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ABSTRACT

The sedimentation of semiflexible fibers is a central process in the production of a range of important materials such as paper and fiber-
reinforced composites. Predicting the dynamics of such fibers when both Brownian motion and hydrodynamic interactions are relevant,
which would be a powerful tool to support the design of these materials, is nonetheless numerically challenging. Here, we utilize a computa-
tional framework that incorporates fiber elasticity, thermal fluctuations, and hydrodynamic interactions represented as Rotne–Prager–
Yamakawa kernels and perform a parametric study of the simplest system in which hydrodynamic interactions are relevant, that is, pairs of
fibers starting from one of two initial configurations. We also provide analytical predictions for the initial velocity and rotation of rigid fibers
in the Oseen approximation. We systematically studied the systems in which bending, thermal fluctuations, and hydrodynamic interactions
are included for the sedimenting semi-flexible fibers. Our goal was to determine when one of thermal fluctuations or hydrodynamics domi-
nates over the other, or when both must be considered together, to inform the understanding and design of such systems. The short- and
long-time dynamics of the fibers are thoroughly characterized, with good agreement with the analytical calculations for the initial behavior,
and the observed trends are interpreted in terms of the underlying physical mechanisms. We finish with a discussion of the use of Rotne–
Prager–Yamakawa kernels over alternative frameworks such as bead models and suggest potential directions for future work.

VC 2026 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0301507

I. INTRODUCTION

The sedimentation of fibers suspended in a viscous fluid is a key
process in the production of materials such as paper and fiber-
reinforced composites. Both the dispersion (mixing) and aggregation
(flocculation) mechanisms of fibers during sedimentation can control
the final grade of the finished product. These mechanisms have signifi-
cant effects on a range of properties such as esthetics, brittleness, dura-
bility, strength, roughness, and uniformity.1,2 Key material parameters
for the fibers are their length, bending stiffness, aspect ratio, and any
intrinsic curvature. For small fibers, it is also necessary to consider
thermal fluctuations (Brownian motion), often quantified by the per-
sistence length. Internal elastic forces are balanced by viscous friction
with the fluid and the external field generated by gravity. In addition,
to reliably predict the sedimentation of fiber assemblies, it is also
essential to consider hydrodynamic interactions between fibers, as
these can dominate the dynamics for nearby fibers. However, the

combination of thermal fluctuations and hydrodynamic interactions is
challenging to model for slender bodies such as fibers, making it diffi-
cult to provide a predictive capability for this important class of
system.

The deformation of sedimenting fibers has been extensively
investigated.1,3–12 In 1996, Herzhaft et al.6 performed experiments to
evaluate the mean and variance of sedimentation velocity, plus the ori-
entation distribution, for an aggregate of high-aspect-ratio fibers. They
reported a steady-state condition for settling when the fibers were
mostly aligned with the direction of gravity. A follow-on experimental
study by the same group in 1999 attempted to identify the orientation
distribution of settling non-Brownian, rigid fibers, in two regimes,
dilute and semi-dilute.7 It was found that as the concentration of fibers
increased, more fibers tended to align with the direction of gravity. A
challenge with the measurements was the tracking of fibers within the
aggregate over long distances and times, as fibers could drift out of the
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imaging plane due to fluctuations in the sedimentation velocity.
Experimental studies also include that of Marchetti.,9 who performed a
detailed experimental study on the sedimentation of a flexible fiber for
which the effects of Brownian motion could be neglected. It was shown
that, depending on the ratio of the fiber stiffness to the strength of
gravitational forces, a single sedimenting fiber adopts one of three
steady state configuration regimes.4 These regimes are “slightly-
curved,” “V,” and “U” shapes, depending on the value of the dimen-
sionless elasto-gravitational number (the ratio of elastic to gravitational
forces), which was controlled in the experiments. In 2022, Cunha
et al.13 performed experiments in which Brownian motion also con-
tributed to fiber deformation. It was found that Brownian effects mea-
surably enhanced the deformation around the steady-state
configuration compared to the equivalent non-Brownian fiber.

Parallel to these experimental investigations has been a growing
body of research developing a range of analytical solutions and numer-
ical tools to theoretically explore the sedimentation of flexible solids,
including slender bodies, in a viscous fluid. In 1994, an analytical tool
for the evaluation of the sedimentation regime with a degree of fiber
deformation was proposed by Xu and Nadim. They predicted that,
during sedimentation of a fiber within the viscous fluid, a torque would
rotate the fiber toward a horizontal preferred state, perpendicular to
the direction of settling.3 Bead models have also been employed, in
which the fiber is modeled as a string of beads rather than a continu-
ous cylinder. The sedimentation of rigid, non-straight fibers comprised
of three non-coplanar segments has been investigated by Tozzi et al.11

and achieved partial agreement with experimental results, but was
unable to accurately predict the drag force. A bead model was also
employed by Cosentino Lagomarsino et al.14 to observe differing sedi-
mentation regimes, assuming a constant fiber length and ignoring
thermal fluctuations. They showed that errors in predicting the bend-
ing amplitude (defined as the distance between the uppermost and the
lowermost point of the filament along the direction of the applied
force) were found to increase for high fiber aspect ratios (Fig. 1).

The gear model, a modified version of bead model, was suggested
by Delmotte et al.15 to include a series of touching beads, and to
include non-local hydrodynamic interactions between beads using the
fast multipole formulation of the Rotne–Prager–Yamakawa (RPY) ten-
sor. It was found that the results deviated from an alternative numeri-
cal method (the joint model, for which the gap between two successive
beads was higher than the gear model) at small values of the non-
dimensional elasto-gravitational number. Slender body theory (SBT) is
an alternative to bead modeling that incorporates hydrodynamic inter-
actions as a distribution of singular forces along a continuous cylindri-
cal object.16 When applied to the sedimentation of fibers with both
uniform and non-uniform cross sections, it predicts that the effects of
initial configuration of a flexible filament are significant: fibers aligned

with the direction of sedimentation are more susceptible to a buckling
instability than those in a perpendicular alignment.10 Recently, the sed-
imentation of an active poroelastic filament has been studied by a
bead-spring model. It was found that this fiber can follow an out-of-
plane zigzag pattern during the sedimentation.17

