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ABSTRACT: The first synthesis of the proposed structure of spermidine
derived macrocyclic alkaloid celacarfurine is described. A versatile synthetic
strategy has been developed based on sequential cascade ring expansion
reactions, with high dilution conditions not needed for any of the steps. The
same general strategy was also used to generate a series of macrocyclic
analogues. The physical properties and spectroscopic data obtained for our
synthetic product do not match those reported for the isolated alkaloid.

Polyamine alkaloids derived from spermidine are widely
prevalent across the natural world, playing crucial roles in

multiple organisms spanning animals, plants, bacteria and
fungi.1,2 Within this class, 13-membered ring macrocyclic
alkaloids feature prominently, with >50 natural products of this
type reported.1,3 The majority possess a macrocyclic skeleton
typified by celacinnine 1a, with variations in the groups R1 and
R2 in compounds of the type 1 accounting for much of the
natural diversity (e.g., 1a−c, Figure 1). Several successful total
syntheses of alkaloids in this class have been reported,4 using
both direct end-to-end macrocyclization,5 and ring expansion
approaches.6

In 2020, a new 13-membered macrocyclic spermidine
alkaloid was reported by Liu and co-workers, named
celacarfurine 2, in view of its similarity to the previously
reported alkaloid (−)-celafurine 1c.7 Celacarfurine 2 was
isolated from the roots of Tripterygium wilfordii, a plant in the
Celastraceae family used in Chinese traditional medicine.
In this manuscript, we describe the first synthesis of the

proposed structure of celacarfurine, and a series of analogues,
using sequential cascade ring expansion reactions. At the onset
of this project, the assigned structure of celacarfurine 2 had
two unusual features that piqued our interest: (1) the absolute
configuration of the sole stereogenic center (Figure 1,

highlighted with *) is opposite to that in known celacinnine-
type alkaloids;8 (2) there is a second carbonyl group in the
macrocycle scaffold (Figure 1, highlighted in red), not present
in any other reported celacinnine-type alkaloids. Total
synthesis represents a useful way to validate the proposed
structure of 2, but to the best of our knowledge, no synthetic
studies toward 2 had been reported prior to this study. A
general synthetic approach to 2 was therefore devised, utilizing
two distinct cascade ring expansion methods,9 both developed
in our laboratory (CRE 1 and 2, Scheme 1).10−12

We envisioned using a relatively simple amino acid
derivative of the form 3a as a key building block. The tertiary
amine group in 3a/3b is key in enabling the first cascade ring
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Figure 1. Celacinnine-type spermidine alkaloids.

Scheme 1. Synthetic Approach to 2
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expansion; following carboxylic acid activation (3a → 3b)
cyclization to form a 5-membered ring acyl ammonium
intermediate (3b → 4) and spontaneous ring expansion (4
→ 5, CRE 1) was anticipated, to form a 9-membered ring
lactam 5.10 Then, N-acylation with a suitably protected β-
amino acid derivative 6 and protecting group cleavage was
planned, to form an imide 7 primed to undergo a second
cascade ring expansion (CRE 2)11 and generate the target 13-
membered bis-lactam framework 8. Based on our previous
work,10 for the first cascade to work well an internal tertiary
amine group is required (i.e., R = alkyl); therefore, cleavage of
the exocyclic group R of 8 and replacement with a 3-furoyl
group would then be needed complete the synthesis of 2. The
successful implantation of this synthetic approach is described
herein − demonstrated in the synthesis a series of natural
product-like 13-membered ring polyamine macrocycles, and in
the first total synthesis of the proposed of structure of
celacarfurine.7

To start, protected amino acids 11a and 11b were
synthesized in high yields via sequential reductive amination
and N-alkylation reactions, while 11c was made via an
Ullmann-type coupling followed by N-alkylation (Scheme 2).

Substrates bearing different R groups on the tertiary amine
(11a−c, R = Bn, PMB and PMP) were chosen that could
potentially be cleaved later in the synthesis. In all three cases,
acid-mediated protecting group cleavage revealed the key
amino acid building block 12, which was then used directly in
the first cascade ring expansion using our published conditions,
affording 9-membered lactams 13a−c in good overall yields in
each case. Employing a ring expansion approach within our
synthetic strategy (as opposed to direct end-to-end cyclization)
permits efficient lactam formation under typical reaction
concentrations (0.1 M), thus avoiding the need for high-
dilution conditions. This approach also facilitated their
synthesis on a gram-scale.
With 9-membered ring lactams 13a−c in hand, the second

ring expansion was then tested, using lactam 13a and our
conjugate addition/ring expansion cascade method (Scheme

