being neutrally unstably stratified (& > «),
a mode can be stabilized by rotation if the mode has sufficiently low
k, R and low radial order n. The mode is unstable for a threshold
spherical harmonic degree, k;, R that exceeds

(a? cos? x + 8sin? xk?)
4k, S '

This threshold k; R increases as the unstably stratified atmosphere
becomes stronger (i.e. |S| becomes smaller). Also note that the
threshold &, R increases with increasing x . Thus, a mode propagating
at an angle to the zonal direction has increased threshold k;,R
compared to a mode with same radial order propagating purely in the
zonal direction. We now examine how stability of the mode varies
with different x for a given S.

We consider a weakly unstable atmosphere with § = —5 x 1073
and investigate the stability of the n =0 modes propagating at
different angles x to the zonal axis. Fig. 1 shows real (left panel)
and imaginary (right panel) parts of g—'; as a function of k;, R for such
n = 0 modes. The real and imaginary part of eigenfrequencies are
obtained from equations (23) and (24) for n = 0. Various coloured
curves are for different values of x. On the left panel, the filled
circle (dashed) curves are for fast (slow) modes. Only the points that

th > — (25)

satisfy 2sin x <

g—’;‘ < 1 are shown in both panels. As the angle
of propagation increases, the real part of eigenfrequencies increase
for a given k;, R. Also, the threshold kj, R beyond which we have the
complex conjugate pair increases with x. The fast and slow modes
correspond to overstable convective modes when they have purely
real frequencies. Such modes have been convectively unstable and
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Figure 1. Complex eigenfrequencies of fast (filled circles) and slow (dashed)
radially trapped gravito-inertial modes as a function of Spherical Harmonic
Degree, kj R in a semi-infinite domain. All curves are for n = 0 mode. Differ-
ent colours are for different angles of propagation x = 0°, 5°, 10°, 15°, and
20°. The assumption of radially trapped mode in a slow rotating atmosphere
(see equations (23) and (24)) allows only certain eigenfrequencies. Low to
moderate wavenumbers show overstable convective modes with purely real
eigenfrequencies whereas for the higher wavenumbers, we have unstable
wave modes.
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Figure 2. Complex eigenfrequencies of fast (filled circles) and slow (dashed)
radially trapped gravito-inertial modes as a function of Spherical Harmonic
Degree, kxR in a semi-infinite domain. Only first five radial order modes
are shown with different colour and for different angles of propagation x =
0° (top), 10° (middle) and 20° (bottom). The assumption of slow rotation
allows only certain eigenfrequencies. Low to moderate wavenumbers show
overstable convective modes with purely real eigenfrequencies whereas for
the higher wavenumbers, we have unstable wave modes.

without any oscillatory part in the absence of rotation. When the
two solutions are complex, we have unstable, oscillatory convective
modes that have same speed and they propagate in the prograde
direction. All modes are overstable for low-to-moderate kj R.

Now we consider other radial order modes for different y for
the same value of S. Fig. 2 displays the real (left column) and
imaginary part (right column) of the complex eigenfrequencies for
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low-frequency radially trapped gravito-inertial waves in the limit of
slow rotation. For clarity, we only show the first five radial orders
(n=0,1, 2, 3, 4) and denote them with different colors black, green,
blue, red and light-blue.

The top row in Fig. 2 is for x = 0°. The left-hand panel shows
two types of gravito-inertial waves: fast waves with thick filled
circles and slow waves with dashes. Once again, both types of
waves are prograde propagating and their real frequencies merge
at some wavenumber. As mentioned, at this threshold wavenumber
and beyond, the two waves have conjugate pair with the same real
frequencies and oppositely signed imaginary parts. It is clear that
for low to moderate wavenumbers, both types of waves propagating
in zonal direction are infact overstable convective modes. The right-
hand panel illustrates the positive imaginary root i.e. the growth rate.
The waves are unstable when they have complex eigenfrequencies.
These unstable waves have a growth rate for moderate values of
azimuthal order (k; R = kR for x = 0°) as shown in the top right
panel. This was also reported in B. W. Hindman & R. Jain (2023),
where only the case of x = 0° was considered. Recall that the fast
and slow gravito-inertial waves have been referred to as Thermal
Rossby waves at and beyond the threshold in F. H. Busse (1986)
i.e. the unstable and marginally stable modes collectively have been
called as Thermal Rossby waves, whereas B. W. Hindman & R. Jain
(2022) referred the entire solution (stable + unstable) as Thermal
Rossby wave.

