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Methicillin-resistant Staphylococcus aureus is raising
global concern as it overcomes immune
challenges through various virulence mechanisms
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SUMMARY

Methicillin-resistant Staphylococcus aureus (MRSA) in the 21! century remains a global concern with
increasing rates of morbidity and mortality in healthcare settings. Hospital-associated MRSA strains have
developed multidrug resistance (MDR), limiting the effectiveness of several commonly used antibiotics.
First-line treatment for MRSA depends on the type of infection caused. Antibiotics such as vancomycin, line-
zolid, and daptomycin remain central to managing serious MRSA infections. However, the rise of MDR and
the need to prevent further antibiotic resistance have led to the use of combinational antibiotic regimens to
manage serious infections. Furthermore, MRSA can acquire virulence determinants and resistance plasmids
via mobile genetic elements (MGEs) and stably inherit diverse resistance mechanisms, fostering hyperviru-
lent MDR lineages that complicate clinical management. Together, these factors enable MRSA to evade
host immune defences and cause serious infections with poor clinical outcomes. Collectively, this review
highlights the epidemiological burden of MRSA with a better understanding of its resistance and virulence
mechanisms and reinforces the need for optimized approaches to prevent, manage, and control infections.

INTRODUCTION numbers of necrotizing infections in healthy communities, which

led to the infections being referred to as either healthcare-associ-

A difficult-to-manage opportunistic Gram-positive bacterium,
Staphylococcus aureus, can cause severe nosocomial infections
with increased morbidity and mortality rates when it acquires resis-
tance to B-lactam antibiotics. MRSA was initially identified in 1961
when methicillin, a narrow-spectrum p-lactam antibiotic, was used
to treat S. aureus infections.” However, because of its harmful ef-
fects on humans, the antibiotic is no longer used and is mostly
substituted by other penicillin family of antibiotics, such as diclox-
acillin, flucloxacillin, and oxacillin. But the term “MRSA” is still in
use. Furthermore, by the 1990s, the management of MRSA infec-
tions had become monotonous in hospital settings, with alarming
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ated community-onset MRSA (HAOC-MRSA) or community-ac-
quired MRSA (CA-MRSA).>® Today, MRSA infections cause an
average of $3 billion in medical expenses each year, with over
12,000 deaths reported worldwide from methicillin resistance
alone.*® Although a considerable number of MRSA infections in
the US have been decreasing, the widespread use of injectable
drugs combined with homelessness and substandard living cir-
cumstances might make our present efforts to stop the spread
of infections considerably more difficult.®

MRSA can harbor a large array of virulence factors that are
liable for colonizing, invading, and suppressing host immune
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Worldwide prevalence of MRSA infections
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Figure 1. Country-level choropleth map showing the estimated proportion of methicillin-resistant Staphylococcus aureus (MRSA) among

clinical S. aureus infections

The color gradient (light to dark red) represents per cent resistance from 0to 100% (legend at bottom); darker shades indicate higher MRSA prevalence. Countries
with no available estimates are left unshaded/pale. Values reflect aggregated national estimates from surveillance reports and published studies; the specific time
frame and sources are provided in the main text. Differences in sampling, case mix, and laboratory methods may affect comparability across countries. The
Center for Disease Dynamics, Economics & Policy Resistance Map is the source of the data collection and statistics.

Abbreviation: MRSA, methicillin-resistant Staphylococcus aureus.

responses. They cause infections from mild skin infections such
as pimples, impetigo, boils, cellulitis, folliculitis, furuncles, car-
buncles, and abscesses to life-threatening ones such as pneu-
monia, osteomyelitis, and cerebral abscesses, which could
result in high mortality among patients. Due to their disease
severity and mortality rates, the World Health Organization
(WHO) has listed them as high-priority pathogens. Over time,
increasing numbers of S. aureus clones have developed into
MRSA by harboring mobile genetic elements that confer resis-
tance to methicillin and other p-lactam antibiotics.”

Despite major advancements in the field of science and
technology, persistent challenges continue to hinder the man-
agement of MRSA infections. Global and One-Health genomic
surveillance remains inconsistent, while rapid point-of-care
platforms capable of detecting mec variants, heteroresistance,
and virulence signatures are not yet routinely deployed.®'°
In addition, pragmatic evidence is lacking for durable decoloniza-
tion strategies, the clinical role of non-traditional therapies (such
as bacteriophages and anti-virulence agents), and the best ways
to translate infection-control interventions into resource-con-
strained and community settings. This review, therefore, aims
to synthesize current understanding of MRSA pathogenesis
and clinical management, while highlighting emerging therapeu-
tic and preventive approaches needed to curb its global impact.
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WORLDWIDE EPIDEMIOLOGY OF METHICILLIN-
RESISTANT STAPHYLOCOCCUS AUREUS

MRSA infections are now ubiquitous and prevail as a global
concern that requires immediate attention (Figure 1). The emer-
gence of CA-MRSA strains among non-hospitalized patients in
the past two decades has significantly altered the worldwide
epidemiology of healthcare-acquired MRSA (HA-MRSA). For
instance, a population-based retrospective study conducted
by Junnila et al."" in the Southwest hospitals of Finland revealed
a surge in CA-MRSA infections from 13% in 2007 to 43% in
2016, while also exhibiting an increased spa type diversity rate
from 0.86 to 0.95 among 983 MRSA isolates. The overlap of
spa types between HA- and CA-MRSA groups has made it
significantly harder to differentiate between the two, leading to
delayed preventive measures in communal settings. The preva-
lence of spa type diversity among intercontinental MRSA strains
is a geographical marker indicative of increased rates of human
migration and travel. Since the molecular characteristics of CA-
MRSA and HA-MRSA are increasingly overlapping, classifying
MRSA by onset/association rather than solely CA vs. HA is
increasingly useful. Therefore, a more clinically and epidemio-
logically meaningful framework stratifies MRSA as: HO (Hospital
onset; first positive culture after hospital admission), HACO
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(healthcare-associated community onset; community-onset
cases with prior healthcare exposure), and CA (community-
associated; community onset cases without recent healthcare
risk factors).'?

The rapid dissemination of regionally predominant MRSA
strains emerging from the early 1960s made headway through
hospitals located in Australia, Japan, North America, and the
United Kingdom before making landfall in Scandinavian coun-
tries. Regionally predominant strains, such as the PVL-positive
USA300 endemic to North America, and even successful Euro-
pean strains such as ST22, ST30, and ST80, remain localized
within their region without showing prevalence in other coun-
tries.'® Although USA300 remains elusive outside of the United
States, a clone named USA300 Latin American variant (LV)
evolved in North Columbia and disseminated in parts of Belgium,
Germany, and Switzerland.'*

Intercontinental transmission of HA-MRSA clones is evi-
denced by single nucleotide polymorphism (SNP) analysis of
the ST5 clone after the acquisition of the Staphylococcal
cassette chromosome mec (SCCmec)in an ST5 MSSA strain.
Such clones evolve rapidly through dissemination between
countries, as seen in the case of ST239 subgroup isolates, which
began in South America and Thailand and dispersed to Europe
and China, respectively. The major HA-MRSA strain ST239-llI,
also known as the Brazilian/Hungarian variant, was predominant
in Australia and later replaced by the ST22-V strain. ST239-Ill re-
mains the predominant strain in New Zealand hospitals and
several parts of Africa, such as Algeria, Ghana, Kenya, Morocco,
and Tunisia. While European countries such as Denmark,
Finland, Iceland, Norway, and Sweden share HA-MRSA preva-
lence rates of less than 5%, East Asian countries continue to
show prevalence rates far exceeding 70%.'°

