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Abstract

Randomized controlled trials in oncology often allow control group participants to switch to experimental treatments, a
practice that, while often ethically necessary, complicates the accurate estimation of long-term treatment effects. When
switching rates are high or sample sizes are limited, commonly used methods for treatment switching adjustment (such
as the rank-preserving structural failure time model, inverse probability of censoring weights, and two-stage estimation)
may produce imprecise estimates. Real-world data can be used to develop an external control arm for the randomized
controlled trial, although this approach ignores evidence from trial subjects who did not switch and ignores evidence from
the data obtained prior to switching for those subjects who did. This article introduces “augmented two-stage estimation”
(ATSE), a method that combines data from non-switching participants in a randomized controlled trial with an external
dataset, forming a “hybrid non-switching arm”. While aiming for more precise estimation, the augmented two-stage
estimation requires strong assumptions. Namely, conditional on all the observed covariates: (1) a participant’s decision
to switch treatments must be independent of their post-progression survival, and (2) individuals from the randomized
controlled trial and the external cohort must be exchangeable. With a simulation study, we evaluate the augmented
two-stage estimation method’s performance compared to two-stage estimation adjustment and an external control arm
approach. Results indicate that performance is dependent on scenario characteristics, but when unconfounded external
data are available, augmented two-stage estimation may result in less bias and improved precision compared to two-
stage estimation and external control arm approaches. When external data are affected by unmeasured confounding,
augmented two-stage estimation becomes prone to bias, but to a lesser extent compared to an external control arm
approach.

Keywords
Evidence synthesis, survival analysis, comparative effectiveness, treatment switching, treatment crossover, health
technology assessment, time-to-event outcomes

I Introduction

Randomized controlled trials (RCTs) in clinical research often include the option for participants randomized to the control
treatment (i.e. placebo or standard of care) to switch/crossover to the experimental treatment after a predefined time. This
practice appears increasingly common in oncology and, from an ethical perspective, helps ensure that trial participants are
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not denied access to potentially beneficial new treatments. Allowing for treatment switching (also known as “crossover”)
is also thought to improve recruitment/enrolment,' (but see Chen and Prasad® who conclude otherwise). Unfortunately,
treatment switching can complicate the estimation of overall survival (OS) benefits, as decision-makers are often interested
in the hypothetical treatment effect of the experimental treatment versus the control treatment in jurisdictions where the
experimental therapy is not yet available in the treatment pathway as a later line of therapy.*

In oncology trials, where progression-free survival (PFS) is frequently the primary endpoint, treatment switching in
the control group upon disease progression can obscure the estimation of OS—a key measure for reimbursement and
health technology assessments (HTAs). To address these challenges, statistical adjustment methods have been proposed,
such as rank-preserving structural failure time (RPSFT) models,’ inverse probability of censoring (IPCW),® and two-stage
estimation (TSE).” These approaches improve upon simple adjustment methods that simply censor subjects who switch
treatments, given that switchers often have a different prognosis than non-switchers. However, these adjustment methods
for treatment switching often result in highly uncertain estimates, especially in studies with a high rate of switching and/or
a small sample size.

The National Institute for Health and Care Excellence (NICE) Decision Support Unit recently published a Technical
Support Document (TSD 24, April 2024) that summarizes recommendations for adjusting survival time estimates in the
presence of treatment switching in clinical trials. TSD 24 highlights the potential of using external data for treatment
switching adjustment following similar calls in earlier work.®-'® However, until now, external data has only been used for
treatment switching adjustment in select examples, where external evidence was used to (1) construct an external control
arm (ECA) that was not impacted by switching and replace the RCT control arm considering alignment with the target
trial population!!; (2) validate and select between different treatment switching adjustment methods (IPCW, TSE, and
RPSFTM)!?; (3) estimate what post-progression survival (PPS) would have been in the RCTs had treatment switching not
occurred.'? This final example was the first to integrate external data into a TSE treatment switching adjustment model.'?
Although the Evidence Review Group report'# raised concerns with regards to the use of external data in this case. Latimer
and Abrams'® noted that “the deliberations of the [NICE] Appraisal Committee regarding TA171 demonstrated openness
to the use of external data in the presence of treatment switching.”

In this article, we propose an alternative way of using external data for treatment switching adjustment based on the con-
cept of a “hybrid control arm.” Methods for hybrid-control arm studies are not new, but are only recently being considered
in oncology research!®!” (e.g. using a control arm formed from historical clinical trials in metastatic colorectal cancer!®
or from EHR-derived data, such as the Flatiron Health database for advanced non-squamous non-small cell lung cancer
(aNSCLC)'"). Our proposed augmented two-stage estimation (ATSE) method leverages a “hybrid non-switching arm”
for comparison with the RCT switching arm, enabling more efficient estimation of survival beyond the switching time-
point. We detail the ATSE method in Section 2, present a simulation study in Section 3, and conclude with a discussion in
Section 4.

2 Methods

We begin by defining basic notation and summarizing the standard two-step estimation (TSE) procedure. We then describe
the augmented TSE (ATSE), which uses a hybrid non-switching arm to estimate the effect of treatment switching on
survival. Note that adjustment for treatment switching is typically needed when the switching patterns observed in the trial
do not represent standard clinical practice; see TSD 24 for details. Also, treatment switching can take many forms (e.g.
switches from the experimental group onto the control treatment, and switches from either randomized group onto other
treatments). We focus exclusively on switches from the control group to the experimental treatment that do not represent
standard clinical practice.

2.1 Notation

Let us begin by defining some useful notation; see Table 1 for a summary overview. Suppose subjects in the RCT are
randomly allocated to either the “control arm” or the “treatment arm,” with the primary endpoint of interest being right-
censored OS. Subjects who are randomized to the control are allowed to switch from the control to the experimental
treatment following observed/confirmed disease progression, and we assume that any switches are likely to happen imme-
diately or shortly following progression. Suppose also that patient-level data from an external cohort is available for subjects
treated with the control who did not switch onto the experimental treatment. Finally, suppose a decision-maker is inter-
ested in evaluating the hypothetical OS benefit of the treatment versus the control in a jurisdiction where the experimental
treatment is not available in subsequent lines of therapy.
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Table |. Overview of notation.

Symbol Description

S; Trial participation indicator for subject i; S; = | if subject i is in the RCT, §; =0 if in external data

A=A An) Binary treatment assignment sequence for subject i: A;; for initial assignment, A, for post-switch

W, Treatment switch indicator for subject i; W; = | if switched to treatment, W; =0 otherwise

T,=(TTP, PPS;, OS;) Time-to-event outcomes for subject i: time to progression (TTP), post-progression survival (PPS),
and overall survival (OS)

C;=(TTC, PPC;, OSC)) Indicators for TTP, PPS, and OS, respectively, for subject i, equal to | if observed (= 1), and equal
to 0 if censored (= 0).