Hydrodynamic interactions between fibers have been modeled by
both bead models and SBT. Llopis et al.18 represented two fibers as
bead chains with hydrodynamic interactions mediated by the Oseen
tensor and evaluated short and long time sedimentation dynamics and
fiber deformation for three classes of initial fiber geometry. Saggiorato
et al.19 used both continuummodel and Oseen tensor to study the sed-
imentation of one, two, and three semiflexible non-Brownian fila-
ments. The aspect ratio of fibers was not high. They found that
individuals in a top-bottom pair (either co-planar or rotated) attract to
each other due to the hydrodynamic interaction. Gustavsson and
Tornberg20 introduced a numerical tool to simulate non-Brownian
rigid fibers, which was based on the non-local slender body approxi-
mation. Their results showed that the average velocity of multiple
fibers was higher than an individual fiber and that the mean sedimen-
tation dynamics of fiber clusters was very sensitive to randomness in
the initial configuration. Nazockdast et al.21 combined Stokeslets and
rotlets in a model that did not incorporate Brownian motion and
applied it to a toroidal arrangement of fibers, demonstrating the even-
tual loss of stability and formation of smaller tori. The Euler–Bernoulli
beam theory was employed to solve the solid model. The deformation
and breakup of a cloud of rigid fibers were investigated both experi-
mentally and numerically by Park et al.22 They used two different
approximations for the far-field hydrodynamics, the so-called “fiblet,”
based upon point–particle interactions, and a more rigorous calcula-
tion based on SBT. The results were compared to the experimental
data. The authors found that due to particle anisotropy, the breakup in
the cloud of the rigid fibers is accelerated relative to the cloud of spher-
ical particles.

Sedimenting rings have also been simulated within the Rotne–
Prager–Yamakawa approximation,23 demonstrating various modes of
sedimentation depending on the initial configuration and the ring flex-
ibility. The results obtained from experiments supported by a numeri-
cal tool have demonstrated that, during the sedimentation, knotted
loops can attain a flat, wide, and thin toroidal form, with a number of
intertwined loops oriented perpendicularly to gravity.24 For such a
structure, the individual loops periodically swirl around each other,
while a much slower rotation of the entire system around the vertical
symmetry axis was observed. Bukowicki and Ekiel-Jezewska25 studied
the sedimentation of a pair of both rigid and flexible non-Brownian
fibers with both initial alignment of symmetric and non-symmetric
with respect to a vertical plane, by the use of the Rotne–Prager–
Yamakawa (RPY) approximation. They found that rigid rods exhibit

FIG. 1. A representation of geometric
parameters for initially collinear (left
image) and side-by-side (right image) con-
figurations of two pairs of flexible fibers.
The direction of gravity is also shown.
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symmetric periodic orbits as they are sedimenting, while for flexible
pairs, it depends on the initial alignment. They only reported the
changes in the alignments of fibers, but not the distance between fibers
in a pair. Mostly, it was found that the flexible fibers tend to converge
toward horizontal and parallel orientation, as previously reported in
Ref. 19. Very recently, Maxian and Donev considered the hydrody-
namic interactions for a pair and a cluster of Brownian fibers with the
use of RPY kernels.26 It was shown that the fibers approach each other
when the hydrodynamic interactions are strong enough compared to
the Brownian motion. However, they only considered one set of
parameters and initial configuration and did not report sedimentation
velocity and fiber orientation.

To the best of our knowledge, there has been no parametric study
of the hydrodynamic interactions between semiflexible fibers that
undergo thermal fluctuations. The purpose of this paper is to employ
the RPY framework of Maxian and Donev26 to evaluate the short- and
long-time dynamics of a sedimenting pair of semiflexible fibers, vary-
ing parameters such as fiber stiffness, the strength of thermal fluctua-
tions, and the initial geometry of the fibers. This paper is organized as
follows. In Sec. II, the problem is defined and key dimensionless
parameters given. In Sec. III, the simulation methodology is described
and the details of a continuum rigid rod calculation are given that is
used to benchmark our results. In Sec. IV, we present our results, con-
sidering first the dynamical regime (thermal vs hydrodynamic domi-
nated), then the short-time dynamics, and finally the long-time
dynamics, as key independent parameters are systematically varied.
We finish in Sec. V with a summary and discussion of our findings.

II. PROBLEM DESCRIPTION

In this paper, the sedimentation of two pairs of identical cylin-
drical fibers of length l; radius a; and bending stiffness k through a
fluid of viscosity l are considered, with the difference in density
between the fibers and the fluid equal to Dq. The persistence length
lp is defined as

lp ¼
k

kBT
;

with kB the Boltzmann’s constant and T the absolute temperature.
The dynamics of this problem can be described by three non-

dimensional numbers describing the relative importance of gravity,
fiber elasticity, and thermal fluctuations. These are the elasto-
gravitational number (B�), the dimensionless bending stiffness (j),
and the gravitational Peclet number (Peg), defined by

B� ¼ Dqgl3

k
; (1)

j ¼ lp

l
¼ k

kBTl
; (2)

Peg ¼
2pa3Dqgl

3kBT
; (3)

where g is the gravitational constant. Note only two of these are inde-
pendent; the choice of which to present will depend on context. In
addition, two geometric ratios are also used, the ratio of the initial dis-
tance between fibers (see below) to their length (D�) and the fiber
aspect ratio �, plus a non-dimensional time (�t), defined as

D� ¼ d0

l
; (4)

� ¼ a

l
; (5)

�t ¼ tDqg

ll
: (6)

Two different initial configurations are considered: one in which the
fibers are aligned in a collinear horizontal configuration (here and
below, “horizontal” means perpendicular to the direction of gravity),
and a second side-by-side configuration where the fibers are separated
horizontally but orientated vertically. A schematic description of these
configurations is shown in Fig. 1.

III. METHODOLOGY

The dynamics of this system will primarily be studied numerically
using the simulation tool developed by Maxian et al.27,28 This code uses
Rotne–Prager–Yamakawa (RPY) kernels to approximate the hydrody-
namic interactions between fibers. A key advantage of this is that the
resulting hydrodynamic mobility matrix is symmetric positive definite
(SPD), a property required for the inclusion of Brownian motion.

To provide further insight, we also consider a simplified analytical
model based on the Oseen approximation to determine the hydrody-
namic interactions between the fibers in the initial phase of
sedimentation.