The MRSA spa type t304/ST8 is reported to have increased
outbreaks in several nursing homes in Southeast Norway from
2005 to 2011, while also occurring in the Caribbean Martinique.
A similar genotype (t304/ST6) dominant in Oman caused an
outbreak in Copenhagen in 2015 and was detected in both Nor-
way and the United Arab Emirates (UAE). A study conducted by
Enger et al.'® considered these genotypes and analyzed 475
MRSA t304 strains from 2008 to 2016, demonstrating that birth
countries play a crucial role. While 82.6% of the ST8 group
was native to Norway, around 52.9% and 24.8% of the ST6
group originated from Irag/Syria and other Asian countries,
respectively. The MRSA ST5-II clone was initially predominant
in Japan around 2011, which was soon ranked fifth in prevalence
after a study conducted by Kaku et al.” ascertained that types
ST8-IV and ST1-IV were mostly responsible for causing blood-
stream infections in Japan with regional disparities, particularly
among the infirm population.'® The ST5-1 clone has also been
documented to be predominant in both Mexican and Portuguese
hospitals. The prevalence rate of MRSA infections ranges from
3% in the Netherlands and other Nordic countries to 50% in
the UK and Southern European countries, with Portugal topping
with a 54.3% prevalence rate.'®

After the acquisition of the SCCmec element in Romania
around 1995, another Type-IV MRSA clone in Europe (CC1-
MRSA V) caused outbreaks in Irish hospitals and pediatric hos-
pitals in Italy. The prevalence of this clone increased from 1% to
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19% from the years 2011-2019 in Bavaria, Germany, and is also
endemic to Ireland and North-Eastern Romania.’® The major
MRSA spa types distributed worldwide include t001, t003, and
1041 strains and are widely disseminated in European countries
such as Bosnia, Croatia, Germany, Greece, Herzegovina, Italy,
Luxemburg, Poland, Serbia, and Slovenia.?® Type-lll HA-MRSA
clones constitute the majority of the infections in Malaysian hos-
pitals, while their dissemination into the general populace has
increased the incidence of Type-Ill CA-MRSA infections. Among
Asian countries such as Korea, the Philippines, Thailand, Viet-
nam, and regions of the People’s Republic of China (Hong
Kong and Taiwan), the dispersion of HA-MRSA strains has led
to the evolution of Type-I-lll CA-MRSA strains, with SCCmec
Type-lll clones being predominant.?’2* Specifically in China,
epidemic clones include ST59 (CC59, SCCmec IV/V), which pre-
dominates among CA-MRSA, and ST5 (CC5, SCCmec ll), which
remains a major HA-MRSA lineage. Further, genotypes such as
ST59-t437-1V and ST5-t2460-Il were among the most identified
clones in the regions of China during the period 2014-2020, indi-
cating the ongoing clonal turnover and adaptation under anti-
biotic and ecological pressures.?>?® A comparative analysis of
diverse MRSA outbreaks from the past two decades, along
with their prevalence rates, is summarised in Table 1.

In summary, previously, owing to human mitigation, HA clones
such as ST239, ST5, ST22, and ST80 have been identified in
continent-wide hospital settings, with CA clones (USA300) infil-
trating the community. However, a dynamic shift in HA and CA
clones has been identified recently, with the USA300 clone infil-
trating healthcare settings, causing diseases, while traditional
HA clones are being identified in the community, making it harder
to classify the strains based on HA and CA for surveillance and
infection control. Similarly, various pediatric and regional epi-
demics have revealed a crossover of SCCmec types between
HA and CA, highlighting the necessity to categorise strains
based on HO, HACO, or CA for improved monitoring and infec-
tion prevention.

MECHANISM OF METHICILLIN RESISTANCE IN
STAPHYLOCOCCUS AUREUS

Strains of S. aureus develop resistance to antibiotics such as
methicillin, amoxicillin, and penicillin, making it harder to manage
in the hospital settings. Methicillin resistance has been identified
even before the clinical use of penicillin.*® Resistance to these
antibiotics primarily occurs with the acquisition of SCCmec ele-
ments via horizontal gene transfer (HGT) that encode the mec
genes, which are capable of altering penicillin-binding proteins
(PBPs) that are essential for bacterial cell wall synthesis.*® Ac-
quired SCCmec, integrates into bacterial chromosomes, and
with distinct SCCmec types capable of influencing resistance
and virulence in sensitive strains of S. aureus evolve to HA-
MRSA and CA-MRSA.®" Further resistance can still be acquired
through mecA/mecC-mediated PBP2a expression, p-lactamase
production, and regulatory mutations affecting RNA polymerase
or auxiliary factors, marking methicillin resistance in S. aureus to
be a multifactorial process. The interplay between these deter-
minants results in variable resistance phenotypes, highlighting
that mecA transcription alone is insufficient to predict resistance
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Table 1. Comparative analysis of diverse MRSA outbreaks from the past two decades
Sample
Time frame Country Size Demographics Sample Sources Prevalence (%) Reference
2006 Thailand 619 Hospital patients Nasal swabs, rectal swabs, 9.2 Jariyasethpong et al.””
and feces
2007-2008 India 237 Inpatients Pus, sputum, urine, 29.1 Pai et al.”®
blood, and body fluids
2008 United States 256 Healthcare Nasal swabs 6.6 Elie-Turenne et al.””
professionals
2010 Germany 20,027 Hospital patients Nasal swabs 2.2 Herrmann et al.*°
20102016 South Korea 67 Pediatric patients Blood and soft tissues 29.9 Park et al.®"
2010-2017 Netherlands 30, 718 Hospital patients Nasal swabs 0.03-0.17 Weterings et al.*”
2011 Uganda 742 Pediatric patients Nasal swabs 5.7 Kateete et al.*®
2012-2013 India 683 Adult patients Nasal swabs 2.3 GeorGe et al.**
2012-2013 Pakistan 855 Hospital patients Pus, body fluid, 5.26 Khan et al.*®
and blood
2013 Nigeria 300 Health care workers  Nasal swabs 30 Akujobi and
Ezeanya-Bakpa®®
2013-2016 Barbados 293 Hospitalized and Blood, bone, ear, fluids, 19.7 Gittens-St Hilaire et al.®”
non-hospitalized tissue, urine and wounds
patients
2014-2016 India 132 Inpatients and Pus, blood, throat swabs, 61.4 Preeja et al.*®
outpatients body fluids, and urine
2015 Ukraine 128 Hospital patients Pus samples 19 Salmanov and Verner®®
2016 Eritrea 130 Hospital patients Swabs from abscess, burns, 72.0 Garoy et al.*®
surgical wounds, and lesions
2016 Oman 311 Health care workers  Nasal swabs 15.1 Pathare et al.”’
2017-2019 India 13, 506 Hospital patients Pus, wound, throat, 33.7 Sangwan et al.*?
ear swabs, blood,
and urine
2018 Iraq 109 Hospital staff and Nasal swabs 50.4 Hussein et al.*®
community students
2019 Nepal 524 Hospital patients Blood, urine, and sputum 6.5 Dhungel et al.**
2020 Ethiopia 54 Adult patients Midstream urine samples 42.59 Mitiku et al.*®
2020-2022 Saudi Arabia 152 Pediatric and Pus, abscesses, blood, 45.4 Almutairi et al.*®
maternal patients and surgical wounds.
2021-2022 China - Mixed (hospital Clinical isolates; nasal ~28.9% Liu et al.*’
inpatients, and clinical specimens
community) (surveillance)
2022-2024 China Cohort Hospitalized Respiratory specimens/ MRSA identified Gu et al.*®
sizes vary COVID-19 blood among bacterial
patients with co-infections;
secondary study characterizes
infections isolates 2022-2024

levels. Proteins such as PrsA and regulatory systems such as
blaR1-blal, modulate PBP2a activity and p-lactamase expres-
sion, creating a complex regulatory network.

Structure, origin, and resistance mechanisms of
staphylococcal cassette chromosome mec and
associated systems

Structurally, SCCmec integrates three major components: amec
complex carrying mec homologues (mecA/mecB/mecC/mecD)
and their regulatory genes (mecR1 and mecl), cassette chromo-
some recombinase (ccr) complexes (ccrA/ccrB/ccrC), and
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joining regions (J regions)'®>°? that accommodate additional
resistance and virulence factors. To date, fifteen SCCmec types
(I-XV) have been identified, with SCCmec XV being the most
recently reported.”>*® Most of these types originate in
S. aureus and have lower variability when compared to other
coagulase-negative staphylococcal (CoNS) species.”” Types |
through Il possess genes that promote antibiotic resistance
and occur on large SCCmec elements found in HA-MRSA. Types
IV and V have smaller elements on the SCCmec complex and are
found in CA-MRSA strains such as USA300 and USA400.
SCCmec Types I-IV and VIl are found in HA-MRSA strains,
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whereas Types IX-X| are associated with LA-MRSA.*® Type Xl is
the sole exception for containing mecC in place of mecA, which
codes for PBP2a ga. Although fifteen SCCmec types are
currently recognized, there remains uncertainty about the evolu-
tionary origin of certain variants, and the mechanisms driving
SCCmec diversification in community versus hospital strains
are not fully understood.