AdmC; Administrative censoring time

Z; Indicator if individual i was given (or would have hypothetically have been given) the option to
switch (Z; = |, if yes; Z; =0, otherwise)

X; Vector of covariates, for subject i, fixed at baseline or measured at progression

X;; Subset of X; : common causes of post-progression survival (PPS;), switching (W;), and trial

participation status (S;)
Subset of X; : common causes of PPS and trial participation status (i.e. S;)
Intercept parameter in the AFT model
Parameter for the effect of switching in the AFT model
Coefficient vector for covariates in the AFT model
Random error term in AFT model (extreme value distribution)
Scale parameter in Step | TSE AFT model
Estimated counterfactual PPS time if the subject had not switched treatments

e TR

(%]}

Adjusted overall survival time = PFS; + U;

Intercept in Step | AFT model for ATSE

Parameter measuring the difference between RCT and the external cohort in ATSE
Covariate effect vector in ATSE model (Step 1)

Scale parameter in Step | ATSE AFT model

Weight assigned to external data subject i, defined as a function of

Pre-specified decay factor controlling the influence of external data in ATSE

S9ID O

(o)

RCT: randomized control trial; TTP: time to progression; PPS: post-progression survival; OS: overall survival; AFT: accelerated failure time; TSE:
two-stage estimation; ATSE: augmented two-stage estimation.

The i-th subject contributes S;, 4, =(4,;, 45,), W;, T;=(TTP;, PPS;, OS)), C,=(TTC,, PPC,, OSC,), AdmC;, Z;, and
X;. Let S; denote trial participation status, with S; =1 indicating that the i-th subject is in the RCT and S; =0 indicating
that the i-th subject is in the external data. Let 4, = (4;,, 4,,) correspond to the i-th subject’s sequence of binary treatment
assignments (with 0 corresponding to control and 1 corresponding to treatment). Let W, be a binary indicator corresponding
to a treatment switch (with ;=1 indicating a switch and W, =0 indicating no switch). For example, 4, = (0, 1) implies
W, =1 and indicates that the i-th subject was initially assigned/randomized to the control and then, following progression,
switched to the experimental treatment. We assume that S, = 0 implies that 4, = (4,;, 4,,) = (0, 0) since all subjects in the
external data are “assigned” to the control and do not switch (switching is only an option for those in the RCT initially
randomized to the control arm). Let T, =(TTP;, PPS;, OS;) correspond to the i-th subject’s time to progression (TTP),
PPS, and OS times, with C; = (TTC;, PPC;, OSC;) indicating if these are observed (= 1) or censored (= 0). An individual’s
post-progression survival will typically be calculated as the difference between their recorded OS and TTP (i.e. for the i-th
subject, PPS; = OS,—TTP;). Each individual also has an “administrative censoring time,” AdmC;, the timepoint at which
they will be censored for administrative reasons regardless of their status in the study. This time typically corresponds to
the overall study duration (e.g. study end date is 1 July 2000) relative to when a particular individual entered the study (e.g.
individual 7 entered the study on 1 June 1998 and so AdmC; =25 months).

Let Z, =1 indicate that individual i was given (or would hypothetically have been given) the option to switch (Z; =0,
otherwise). To be clear, if individual i was randomized to the control arm of the RCT (i.e. ;=1 and 4,, =0), having a
censored TTP (i.e. 7TC; = 0) or an entirely unobserved TTP (i.e. 7TP; =0 and 77C; = 0) would indicate that this individual
had no option to switch because they were presumably being followed closely and progression was never observed, so
Z;=0. However, if individual j was part of the external data (i.e. S; = 0 and 4;; =0), having a censored TTP (i.e. 77C; = 0)
or an entirely unobserved TTP (i.e. 77P; =0 and T7C; = 0) might indicate that this patient was simply not being closely
followed. It is important to think about the timepoint at which this patient would have hypothetically been given the option
to switch to the experimental treatment had they been in the RCT and been followed more closely. If individual j’s time
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of death is observed (i.e. OSCj =1) and we assume Zj =1, then, while their exact PPS is unknown, it will certainly be less
than their time of death, and one could consider left-censoring (i.e. PPS; <(OS,—TTP))).

Finally, X; corresponds to a vector of covariates measured at progression (or assumed to be fixed from baseline). Say X;
partitions as variables X;, which are common causes of PPS (PPS,), switching (#;), and trial participation status (S;), and
as variables X,;, which are common causes of PPS (PPS;) and trial participation status (S;) (Table 1).

2.2 Two-stage estimation

As its name suggests, the TSE approach for treatment switching adjustment involves two main steps. First, one estimates
the effect of treatment switching on PPS. Then, in the second step, this effect estimate is used to estimate counterfactual
survival times that would have been observed if switching had not occurred.

Step 1. In the first step, a standard parametric accelerated failure time (AFT) model (such as a Weibull model) is fit to all
subjects randomized to the control arm of the RCT (with observed progression times), relating PPS to switching (),
and all possible confounders (X;) (i.e. all variables that are common causes for PPS and switching). For example, a
Weibull model could be specified such that:

PPS; = exp(a + uW, + X'y + o¢)) (1)

for the i-th subject (for all subjects for which S;=1 and 4,; =0, and Z;=1), where « is the intercept parameter, u is a
parameter corresponding to the effect of switching, y is a parameter-vector corresponding to the effect of the possible
confounders, ¢; is an error term that has the extreme value distribution, and ¢ is the scale parameter. In an AFT model, the
covariates act multiplicatively on time. For example, suppose the acceleration factor (AF) is exp (u) = 4, then the effect of
switching would be to quadruple the PPS.

Step 2. After obtaining parameter estimates from the AFT model, estimated counterfactual PPS times, U, are obtained as
follows:

7. = W. i 1 — W.)PPS, 2
1 leXp(ﬁ)+( l) 1 ()

for the i-th subject (for all subjects for which S;=1 and 4;, =0, and Z; = 1); where exp(ji) is the estimated AF associated
with switching obtained from the fitted AFT model in Step 1. Note that no adjustment is made for subjects who do not
switch (i.e. if W, = 0, then U, = PPS,).

Suppose, for example, that the effect of switching is to double the PPS (i.e. exp (i) = 2). Then for subjects that switched,
their counterfactual PPS times are obtained by halving their observed PPS times. Adjusted OS times are then obtained by
adding the counterfactual PPS times to the observed TTP times: ()TS’i = TTP; + U,. If censoring is present, an additional
step called “re-censoring” can be conducted. Since the TSE adjustment can result in informative censoring (if there is
an association between switching and prognosis), the “re-censoring” step attempts to break the dependence between the
counterfactual censoring time and switching. Briefly, the re-censoring step involves censoring all individuals in the RCT
control group at the minimum of their administrative censoring time, 4dmC,, and (AdmC,/ exp(f1)); see Zhang and Chen?
for details, and see Latimer et al.?! for a discussion about the appropriateness of this step.