A. Numerical method (Rotne–Prager–Yamakawa

kernels)

The simulation code developed by Maxian et al.,27,29 models the
motion of semi-flexible fibers suspended in a viscous fluid by solving
the Stokes’ equations between a set of inextensible fibers subject to
local force densities due to gravity and elasticity and the constraint that
the fibers are inextensible. A full description of the methodology is
provided by Maxian et al.27–29

1. Kinematic description of fiber motion

The centerline of each fiber is described mathematically by a con-
tinuous function, Xðs; tÞ, with s the distance along the contour,
0 � s � l. This can be obtained by integrating along the tangent vector
T sð Þ ¼ @

@sX from the position of fiber midpoint XMP (the discretized
distribution ofX, evaluated at the midpointMP, s ¼ l=2), that is,

X s; tð Þ ¼ XMP tð Þ þ
ðs

l
2

T s0; tð Þds0: (7)

In the simulation, the fiber profile is approximated by a type 2
Chebyshev polynomial that interpolates through mx distinct points
connected by m tangent vectors interpolated by a type 1 Chebyshev
polynomial (mx ¼ mþ 1Þ. This discretized representation is referred
to as the set of points X, related to the midpoint and the tangent vec-
tors s by the invertible matrix v;

X ¼ v
s

XMP

� �
: (8)
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These points and the fiber profile are illustrated in Fig. 2. Note that the
points are not uniformly distributed along the fiber. The operator v is
used to map between tangent vectors and positions, defined as

X ¼ D†
mþ1Em!mþ1 B

� �
s

XMP

� �
: ¼ v�s: (9)

The first parenthesis acts as an operator. The second parenthesis is the
operand, which includes the tangent vectors plus the midpoint. The
matrix B in the first parenthesis is defined such that XMP is the middle
point (midpoint) of X on mx Chebyshev grid number. The superscript
† shows the pseudo-inverse of the differentiation matrix D. The sub-
script of D shows that this operation must be done on the grid of size
mþ 1, that is, mx (shown in Fig. 1). The extension matrix E takes the
tangent vectors from a grid of size m into one of size mx . The inverse
of operator v differentiates X on the grid size mx and then downsam-
ples to the grid size ofm via the matrix Emþ1!m.

By differentiating Eq. (7), we obtain an equation of motion for
the positions of each fiber relative to the midpoint velocity UMP ,

@tX s; tð Þ ¼ UMP tð Þ þ
ðs

l
2

@ts s0; tð Þds0: (10)

Since the fiber is constrained to be inextensible, the rate of change of
the tangent vectors must be in the form of a rotation

@ts ¼ X� s ¼ �CX; (11)

where C is a matrix corresponding to this set of rotations. Hence, the
change in the position of the points X is described by a linear kine-
matic discrete operator K ; which operates on the set of local tangent
rotations X; and fiber midpoint velocity UMP, which we collectively
write as a ¼ ðX;UMPÞ;

@tX sð Þ :¼ Ka ¼ v
�C 0
0 I

� �
X

UMP

� �
: (12)

In Eq. (12), we define a pseudo-inverse of K as

K�1 ¼ �C 0
0 I

� �
v�1 ¼ �C

T
v�1: (13)

Note the K�1 is not the true inverse of K but can be written as

K�1K ¼ �C2 0
0 I

� �
! �C

T
K�1K ¼ �C : (14)

The constraint of inextensibility is enforced by tensions k along each
fiber that prevent changes in the length of the tangent vectors. This is
done by imposing that there is no energy dissipation resulting from
these constraint force, i.e.,

k; @tXh i ¼ k;Kah i ¼ K�k; ah i ¼ 0: (15)

Here, K� is the adjoint to the matrix K , which for the discretized sys-
tem is its transpose. The angled brackets :; :h i denote the standard
inner product. This equation imposes the requirement that the internal
forces (k) cannot add or deduct energy from the system.

2. Non-Brownian fiber formulations (deterministic

formulation)

For clarity, the governing equations in the absence of Brownian
motion, i.e., the deterministic formulation, are described first. The line-
arity of the Stokes equations means that the motion of the fibers is line-
arly related to the sum of force densities acting on them through the
mobility operatorM½X� (which depends on the current configuration
of the fibers),

@tX s; tð Þ ¼ M½X�f: (16)

Here, f is made up of the sum of the gravitational, bending, and ten-
sion force densities. The bending force density is proportional to the
fourth derivative of the continuous fiber profile with respect to arc
length s, i.e., fk ¼ �k@4

sX, where k is the bending stiffness of the fiber.
Together with the inextensibility condition, a saddle point system is
formed that in the continuous case would be

�M½X� K

K
� 0

 !
k

a

 !
¼ M½X� fk þ f

g
� �

0

 !
; (17)

with f
g the gravitational force density. The equivalent discretized sys-

tem is

� eM K

KT 0

� �
k

a

� �
¼ eM �LX þ Fgð Þ

0

� �
; (18)

where eM is the symmetric positive definite discrete mobility matrix
and L is the matrix operator corresponding to the bending force,
Fk ¼ �LX; in the discretized system.

We can now eliminate the constraints k to leave the following
equation for the deterministic dynamics of the system:

@tX ¼ �N LX � Fgð Þ; (19)

N ¼ K KT eM�1
K

� �†
KT : (20)

Here, the matrix N is the mobility matrix projected onto the space of
inextensible motions, and the superscripts T and † denote the trans-
pose and adjoint operations, respectively.

FIG. 2. The configuration of a discretized fiber described by Chebyshev points X
(green and black solid circles) and tangent vectors s (magenta arrows). The solid
black line represents the continuous profile of the fiber, X (Chebyshev interpolant).
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3. Brownian fiber formulations

Having determined the equation governing the deterministic
dynamics, we can now form the corresponding Langevin equation. To
satisfy the fluctuation–dissipation theorem, the covariance of the noise
must be equal to 2kBTN , meaning that the coefficients must be pro-
portional to some matrix N

1
2 satisfying

N
1
2 N

1
2ð ÞT ¼ N : (21)

It is worth noting that N
1
2 is not unique and only needs to satisfy the

above relation. In addition, since the mobility N depends on the con-
figuration of the fibers, the Ito form of the stochastic differential equa-
tions requires the inclusion of a drift term proportional to the
divergence of N.30 Thus, the Ito–Langevin equation is expressed in
terms of X as28,31

@tX ¼ �NLX þ NFg þ kBT @X � Nð Þ þ
ffiffiffiffiffiffiffiffiffiffi
2kBT

p
N

1
2W tð Þ; (22)

where WðtÞ is a vector of Gaussian white-noise processes (the formal
derivatives of Brownian motion). Even in the presence of the drift
term, the two-step integrator, which will be defined in Subsection
IIIA 5, satisfies fluctuation–dissipation balance with respect to the con-
strained inextensible Gibbs–Boltzmann distribution.