Antibiotics aim to hijack the synthesis of various cell-sustain-
ing components and pathways, such as the peptidoglycan
cross-linked cell wall, cell membrane, synthesis of genetic mate-
rial, and folic acid metabolism. $-lactam antibiotics work by in-
hibiting the synthesis of the S. aureus cell wall by binding to
the four native PBPs present on the cell wall, causing the break-
down of p-lactam cyclic amides.®® This facilitates the acylation of
PBPs, which leads to the breaking down of the cell wall and in-
hibits MRSA proliferation. SCCmec encoding for mecA and
mecC genes confer antibiotic resistance to most $-lactam antibi-
otics, including methicillin, through synthesizing PBPs that are
endogenous and localized entirely within the cytoplasmic mem-
brane (Figure 2). Recently, PBP2a, ga, encoded by mecC, has
low affinity for p-lactams and can cross-link peptidoglycans,
sustaining cell wall synthesis despite antibiotic pressure
(Figure 2).60:61

Additionally, J regions (J1/J2/J3) are nonessential parts of the
SCCmec mobile element that may confer additional antibiotic
resistance.”® The subtypes of SCCmec elements are also classi-
fied based on the polymorphism in J regions. The J1 region
carries several ORFs and regulatory genes. The J2 regions
contain regulatory genes, plasmids that code for antibiotic resis-
tance, and transposons. Transposons carry resistance genes,
such as Tn554 carrying ermA and spc genes, which encode for
erythromycin and mycin resistance, respectively. The J3 region
includes plasmid-encoded antibiotic resistance genes such as
the plasmid pUB110 encoding for bleomycin, kanamycin, and
tobramycin resistance.>°
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Figure 2. An illustration of methicillin resis-
tance conferred by PBP2a produced by the
mecA gene in the SCCmec mobile element
Methicillin (B-lactam) binds the active sites of
native penicillin-binding proteins (PBPs; PBP1,
PBP3, and PBP4) and inhibits transpeptidation. In
MRSA, the mecA gene (within the SCCmec
element) encodes PBP2a (PBP2’), a f-lactam-
insensitive transpeptidase, depicted as a “lock-
and-key” mismatch that allows cell-wall synthesis
to continue despite methicillin exposure. The
figure also outlines the mec gene complex mecA
with its regulators mecl (repressor) and mecR1
(sensor-inducer), flanked by 1S431 and integrated
within SCCmec, which carries cassette chromo-
some recombinase genes (ccr) and terminal in-
verted/direct repeats (IR/DR) that mediate site-
specific excision/integration.

Resistance mechanisms of mec homologues and
penicillin-binding proteins

Methicillin resistance is primarily attributed to the acquisition of
the mec gene complex, which encodes altered PBPs with
reduced affinity for p-lactams. Recent studies have documented
numerous homologues of the mec gene, the majority of which
are capable of causing increased resistance. It is therefore
essential to understand these variations to effectively develop
any therapeutic strategies to curtail MRSA infections. The mec
homologues are classified according to their nucleotide
sequence similarity. For instance, genes with >70% nucleotide
similarity are classed as different mec types, while variations
with <95% identity to a prototype are designated allotypes
(e.g., mecA1 and mecA2).°* Therefore, identifying variations in
mec homologues is crucial to identifying resistant determinants,
making it easier to predict resistance and identify any evolu-
tionary diversification. However, there is a significant knowledge
gap that needs to be addressed as sequence variants among
different allotypes remain poorly determined.

mecA: The canonical resistance determinant

The mecA gene is a part of the SCCmec mobile genetic element
that confers resistance against p-lactam antibiotics. On expo-
sure to p-lactam antibiotics, the transpeptidase domain of all
native PBPs is inactivated. However, MRSA expressing the
mecA gene encodes PBP2a, a PBP with low affinity for f-lactam
antibiotics that allows peptidoglycan cross-linking to proceed,
maintaining the integrity of cell walls, thereby rendering antibiotic
resistance. Additional regulatory activation of mecA genes on
exposure to f-lactam antibiotics has been reported in CA-
MRSA strains through the regulation of blal and blaRI genes,
which are normally known to control p-lactamase activity.®>°°
Although significant progress has been made in understanding
resistance mechanisms through mecA genes, research indi-
cates that the overall picture is more complex, including interac-
tions with native PBPs and various stress responses.
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mecC: A divergent homologue of mecA

The mecC has about 70% nucleotide identity with the mecA
genes, and the PBPs that it encodes are PBP2a ga which
exhibits a higher relative affinity for oxacillin compared to
PBP2a.°"~° Notably, mecC-positive MRSA isolates frequently
have novel SCCmec XI elements, which differ from those seen
in mecA-positive isolates. As a result, it is possible to misdiag-
nose methicillin-susceptible S. aureus (MSSA) if laboratory tests
are not sufficiently specific when mecC is present. However, the
epidemiology of mecC and its contribution to human infections is
still an active field of study.”®

p-lactamase-mediated resistance

In addition to resistance mechanisms caused by PBP2a en-
coded by mecA, MRSA strains also produce enzymes such as
B-lactamases that are capable of hydrolyzing the p-lactam ring,
rendering antibiotics ineffective. The 846 bp blaZ gene encodes
a p-lactamase, and its expression is regulated by the BlaR1-Blal
system that is clustered together either in a plasmid or on the
chromosome.”! Cross-regulation between mecA and blaZ has
been observed, indicating a synergistic effect in resistance.”®
However, the quantitative contribution of p-lactamases to mec-
dependent resistance across different strains remains poorly
defined.

Mutations in transcriptional and translational machinery
Mutations in genes encoding RNA polymerase subunits, such as
rpoB and rpoC, can alter global transcriptional responses to
p-lactam stress.”” Additionally, the chaperone-foldase PrsA in-
fluences PBP2a folding and stability, enhancing its function inde-
pendently of mecA transcription.”® Stress responses, such as
the mupirocin-induced stringent response, can also potentiate
PBP2a activity.” Further, the loss of mutation of Cyclic-di-
AMP phosphodiesterase (GdpP) an enzyme that cleaves the
second messenger of cyclic-di-AMP that helps in maintaining
bacterial cell size, leads to increased resistance to p-lactam an-
tibiotics.”® Similarly, the inactivation of cp/X or clpP (ATP-depen-
dent unfoldase) reduces susceptibility to p-lactam antibiotics.”®
Serine/threonine kinase encoded cognate phosphatase (Stp7)
in S. aureus plays a crucial role in cell division and morphogen-
esis, and its loss could cause cell wall defects. Studies intro-
ducing loss-of-function point mutation in Stp7 have facilitated
B-lactam resistance in laboratory strains that lacked both
mecA and blaZ.”” Further mutational studies in cell division
genes (ftsH, ftsZ), and cell wall homeostasis (d/tA, dItA, gdpP,
pbp4 promoter) of laboratory strains of S. aureus strains
increased f-lactam resistance, which underscores that methi-
cillin resistance in S. aureus is not solely dependent on the
expression of mecA or production of p-Lactamase, but is an
outcome of a complex network of auxiliary factors.®® Hence,
understanding these non-classical resistant determinants is
therapeutically relevant, suggesting that existing diagnostic
and treatment approaches for p-lactam-resistant S. aureus in-
fections may need to be reconsidered.