After estimating the untreated survival times for patients who switched treatments (and conducting any necessary re-
censoring), a new “adjusted RCT” dataset is created. This dataset combines observed OS times for patients who did not
switch treatments with adjusted OS times for those who did. This adjusted RCT dataset can then be used to estimate the rel-
ative treatment effect with respect to OS. For example, a Cox proportional hazards model could be fit to estimate a treatment
switching-adjusted hazard ratio (HR). Alternatively, the relative treatment effect could be estimated non-parametrically as
a treatment switching-adjusted difference in restricted mean survival time (dIRMST). Valid confidence intervals for these
estimates can be obtained by bootstrapping the entire adjustment and estimation process. To be clear, bootstrapping allows
one to account for the additional uncertainty involved in estimating the AF in Step 1.

Note that to obtain unbiased results, the TSE method relies on the assumption of “no unmeasured confounders.” This
means that the Step 1 AFT model must include all variables that predict both PPS and treatment switching. In other words,
X, must include all prognostic variables that could influence a participant’s decision of whether to switch (or their doctor’s
decision to recommend that they switch). It may be difficult to determine which variables influence a decision to switch, and
ultimately, this assumption of “no unmeasured confounders” cannot be tested empirically. However, clinicians may provide
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X

Figure 1. For estimating the effect of switching (W) on post-progression survival (PPS), there are two minimal sufficient adjustment
sets: S, X| and X, X;. The AFT model fit in Step | of the TSE is restricted to only those individuals with S=1 (i.e. only subjects in
the RCT) and must therefore include X, (i.e. all variables that predict both PPS and treatment switching). The AFT model in Step 2
of the ATSE is fit to individuals from both the RCT (S = I) and external data (S =0) and must therefore include X, and X, (i.e. all
variables that predict both PPS and treatment switching as well as all variables that predict both PPS and trial participation status).
AFT: accelerated failure time; TSE: two-stage estimation; RCT: randomized controlled trial; ATSE: augmented two-stage estimation.

valuable information about treatment switching decisions and directed acyclic graphs (DAGs), such as the Figure 1 diagram,
may be a useful tool to help inform covariate selection.??

The DAG in Figure 1 can be understood to illustrate the causal relationships between each of the variables. For instance,
the arrow from X; to W implies that the variables included in X directly influence a decision to switch, and the arrow from
X, to PPS implies that these variables also directly impact the PPS. For example, “disease severity” as measured shortly
before progression might be included in X; and would influence the decision to switch (e.g. those with high severity are
recommended by their doctor’s to not switch to the experimental treatment) and the duration of PPS.

2.3 Augmented TSE

For TSE, a limited sample size in the non-switching subjects in the control arm of an RCT increases uncertainty in the
estimation of the AF (i.e. exp(u)), leading to an imprecise estimate of the counterfactual survival times and ultimately
the treatment switching-adjusted relative treatment effect. Leveraging external data for subjects assigned to the control
treatment who do not switch (e.g. from historical RCTs or RWE) could reduce the uncertainty in the estimation of the AF,
resulting in a more precise adjustment for treatment switching. If external data is available, the simplest approach might
be to conduct external control arm study in which individuals from the external data source are selected (and typically
weighted) to use as a stand-in control arm replacing the individuals randomized to control in the RCT; see Jaksa et al.?®
However, entirely ignoring the RCT control arm may be inefficient and selection of an appropriate, fit-for-use external
cohort is critical to minimizing bias.

Various methods have been developed to construct the so-called “hybrid control arms,” whereby a trial’s small con-
trol arm is combined with individuals from an external data source. These methods are mostly Bayesian approaches and
include (modified) power prior models (Ibrahim and Chen?*), commensurate prior models (Hobbs et al.2%), and robust
meta-analytic predictive prior (RMAPP) models (Schmidli et al.?®). Most recently, the Bayesian latent exchangeability
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prior (LEAP) model (Alt et al.??) appears particularly promising (Campbell and Gustafson?®). However, since the TSE
method is frequentist, for the ASTE we adopt the two-step dynamic borrowing approach recently proposed by Tan et al.,?
which reflects a frequentist analog to the modified power prior method.

The augmented TSE method consists of the following four steps.

Step 1. In the first step, a standard parametric AFT model (such as a Weibull model) is fit comparing the PPS between
those randomized to the control arm who did not switch and those in the external control arm, adjusting for covariates
X =X, X,. To be clear, one must adjust for all common causes of PPS and switching (i.e. adjust for X;), as well as all
common causes of PPS and trial participation status (i.e. adjust for X,); see Figure 1.

For example, a Weibull model could be specified such that:
PPS; = exp(f + pS; + Xin + 7€) 3)

for the i-th subject (for all subjects for which W, =0, 4;,; =0, and Z; = 1), where f is the intercept parameter, ¢; is an error
term that has the extreme value distribution, and 7 is the scale parameter. The value of the p parameter corresponds to the
degree of dissimilarity between the two cohorts. Specifically, exp(p) is the AF associated with participation in the RCT
versus the external cohort (after adjusting for all measured confounders). Suppose, for example, that exp(p) = 2. This would
indicate that individuals in the RCT have PPS times that are twice as long on average as individuals with similar values of
X who are in the external data cohort. A large value of | p| would therefore indicate a large degree of dissimilarity between
cohorts that cannot be attributed to measured confounders and would suggest the possibility of substantial unmeasured
confounding.

Dynamic borrowing then considers the degree of dissimilarity in determining how much information to borrow from
the external cohort. If the magnitude of p is small, this suggests that the external data is relatively compatible with the
RCT data. On the other hand, if the magnitude of p is large, this suggests that the external data is less compatible with the
RCT data and should therefore be down-weighted in the analysis. To calculate the amount of cohort-level down-weighing
as a function of p, Tan et al.”’ consider an exponential function which assigns each individual in the external data a weight
equal to

W, = exp(—c|pl) @)

for the i-th subject (for all subjects for which S; = 0); where ¢ > 0 is a pre-specified constant “decay factor,” akin to the power
parameter in the Bayesian modified power prior approach. A larger value of ¢ will result in borrowing less information
from the external data (i.e. in a faster decay to 0 as the difference between the RCT and external cohorts increases). All
individuals in the RCT (all subjects for which S; =1) are given a weight equal to 1. In order to choose an appropriate
value for c, the following example may be helpful. If the estimated AF, exp(p), is 1.2 (corresponding to a 20% increase in
post-progression survival) and if ¢ =4, then each external data point will receive a weight of 0.48 when following equation
(4) for the weights. In other words, the contribution of the external data will be approximately halved on account of the
observed incompatibility.

To be clear, there are other options for the weight function defined in equation (4). Any function that is bounded between
0 and 1 and monotonically decreases weights with increasing |j| could be suitable. The key idea is to discount the external
data’s influence when the compatibility of the external data and the RCT data seems improbable according to the Step 1
AFT model.