4. Mobility matrix

The key computational challenge is to find an approximation for
the mobility matrix M, which accounts for hydrodynamic interactions
between fibers, that is, both sufficiently accurate and provides a com-
putationally efficient means to calculate the terms in equation (18).
Full details of the methodology used are given by Maxian and
Donev.26 For slender fibers, the fluid velocity of the fiber system can be
formed by integrating over the singularity distribution along each fiber.
In the high-aspect-ratio limit, the dominant contribution to the mobil-
ity comes from the self-term. In this approach, the fiber is modeled as
an infinite series of regularized delta functions, referred to as blobs,
and which are surface delta functions on spheres of radius â in the
Rotne–Prager–Yamakawa (RPY) approximation. For the case in which
these blobs are well separated (R > 2â;), the kernel is the sum of a
Stokeslet and multipole doublet. However, when the blobs overlap
(R � 2â;), the nonsingular kernel tends to the classical Stokes drag
mobility 1

6plâ
as x ! y in terms of the point y, where the force is

spread by the regularized delta function, and x the point where the
resulting fluid velocity field at another surface delta function is aver-
aged.26 The regularized Rotne–Prager–Yamakawa kernels for these
nonlocal terms are given, in terms of the vector distance R ¼ RR̂
between Chebyshev points, by

MRPY x; yð Þ ¼
1

8pl

I þ R̂R̂

R
þ 2â2

3

I � 3R̂R̂

R3

� �
R > 2â;

4

3â
� 3R

8â2

� �
I þ R

8â2
R̂R̂

� �
R � 2â:

8
>>>><
>>>>:

(23)

Here, â � 1:12 a is the regularized radius and a is the radius of the
fiber. By use of asymptotic analysis,26,32 it can be shown that this
choice of regularized radius gives the same mobility as slender body
theory, but removes the singularity in the integrand found in slender
body theory.

In Eq. (23), parameters R ¼k R k; R̂ ¼ R= k R k; and R̂ R̂; are
distance vector length, normalized distance vector, and outer product
of R̂ with itself, respectively. An important property of the Rotne–
Prager–Yamakawa (RPY) approximation is that the mobility matrix
calculated by this approach is symmetric positive definite, which is
required when the Brownian motion is considered so that the square
root of mobility matrix can be formed. The integrals are evaluated by
using an oversampled quadrature along with Chebyshev weights and
200 integration points along each fiber for all terms (except the self-
term). For the self-term, the number of oversampled points can be
reduced through the use of a special quadrature, while still preserving
the accuracy of that integral.

However, the use of such a hybrid method results in a mobility
matrix that is not guaranteed to be SPD, especially for large values of
aspect ratio and number of Chebyshev points due to numerical errors.
To address this, a reference oversampled mobility matrix is defined as

M ¼ Mref :¼fW
�1
ET
u WuMRPY ;uWuEu

fW�1
: (24)

The subscript u indicates that this operation is performed on an
upsampled grid with Nu points that is obtained by resampling the
Chebyshev interpolant, and the matrix fW is formed from the
Chebyshev weights. To symmetrize the mobility matrix, the diagonal
elements of reference mobility matrix are replaced by

MSQS ¼
1

2
MfW�1 þfW�1

MT

� �
: (25)

This allows us to define the non-local terms as

eM ¼ Mref � BDiag Mreff g þ BDiag MSQSf g; (26)

where BDiag stands for the diagonal blocks (self-interaction terms) of
the matrix eM . The details regarding the integration of mobility matrix
for the evaluation of the velocity on each fiber can be found in Refs. 26
and 28.

5. Time integrator

The temporal discretization for solving the equations of
Brownian fibers28 uses a two-step integration scheme. For this meth-
odology, it is necessary to compute the stochastic drift terms as they
arise from the inextensibility constraints of the fibers, and therefore
must be included to properly account for the dynamics.28 First, an ini-
tial estimate of stochastic Brownian velocity is used to obtain a new
configuration of the fibers at the midpoint of the time step. This
updated configuration is then used to estimate the drift velocity and
provide a more accurate estimate of the Brownian velocity, which is
then used to solve the dynamic equations for the fiber configuration at
the end of the time step. Further details of this scheme can be found in
Sec. A.3 of the supplementary material.

B. Continuummodel (analytical solutions)

As a consequence of the simplicity of the initial configuration, it
is possible to provide analytical predictions for the initial velocity and
rotation rates in the rigid-fiber limit within the Oseen approximation,
neglecting thermal fluctuations.18,33Denoting the coordinates of points
along the contours of fibers 1 and 2 by x1 and x2; respectively, the
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contribution to the fluid velocity at points along fiber 1, due to the
presence of fibers 2, u2 x1ð Þ; etc., is given by

u2 x1ð Þ ¼ 1

8pl

ð
f 2

x1 � x2j j þ
x1 � x2½ � � f 2
� �

x1 � x2ð Þ
x1 � x2j j3

( )
dx2; (27)

where f 2 is the force density acting at point x2 along the axis of fiber 2.
Each initial configuration is now considered, in turn, with the super-
scripts 1 or 2 being dropped when the meaning is clear.

Here, it should be mentioned that the Oseen tensor only includes
the first term of RPY when R > 2â: The results will converge to each
other when the fibers are far from each other, but, due to periodic
boundary conditions used for RPY, this is not the case.

1. Horizontal (collinear) configuration

On the assumption that the fibers are of uniform thickness and
density, in the initial configuration, the gravitational force per unit
along the fiber will be uniform and given by f ¼ w

l
, where w is the

buoyancy adjusted weight of the fiber and l the fiber length. The
z-component of the velocity at each point of the left-hand fiber, due to
the presence of the right-hand fiber is given after straightforward inte-
gration by

uz x; z ¼ 0ð Þ ¼ f

8pl
log

d=2þ l � x

d=2� x

				
				; (28)

where d is the separation distance between the fibers and log denotes
the natural logarithm. The integrated z component of the whole fiber
velocity with respect to x on the left-hand fiber is then

Uz ¼
f

8pll
d log

d þ 2lð Þd
l þ dð Þ2

					

					þ 2l log
2l þ dð Þ
l þ dð Þ

				
				

 !
: (29)

Note this is just the velocity induced by hydrodynamic interactions
with the other fiber; the net velocity will also include the sedimentation
velocity of the fiber in isolation.