Since we are only focusing on the radially trapped waves in
the limit of slow rotation, we only display the stable and unstable
solutions for waves that satisfy 2 sin x < |g| < 1. These are shown
in the middle row for x = 10° and in the bottom for x = 20°. Only
low-order, fast gravito-inertial waves are found to be radially trapped
in this limit. Once again, for low to moderate spherical harmonic
degrees k; R, we have overstable convective modes (with purely real
eigenfrequencies) and unstable modes for higher k;, R. However, the
magnitude of the eigenfrequencies for x # 0 are higher compared
to the waves that propagate in purely zonal direction (x = 0°). The
threshold kj, R beyond which the wave modes are unstable is also
large as expected from equation (25).

3.2 Finite domain

The solar convection zone is believed to be about 200 Mm in depth
and as specified by model S (J. Christensen-Dalsgaard et al. 1996),
the square of the buoyancy frequency, N2, shows a sharp rise at the
bottom of the convection zone (see fig. 1 in B. W. Hindman & R.
Jain 2023). We consider the thin layer where this sudden change in
N? occurs at the interface where the gravito-inertial waves undergo
total reflection. We thus apply a reflective boundary condition at this
interface, and adopt a condition of vanishing lagrangian pressure
fluctuation at this interface, i.e. § P(z = —D) = 0. We will examine
the effect of different depth of the interface on eigenfrequencies
of waves and so we consider three different depths, D = 100 Mm,
200 Mm, and 300 Mm. Along with the regularity condition at the
origin (z = 0), we now obtain the following dispersion relation:

M(—n,a+2,2/1 —w?;,D) =0, (26)

where n =« — 5 + 1 with « is given by equation (16). We are

interested in the eigenfrequencies of gravito inertial waves that

propagate at an angle to the zonal direction in a finite domain

with N2 < 0 and also want to compare them with the corresponding

gravito-inertial waves in a neutrally stable atmosphere i.e. N> = 0.

For both these atmospheres, we consider wave frequencies that
w

satisfy 2sin x < §. This enables us to have a direct comparison
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Figure 3. Eigenfrequencies, w/ €2, for gravito-inertial modes as a function
of Spherical Harmonic Degree, kj, R, for neutrally stable (left column) and
weakly unstable (right column) polytropic atmosphere in a finite domain D.
The radial orders n = 0, 1, 2, 3, 4, etc. are shown for each finite domain, D
= 100 Mm (dashed), 200 Mm (solid), and 300 Mm (dotted). The top, middle
and bottom rows are for various angles of propagation, x = 0°, 10°, and 20°,
respectively. In all figures, 2sin x < |g|.

with the corresponding waves in a weakly unstably stratified semi-
infinite region discussed in previous section (see also, R. Jain & B.
W. Hindman 2023 for neutrally stable atmosphere). In Fig. 3, we plot
eigenfrequencies as a function of spherical harmonic degree k;, R for
three different values for depths D = 100 Mm (dashed), 200 Mm
(solid), and 300 Mm (dotted). The top, middle and bottom rows are
for angle of propagation, x = 0°, 10°, and 20°, respectively. The left
column shows curves for a neutrally stable polytropic atmosphere
(N? =0) and the right column for a weakly unstable polytropic
atmosphere. In all figures, the uppermost curve corresponds to modes
that lack nodes in radius i.e. n = 0. The radially trapped modes with
n > 0 also have positive frequencies with even higher radial order
modes showing accumulation at zero frequencies for the neutrally
stable atmosphere. On the other hand, the nature of gravito-inertial
waves is very different in the weakly unstable atmosphere as shown
in the right column. The corresponding waves have relatively lower
eigenfrequencies and restricted range of k;, R.