Step 2. The second step of the ATSE method is to fit a second AFT model to the weighted control subjects (i.e. all subjects
with 4;; = 0) with the weights defined from the previous step. This second AFT model relates PPS to switching (W),
and includes covariates X =X, X,, the same covariates which were included in the first step AFT model:

PPS; = exp(a + uW; + X'y + o¢;) (5)

for the i-th subject (for all subjects for which 4;, =0, and Z; = 1), where « is the intercept parameter, ¢; is an error term
that has the extreme value distribution, and o is the scale parameter. This is similar to the first step of the TSE approach,
except that the dataset here is expanded to include the down-weighted external data, rather than only the control patients
of the RCT. Note that adjusting for S; in this model would effectively exclude the external data, and so S; is absent.
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Step 3. The third step of the ATSE approach is deriving the estimated counterfactual PPS times, l/}i, and OS times, 6§, (for
all subjects with S;=1, 4;,; =0, and Z; =1). This is done as in TSE (see equation (2)) based on exp (j1), the estimated
AF associated with switching obtained from fitting model (5) in the second step. If censoring is present, “re-censoring”
can be applied; see Latimer et al.?!

Step 4. The fourth and final step of the ATSE approach is to estimate the relative treatment effect of interest based on a
new “adjusted RCT” dataset, which combines observed OS times for RCT patients who did not switch treatments with
adjusted OS times for those RCT patients who did switch. For instance, a Cox proportional hazards model, or an AFT
model, relating OS to treatment at randomization (4,) could be fit with the adjusted RCT dataset to estimate the relative
treatment effect in terms of an HR or an AF. As with TSE, valid confidence intervals can be obtained by bootstrapping
the entire adjustment and estimation process (which allows one to account for the uncertainty in estimating the weights
in Step 1 and the AF in Step 2).

It is important to reiterate that, beyond the “no unmeasured confounders” assumption required in TSE (i.e. one must
adjust for all variables that predict both PPS and treatment switching), the ATSE method requires an additional “no unmea-
sured confounders” assumption with respect to the external data. The DAG in Figure 1 illustrates that there are two minimal
sufficient adjustment sets for estimating the effect of switching (W) on PPS: S, X, and X |, X,. The AFT model fit in Step
1 of the TSE is restricted to only those individuals with S =1 (i.e. only subjects in the RCT) and must therefore include X
(i.e., all variables that are common causes of PPS and ). The AFT model in Step 2 of the ATSE is fit to individuals from
both the RCT (§ =1) and external data (S =0) and must therefore include X | and X,. Down-weighting the external data
according to the suspected amount of unmeasured confounding as determined by the AFT model in Step 1 of the ATSE
will help reduce the impact of confounding bias, but cannot entirely eliminate it. With regards to covariate selection, a
conservative approach would be to adjust for all covariates that are considered important prognostic factors.

We have included 77P in Figure 1 DAG with a dashed line towards PPS to indicate a potential direct causal link.
Regardless of whether there is a direct causal link, 77P might serve as a useful “proxy confounder” in the sense that
it might be highly correlated with X, and/or X,. For instance, if “disease severity” measured shortly before progression
is deemed a confounder within X, or X,, but is unmeasured in the data, one might consider 77TP as a proxy for this
unmeasured confounder (since those with high “disease severity” will likely have shorter progression times and vice versa).
VanderWeele*” explains that “in most cases, adjustment for such a variable will reduce the bias due to confounding.” In
order to adjust for TTP in the ATSE, one would simply expand the covariate set X to include 77P in Steps 1 and 2: X =X,
X,, TTP. In Section 3, we will consider the merits of this strategy.

3 Simulation study
3.1 Objectives

To evaluate the performance of the ATSE method, we conducted a simulation study designed to mirror typical settings
in clinical research with treatment switching and incorporation of external data. This simulation study aimed to assess
the accuracy and robustness of the ATSE approach under various conditions, including variations in switching rates, and
different decay factors for the ATSE hybrid arm. Here, we provide a summary of the data-generating mechanism, the
estimand of interest, and the methods we compared according to various performance measures. The simulation study was
conducted using R. The code used to simulate the data is provided in the Supplementary Material.

3.2 Data generation and mechanism

We followed the data generation procedure used outlined by Latimer et al.3! for their eight “simple scenarios” with a few
modifications. Specifically, we simulated RCT datasets with a sample size of Ny =500 and 2:1 randomization in favor
of the experimental group, and with treatment switching permitted from the control group to the experimental treatment
following progression.

OS times were simulated based on a two-component mixture Weibull baseline survival function and were dependent on
three binary variables: treatment, prognosis (badprog), and an unmeasured prognostic factor (U) (note the simulation study
by Latimer et al.3! does not include a dependency on U, but is otherwise the same). The corresponding hazard function is

h;(t) = hy(Hexp(6,trt; + 0.3badprog; — 0.3U,) (6)

for the i-th subject; where (¢) represents the baseline hazard function and &, represents the log HR (log-HR) associated
with treatment. The bad prognosis and unmeasured confounder variables were simulated as independent binary variables
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Table 2. Overview of simulated scenarios.

Treatment Switch Sample size of the True RMST for the
Scenario effect proportion Censoring external control arm control group
| Low Moderate None 200 472.75
2 High Moderate None 200 472.75
3 Low High None 200 472.75
4 High High None 200 472.75
5 Low Moderate Moderate 200 368.60
6 High Moderate Moderate 200 368.60
7 Low High Moderate 200 368.60
8 High High Moderate 200 368.60
9 Low Moderate None 1000 472.75
10 High Moderate None 1000 472.75
I Low High None 1000 472.75
12 High High None 1000 472.75
13 Low Moderate Moderate 1000 368.60
14 High Moderate Moderate 1000 368.60
15 Low High Moderate 1000 368.60
16 High High Moderate 1000 368.60

RMST: restricted mean survival time.

such that each individual had a 50% probability of a bad prognosis and a 50% probability of U; = 1. We assumed no
treatment effect heterogeneity (i.e. no effect modifiers/interaction terms). Also, while in reality certain covariates, such as
prognosis, might change (worsen) over the course of the study (e.g. a subject’s disease severity may be notably different at
baseline than at progression), we assumed that all covariates remain fixed over the course of the study.

TTP times were simulated as a function of OS times, so that on average, an individual’s TTP was one-third of their
0OS. More specifically, TTP times were equal to OS times multiplied by a random draw from a beta(5, 10) distribution. A
short delay was assumed between an individual’s true progression time and their observed progression time by setting the
observed progression time as equal to their first “visit time” following the progression event, with “visits” simulated every
21 days from randomization to death.

We simulated external control datasets in the same way that the RCT datasets were simulated, but with #r¢; = 0 for all
subjects. Also, whereas individuals in the RCT had a 50% probability of a bad prognosis, individuals in the external control
dataset had a 75% probability of a bad prognosis.