The net rotation rate x of the left-hand side fiber can be similarly
obtained by integration

x ¼ 12

l3

ð l
2

� l
2

quz qð Þdq; (30)

where q ¼ x � l=2 is the distance to the center of the fiber and uzðqÞ
the vertical velocity at that point as given by Eq. (20). This evaluates to

x¼ 3f

4pll3
lþdð Þ dð Þ log dþ lj j

dj j þ lþdð Þ 2lþdð Þ log dþ lj j
dþ2lj jþ l2


 �
:

(31)

This rotation rate can be compared to the scale of rotation induced
by thermal fluctuations, which derives from the rotational diffusiv-
ity Dr;

34

Dr ¼
3kBT log

l

2a

� �

lpl3
; (32)

where kB, T , and a are the Boltzmann constant, temperature, and
radius of the fiber, respectively.

2. Vertical (side-by-side) configuration

Analogous to the previous geometry, the z-component of the
velocity on each point of one fiber in the vertical fiber geometry due to
the presence of the other is found to be

uz x¼0;zð Þ¼ f

8pl
2z � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4d2þ �2zþ lð Þ2
q þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4d2þ 2zþ lð Þ2
q

0
@

1
A

2
4

þl
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4d2þ �2zþ lð Þ2
q þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4d2þ 2zþ lð Þ2
q

0
@

1
A

3
75:

(33)

The net z-component of the induced velocity on the whole fiber is
obtained by the integration uz of with respect to z, that is,

Uz zð Þ ¼ f

8pll
2 �d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l2

p� �� �
: (34)

The x component of the induced velocity on the left-side fiber can be
similarly found to be

ux zð Þ ¼ fd

8pl

1

d2 þ z � l
2

� �2
 �1
2

� 1

d2 þ z þ l
2

� �2
 �1
2

8
><
>:

9
>=
>;
: (35)

Again, the rotation rate can be obtained by Eq. (30) with the modifica-
tion that it now only depends on the x component of the velocity
[defined as Eq. (35)], since that component is perpendicular to the
fiber. As a result,

x ¼ 3fd

2pll3
2d � 2 d2 þ l2ð Þ12 þ l=2ð Þlog

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l2

p
þ lffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ l2
p

� l

" #
: (36)

IV. RESULTS

We now consider the interactions between two sedimenting
fibers. In Stokes flow, an isolated straight rigid fiber at an inclined
angle does not rotate, but sediments at an angle to the vertical. As a
consequence, fibers inclined at different angles will move toward or
apart from each other, even without thermal fluctuations or hydrody-
namic interactions. Since our goal in this study is to highlight the com-
peting roles of hydrodynamic interactions and Brownian motion, we
deliberately chose initial geometries that were not inclined, i.e., were
either horizontal or vertical, to eliminate this possibility from the early-
time trajectories. Also, another reason that we selected these initial
configurations is due to the fact that for these cases, the hydrodynamic
interaction effects can be initially minimum (collinear configuration
with a minimal point-to-point distance) and maximum (side-by-side
configuration with a maximal point-to-point distance). Therefore, we
consider two initial configurations: an identical pair of collinear, hori-
zontally oriented fibers; and vertically oriented “side-by-side” fiber
pairs. During sedimentation, the fibers deform and translate depend-
ing on gravitational forces, hydrodynamic interactions, elastic, and
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Brownian forces. A triply periodic domain was used in which the ratio
of domain length (Ld) to fiber length (l) was set to be 25. This is large
enough to effectively eliminate the periodic artefacts.26

We first consider the overall behavior—thermally dominated vs
hydrodynamic interaction-dominated—before quantifying the tempo-
ral dynamics. Validation of the numerical methodology is provided in
Sec. A of the supplementary material.

A. Identification of sedimentation regime

Snapshots are given in Fig. 3 for both initial configurations, and
for instances of high gravitational Peclet number Peg and initially
nearby fibers, and conversely low Peg and large separation. These visu-
ally demonstrate the intuitive expectation that the former case will pro-
duce correlated motion dominated by hydrodynamic interactions,
whereas the latter will instead generate uncorrelated motion domi-
nated by thermal fluctuations.

The value of parameters considered in Fig. 3 can be found in
Table I.

For each initial geometry, two scenarios were studied to help iso-
late the different physical mechanisms involved: (i) varying the initial
fiber separation and Peclet number at fixed fiber stiffness; and (ii)

varying the fiber stiffness and Peclet number at fixed initial fiber sepa-
ration. We consider each in turn.

Since the fibers are subject to random thermal noise, 10 realiza-
tions were run for each set of case and the statistics reported as the
average over this set of realizations. While this number is sufficiently
large to determine the range of the differences between realizations, it
does not give good statistics when these variations are large. However,
we were not able to run larger numbers of realizations due to the com-
putational expense of each simulation. As might be expected, the larg-
est variations between realizations are found for vertical cases at low
Peclet numbers and large separations where random fluctuations
determine in which directions the fibers rotate.

1. Constant stiffness

In the first scenario, the bending stiffness was kept constant at
B� ¼ 100, while the nondimensional initial inter-fiber separation
(measured between their closest points) D� was systematically varied
from 0.2 to 2.0. The purpose of systematically changing the initial dis-
tance between fibers is to study both kinds of dilute and concentrated
suspensions. The gravitational Peclet number Peg was varied from
2:02� 10�5 to 6:74� 10�2 for horizontal fibers and from 2:02�
10�1 to 2:02� 10�4 for vertical fibers. The aspect ratio was set to be
0.0046. The total simulation time T�

F ¼ t
�t
was set to 3000 to allow full

capture of fiber dynamics. To give a more vivid picture of sedimenta-
tion process, we provide overlayed snapshots in real space in Fig. 4,
which shows the evolution of fiber morphology during sedimentation,
for fiber pairs starting from a collinear initial configuration in some
sets of parameters.

Two metrics were employed to characterize the degree of corre-
lated motion between the two fibers. Since the center of mass of an iso-
lated non-Brownian fiber will fall vertically, motion in the x direction
must result from either thermal fluctuations or hydrodynamic interac-
tions. Correlations in the x-coordinates of the center of mass of each
fiber were quantified by their normalized covariance qXX ;

FIG. 3. Examples of fiber configurations at t ¼ 0 (top) and at a later time (bottom) for each initial geometry, and for combinations of high and low gravitational Peclet number
Peg , and small and large initial fiber separation. (a) Collinear initial geometry, small separation and high Peg . (b) Collinear geometry, large separation and low Peg. (c) Vertical
configuration, small separation, and high Peg . (d) Vertical configuration, large separation, and low Peg.