Resistance mechanisms of cassette chromosome
recombinase complexes and accessory gene regulator
systems

The ccr genes and surrounding open reading frames (ORFs)
constitute the ccr gene complex. These complexes (ccrA/ccrB/
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ccrC) encode large serine recombinases (LSRs) that facilitate
the excision and insertion of SCCmec in the bacterial genome
and confer mobility of the chromosomal SCCmec ranging from
20 kb to 60 kb.®° Similar to the nomenclature of mec homo-
logues, ccr complexes are divided into allotypes based on nucle-
otide similarities. Many different genes are involved in regulating
methicillin resistance. The auxiliary gene fem (factor essential for
methicillin resistance) gene clusters help in the biosynthesis of
peptidoglycan, necessary for forming the cell wall, and come in
six different types (femA, femB, femC, femD, femE, and femF).
Mutation of these genes has been shown to progressively
reduce resistance to p-lactam antibiotics. Auxiliary factors
such as auxA and auxB increase the expression of methicillin
resistance by stabilizing lipid cells in the peptidoglycan cell
wall layers.”® The accessory gene regulator (agr) comes in four
different groups and presents itself as a quorum sensing operon
that oversees virulence factors and miscellaneous gene func-
tions. The quorum sensing also allows it to detect the concentra-
tion of signal molecules and thereby sense the population den-
sity of its own self, allowing for gene expression. A mutation of
these genes leads to the breakdown of their functioning, which
significantly reduces staphylococcal virulence.”®*° HA-MRSA
strains show a high expression of mecA, with the caveat of lower
agr expression in contrast to CA-MRSA strains, which exhibit
lower PBP2 production but higher agr expression. Agr regulation
systems are common in CA-MRSA strains such as USAS300,
which enhances the potential to cause invasive infections in
healthy populations. Further, SCCmec encodes phenol-soluble
modulins (PSMmec), which can repress agr in HA-MRSA strains,
promoting adhesin production and increasing the risk of nosoco-
mial infections.?” In contrast to auxiliary factors, potentiators
(pot) factors show an increased level of f-lactam and methicillin
resistance when genetic mutations occur in them. Methicillin
resistance can additionally occur in two other ways, either
through the overproduction of p-lactamase or by the sponta-
neous mutation of PBP genes that support methicillin resis-
tance.®” However, the mec-agr interplay and auxiliary factor
regulation are incompletely mapped. Understanding environ-
mental and host influences on these interactions is critical for
therapeutic targeting.

VIRULENCE FACTORS INVOLVED IN THE
PATHOGENESIS OF METHICILLIN-RESISTANT
STAPHYLOCOCCUS AUREUS

MRSA is one of the most widespread contemporary pathogens
that expresses multiple virulence factors to evade host immune
responses. Membrane-damaging toxins and peptides are
crucial components for its pathogenicity. Research on MRSA-
MGEs at the genomic level has illustrated the intricacy of
MRSA evolution, showing how specific the prevalence of MGE,
gain, and loss across time is likely to be controlled by selective
pressures that are weighed against fitness cost.®® While the in-
fections caused by MSSA and MRSA employ the same reper-
toire of virulence factors to cause disease, the key difference in
virulence lies in the quantity and combination of virulence
factors produced by different individual strains due to SCCmec
element acquisition rather than being directly reliant on
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Figure 3. Virulence factors in MRSA.
S. aureus pathogenicity is mediated by
multiple factors, including surface adhesins
(Spa, CIfA/B, Cna, FnBPA/B, Isd, and SasG)
that bind host components, and polysac-
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metbhicillin resistance or susceptibility. Isogenic strains of MSSA
and MRSA, which only differ in the mecA gene, show similar
levels of virulence, while successful MRSA clones such as
US300 show more virulence relative to MSSA strains in general.
This is because the USA300 CA-MRSA strain carries a smaller
and more versatile SCCmec type IV/V cassette, which imposes
less of a fitness cost, allowing CA-MRSA strains to focus their
metabolic resources on the production of virulence factors while
fully retaining their methicillin resistance, making these strains
more virulent than MSSA and HO-MRSA strains.®* Virulence fac-
tors such as PVLs are known to cause recurrent skin abscesses
and necrotizing pneumonia and are rarely associated with MSSA
pathogenesis, while they are consistently produced in MRSA in-
fections. MSSA strains have a dysfunctional agr system leading
to a weaker production of a-toxins, while MRSA strains have a
highly functional regulatory agr system that produces high levels
of a-toxins consistently, increasing their virulence. Further, as
compared to HO-MRSA strains, CA-MRSA produces a higher
level of PSMs in clones such as USA300 that results in its
epidemic success.®®

A distinctive factor that determines the difference in virulence
between HO-MRSA strains and CA-MRSA strains is the acquisi-
tion of the SCCmec element and its associated fithess cost. For
instance, HO-MRSA strains typically carry larger SCCmec types
(I-111), which often harbor multiple resistance genes nonspecific
to p-lactam resistance in addition to mecA, while CA-MRSA
strains carry smaller SCCmec types (IV-V), which only contain
the mecA gene and other necessary regulatory genes. As a
result, HO-MRSA with larger SCCmec types undergo a fitness
challenge with a significant metabolic burden, making them
thrive in hospital settings where antibiotic pressure is consistent.
Conversely, CA-MRSA can replicate to the same degree as
MSSA and can easily thrive in communities of healthy people
where there is less antibiotic pressure due to the allocation of
metabolic resources for the production and expression of viru-
lence factors and their respective genes. HO-MRSA strains suf-
fer from a trade-off where methicillin resistance comes at a price,

wherein the complete expression of virulence is sacrificed due to
metabolic resources being used for replicating genes unneces-
sary for the production of virulence factors such as PVLs and
PSMs. Smaller SCCmec cassettes allow for CA-MRSA strains
to fully dedicate their metabolic resources toward the expression
of virulence factors, leading to a robust agr quorum-sensing sys-
tem and a higher degree of a-toxin production without suffering
the drawbacks of acquiring methicillin resistance, unlike
HO-MRSA. Smaller SCCmec cassettes are also more versatile
and successful in inserting themselves into highly virulent strains
such as US300.%° In the case of US300, which possesses an
SCCmec IV element, the acquisition of this resistance cassette
is linked with the integration of a phage-encoded plasmid car-
rying genes for the expression of PVL toxins, thus showing that
the acquisition of smaller SCCmec elements also gives room
for acquiring genes responsible for coding major virulence fac-
tors.?>%7:%8 There have been reports of several toxins that are
active against the human host in a variety of MGEs found within
the MRSA genome, such as exfoliative toxins, adhesins, and
haemolysins. Bacteriocins are additional MGE-transferrable
toxins that MRSA may use to kil rival or commensal bacteria.®®
Superantigens, lipoproteins, proteases, leukocidins, hyaluroni-
dases, and p-type phenol-soluble modulin (PSM) genes are a
few examples from a wide range of the virulence factors carried
by genomic islands®®° (Figure 3).

Toxins

Hemolysins

The a-hemolysin is a predominantly known virulence mechanism
in S. aureus (Figure 3). The homoheptamer of a-hemolysin mono-
mers forms a pre-pore after attaching to the cell surface, thereby
subsequently developing into a stable membrane-spanning
pore. The genes that code for a-hemolysin (hla) are found in
samples of both MRSA and MSSA strains.”’ In addition to
a-hemolysin, S. aureus also has several additional PFTs
(small B-barrel pore-forming cytotoxins). These PFTs, unlike
a-hemolysin, require two polypeptides that have been given
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the names S (slow) and F (fast) based on their electrophoretic
mobility to create a mature pore.®® In contrast, the p-hemolysin
produced by MRSA is a neutral sphingomyelinase that hydroly-
ses sphingomyelin, a lipid found in plasma membranes, rather
than creating pores in the cell membrane. The hemolytic activity
of p-hemolysin depends on its enzymatic activity.®*** Further,
membrane-damaging peptides, such as §-hemolysin, are 26
amino acid (AA) short amphipathic peptides with an a-helix
structure that have both hydrophobic and hydrophilic sides.
8-hemolysin could attach to the cell surface and aggregate to
generate transmembrane holes, bind to the cell surface, and
affect the membrane curvature, thereby disrupting the plasma
membrane, or act as a deterrent to solubilize the membrane at
high concentrations.®® This family of small cytotoxic amphipathic
peptides has recently expanded with the discovery of novel
peptides known as PSM, initially in S. epidermidis and then in
S. aureus.®®®” MRSA strains have been identified to produce
seven PSMs: PSM a1-4, PSM B1 and 2, and § -8-toxin hemolysin
that could bind to FPR2 and trigger neutrophils.®” Certain MRSA
strains include SCCmec elements that encode another PSM
called PSM-mec. PVL is a virulence factor that contributes to
the severity of MRSA infections and is associated with poor out-
comes. PVL is a pore-forming toxin that destroys white blood
cells and alters the immune system. It is generally considered
a feature of community-associated MRSA and is found integral
to MGEs (Figure 3).