3).11a,d,e First, lactam 13a was converted into imide 14 by
reaction with acryloyl chloride under basic conditions. Then,

reaction with seven different primary amines initiated the ring
expansion cascade, via a conjugate addition (14 → 15) and
ring expansion (15 → 16), affording 13-memebered ring
lactams 16a−g, all in good yields. In this model system, the use
of imide 14 means that the macrocycles synthesized in this
series all lack the requisite phenyl substituent needed to
generate celacarfurine 2.13 Nonetheless, these successful
transformations validated our sequential ring expansion
cascade concept and led to the facile synthesis of seven
celacarfurine analogues. Successful rearrangement was con-
firmed by full characterization of all macrocycles 16a−g (see
the Supporting Information (SI)) and in the case of
macrocycles 16b and 16e, further supported by X-ray
crystallographic data.14

To form the phenyl substituted 13-membered ring
celacarfurine scaffold, we then turned to an alternative lactam
ring expansion.11b The ring expansion reactions summarized in
Scheme 4 started with lactam N-acylation with a carbamate-
protected amino acid chloride of the form 17. Following N-
acylation, imides (18a−e) are formed, and cleavage of the
carbamate protecting groups reveals the reactive amine group,
enabling spontaneous ring expansion (18 → 19). In this way,
13-membered ring lactam 19a was generated from lactam 13a
and Cbz-protected amino acid chloride 17a (R2 = Ph, R3 = H,
PG = Cbz), with the protecting group cleavage and
spontaneous ring expansion promoted via hydrogenolysis.
Lactam 19a was isolated in 36% yield over the N-acylation,
protecting group cleavage and ring expansion sequence, with
structure confirmed by X-ray crystallographic data of its HCl
salt.14 Alternatively, lactam 19b, with the same 13-membered
ring framework, was formed in a much higher overall yield
(84%) starting from lactam 13c, using an Fmoc-protected

Scheme 2. CRE 1 to Form 9-Membered Ring Lactams 13a−
ca

aReaction conditions: (a) amine 9, aldehyde, MeOH, 70 °C then
NaBH4, RT; (b) amine 9, K2CO3, L-proline, CuI, 4-iodoanisole,
DMSO, 70 °C; (c) amine 10, i-Pr2NEt, tert-butyl-4-bromobutryate,
70 °C; (d) 4 M HCl in 1,4-dioxane, RT; (e) amino acid 12, i-Pr2NEt,
T3P, CH2Cl2, RT.

Scheme 3. Conjugate Addition/Ring Expansion Cascade
Reactions of 13a: Analogue Synthesisa

aReaction conditions: (a) lactam 13, LiHMDS, acryloyl chloride,
THF, 0 °C to RT; (b) imide 14, amine, THF, RT.
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amino acid chloride, with the protecting group cleavage and
ring expansion cascade promoted by DBU. To highlight the
value of the ring expansion approach to generate analogues,
macrocyclic lactams 19c−e were also synthesized in good
yields, each using Fmoc-protected amino acid chlorides. In
addition, a 12-membered ring analogue 19f was also
synthesized via a 3-atom ring expansion of 13c using a phenyl
alanine derived acid chloride 17f. A lower yield was obtained in
this case, as expected based on our previous work using α-
amino acids in this type of ring expansion,11b but the reaction
worked sufficiently well to afford 17f and allow us to test a
hypothesis discussed later in the manuscript.
To complete the synthesis, hydrogenolysis of benzylated

macrocycle 19a under acidic conditions enabled N-benzyl
cleavage, to form secondary amine 21 in 88% yield (Scheme
5). The same product 21 was also obtained in quantitative
yield from the analogous PMP-derivative 19b, following
oxidative cleavage using periodic acid. The structure of
amine 21 was confirmed by analysis of the X-ray crystallo-
graphic data of its sulfuric acid salt,14 which importantly
showed that the 13-membered ring scaffold remained intact
following protecting group cleavage, with no evidence of
unwanted ring-opening or ring-contraction.10b The synthesis of
2 was then completed via a straightforward N-acylation of 21
using 3-furoic acid, activated by T3P.
The sequence summarized in Scheme 5A resulted in the

formation of racemic macrocycle rac-2, but isolated
celacarfurine was reported to be obtained as its R-enantiomer
2 (Scheme 5A box). The same route was therefore used to
synthesize 2 in enantiopure form, using an enantiopure β-
phenylalanine derivative. The spectroscopic data for the R-
derivatives [(R)-19b, (R)-21 and 2] were identical to those the
racemic analogues, with full synthetic details in the SI. As a
simple demonstration of how this method could also be used

to generate analogues, amine 21 was also converted into
macrocyclic amides 22a−c, of which 22a and 22b have an N-
acyl substituents commonly found in celacinnine-type
spermidine alkaloids.
Differences between our synthetic samples and the isolated

natural product7 quickly became apparent. The isolated
celacarfurine was originally reported to be characterized by
1H and 13C NMR in d4-methanol.7 However, in d4-methanol
our synthetic samples (both rac-2 and 2) were only sparingly
soluble, with the solubility too low to obtain 13C NMR data of
sufficient quality to enable comparison with the isolation data.
The solubility of rac-2 and 2 was also too low to allow us to
observe all signals in the 1H NMR spectrum in d4-methanol,
although enough material dissolved to allow comparison of the
phenyl and furan regions of the spectra, and significant
differences were seen in all signals (see SI section 4 for full
details).
We think that the 1H and 13C NMR were reported in d4-