TABLE I. The physical parameters used in the simulations of case studies shown in
Fig. 3.

Parameter Value (a) Value (b) Value (c) Value (d)

Peg 0.067 95 0.000 203 86 0.203 86 0.002 038 6

D� 0.5 2.0 0.5 2.0

B� 0.000 03 0.01 0.000 01 0.001
�t 10.0 18.3 6.0 9.1

� 0.0046

j 3333.3 10 10 000 100
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qXX ¼ cov X1;X2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var X1ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var X2ð Þ

p ; (37)

where cov and var are, respectively, the covariance and variance of the
x coordinates over the second half of total simulation time or until the
fibers were observed to touch. In the case where fibers come into con-
tact during sedimentation, we stopped the simulation at the time of
contact and did not report results for later times. This choice is made
purely to allow our discussion to focus on two physical mechanisms—
thermal motion and hydrodynamic interactions—without introducing
a third (excluded volume) that would complicate the interpretation of
the results. Note that, at each time step, the cov and var are calculated
over all 10 realizations and qXX obtained from Eq. (37). Values of qXX

close to minus one correspond to trajectories, in which the fibers’ hori-
zontal translation was strongly anti-correlated during sedimentation,
i.e., the hydrodynamic interactions dominated; conversely, values close
to zero were interpreted as uncorrelated motion dominated by random
thermal motion.

Mostly, it was found that the flexible fibers tend to converge
toward horizontal and parallel orientation, as previously reported in
Ref. 25. Figure 5 shows the variation of qXX with Peg and D� for both
initial geometries. It is evident that for initially collinear fibers, hydro-
dynamic interactions dominate for high Peg and low D�. This is rea-
sonable, as it corresponds to cases where hydrodynamics interactions
are expected to dominate over thermal fluctuations. However, for ver-
tical fibers, there was no clear trend in this metric with large variations
between neighboring points in parameter space. As mentioned above,
this value has been calculated as an average over 10 realizations; how-
ever, inspection of individual simulations suggests that although there
is some degree of correlation between the fibers, this is swamped by
the variations between different realizations. While this could be
addressed by running much larger ensembles to obtain better statistics,
we instead considered a second statistical metric related to the orienta-
tion of fibers in the horizontal plane. More precisely, the end-to-end
vectors of both fibers were projected into the horizontal x–y plane to
give two-vectors a1 and a2, and the angular difference h extracted as

cos2h ¼ a1 � a2ð Þ2
a1j j2 a2j j2

: (38)

Averaging over the same time window as before now shows a clear
trend for vertical fibers as evident in Fig. 6. Fiber alignment h � 0 is
again observed for high gravitational Peclet numbers, with this hydro-
dynamic interaction-dominated region becoming broader for smaller
D�, i.e., closer fibers. Conversely, the averaged cos2h fluctuates around
1
2
, suggesting uncorrelated orientations, for low Peclet number and dis-
tant fibers, corresponding to thermally dominated motion as expected.

To illustrate further how the sedimentation behavior changes
with the Peclet number at fixed fiber stiffness, Fig. 7 shows example
trajectories for pairs of fibers at three different Peclet numbers. In the
hydrodynamic interaction-dominated regime (Peg ¼ 2:04� 10�1), the

FIG. 4. Evolution of sedimentation of a fiber pair in the hydrodynamic interaction-
dominated regime, starting from a collinear configuration, B� ¼ 100, D� ¼ 0:5 and vari-
ous Peg¼ 6:74� 10�2; 6:74� 10�4; 2:04� 10�4; 2:02� 10�5 from left to right.

FIG. 5. The changes in qXX due to variation in the gravitational Peclet number (Peg) and nondimensional initial distance (D
�) parameter, defined for a pair of initially collinear

(left image) and side-by-side (right image) fibers.
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fibers remain confined within the plane y ¼ 0 and after the initial
interaction move apart and fall in a slight U-shaped configuration, as
in found for isolated fibers. At intermediate Peclet numbers,
Peg¼2:04� 10�3, thermal fluctuations affect the early part of the tra-
jectory and can cause the fibers to rotate out the plane y¼ 0. In the
case shown the pair become almost perpendicular when projected into
the xy plane. At long times, they become separate and fall approxima-
tively vertically in a U-shaped configuration. At even lower Peclet
numbers, thermal fluctuations dominate over hydrodynamic interac-
tions, and as a result, the fiber alignment is uncorrelated. Furthermore,
the reduction in persistence length means that the fibers are more
bent, which reduces the viscous drag and means that the fibers sedi-
ment faster than at larger Peclet numbers.

2. Controlled initial separation

For the second scenario, the initial distance between the fibers
was fixed at an intermediate value D� ¼ 1:0 with the fiber stiffness
(and hence persistence length) varied along with the Peclet number.
More precisely, the fiber stiffness parameter j was varied from 1 to
104, corresponding to the nondimensional parameter B� varying from
1:0� 10�1 to 1:0� 10�5, and Peg was varied from 2:02� 10�4 to
2:02� 10�1 for both geometries by varying the temperature. The cho-
sen ranges of parameters were selected so that both regimes—hydrody-
namic and thermal—were well covered for each study, which
sometimes necessitated different values, especially for B�. The aspect
ratio (�) was set at 0.0046, and the final simulation time was again
T�
F ¼ 3000. The Reynolds number is around 0.1, based on the length

of the fiber, which is small enough for the flow to be considered in the
Stokes regime.

The orientation correlation metric cos2h is presented in Fig. 8.
For the collinear geometry, it can be seen that the hydrodynamic-
dominated regime (cos2h � 1) corresponds to stiff fibers and low tem-
peratures (higher Peg number), which is expected as stiff fibers do not
readily contract and consequently the closest points between the pair
are more likely to remain physically nearby, enhancing their hydrody-
namic interaction. Hydrodynamic interactions are reduced for floppy
fibers (low j) as they retract their ends and hence increase their closest
point of separation. Similar trends are observed for the vertical geome-
try, although the data are notably more noisy. It is also clear from the
results shown in Fig. 8 that for the non-stiff fibers, the cos2h value
changes due to changes in the hydrodynamic interactions that can
bring the fiber closer together or further apart, depending on the initial
configuration of fibers.

B. Short time dynamics

As the dynamics of this system is quite complex, short and late
time dynamics were considered separately, for each evaluating metrics

FIG. 6. Variation of the angular correlation metric cos2h value for initially side-by-
side vertical fibers.