Leukocidins

By destroying leukocytes, leukocidins are hypothesized to
protect S. aureus from being destroyed by host phagocytes.
Leukocidins are thought to primarily target phagocytes among
leukocytes.”® Leukocidins can also affect dendritic cells, T lym-
phocytes, and natural killer cells, suggesting that they can impair
both innate and adaptive immune responses. Some leukocidins
can also lyse erythrocytes in addition to their leukocidal
activity.’® The leukocidins most likely evolved through gene
duplication and shared ancestry.®

Exfoliative toxins

ETs are serine proteases that exhibit exquisite substrate
specificity. They can hydrolyze a single peptide bond after
recognition in the extracellular segment of desmoglein 1
(Dsg1). Dsg1 is a desmosomal cadherin-type cell-cell adhesion
molecule. In both human and animal skin, this hydrolysis
separates keratinocytes, which is crucial for staphylococcal
skin infections.'® Three different ET serotypes (ETA, ETB, and
ETD) that have been linked to staphylococcal skin infections
in humans, such as staphylococcal scalded skin syndrome
and bullous impetigo, have been discovered in S. aureus to
date.’®" The fact that exfoliation brought on by ETs has been
reported in numerous phylogenetically remote hosts, though
with varying degrees of vulnerability, suggests host speci-
ficity.'%? It has been further found that ETA, ETB, and ETD pro-
teins are MGE-borne and are transported by a temperate phage,
megaplasmid, and S. aureus pathogenicity islands (SaPl),
respectively. 03719

Staphylococcal enterotoxins

S. aureus produces a vast array of emetic exotoxins named SEs,
which cause staphylococcal food poisoning (SFP) along with
other chronic conditions. Genes that code for emetic proteins
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are classified as “SE,” while other genes suspected to exhibit
emetic activity are classified as “staphylococcal enterotoxin-
like” (SEls). The gene termed “toxic shock syndrome toxin-1”
(TSST-1) is proximally related to the SE family and has been
correlated with fatal incidences of menstruation-associated
and non-menstruation-associated toxic shock syndrome (TSS).
Dicks et al., (2021) analyzed a historical repository of S. aureus
strains belonging to the national collection of type cultures
(NCTCs) containing 133 long-read sequenced strains obtained
between 1924 and 2016 and around 11,000 ReqSeq genomes
to identify staphylococcal enterotoxin-like (SEI) genes respon-
sible for SE production. An analysis of seven variant genes
(SElz, SEI26, SEI27, SEI28, SEI29p, SEI30, and SES-2p) led to
the discovery of five new SEI gene family members (SEI29p,
SEI30, SEI31, SEI32, and SEI33)."°° The current literature de-
scribes 29 SE and SEI genes in total, with SEA-E being the five
classical SE types confirmed to exhibit emetic activity and
known to cause SFP. In addition to the five classical SEs, there
are 24 SEl types ranging from SEG-SEIZ, SEIO1, SE02, SEI26,
and SEI27, which are either confirmed to display emetic activity
or suspected to play a role in SFP. The SEF gene, also known as
the staphylococcal pyrogenic exotoxin C (PEC) gene, is not
included in this nomenclature as it was initially identified to
code for the protein produced by the TSST-1 gene. This conflict
in naming was resolved by simply referring to it as the “TSST-1”
gene, adding to a total of 30 SE/SEI genes coding for their
respective SE proteins. SEs and TSST-1 are well-studied
proteins and are regarded as superantigens (SAgs) due to their
capacity to bind to class Il MHC molecules on antigen-present-
ing cells and activate T cells. S. aureus strains on average
possess 2—-18 of the SE genes described above, and a Zn-bind-
ing site of these enterotoxins is known to interact with class Il
MHC molecules.'®”'%® The intense T cell activation results in a
cytokine bolus that causes acute toxic shock. Genes encoding
SEs are cardinal among mobile genetic elements.'®®

Toxic shock syndrome toxin 1

MRSA produces TSST-1, a 22-kd protein that causes staphylo-
coccal TSS, a life-threatening condition in chronically infected
patients. These toxins can interfere with major histocompatibility
complex class Il molecules, resulting in T cell activation and
activating macrophages with enhanced cytokine production.
Further, these toxins have been found to induce IFN-y, IL-1p,
IL-6, and IL-10 in human blood monocytes through LPS
(lipopolysaccharide) production.’"°

Surface-bound proteins

Surface binding immunoglobulin protein

SpA, a 40-60 kDa surface protein, is a crucial component of
S. aureus pathogenicity and a potential vaccine candidate that
efficiently prevents IgG hexamerization (Figure 3). The protein
contains four or five homologous immunoglobulin (Ig)-binding
domains (E, D, A, B, and C) of 56-61 residues, followed by a poly-
morphic variable repeat region (Xr) and a conserved region (Xc),
which contains a cell-wall attachment sequence.’"’ SpA inter-
acts with the Fc region of the mammalian IgGs with various de-
grees of selectivity. Each of the five domains of SpA can bind to
both the Fc region and Fab of IgG, thereby impairing host
immune defense mechanisms to clear MRSA colonisation.’?
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Similarly, Sbi is a surface-binding immunoglobulin protein
(Figure 3) that helps S. aureus to evade host immune defense
systems by avoiding neutrophil-mediated opsonophagocytosis.
Sbi proteins are known to bind to Fc regions of IgG and to
complement protein C3.""°

Fibrinogen-binding protein and cell-bound clumping
factor

Efb, a 15.6 kDa protein, is a secreted virulence factor that aids
S. aureus in evading the host immune system by blocking phago-
cytosis. These proteins can bind to both fibrinogen and comple-
ment C3b, forming a shield-like structure, thereby preventing
phagocytosis. Further, inflammatory cascades are suppressed
by Efb by disrupting the TRAF3/TRAF2/clAP1 complex.’ '

Clf, a fibrinogen-binding protein that binds to fibrinogen mole-
cules to aid in evading host immune responses.''® Among the
Clf proteins found in MRSA, CIfA and CIfB, of which CIfA is the sur-
face protein present at all stages of growth, bind to the C-terminus
of the y-chain of fibrinogen. CIfB binds to o and p chains of fibrin-
ogen and is primarily detected during the early exponential
phase.''®
The collagen-binding protein
During MRSA infection, Cna is essential for adhesion to the host
as well as immune evasion (Figure 3). Cna is a known virulence
factor in septic arthritis, where the pathophysiology of the iliness
is correlated with the degree of adhesion to collagen. Further-
more, Cna inhibits the customary process of complement
fixation by binding to the complement protein C1q.""”

The hemoglobin receptors Isd

IsdA, IsdB, IsdC, and IsdH are the iron-sequestering, surface-
anchored proteins of the Isd system (Figure 3) that are expressed
through the isdA, isdB, isdCDEFsrtBisdG, isdH, and isdl tran-
scriptional units. When iron levels are high, the ferric uptake
repressor protein (Fur) suppresses the promoters of these tran-
scriptional units. MRSA bacteria, with the help of their surface
hemoglobin receptors such as IsdH and IsdB, destabilize the
heme-binding pockets, acquire more iron, and infect hosts."'®
Fibronectin binding proteins

Common FnBPs that aid MRSA strains in binding to fibrinogen,
elastin, histones, and fibronectin are IFNBPA and FnBPB. The
genes encoding these proteins are fnbA and fnbB, respectively,
and have been found to play a vital role in biofilm-mediated path-
ogenicity in MRSA. Further, the fnb genes are subjected to con-
trol at the transcription level by Agr and Sar global regulators.’"®
Staphylococcus aureus surface protein G

In S. aureus, SasG mediates the first attachment to skin corneo-
cytes. Two significant divergent SasG alleles, SasG-I and SasG-
I, are present in MRSA. Compared to SasG-Il, SasG-Il can bind
to a wider range of ligands. Additionally, SasG-Il has the ability to
bind to many ligands, giving MRSA a clear advantage when colo-
nizing skin.'2°