Sixteen scenarios were simulated varying (1) the magnitude of the treatment effect, (2) the degree of switching, (3)
the censoring, and (4) the sample size of the external control arm; see Table 2. These scenarios were based on Latimer
et al.’s?! eight simple scenarios. Specifically, for scenarios with “low treatment effect,” we set §, = —0.2, whereas for
scenarios “high treatment effect,” we set 6, = —0.5. For scenarios with “moderate switching,” RCT individuals with poor
prognosis had an 80% probability of switching, whereas those with a good prognosis group had a 30% probability of
switching. For scenarios with “high switching,” the probability of switching for those in the control arm was set to 90% in
the poor prognosis group and to 60% in the good prognosis group. To be clear, in this simulation study, all individuals in
the external control and all those in the experimental treatment arm of the RCT do not switch treatments. In the scenarios
with “no censoring,” individuals were only censored if still alive at 5000 days following randomization (the end of the
study), whereas scenarios with “moderate censoring” censored all subjects at 546 days following randomization (the end
of the study). Finally, the sample size of the external control arm was either N~ =200 (resembling historical trial data) or
Ngc =1000 (resembling registry data).

To investigate the impact of unmeasured confounding, for each of the sixteen scenarios, 2000 datasets were simulated
with three different conditions. In Condition A (“Complete”) there was no unmeasured confounding, meaning the unmea-
sured prognostic factor U did not impact the probability of switching and had the same distribution in the RCT and external
control (i.e. all subjects in the RCT and external control, Pr(U; = 1) = 0.5). In Condition B (“Incomplete .X,”) confound-
ing bias in the external control was considered by setting the prognostic factor U in the RCT to Pr(U; = 1) = 0.50 and in
the external control to Pr(U; = 1) = 0.75. Finally, in Condition C (“Incomplete X,”), confounding bias in the treatment
switching-adjusted control arm of the RCT was considered, where the unmeasured prognostic factor U impacted switching,
reducing the probability of switching by 20% for all individuals in the RCT for whom U, = 1. In this case, the external data
remains unbiased with Pr(U; = 1) = 0.50 for all subjects in both the RCT and the external data. Note that the same random
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number seed was used for all three conditions within each scenario so that the RCT data simulated in Condition A (“Com-
plete”) and Condition B (“Incomplete X,”) will be identical and the external data simulated in Condition A (“Complete”)
and Condition C (“Incomplete X',”) will be identical.

3.3 Estimands of interest

As in Latimer et al.,*! the estimand of interest for the simulation study was the restricted mean survival time (RMST) in
the control group at study end-date (5000 days for Scenarios 1-4 and 9—-12; 546 days for Scenarios 5—8 and 13—16). The
true RMST value in the control group was 472.75 days in Scenarios 1-4 and 9—12, and was 368.6 days in Scenarios 5-8
and 13-16, based on numerical integration.

When extrapolation was required to calculate the RMST, we used a flexible Royston-Parmar parametric splines model
with three knots (using the RMST R package; https://github.com/scientific-computing-solutions/RMST), consistent with
HTA recommendations.>?

3.4 Methods to be compared

We compared the following methods:

e Oracle: A standard ITT analysis undertaken on the simulated data prior to simulating the impact of switching, which
represents the “truth” for each simulation.

e [TT: A standard ITT analysis on the simulated data after switching impacted the outcomes.

e TSE: Treatment switching-adjusted analysis using TSE based on only the RCT data with re-censoring applied
(Section 2.2).

e ECA: A propensity-score-based analysis in which the external control data is used as an external control arm (and indi-
viduals randomized to control in the RCT are ignored). Specifically, we used the “weightit” function from the Weightlt
R library®? to derive the average treatment effect for the treated (ATT) weights using a logistic regression model. The
weighted OS ECA data was then used to estimate the RMST in the control group.

e ATSE (¢ =1): An analysis based on the proposed approach with decay factor set to ¢ =1 and re-censoring applied
(Section 2.3). This smaller value of ¢ will result in borrowing more information from the external data.

o ATSE (c =4): An analysis based on the proposed approach with decay factor set to ¢ =4 and re-censoring applied
(Section 2.3). This method considers a “mid-range” value of c.

o ATSE (¢ =8): An analysis based on the proposed approach with decay factor set to ¢ =8 and re-censoring applied
(Section 2.3). This larger value of ¢ will result in borrowing less information from the external data.

o ATSE (c =4) with adjustment for TTP: An analysis based on the proposed approach with decay factor set to ¢ =4 and
re-censoring applied (Section 2.3), which includes TTP as a covariate in the ATSE Step 1 and Step 2 AFT models.

3.5 Performance measures

Consistent with Latimer et al.,3! the performance of each method was evaluated according to the percentage bias in the
estimate of the control group RMST at the study end date. Percentage bias was estimated by taking the difference between
the estimated RMST and the true RMST, expressed as a percentage of the true RMST. Root mean squared error (RMSE) and
empirical standard errors (SEs) of the RMST estimates were also calculated for each method and expressed as percentages
of the true RMST.

3.6 Results

Figure 2 plots the results for Scenario 1 and Figure 3 plots the results for Scenario 9. Figures 4 to 9 display results in
nested loop plots for the percentage bias and empirical SE across all 16 scenarios. Tables 3 to 6 in the Appendix list the
complete results. The simulation study provided very accurate estimates. For the mean RMST percentage bias, the Monte
Carlo SE (MCSE) never exceeding 0.20% across all 16 scenarios. For the empirical SE as a percentage of true RMST, the
maximum (across all 16 scenarios) MCSE was 0.14% and for the RMSE as a percentage of true RMST, the maximum
MCSE was 0.34%. Error bars plotted in Figures 2 and 3 correspond to +1.96 times the MCSE. Finally, the differences
between Figures 2 and 3 for the Oracle, ITT, and TSE methods provide an additional measure of the size of the Monte
Carlo error (since, in the absence of Monte Carlo error, these should be identical).

Let us focus first on the results from Scenario 1. As expected, under all three conditions, the /77T analysis over-estimates
the control group RMST, resulting in a percentage bias of between 4.4% and 5.4%. Under Condition A (“Complete”),
all other methods (7SE, ECA, and ATSE) predict the control group RMST with negligible bias (<= 0.6%). Among these
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Figure 2. Simulation study results from Scenario |.

other methods, the ASTE analysis appeared to be the most efficient with SEs ranging from 5.4% to 6.2%. Notably, the ECA
approach had an empirical standard error of 6.3%, lower than the 7SE, which had an empirical standard error of 7.6%.
It is interesting that the SE for the ATSE can be slightly lower than for the Oracle (compare 5.4% to 5.7%). This can be
explained by the fact that more data is being used in the ATSE analysis. Under Condition B (“Incomplete X,”), when there
may be confounding bias with respect to the external control data, the £CA appears to be biased, over-estimating the control
group RMST by 5.0%. The ATSE analyses are also biased, but to a much lesser degree, over-estimating the control group
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Figure 3. Simulation study results from Scenario 9.

RMST by only 1.2%—-1.6%. Under Condition C (“Incomplete X,”’), when there may be confounding bias with respect to
the treatment switching adjustment, the 7SE appears to be biased, over-estimating the control group RMST by about 2.2%.