FIG. 7. Evolution of the configuration of a pair of sedimenting fibers started from a side-by-side configuration at B� ¼ 100, D� ¼ 0:5 for three different values of
Peg : 2:04� 10�1 blueð Þ; 2:04� 10�3 greenð Þ; and 2:04� 10�4 ðredÞ. (Top left) the three-dimensional perspective, (top right) projection in the xy plane, (bottom left) pro-
jection in the yz plane, and (bottom right) projection in the xz plane.
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relevant to the observed qualitative behavior: rotation rate and net
interaction velocity for the early dynamics, and sedimentation velocity
and the gyration matric for late dynamics.

For short times, we can compare the rotation rate of the rods and
the induced interaction velocity due to hydrodynamic interactions
between the numerical results using the RPY approximation and the
analytical calculations for continuum rods presented in Sec. III B. In
the case of the simulations, both quantities were obtained by averaging
the local values of rotation and velocity over the fiber lengths. Note
that the interaction velocity was normalized with respect to the sedi-
mentation velocity of a single horizontal fiber in the continuummodel,
and the rotation rate was normalized to the rotation rate of the small-
est D� considered for each configuration, also obtained from the con-
tinuum model. The simulations were performed at low temperature,
Peg ¼ 202, to better match the assumptions of the continuum model,
and for the same reason, the bending stiffness was chosen to approxi-
mate rigid fibers (B� ¼ 0:1 in our units).

The initial velocities and rotation rates as a function of the nor-
malized separation D� are presented in Figs. 9 and 10, for collinear
and vertical fibers, respectively. There is a good agreement between the
continuum prediction and numerical results. However, in Fig. 10, there

is a discrepancy at small D�. This is due to the difference in the mobil-
ity kernels employed, i.e., RPY vs Oseen, especially for the vertical
fibers for which the hydrodynamic interaction effects can be initially
maximum (side-by-side configuration with a maximal point-to-point
distance). The discrepancies found at large D� for both Figs. 9 and 10
arise from the effects of periodic boundary conditions that are present
in the RPY simulations but not in the analytical calculations. At large
separations, the fibers become closer to the periodic images of each
other, which results in an increased interaction not found in the ana-
lytical calculations.

There is also a consistent difference between the data for the
interaction velocity for this geometry. We attribute these deviations to
the difference in the mobility kernels employed, i.e., RPY vs Oseen,
which become more pronounced in this vertical configuration as in
this case the entire all lengths of both fibers (as opposed to just one
end of each) are in close proximity to each other.

C. Long time dynamics

In all cases, at long times, the sedimentation velocity eventually
reached a steady state in which the gravitational force is balanced by

FIG. 8. Orientational correlations cos2h varying the gravitational Peclet number Peg and the fiber stiffness j, for a pair of initially horizontally collinear (left) and vertically side-
by-side (right) fibers.

FIG. 9. Comparison of the predictions of
the numerical RPY model (delta) and the
analytical continuum model (square) for
the nondimensional interaction velocity
values (left) and nondimensional rate of
rotation (right), against the nondimen-
sional distance paramter (D�), for a pair of
initially horizontal and colinear fibres.
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the hydrodynamic force averaged over the fiber configuration, with the
time to reach the statistical steady state depending on system parame-
ters. In this section, the sedimentation velocity and the fiber configura-
tion represented by the gyration tensor I are reported. In Stokes flow,
the hydrodynamic resistance scales with the largest linear dimension
of the body, which can be estimated from the largest eigenvalue of the
gyration tensor defined as13

I ¼ 1=l

ð l

0

X sð Þ � �X
� �2

ds; (39)

where �X is the position of the center of mass of the fiber defined as

�X ¼ 1

�
l

ð l

0

X sð Þds: (40)

The sedimentation velocity and eigenvalues of the gyration
matrix for the collinear horizontal configuration, for both constant
stiffness and controlled initial distances, are given in Fig. 11. These
values are recorded either at the end of simulation time, or when the
fibers touch each other. The error bars indicate the range of variation
of sedimentation velocity amongst the 10 different realizations.

For fibers that are sufficiently stiff to remain approximately
straight, the sedimentation velocity depends upon orientation of the
fiber with respect to gravity between the extremes of vertical and hori-
zontal orientations. The velocities corresponding to these two cases are
shown as horizontal lines in Figs. 10(a) and 10(b). Figure 11(a) shows
how the sedimentation velocity varies with Peg for a constant fiber
stiffness, B� ¼ 100. The sedimentation velocity is higher and noisier
(larger error bars) at small Peclet number and for large separations
decreases in value (and becomes less noisy) as Peg increases and sedi-
ment at a speed close to that of isolated horizontal fibers. However, for
smaller separations, this initial decrease is followed by an increase in
sedimentation velocity with Peg as the system crosses-over into the
hydrodynamic interaction-dominated regime. Although there is some
decrease in the drag on a pair of fibers compared to that on two iso-
lated fibers, this increase is mainly due to the rotation of the fibers. In
all cases, the sedimentation velocity remains approximately within the
bounds corresponding to a single vertical (low drag) and horizontal
(high drag) fiber.

Figure 11(b) shows the effect of varying fiber stiffness for a fixed
initial distance (D� ¼ 1:0). The sedimentation velocity is higher for

softer fibers (Lp ¼ 1:0), as their flexibility allows them to bend into
shapes with lower drag.

Turning to the gyration tensor, the three eigenvalues are pre-
sented in Fig. 11(c) for the cases of varying Peg at a fixed fiber stiffness.
The eigenvector corresponding to the largest eigenvalue is approxi-
mately aligned with the z axis, suggesting fibers sediment in approxi-
mately vertical configurations at late times. The error bars indicate the
range of variation of eigenvalues between different realizations. In
addition, at small Peg , the largest eigenvalue is smaller than at large
Peg , especially at smaller initial separations, consistent with Brownian
forces acting to reduce the fiber end-to-end length as the persistence
length decreases. Note that at constant B� decreasing the Peclet num-
ber reduces the persistence length. Figure 11(d) appears to show the
opposite trend, with the largest eigenvalue decreasing with the Peclet
number for fibers with a persistence length lp ¼ 104: However, for a
fixed value of lp, the value of B� decreases as the Peclet number
increases, so these fibers bend due to hydrodynamic forces.