Other extracellular enzymes

MRSA strains can produce a wide variety of enzymes (Figure 3),
such as staphylococcal coagulase, nucleases, proteases, hyal-
uronidase and staphylokinase, as a part of their virulence factors.
Coagulase enzymes are primarily located on the chromosomes
and specifically bind to prothrombin in MRSA. Whereas staphy-
lokinases are enzymes that trigger plasminogen for breaking

¢? CellPress

OPEN ACCESS

fibrin clots, helping bacterial propagation. Staphylococcal
nuclease (DNase) may degrade both DNA and RNA substrates
owing to its endo/exo-nuclease activity. Two different kinds of
DNase genes have been reported in the genomes of MRSA
isolates: nuc (SA0746) and nuc2 (SA1160). The primary
distinction between Nuc and Nuc2 is their cell localization;
Nuc2 is surface bound, whereas Nuc is an extracellular
enzyme with two different isoforms, NucB and NucA. Protease
enzymes also play a key role in escaping the host defense mech-
anism. Serine proteases, metalloproteases (aureolysin/Aur), and
cysteine proteases (staphopain A and staphopain B) are found
cardinal among MRSA isolates. Further, staphylococcal hyal-
uronidase, produced by MRSA strains, breaks down hyaluronic
acid into disaccharides in the extracellular matrices and biofilms,
allowing the bacterium to spread and cause infections.''®

Capsular polysaccharides

MRSA cell walls are surrounded by polysaccharides called CPs.
MRSA isolates produce between 76 and 90% of CPs, and 11
distinct serological types have been identified (CP 1-CP11) to
date. These CPs contribute to the increase in the virulence of
MRSA by interfering with complement and antibody-mediated
opsonization, as well as hindering phagocytosis.'?’

Biofilm and quorum sensing

Biofilm production in MRSA is a key virulence factor that
helps the bacteria to colonize chronic wounds and escape
host immune responses and antimicrobial agents.'** Neutrophil
extracellular traps (NETS) are structures released by neutrophils,
composed of condensed chromatin and toxic proteins, which
are intended to ensnare and kill pathogens through the action
of antimicrobial peptides.'?® Through biofilm production MRSA
can evade innate immunity by escaping NETs, macrophage
phagocytosis impairment and withstanding neutrophil-mediated
phagocytic death, whereas the adaptive form of immunity is
compromised through the activation of exotoxins and superanti-
gens.'?* For instance, biofilms release higher secretions of PVL
and toxins that trigger neutrophils to form NETs. However, these
NETSs are inactive against biofilms and may disperse a few cells
from the biofilm, which may result in the metastasis of the
infection.'?> Furthermore, LukAB contributes to the evasion of
phagocyte-mediated killing of S. aureus'?. S. aureus is further
found to employ an arg involved in quorum sensing signaling
that may help to regulate various virulence factors and biofilm
formation during infections.'?’

ESTABLISHMENT OF INFECTION

The ability of MRSA to enter the human host is not solely
determined by host immune evasion but also by the ability of
MRSA to adhere to the host. The adherence capacity is
facilitated by an array of surface protein interactions designated
to microbial surface components recognizing adhesive
matrix molecules (MSCRAMM family). Among the MSCRAMM
family, Cna, FnBPA, and FnBPB have key functions in tissue
adherence. Fibronectin is bound by FnBPs on the cell surface
by a tandem-f-zipper process. Following internalizations by
phagocytosis or FnBPs, MRSA leaves the phagosome through
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the PSM activity. Interactions between surface proteins on adja-
cent cells contribute to the accumulation phase of biofilm forma-
tion. Further, these proteins directly or indirectly interact with in-
tegrins and promote the invasion of non-phagocytic host cells.
Bacteria that reside inside host cells may either cause apoptosis
or necrosis, or they may enter a semi-dormant state that is non-
disruptive (small-colony variants (SCVs)). Interestingly, SCVs
have large levels of FnBPs, which makes it easier for nearby cells
to invade when cells are lysed. Further, CIfA, CIfB, FnbpA/B, and
other surface proteins assist in adhesion as well as help in the
development of the biofilm EPS. It is also known that protein A
of MRSA induces the production of cytokines and contributes to
the pathogenesis of disease by binding to and activating tumor
necrosis factor receptor 1 (TNFR1) on the epithelium of the
host'?® (Figure 4).

HOST-PATHOGEN INTERACTIONS

As our arsenal of antibiotics expands and their usage becomes
more widespread, bacteria face ever-mounting challenges to
survive. In response, they evolved mechanisms to resist the
drugs meant to eradicate them. This tremendous modification
in the microbial ecosystem has spurred scientists and healthcare
professionals to investigate the intricate interaction between
host and pathogen. Genomic and epidemiological investigations
consistently unveil this intricate narrative, shedding light on the
dynamic acquisition of MRSA and loss of host-specific adaptive
genes, all orchestrated by mobile genetic elements."?° Coexis-
tence with the human population, typified by continuous coloni-
zation and occasional invasive infections, has supplied the cru-
cible in which MRSA has developed a complex arsenal of
mechanisms aimed at taking over the human immune system.

Key players in immune evasion

MRSA evades host immune responses by surviving in
several phagocytic and non-phagocytic host cells. One of
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Figure 4. Establishment of MRSA infection
MRSA adopts various cell surface proteins to
adhere to host cell surfaces. These surface pro-
teins encourage the invasion of non-phagocytic
host cells by interacting with integrins either
directly or indirectly. Bacteria that live inside host
cells can either induce necrosis or apoptosis, or
they can go into a non-disruptive semi-dormant
condition (small-colony variations). Additionally,
surface proteins aid in attachment and the for-
mation of the biofilm EPS. Host cell recognition
triggers  proinflammatory  signaling through
TNFR1, leading to NF-xB activation and
interleukin-8 (IL-8) production, which promotes
neutrophil recruitment and inflammation.
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the main causes of metastatic MRSA

A J infections is the presence of MRSA in
NF-xB neutrophils, which allows the bacteria
to spread throughout the bloodstream.
In contrast, host invasion through non-
phagocytic cells such as epithelial/
endothelial cells, keratinocytes, and osteoblasts can cause
chronic MRSA infections.”*® MRSA has various extracellular
adherence proteins (Eap) that non-covalently inhibit neutrophil
serine proteases (NSPs) at astonishingly low nanomolar con-
centrations.”®"'%? Inhibiting NSPs serves multiple purposes
and is often beneficial for the pathogen, as it helps to escape
the immune surveillance triggered by the host. This also helps
to surpass the neutrophilic traps.’®® Further, MRSA secretes
molecules that hinder the adhesion of neutrophils to vascular
endothelium, thereby resulting in the extravasation of neutro-
phils from blood vessels to the site of infection. Additionally,
the lipases secreted by MRSA strains hinder the pro-inflam-
matory activity of lipoprotein pathogen-associated molecular
patterns (PAMPs). The presence of capsules and hyper-bio-
film-producing MRSA strains is also capable of inhibiting
phagocytosis. '

Often, MRSA finds itself in a hostile environment inside the
phagosome, where it faces yet another battle with immune
cells. With the action of myeloperoxidase (MPO), the bacterium
deploys peroxide (H>05), which is toxic to the host and hence-
forth manipulates the immune actions triggered by the host.
However, the bacterium has evolved to counter this threat by
producing a specific inhibitor, aptly named the staphylococcal
peroxidase inhibitor (SPIN). This inhibitor effectively binds to
and inhibits MPO, providing the pathogen with an edge in
evading MPO-dependent killing.*® Further, the SPIN protein
inhibits MPO, which produces the most potent ROS,
hypochlorite.'*®

Lastly, NET-digesting nuclease is secreted by MRSA. a-toxin,
PSMs, and bicomponent leukocidins are examples of cytolysins
that directly lyse leukocytes; some of them have also been
demonstrated to induce phagosomal escape or lysis upon phago-
cytosis in MRSA strains. Other cell types are likewise lysed by
PSMs and a-toxin. Additionally, several S. aureus virulence factors
that are released can initiate receptor-mediated apoptosis,
thereby helping immune evasion and tissue damage.’**

Inflammation
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) Neutrophils migrate to the infection site through adhesion and transmigration to respond to S. aureus.
B) S. aureus evades the host immune response by using several factors, enabling bacterial survival.