The ATSE analyses are also biased, over-estimating the control group RMST by about 1.2%—1.5%. Results were similar
across all scenarios.
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Figure 10. If the assumptions underlying the treatment switching adjustment are suspect, then the ECA may be preferable to the
ATSE approach. Alternatively, if the assumption of exchangeability for the subjects in the external data is suspect, then the TSE may
be preferable to the ATSE approach. If no assumptions can be relied upon, the ITT analysis (while biased) will be most appropriate.
ECA: external control arm; ATSE: augmented two-stage estimation; TSE: two-stage estimation; ITT: intention-to-treat.

The impact of using different values for the decay factor with ATSE was, overall, rather minimal. Recall that a smaller
decay factor corresponds to a higher degree of borrowing from the external data. We see that under Condition A (“Com-
plete”), the empirical SE as a percentage of the true RMST is smallest when ¢ =1 and is highest when ¢ = 8, meaning that
more borrowing leads to more efficiency. Under Condition B (“Incomplete X,”), where the external control data intro-
duces bias, the percent bias in RMST is highest when ¢=1, and is lowest when ¢ =S8. In contrast, under Condition C
(“Incomplete X, ”), the percent bias in RMST is lowest when ¢ =1, and is highest when ¢ =8. As such, the decay factor
seems to correspond to a trade-off between the potential bias due to unmeasured confounding in either the RCT treatment
switching-adjusted controls or the external control.

The impact of adjusting for TTP in the ASTE was notable. We see that the degree of bias due to confounding is sub-
stantially reduced at the cost of a modest increase in SE. We do not observe any substantial impact with respect to differing
treatment effect sizes (6; = —0.2 vs. §; = —0.5), nor do we observe any substantial impact with respect to differing switch-
ing proportions or censoring. The ASTE method is consistently the most efficient approach when the sample size of the
external control arm was Ny =200 (Scenarios 1-8). However, the ECA was notably superior when the sample size of the
external control arm was Ny = 1000 (Scenarios 9-16).

4 Conclusion

The TSD 24 specifically brings attention to the potential for “external data [is used] to estimate counterfactual survival
beyond the switching time-point” and suggests that “further research [to develop such methods] may be valuable” (TSD
24, April 2024). In this article, we proposed a new approach, the ATSE, which may indeed be prove valuable.

While RWE can be used as an external control arm to completely replace a crossover contaminated RCT control arm, this
strategy discards a large amount of potentially valuable data (including the TTP times of those RCT subjects randomized to
control) and can be susceptible to bias due to unmeasured confounding.>* As illustrated in the simulation study, the ATSE
approach leverages all the available data (and only the necessary external data) and consequently may be less impacted by
confounding bias. This aligns with the current understanding that hybrid control arm studies (also known as “augmented
RCTs”) should be considered a higher level of evidence than external control arm studies; see Gray et al.>

If the assumptions underlying the treatment switching adjustment are suspect or the size of the external dataset is very
large, then the ECA may be preferable to the ATSE approach. Alternatively, if the assumption of exchangeability for the
subjects in the external data is suspect, then the TSE may be preferable to the ATSE approach. Another issue to consider
is the possibility of immortal time bias and selection bias. To avoid immortal time bias and selection bias with the ECA
approach, one must carefully select an appropriate “time-zero.” This can often be challenging (Jaksa et al.,”> Fu et al.,’
and Herndn et al.>”). With the proposed ATSE approach, selecting the appropriate “time-zero” should be relatively straight-
forward so long as the progression time is well defined. Figure 10 illustrates where the different methods might fit in terms
of deciding upon the most appropriate approach.

When compared to the standard TSE approach, the ATSE approach has potential to obtain more precise estimation
of survival outcomes particularly when sample sizes are small, and switching rates are high. However, the need for
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strong assumptions remains. With TSE, the assumption of no unmeasured confounding implies that, conditional on all
the observed covariates, a participant’s decision to switch is independent of their PPS. With ATSE, an additional assump-
tion is also required: Conditional on all observed covariates, individuals from the RCT and the external cohort must be
exchangeable; see Bours.?® The ATSE method also requires one to pre-specify a value for the decay factor, which will
impact the overall amount of borrowing. Tan et al. recommend that this value be determined prior to analyzing the data by
means of a simulation study, and based on Tan et al.’s simulation study, Sengupta et al.'° use a value of ¢ = 4 for their case
study. In our simulation study, we considered ¢ = 1, 4, and 8 and found that the results did not differ substantially across
the three different values. Following one’s analysis, the amount of borrowing can be assessed using the “effective number
of external events,” see Sengupta et al.!®

While the ATSE method represents a promising avenue for addressing treatment switching in clinical trials, its limita-
tions must be acknowledged and carefully considered. One notable limitation is the assumption that treatment switching
occurs exclusively at, or shortly after, disease progression. This assumption may not always hold true in real-world scenar-
i0s, where switching can occur for various reasons and at different points in time. Our simulation study was simply intended
to demonstrate a proof of concept in simple scenarios, and as such, we did not investigate the impact of time-dependent
confounding. The g-computation TSE method, proposed by Latimer et al.,>! offers a potential solution for situations where
switching is not confined to the point of progression (or to another well-defined “secondary baseline”). More recently,
Jackson et al. have proposed a variety of new approaches for TSE and suggest a method in which the secondary baseline
is defined as the time of an individual’s first subsequent treatment. Further research and simulation studies are needed to
explore the feasibility of augmenting the g-computation TSE and other TSE approaches with external data. Our simulation
study was also rather simplistic in that we simulated TTP times as being equal to (on average) about one-third of OS times.
Future simulation studies could instead consider multi-state models (Jansen et al.>%).

Another potential limitation of ASTE might be the need for comprehensive data on all confounding variables. To avoid
any bias due to unmeasured confounding, one must adjust for any factors that could simultaneously influence survival,
switching, and participation in the RCT vs external cohorts. Identifying these factors could prove difficult, and the con-
servative approach of simply adjusting for all variables that could be considered important prognostic factors requires
substantial data availability. The dynamic borrowing approach we propose within the ATSE method can help reduce the
amount of bias due to unmeasured confounding, but cannot entirely eliminate it. Adjusting for TTP as a “proxy confounder”
might help further mitigate the risk of bias due to unmeasured confounding. Finally, to calculate PPS for individuals in the
external data, we emphasize that accurate recording of TTP is important and acknowledge that cancer progression is often
poorly recorded in both hospital and registration data.**:#!
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Note

a.

First, it was noted that there were no analyses done to understand the likelihood of unmeasured confounders (i.e. to determine if it
was possible to fully adjust he external trial). Second, there were concerns that the external data were dated and possibly no longer
relevant to the trial due to a long-term trend of improving survival. Finally, the adjusted treatment estimates seemed rather implausible
(i.e. the results suggested that receiving treatment after disease progression had the same (if not higher) benefit on overall survival
(OS) then when received before disease progression).
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Appendix

Augmented two-stage estimation for treatment switching in oncology trials: Leveraging external data for improved
precision (Tables 3 to 6).

Table 3. Simulation study results for Scenarios 1—4 (no censoring; small external control, Ngc =200).