The corresponding data for the initially vertical side-by-side
geometry is presented in Fig. 12. Similar to the collinear configuration,
the sedimentation velocity for the fiber pair remains between those of
a single horizontal and vertical rigid fiber. However, unlike the collin-
ear case, initially close fibers do not fall faster than those with a larger
initial separation, nor does the initial separation appear to affect the
form of the gyration tensor. This is because of the fact that there is a
competition between hydrodynamic interaction and Brownian motion
depending on both the Peg and D�. Comparing Figs. 11(a) and 11(c)
with Figs. 12(a) and 12(c), we observe that all the initially vertical cases
resemble the cases of the well-separated horizontal fibers. In all these
cases, the fibers eventually fall as individual fibers, whereas closely sep-
arated collinear fibers fall as pairs as can be seen in Fig. 3(a). The
results of varying fiber stiffness shown in Figs. 12(b) and 12(d) are
qualitatively similar to those found for the initially collinear fibers.
Brownian motion again enhances sedimentation by contracting the
fiber and reducing the overall drag.

V. CONCLUSION

The sedimentation of fibers is a central process in the synthesis of
a range of important materials, but the complexity of the problem
means that it is often challenging to predict in advance the geometry
and conformation of the fibers once they are deposited onto a sub-
strate. This lack of accurate predictive capability means that optimal

FIG. 10. Comparison of the predictions of
the numerical RPY model (delta) and the
analytical continuum model (square) for
the nondimensional interaction velocity
values (left) and nondimensional rate of
rotation (right), against the nondimen-
sional distance parameter (D�), for a pair
of initially vertical fibers.
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formulations for any target application must be found empirically,
requiring lengthy experimental assays, and running the risk of missing
optimal parameter combinations due to the limited understanding of
the underlying physical mechanisms. Mathematical modeling can pro-
vide this predictive power, but suitably accurate models are not trivial
to develop when all three of fiber elasticity, thermal fluctuations, and
hydrodynamic interactions, need to be included. Here, we have
adopted a recent numerical implementation of Rotne–Prager–
Yamakawa (RPY) kernels to systematically vary the relative strengths
of all three of these mechanisms for the simplest situation when hydro-
dynamic interactions are relevant, that is, pairs of fibers. We have iden-
tified when hydrodynamic interactions dominate over thermal
fluctuations and vice versa, and characterized the temporal dynamics
at both short and long times, starting from two classes of initial geome-
try. In all cases, our findings have been intuitively justified based on
the relative influence of the physical processes involved. It was found
that, for collinear configuration, the sedimenting fibers move toward
each other within the sedimentation plane (xz plane) at high Pe num-
ber and when the fibers are close enough to each other (due to domi-
nance of hydrodynamic interaction), while at low Pe number, the
fibers move randomly in different directions (out-of-plane translation)
as they sediment (due to the dominance of thermal fluctuations). For

side-by-side configuration, the fibers rotate in the sedimentation plane
(xz plane) at high Pe number and when the fibers are close enough to
each other as they sediment (again due to the dominance of hydrody-
namic interaction), whereas at low Pe number and when the fibers are
far from each other, they randomly rotate in different directions (out
of plane rotation) (again due to the dominance of thermal
fluctuations).

Bead modeling and related schemes provide a smaller obstacle to
developing numerical models than RPY, but come with a limitation on
the aspect ratio of the fibers that can be represented. In bead models,
extreme aspect ratios (i.e., long thin fibers) necessitate many beads per
fiber, which becomes numerically expensive to simulate as the number
of fibers increases: Real fibers are often hundreds of times longer than
their radius, requiring hundreds of beads to represent a single fiber,
so many-fiber systems could easily require 104 or more beads to be
integrated in time. Compared to full slender body theory with ill-
posedness problem and bead model with hundreds of beads, the non-
singular RPY can achieve similar aspect ratios with much fewer
discrete points as in Fig. 2 (our results correspond to � ¼ 0:0046, i.e.,
fibers about 217 times longer than their radius) plus the integration
techniques (the quadrature), resulting in lower efficient computational
demands to accurately predict fiber dynamics. The trade-off is the

FIG. 11. The sedimentation velocity [top
row, (a) and (b)] and the three eigenval-
ues of the gyration matrix labeled 1, 2,
and 3 in the legend [bottom row, (c) and
(d)] for both controlled initial distance [left
column (a) and (c)] and constant stiffness
[right column, (b) and (d)] scenarios for
initially horizontal collinear fibers.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 38, 013346 (2026); doi: 10.1063/5.0301507 38, 013346-12

VC Author(s) 2026

 2
7
 J

a
n
u
a
ry

 2
0
2
6
 1

6
:4

9
:3

1

pubs.aip.org/aip/phf


higher development time required, but this is overcome by the use of
open-source software that has already overcome these challenges,
which is the approach we have adopted here.

In this work, fiber pairs were chosen as the minimum number of
fibers for which hydrodynamic interactions are relevant, but it is
straightforward to extend our approach to any number of fibers. This
would require consideration of suitable initial geometries, such as
some form of randomly defined orientations and positions, or an
ordered geometry, as befits the application. Suitable metrics would also
need to be selected that are relevant to many-fiber systems, although
we suggest those employed here, that quantify the degree of correlation
and fiber conformation, make suitable starting points for more general
quantities that still have the potential to generate significant insight
into the problem. For example, it is not clear how the hydrodynamic
interaction (velocity fluctuations) affects the Brownian motion as time
passes and needs to be further addressed by the use of some other met-
rics such as auto-correlations functions in the future.35

SUPPLEMENTARY MATERIAL

See the supplementary material for details. The accuracy of the
numerical framework has been verified against established bench-
marks. In particular, the results were validated for Jeffery orbits of a
single fiber in shear flow and for the sedimentation dynamics of an

isolated fiber. These validation tests, together with detailed compari-
sons, are provided in the supplementary material.

ACKNOWLEDGMENTS

This work was funded by an EPSRC UK DTP Scholarship
Award.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Nasrollah Hajaliakbari: Methodology (equal); Validation (equal);
Writing – original draft (equal); Writing – review & editing (equal).
David Head: Supervision (equal); Writing – review & editing (equal).
Oliver Harlen: Supervision (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.

FIG. 12. The sedimentation velocity [top
row (a) and (b)] and the eigenvalues of
gyration matrix labeled 1, 2, and 3 in the
legend [bottom row (c) and (d)] for both
controlled initial distance [left column (a)
and (c)] and constant stiffness [right col-
umn (b) and (d)] scenarios for the vertical
side-by-side fiber configuration.
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