methanol in error.7 The same NMR data were subsequently
described in a patent by the same team,15 with all signals being
identical to those in the isolation paper.7 But crucially, the
patent includes images of the 1H and 13C NMR spectra in
which residual solvent signals consistent with the data being
collected in d6-DMSO, not d4-methanol, are clearly visible. We
therefore characterized rac-2 and 2 in d6-DMSO instead. The
synthetic samples dissolved well in d6-DMSO, and their NMR
data support the assigned 13-membered macrocyclic structure.
But unfortunately, major differences were evident when
comparing the synthetic and isolated materials (see SI sections
3 and 4). Comparing the optical rotation of our synthetic
compound 2 ([α]D = +42.42) to the reported optical rotation
value for the isolated material ([α]D = +5.78)7 also showed a
significant difference. The isolation team published a
subsequent study on the effects of spermidine macrocyclic

Scheme 4. CRE 2 to Form Macrocycles 19a−fa

aReaction conditions: (a) lactam 13a, LiHMDS, acid chloride 17a,
THF, 0 °C to RT; (b) lactam 13b, acid chloride 17b−f, DMAP,
pyridine, CH2Cl2, 50 °C; (c) imide 18a, H2, palladium hydroxide (20
wt % on carbon), ethanol, RT; (d) DBU, CH2Cl2, RT.

Scheme 5. (A) Synthesis of rac-2 and 2; (B) Synthesis of 12-
Membered Ring Isomer 24a

aReaction conditions: (a) H2, palladium hydroxide (20 wt % on
carbon), methanol, acetic acid, RT; (b) periodic acid, water CH3CN,
RT; (c) 3-furoic acid 22, i-Pr2NEt, T3P, CH2Cl2, RT.
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alkaloids, including celacarfurine, on the expression of amyloid
β-peptide in SH-SY5Y cells.16 In this study, 1H and 13C NMR
data for celacarfurine were reported in CDCl3. However, our
synthetic materials were insoluble in CDCl3, representing
another point of difference. We can therefore conclude beyond
reasonable doubt that the celacarfurine isolated by Liu and co-
workers7 and our synthetic material 2 are not the same.
One explanation for this difference is that we may have made

a mistake during our synthesis. However, having prepared and
fully characterized multiple 13-membered lactams in this study,
including 4 compounds with supporting X-ray crystallographic
data, we are confident in the assignment of our synthetic
material. This notably includes X-ray data for macrocycle 21,
the direct precursor to 2. Regrettably, we were unable to obtain
X-ray data for 2, as this would have provided even greater
confidence; this is despite extensive efforts to crystallize our
sample of 2, including using the Encapsulated nanodroplet
crystallization (ENaCt) method (see SI section 5).17

Therefore, we must also consider the possibility that the
isolated material may have been misassigned.18 With this in
mind, we considered that isomeric 12-membered macrocycle
24 (Scheme 5B) may also account for the reported data;7 the
inclusion of a phenyl alanine unit in this alternative structure
provides some biosynthetic justification to this alternative
proposal. We therefore synthesized macrocycle 24 from 19f,
via sequential PMP-cleavage and N-acylation. Unfortunately,
clear differences in the 1H and 13C NMR data for 24 were seen
compared with isolated celacarfurine, thus ruling out this
possibility.
A third possibility is that both the synthetic and isolated

materials are correctly assigned, but they exist in different
rotameric forms, thus accounting for their different physical
properties and spectroscopic data. Without access to a sample
of the isolated material, we cannot categorically rule this
possibility out.18 Heating our synthetic sample of 2 in d6-
DMSO for 1 h at 190 °C, cooling to RT, and reacquiring its 1H
NMR spectrum resulted in no change in the appearance of its
NMR data; this suggests that our synthetic material 2 was not
formed as a higher energy rotamer compared to the natural
material.
In conclusion, a strategy of using consecutive cascade ring

expansion reactions has been used to generate natural product-
like 13-membered ring polyamine macrocycles. High dilution
conditions are not needed for any of the cascade ring
expansion steps reported, which were able to deliver a series
of structural analogues from common precursors. This
included the first synthesis of the proposed of structure of
celacarfurine, in 32% overall yield from protected diamine 9
(Scheme 6).
Unfortunately, the data obtained for our synthetic product

do not match those reported for the isolated alkaloid. The
results described herein highlight the value of sequential
cascade ring expansion reactions for the efficient synthesis of
complex macrocyclic target molecules. Similar approaches are
expected to be applicable to other synthetic targets, e.g. other
spermidine-derived macrocyclic alkaloids and analogues.1,3 It is
therefore our hope that this study will inspire the development
of related approaches to synthesize bioactive macrocycles,9

including other natural products and synthetic macrocycles for
applications in medicinal chemistry.19
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