D) As a response, neutrophils initiate NETosis, releasing neutrophil extracellular traps (NETs) to contain and neutralize S. aureus.

) The breakdown products of neutrophil lysis and NETSs recruit macrophages to the infection site. Macrophages are triggered to engulf and remove any residual
bacteria, which might result in either effective pathogen clearance or apoptosis if the bacterial burden is excessive.
(F) In cases of prolonged infection, S. aureus biofilm formation occurs, incorporating elements such as extracellular matrix (ECM) and persistent virulence factors
(e.g., PSMs and hemolysins), which protect the bacteria and contribute to chronic infection.
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(C) Exotoxins such as PSMs can cause neutrophil degranulation and lysis.
(
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Inset description of immune evasion

The image that follows provides a graphic explanation of the
MRSA infection process, showing how the bacteria cause cell
death, evade immune responses, and may create persistent in-
fections by forming biofilms. (Figure 5).

Initial stages of infection

The infection begins with S. aureus entering host tissue and at-
tracting neutrophils, the first responders in the immune system.
The neutrophils adhere to the endothelium, migrate through
the vessel wall, and move toward the infection site via chemo-
taxis in response to signals from the bacteria'®’ (Figure 5A).
Neutrophil response

Neutrophils are the first line of immune cells recruited at the site
of infections caused by MRSA. However, MRSA initiates immune
evasion mechanisms by producing virulence factors such as
superantigens and toxins, that bind to neutrophil surface recep-

tors. These interactions usually favor bacterial survival by inhib-
iting effective neutrophil recruitment, phagocytosis, and death.
Additionally, these interactions enhance resistance to phagocy-
tosis, as S. aureus modulates neutrophil responses by releasing
proteins such as SPIN and ROS inhibitors. This allows the bacte-
ria to survive inside neutrophils and resist degradation within
phagosomes'®® (Figure 5B).

Neutrophil degranulation and lysis

As neutrophils attempt to kill S. aureus within the phagosome,
the bacteria release additional factors, including exotoxins and
PSMs, which trigger neutrophil degranulation and lysis. Notably,
PSMs work from within the phagosome to damage the phagoso-
mal barrier, allowing bacteria to enter the neutrophil’s cyto-
plasm, and at higher doses, lysis of the whole neutrophil hap-
pens. For instance, CA-MRSA (USA300), causes fast lysis of
neutrophils following ingestion. This permits viable bacteria to
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S. aureus affects multiple organ systems, causing skin, soft tissue, respiratory, ocular, CNS, bloodstream, urinary tract, and musculoskeletal infections. Rec-
ommended antimicrobial regimens vary by site and include vancomycin, daptomycin, linezolid, p-lactams, clindamycin, fluoroquinolones, tetracyclines, and

topical agents.

escape from the phagosome, and perhaps the cell itself. This
leads to the release of neutrophil contents, causing inflammation
and local tissue damage, which can worsen infection spread'=°
(Figure 5C).

NETosis and release of neutrophil extracellular traps

In response to persistent infection, neutrophils undergo a special
form of cell death known as NETosis. During NETosis, neutro-
phils release neutrophil extracellular traps (NETs) composed of
DNA, antimicrobial proteins, and enzymes, which can trap and
kill bacteria extracellularly. S. aureus, however, counters NETo-
sis by releasing nuclease enzymes (such as Nuc and AdsA),
which degrade the DNA within NETSs, allowing the bacteria to
escape these traps and continue their invasion'*° (Figure 5D).
Macrophage activation and host response

The degradation products from neutrophil lysis and NETs attract
macrophages to the infection site. Macrophages are activated to
engulf and eliminate remaining bacteria, which can lead to either
successful pathogen clearance or apoptosis if the bacterial
burden is too high. S. aureus can also manipulate macrophages
by inducing a form of programmed cell death, which weakens
the immune defense, helping the infection to persist'*’
(Figure 5E).

Chronic infection and biofilm formation

In more severe infections, S. aureus may transition to forming
biofilms, structured communities of bacteria encased in an
extracellular matrix. Biofilms protect the bacteria from immune
responses and antimicrobial treatments, often leading to chronic
infection. The biofilm structure contains components such as
ECM, PSMs, and haemolysins, making it highly resilient. This
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contributes to the persistent nature of some S. aureus infections,
especially on implanted medical devices'*? (Figure 5F).

MANAGEMENT OF METHICILLIN-RESISTANT
STAPHYLOCOCCUS AUREUS INFECTIONS - THE
CURRENT SCENARIO

MRSA is capable of causing a wide range of infections (Figure 6),
and they require careful antibiotic selection based on resistance
patterns, infection severity, and patient-specific factors.

Skin and soft tissue infections

MRSA is capable of causing a wide range of infections (Figure 6),
and they are managed by a wide range of antibiotics. Some of
the common skin and soft tissue infections caused by MRSA
include impetigo, abscesses, scalded skin syndrome, mastitis,
necrotizing fasciitis, and purpura fulminans.

Impetigo

Impetigo is the most common MRSA skin infection in children
aged two to five, with two main types: nonbullous and bullous. '
The treatment involves using antibiotics such as mupirocin, reta-
pamulin, clindamycin, ozenoxacin, and so forth.'** Ozenoxacin
has been found to show good efficacy compared to retapamulin,
and during the endemic settings, oral co-trimoxazole and benza-
thine benzylpenicillin G injections were found to be effective
further effective.®® For localized cases, topical antibiotics such
as mupirocin or retapamulin are applied for 5 to 7 days.'*® In
more extensive or severe cases, oral antibiotics such as diclox-
acillin, cephalexin, or clindamycin may be prescribed.
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Scalded skin syndrome

SSS causes skin denudation primarily in infants <1 year old. SSS
is arare, severe, superficial blistering skin disorder characterized
by the detachment of the epidermis.'*” For treating penicillinase-
resistant, anti-staphylococcal antibiotics such as flucloxacillin
can be used; other options include vancomycin, ceftriaxone,
clindamycin, clarithromycin (for penicillin allergy), cefazolin,
nafcillin, or oxacillin.’*® Clindamycin is frequently selected as
the primary treatment option because it inhibits the production
of toxins and is bacteriostatic.'*’

Abscesses

Most abscesses develop in the epiglottis or pre-epiglottic
space as a result of acute supraglottitis, usually occurring due
to trauma.’® Minocycline, vancomycin, linezolid, clindamycin,
and doxycycline are mostly preferred for the treatment of ab-
scesses and are successful in reducing inflammation. "
Mastitis

Inflammation of breast tissue is a common condition affecting up
to 33% of lactating women. It often leads to the cessation of
breastfeeding.'®” Flucloxacillin, amoxicillin-clavulanate, and di-
cloxacillin are the antibiotics of choice. While it helps against
some bacteria, it is generally not effective against MRSA, as
MRSA is resistant to penicillin. Other antibiotics are typically
preferred for such infections, such as doxycycline. Diagnosing
the condition through signs such as breast pain, swelling,
and redness, often accompanied by fever. Pain management typi-
cally involves analgesics such as acetaminophen or ibuprofen. If
symptoms are severe, appropriate antibiotics should be started,
and if there is no improvement within 48 h or an abscess forms,
further evaluation and drainage may be needed.'®*
Necrotizing fasciitis

Necrotizing fasciitis is a severe, rapidly progressing soft tissue
infection that destroys muscles, fat, and skin.'®* Antibiotics
used are piperacillin-tazobactam, ceftriaxone, clindamycin, van-
comycin, meropenem, imipenem, ciprofloxacin, daptomycin,
and metronidazole (for anaerobic coverage). Prompt recognition
of symptoms, such as rapid pain progression, swelling, and sys-
temic signs such as fever, is critical. Immediate surgical consulta-
tion is essential for the aggressive debridement of necrotic tissue,
as this is the cornerstone of treatment. Broad-spectrum intrave-
nous antibiotics should be initiated as soon as possible.'*®
Purpura fulminans