As was also noted in the semi-infinite domain solutions (see the
previous subsection), here also only low radial order trapped modes
exist for y = 0° regardless of the type of stratification. The modes
of very low k; R are not naturally trapped except when waves have
purely zonal propagation i.e. for x = 0°. However, both types of
waves, slow and fast, are prograde propagating for y = 0° where as
only fast modes exist for x > 0° with 2sin x < &.

It is noticeable that as the depth increases, there are more higher
radial order modes that satisfy & > 2|sin x| as is shown in Fig.
3 (for example, compare the dotted curves with dashed). The
eigenfrequencies are slightly higher for D = 300 Mm compared to
D = 100 Mm and the modes with relatively low wavenumbers also
exist.
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3.3 g-modes coupling

As was mentioned in the earlier section, the distribution of N2 with
depth, shows a sudden increase in N2 between the convection zone
and the radiative interior (see fig. 1 in J. Christensen-Dalsgaard
et al. 1996; see also B. W. Hindman & R. Jain 2023). Thus, at
this interface, it is possible that coupling between g-modes and the
gravito-inertial waves occur. In other words, the dispersion curves
of prograde propagating g-modes that reside in the stable radiative
zone beneath the interface, and the gravito-inertial modes that reside
above the interface, are expected to cross at certain eigenfrequencies
with avoided crossings at these eigenfrequencies.

With a view to investigate these avoided crossings further, we con-
sider a two-layer model as was also studied in B. W. Hindman & R.
Jain (2023) for x = 0°. We attach a sheet of isothermal atmosphere,
mimicking radiative zone, below the weakly unstable polytropic layer
of finite depth D. The thickness L of the isothermal atmosphere is
assumed to be 500 km. We keep the parameters D and S fixed as in
previous sections D =200 Mm and S = —5 x 1073, The boundary
conditions for this two layer model is § P = 0 (at z = 0) and dgf =0
(at z = —(D 4+ L)). Across the interface, z = —D we requi}e §P
and %P to be continuous. Using these boundary conditions and

the matching across z = —D, we obtain the following dispersion
relation:
Kiso $in(Kiso L) + [ky cos x — (%537)] cos(KisoL)
cos(KisoL)

2T — oM (v — Ky, 20, 2k /T = wZD)
M (v — K, 2, 2k /T = ZD'ZD)

where the radial wavenumber, denoted by Kjs,, within the isothermal
atmosphere now has all the terms constant with depth (see equation
5)i.e.

=0, 27)

o — w2, — 47 N2 2Qk,  4k2Q?
K2, = — — k2 <1 - E) + w,H" +ﬁ. (28)
N

In equation (27), M " is the derivative of the M Kummer function with
respect to z (refer to equation 15). We solve this dispersion relation
for a set of fixed parameters to obtain eigenfrequencies w, /2, for
varying k; R.

Fig. 4 displays the eigenfrequencies as a function of k, R for
prograde propagating g modes and the gravito-inertial modes of
the finite domain. These are blue curves in the left column indicated
by panels (a). The gravito-inertial modes that have been obtained by
ignoring the g-mode cavity are also superimposed with black dotted
curves (refer to subsection 3.2). The top, middle and bottom rows
are for x = 0°, 10° and 20°, respectively. As expected, an avoided
crossing can be seen wherever the eigenfrequencies of the two types
of modes cross each other. These avoided crossings are shown in the
right column in panels (b) for each of the three angles of propagation,
x - The range of eigenfrequencies where the two types of modes, the g
modes and the gravito-inertial modes, have resonance appears quite
small. The eigenfrequencies and the spherical harmonic degree &, R,
where such avoided crossing occur increases with angle y . Note that
knR = k,R = m for x = 0° (see also, B. W. Hindman & R. Jain
2023).