Percent bias Empirical SE as a RMSE as a percentage
Method in RMST percentage of true RMST of true RMST
Condition A B C A B C A B C
Scenario | Low treatment Oracle 030 030 030 570 570 5.70 570 570 570
effect and moderate ITT 530 530 420 6.00 6.00 5.90 800 800 730
switching proportion, TSE 050 050 2.10 760 760 7.20 760 760 7.50
Ngc =200 ECA -0.30 5.00 -0.30 6.30 6.70 6.30 630 830 6.30
ATSE (c=1) 020 150 1.10 5.50 5.60 5.60 550 580 580
ATSE (c=4) 020 140 120 580 5.80 5.90 580 6.00 6.00
ATSE (c=8) 030 120 140 620 6.30 6.20 630 640 6.40
ATSE (c=4) 020 070 0.60 6.00 6.00 5.90 6.00 6.10 6.00
adj. for TTP
Scenario 2 High treatment Oracle 0.17 0.17 0.17 554 554 554 554 554 554
effect and moderate ITT 1424 1424 1128 6.38 6.38 6.13 15.61 15.61 12.84
switching proportion, TSE 034 034 184 744 744 696 745 745 720
Ngc =200 ECA -0.27 490 -0.27 6.27 6.60 6.27 628 822 6.28
ATSE (c=1) 0.18 152 1.03 544 549 549 544 569 558
ATSE (c=4) 0.18 131 1.1l 563 567 5.66 563 582 576
ATSE (c=8) 025 1.07 128 6.07 6.10 596 6.07 6.19 6.09
ATSE (c=4) 024 073 060 593 596 583 593 6.0l 586
adj. for TTP
Scenario 3 Low treatment Oracle o.rr o011 0.1l 558 558 5.58 558 558 558
effect and high switching ITT 728 728 6.8 601 601 593 9.44 944 856
proportion, Ngc =200 TSE 0.19 0.19 254 901 901 8.l6 9.01 9.0l 855
ECA -0.03 5.16 —0.03 6.24 654 6.24 624 833 624
ATSE (c=1) 0.14 212 129 554 562 566 554 601 580
ATSE (c=4) 008 .74 145 581 591 593 581 6.16 6.10
ATSE (c=8) 0.17 134 183 6.66 679 6.58 6.67 692 6.83
ATSE (c=4) 025 096 0.70 6.28 6.33 6.23 628 640 6.27
adj. for TTP
Scenario 4 High treatment Oracle 0.1 0.1l 0.1l 566 566 5.66 566 566 5.66
effect and high switching ITT 20.61 2061 1748 690 690 6.69 21.73 21.73 1871
proportion, Ngc =200 TSE 0.10 0.10 248 9.08 9.08 8.12 9.08 9.08 848
ECA —0.14 5.07 -0.14 631 666 63l 631 837 6.3l
ATSE (c=1) 003 200 1.18 549 556 5.64 549 591 576
ATSE (c=4) 008 .72 142 596 6.03 6.00 596 627 6.16
ATSE (c=8) 0.13 129 .73 671 6.79 6.54 671 691 6.76
ATSE (c=4) 026 096 0.62 6.33 637 6.23 633 644 626
adj. for TTP

RMST: restricted mean survival time; SE: standard error; RMSE: root mean squared error; ITT: intention-to-treat; TSE: two-stage estimation; ECA:
external control arm; ATSE: augmented two-stage estimation; TTP: time to progression.
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Table 4. Simulation study results for Scenarios 5-8 (moderate censoring; small external control, Ngc =200).

Percent bias

Empirical SE as a

RMSE as a percentage

Method in RMST percentage of true RMST of true RMST
Condition A B C A B C A B C
Scenario 5 Low treatment Oracle 009 009 009 353 353 3.53 3.53 3.53 3.53
effect and moderate ITT 2.56 2.56 2.15 3.53 353 3.53 435 435 4.13
switching proportion, TSE 048 048 1.05 4.50 450 4.23 452 452 436
Ngc =200 ECA 0.08 259 0.08 3.69 3.66 3.69 3.69 448 3.69
ATSE (c=1) 047 098 0.75 3.36 3.37 338 339 351 347
ATSE (c=4) 046 091 0.78 347 346 348 3.50 3.58 3.57
ATSE (c=8) 051 084 087 3.68 3.68 3.65 3.71 378 3.75
ATSE (c=4) -0.02 0.19 020 372 372 3.70 3.72 372 3.70
adj. for TTP
Scenario 6 High treatment Oracle -0.10 -0.10 —-0.10 3.50 3.50 3.50 3.50 3.50 3.50
effect and moderate ITT 552 552 461 345 345 346 6.5 6.51 576
switching proportion, TSE 059 059 1.05 4.68 4.68 438 472 472 4.50
Ngc =200 ECA -0.07 243 -0.07 359 356 3.59 3.59 431 3.59
ATSE (c=1) 062 1.14 0.77 3.38 337 343 343 356 3.52
ATSE (c=4) 062 1.07 08I 348 347 3.50 3.53 3.63 3.59
ATSE (c=8) 063 100 086 372 371 3.68 378 384 378
ATSE (c=4) -043 -024 -0.25 391 390 3.86 394 390 3.87
adj. for TTP
Scenario 7 Low treatment Oracle 004 004 004 349 349 349 349 349 349
effect and high switching ITT 329 329 289 346 346 346 477 477 45|
proportion, Ngc =200 TSE 061 061 1.14 507 507 457 5.10 5.10 471
ECA -0.08 241 -0.08 3.59 3.57 359 3.59 431 3.59
ATSE (c=1) 056 124 0.78 325 325 330 330 348 3.39
ATSE (c=4) 060 120 0.86 341 341 344 346 3.62 3.54
ATSE (c=8) 061 1.05 094 371 373 3.67 3.76 3.87 3.79
ATSE (c=4) -0.07 020 0.08 394 395 3.84 394 395 384
adj. for TTP
Scenario 8 High treatment Oracle —0.06 —0.06 —0.06 3.48 348 348 348 348 348
effect and high switching ITT 753 753 661 338 338 3.40 825 825 7.44
proportion, Ngc =200 TSE LIl LIl 1.60 528 528 4.80 539 539 506
ECA 0.00 251 0.00 3.62 3.61 362 3.6l 440 3.6l
ATSE (c=1) 099 171 .13 342 341 350 3.56 381 3.8
ATSE (c=4) 100 1.63 1.21 356 355 3.62 3.70 391 38l
ATSE (c=8) 1.09 1.56 1.38 395 395 39I 4.09 425 4.14
ATSE (c=4) —0.52 -0.23 —-0.30 4.04 4.03 4.00 4.07 4.03 4.0l
adj. for TTP

RMST: restricted mean survival time; SE: standard error; RMSE: root mean squared error; ITT: intention-to-treat; TSE: two-stage estimation; ECA:
external control arm; ATSE: augmented two-stage estimation; TTP: time to progression.
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Table 5. Simulation study results for Scenarios 9-12 (no censoring; large external control, Ngc = 1000).