4 CONCLUSION

In this paper, we have investigated the low-frequency gravito-inertial
waves propagating at a small angle, x to the zonal direction in a
compressible, polytropically stratified atmosphere representing the
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Figure 4. Real part of eigenfrequencies obtained from a two layer model
consisting of a stably stratified radiative interior and a weakly unstable
polytropically stratified convection zone layer. The blue diagonal streaks
are the solutions of g-modes in the radiative interior and the blue with black
dotted curves are solutions of gravito-inertial waves that were obtained in the
previous section (refer Fig. 3) for the case when the bottom of the convection
zone had perfectly reflecting boundary with D = 200 Mm. The top, middle
and bottom rows are for x = 0°, 10°, and 20°. The panel (b) in all three rows
show zoom-in view of the avoided crossing that is marked by the small box
in panel (a).

Sun’s convection zone. Using an analytical model valid for a general
polytropic index, we explored eigenfrequencies of radially trapped
wave modes in a weakly unstable polytrope. We found that in the
semi-infinite domain, both slow and fast wave modes are naturally
trapped in the radial direction for x = 0° and they propagate in
the prograde direction but only fast wave-modes persist for an
angle of propagation x = 0°. In order to compare with previous
studies, we also examined the eigenfrequencies of the wave-modes
in a finite domain for a neutrally stable and a weakly unstable
polytropic atmosphere. In a neutrally stable atmosphere, for a zonal
propagation (i.e. x = 0°), the slow waves become degenerate with
a zero frequency wave and only the fast wave perseveres as a
prograde propagating wave and is naturally trapped in the radial
direction (see also, B. W. Hindman & R. Jain 2022). However, when
non-parallel propagation to the zonal direction is considered in a
neutrally stable polytropic atmosphere, waves with both, prograde
and retrograde propagation exist but only prograde propagating
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waves are naturally trapped in the radial direction (see R. Jain & B. W.
Hindman 2023).

B. W. Hindman & R. Jain (2023) studied the properties of the
overstable and unstable wave modes that exist when the polytrope is
weakly unstable to convective overturning. They considered purely
zonal propagating wave modes, i.e. x = 0°. They found that both,
slow and fast wave modes of low radial orders and long wavelengths
can be stabilized due to rotation. These were also naturally trapped
waves in the radial direction. Here, we extended the study to explore
the possibility of y = 0°, in the limit of slow rotation and found
that only fast wave modes of low radial orders exist such that
2sin x < |G| < 1 and these are stabilized by rotation for moderate
to long wavelengths. Note that these wavelengths are longer for
x = 0° compared to for x = 0°. As illustrated in Fig. 2, there
exists a wavelength threshold of convergence (at marginal stability)
and beyond, the fast and slow wave-modes become a complex
conjugate pair (only the positive imaginary root is illustrated) for
higher orders. When the fast and slow wave-modes have purely real
frequencies, the modes correspond to overstable convective modes.
In the absence of rotation, both the fast and slow waves would have
been otherwise convectively unstable and non-oscillatory. When the
mode frequencies are complex, the two solutions correspond to
unstable, oscillatory convective modes that travel prograde at the
same speed. These unstable modes have a growth rate comparable
with their oscillation frequency for moderate values of the spherical
harmonic degree k,R (for x =0° k,R = k,R = m). For non-
parallel propagation, only low radial-order fast modes that are
naturally trapped in the radial direction were considered. These
were found to be overstable convective modes for low to moderate
wavenumbers k; R unlike for parallel propagation where both slow
and fast gravito-inertial waves are overstable convective modes in a
weakly unstable polytropic atmosphere. As was shown in equation
(25), this threshold wavenumber increases for y > 0°.

We also investigated the possibility of coupling of g-modes with
prograde propagating gravito-inertial modes that reside in the lower
region of the convection zone. The common frequencies of the two
modes may be useful for studying the g-mode cavity if the gravito-
inertial waves (Thermal Rossby waves) can be observed.

© The Author(s) 2025.
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