Percent bias Empirical SE as a RMSE as a percentage
Method in RMST percentage of true RMST of true RMST
Condition A B C A B C A B C
Scenario 9 Low treatment Oracle —-0.23 -0.23 -0.23 554 554 554 554 554 554
effect and moderate ITT 483 483 377 580 580 5.7 754 754 684
switching proportion, TSE 0.12 0.12 163 739 739 703 739 739 722
Ngc = 1000 ECA 0.04 523 0.04 279 293 279 279 6.00 279
ATSE (c=1) —0.02 1.65 0.67 467 469 494 4.67 497 498
ATSE (c=4) -0.0I 1.59 070 4.77 479 5.03 477 5.04 507
ATSE (c=8) 0.0l 146 0.76 494 499 5.17 494 520 523
ATSE (c=4) -0.06 0.6l 0.18 550 5.50 553 550 554 553
adj. for
TTP
Scenario 10 High treatment  Oracle 0.09 0.09 0.09 559 559 559 559 559 559
effect and moderate ITT 1468 1468 1158 645 645 6.22 16.04 16.04 13.14
switching proportion, TSE 0.18 0.I18 1.87 752 752 7.0l 753 753 7.25
Ngc = 1000 ECA 0.02 523 0.02 286 3.02 286 286 6.04 286
ATSE (c=1) 0.04 1.72  0.82 471 472 495 4.71 502 5.02
ATSE (c=4) 0.05 1.65 0.85 481 482 5.03 481 509 5.10
ATSE (c=8) 0.06 1.51 091 503 5.08 520 503 529 528
ATSE (c=4) 0.11 0.79 041 556 556 5.52 556 562 554
adj. for
TTP
Scenario || Low treatment Oracle —-0.07 -0.07 -0.07 5.70 570 5.70 570 570 5.70
effect and high switching ITT 688 688 581 610 6.10 6.0l 9.19 9.9 836
proportion, Ngc = 1000 TSE -020 —020 207 9.03 9.03 8.l 9.03 9.03 837
ECA 002 521 002 287 304 287 287 603 287
ATSE (c=1) —0.06 232 075 423 426 456 423 485 462
ATSE (c=4) —0.04 222 083 440 445 472 440 497 479
ATSE (c=8) -0.07 192 091 483 495 508 483 531 5.6
ATSE (c=4) -001 093 031 571 573 574 571 580 575
adj. for
TTP
Scenario 12 High treatment ~ Oracle -0.13 -0.13 -0.13 570 570 570 570 570 570
effect and high switching ITT 20.00 20.00 1692 690 690 673 21.16 21.16 1821
proportion, Ngc = 1000 TSE -0.18 -0.18 2.18 9.00 9.00 8.06 900 9.00 835
ECA 0.04 524 0.04 281 297 28I 2.8l 6.02 28I
ATSE (c=1) —-0.03 235 079 425 428 456 425 489 4.63
ATSE (c=4) 0.03 229 0.89 441 446 4.70 441 5.01 4.78
ATSE (c=8) 0.03 2.03 1.05 489 5.02 5.00 489 542 511
ATSE (c=4) 00l 094 032 547 549 5.3 547 557 5.64
adj. for
TTP

RMST: restricted mean survival time; SE: standard error; RMSE: root mean squared error; ITT: intention-to-treat; TSE: two-stage estimation; ECA:
external control arm; ATSE: augmented two-stage estimation; TTP: time to progression.
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Table 6. Simulation study results for Scenarios 13—16 (moderate censoring; large external control, Ngc = 1000).

Percent bias Empirical SE as a RMSE as a percentage
Method in RMST percentage of true RMST of true RMST
Condition A B C A B C A B C
Scenario 13 Low treatment Oracle -0.05 -0.05 -0.05 3.51 351 3.5I 3.51 351 351
effect and moderate ITT 225 225 1.87 349 349 348 4.15 4.5 3.95
switching proportion, TSE 027 027 079 457 457 422 458 4.58 429
Ngc = 1000 ECA —-0.05 246 -0.05 1.70 1.68 1.70 .70 298 1.70
ATSE (c=1) 026 0.89 046 299 299 3.07 3.00 3.12 3.10
ATSE (c=4) 031 091 050 3.03 302 3.10 3.04 315 3.14
ATSE (c=8) 031 0.87 051 3.2 313 3.7 3.14 325 321
ATSE (c=4) -0.08 022 0.05 344 342 344 344 342 344
adj. for
TTP
Scenario 14 High treatment  Oracle —0.10 —-0.10 —0.10 3.47 347 347 347 347 347
effect and moderate ITT 582 582 484 344 344 343 6.76 6.76 5.93
switching proportion, TSE 061 0.6l 1.0l 465 4.65 436 4.69 4.69 447
Ngc = 1000 ECA 000 250 000 1.64 1.63 .64 .64 299 .64
ATSE (c=1) 057 125 068 3.07 3.03 3.3 3.12 328 321
ATSE (c=4) 055 122 068 3.10 3.08 3.19 315 331 326
ATSE (c=8) 056 1.18 071 3.18 3.16 3.25 322 338 333
ATSE (c=4) -0.62 -030 —-043 3.59 356 3.63 3.64 357 3.65
adj. for
TTP
Scenario |5 Low treatment Oracle —-0.04 -004 -0.04 349 349 349 349 349 349
effect and high switching ITT 299 299 261 344 344 345 456 4.56 4.32
proportion, Ngc = 1000 TSE 052 052 1.08 541 541 462 544 544 474
ECA 000 250 000 1.63 1.6l 1.63 .63 297 1.63
ATSE (c=1) 049 132 064 276 275 285 281 305 292
ATSE (c=4) 0.51 .31 067 283 283 290 288 3.12 298
ATSE (c=8) 052 125 071 3.05 305 3.04 3.09 330 3.12
ATSE (c=4) -0.10 029 0.0l 3.38 338 3.36 338 339 336
adj. for
TTP
Scenario 16 High treatment  Oracle 000 0.00 0.00 351 351 3.5I 351 351 351
effect and high switching ITT 759 759 666 343 343 346 832 832 750
proportion, Ngc = 1000 TSE 122 122 1.63 535 535 478 548 548 5.04
ECA 000 251 000 1.64 1.63 1.64 .64 299 .64
ATSE (c=1) 097 1.83 103 282 275 297 298 330 3.14
ATSE (c=4) 093 1.77 1.02 286 283 3.05 3.0 334 322
ATSE (c=8) .00 1.77 1.1l 3.07 3.04 3.19 323 352 338
ATSE (c=4) -0.46 -0.05 -0.34 355 353 3.57 3.58 353 3.58
adj. for
TTP

RMST: restricted mean survival time; SE: standard error; RMSE: root mean squared error; ITT: intention-to-treat; TSE: two-stage estimation; ECA:
external control arm; ATSE: augmented two-stage estimation; TTP: time to progression.
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