Purpura fulminans is a severe condition characterized by rapid-
onset skin necrosis and the development of purplish skin lesions,
often associated with disseminated intravascular coagulation
(DIC). Piperacillin-tazobactam, ceftriaxone, meropenem, vanco-
mycin, clindamycin, levofloxacin, daptomycin, and rifampin are
often used in combination to treat. Management of purpura ful-
minans requires immediate recognition of symptoms such as sud-
den purpura, skin necrosis, fever, and hypotension. Supportive
care includes fluid resuscitation for the hypotension and close
monitoring of vital signs and oxygen levels. Broad-spectrum intra-
venous antibiotics should be administered promptly. Coagulation
support may involve fresh frozen plasma or platelet transfusions. >

Bone and joint infections
MRSA affects bones and joints, causing infections such as oste-
omyelitis and septic arthritis. Artificial implants in joints can shel-
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ter S. aureus, which forms biofilms and develops highly resistant
strains. This can lead to surgical failures, multiple surgeries, and
in severe cases, amputations or death.'®”

Osteomyelitis

Osteomyelitis infection begins when MRSA bacteria invade
the bone, often through wounds or nearby infections. This
triggers an inflammatory response, leading to pain, swelling,
and possible bone necrosis. Vancomycin, daptomycin, linezolid,
ceftaroline, and tigecycline are the most preferred antibiotics.
The clinical examination of osteomyelitis begins with a detailed
patient history, trauma, or surgery, a neurological assessment
checks for deficits that could suggest complications, and vital
signs are monitored for fever or other systemic signs of infection.
Imaging studies (X-rays, MRI, CT) and laboratory tests (blood
cultures, inflammatory markers) are essential for confirming the
diagnosis.'*®

Septic arthritis

Septic arthritis is an infection of the joint, which leads to inflam-
mation, swelling, and pain in the affected joint. Diagnosis starts
with a detailed history to assess symptom onset, pain, and
systemic signs such as fever. Joint aspiration (arthrocentesis)
is performed to analyze synovial fluid for white blood cell count
and culture. Supporting lab tests and imaging (such as X-rays
or ultrasound) help assess the extent of the infection, and antibi-
otics that are found to be effective are ceftriaxone, vancomycin,
nafcillin, and clindamycin.'*°

Respiratory tract infections

Respiratory tract infections such as necrotizing pneumonia and
nosocomial pneumonia, are the deadliest and are considered
to be fatal among all the infections of MRSA.

Necrotizing pneumonia

Necrotizing pneumonia is a rare and severe complication of
bacterial community-acquired pneumonia (CAP). Lying on a
spectrum between lung abscess and pulmonary gangrene.
Commonly used antibiotics are vancomycin, linezolid, and
clindamycin. However, vancomycin does not neutralize MRSA
toxins, so clindamycin is sometimes added for toxin suppres-
sion. Vancomycin’s lung penetration is limited but remains effec-
tive against resistant strains. Daptomycin should be avoided as it
is inactivated by lung surfactant. Diagnosis includes clinical
assessment, imaging, and cultures. Initial management involves
broad-spectrum antibiotics and supportive care, with surgery for
abscess drainage if needed.'®°

Nosocomial pneumonia

Nosocomial pneumonia, also known as hospital-acquired
pneumonia (HAP), is a lung infection that develops 48 h or
more after a patient is admitted to the hospital. It is often
more severe than community-acquired pneumonia. Managing
nosocomial pneumonia involves quick diagnosis through
symptom evaluation, imaging, and microbiological tests.
Broad-spectrum antibiotics, such as piperacillin-tazobactam
with vancomycin, are usually started based on local resistance
patterns.'®’

Blood infections

MRSA is primarily a cause of blood infections such as bacter-
emia and sepsis syndrome.
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Bacteremia

Bacteremia is the presence of bacteria in the bloodstream, which
can lead to serious infections. Treatment typically involves intrave-
nous antibiotics and supportive care. If left untreated, bacteremia
can lead to severe complications such as sepsis or endocardi-
tis.'® Vancomycin is mostly preferred as a first-line antibiotic
and does not use co-trimoxazole. Tigecycline can also be used
as an alternative.'® The management of bacteremia starts with
confirming the diagnosis through blood cultures, ideally before
antibiotic administration, while monitoring for fever and hemody-
namic instability. Prompt initiation of broad-spectrum intravenous
antibiotics is crucial, especially in severe cases.

Sepsis syndrome

Sepsis syndrome is a life-threatening condition resulting from
the body’s extreme response to an infection, leading to systemic
inflammation and organ dysfunction. Diagnosis is based on clin-
ical criteria, blood cultures, and laboratory tests. Treatment typi-
cally involves prompt administration of intravenous antibiotics.
Broad-spectrum intravenous antibiotics such as dalbavancin
should be initiated within the first hour.'®*

Upper respiratory tract infections

The clinical management of ear, nose, and throat (ENT) infec-
tions or upper respiratory infections involves a thorough diag-
nostic assessment, appropriate antibiotic therapy, and support-
ive care. Initially, a clinical evaluation should be conducted along
with obtaining cultures from relevant sites to confirm MRSA.
Empirical antibiotic therapy typically starts with broad-spectrum
options such as vancomycin, teicoplanin, or daptomycin, which
can be adjusted to targeted therapy based on culture results,
potentially including clindamycin or ceftaroline. For minor infec-
tions, co-trimoxazole or doxycycline may be considered orally if
the MRSA is susceptible. Surgical intervention may be neces-
sary for drainage of abscesses or significant sinusitis that fails
to respond to medical management.'®®

Eye diseases and central nervous system

These infections require prompt diagnosis and tailored antibiotic
therapy. For eye diseases such as conjunctivitis, keratitis, en-
dophthalmitis, and orbital cellulitis, diagnosis involves a clinical
evaluation based on symptoms such as redness, pain, and visual
changes, along with cultures from ocular specimens to confirm
MRSA. Treatment typically includes topical antibiotics such as
moxifloxacin, gentamicin or gatifloxacin for superficial infec-
tions, while severe cases, such as endophthalmitis, may require
systemic antibiotics such as vancomycin or clindamycin admin-
istered intravenously.'®® In the case of CNS infections such as
meningitis or brain abscesses, diagnosis involves assessing
symptoms such as fever, headache, and neurological deficits,
coupled with a lumbar puncture for cerebrospinal fluid (CSF)
analysis. Empirical therapy usually begins with broad-spectrum
antibiotics, including vancomycin and cefazolin, until culture
results are available. The treatment may be adjusted based on
susceptibility patterns.'®”

Urinary tract infections

Urinary tract infections (UTls) are common infections that occur
when bacteria enter the urinary system, affecting the bladder, ure-
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thra, or kidneys. Diagnosis typically involves urine analysis and cul-
ture to identify the causative organism. Treatment usually includes
antibiotics, with choices depending on the severity of the infection
and the bacterial susceptibility.'®® Antibiotics used are vancomy-
cin, teicoplanin, daptomycin, ciprofloxacin, and tigecycline.

Infective endocarditis

This infection occurs on the inner lining of the heart (endocar-
dium) or heart valves, specifically caused by MRSA bacteria.
Diagnosis begins with obtaining multiple sets of blood cultures
to confirm the presence of MRSA, alongside echocardiogra-
phy—either transthoracic or trans-oesophageal.’®®'"° Initial
treatment typically includes intravenous vancomycin, given its
efficacy against MRSA, with daptomycin as an alternative for pa-
tients with renal impairment. The antibiotic therapy usually lasts
4-6 weeks, depending on the severity of the infection and the pa-
tient’s response. Surgical intervention may be necessary in
cases of significant valve dysfunction, persistent infection
despite appropriate antibiotics, or the presence of large vegeta-
tions or abscesses.'”'~'"® Common antibiotics used for manag-
ing infections and their mode of action against the MRSA strain
have been illustrated in Figure 7.

Controversies, knowledge gaps, and future
perspectives for methicillin-resistant Staphylococcus
aureus management

Despite the availability of many therapies, MRSA management
continues to be amid controversy owing to drug-specific limita-
tions, evolving resistance phenotypes, and gaps in high-quality
randomized data guiding some common clinical choices.'”
Vancomycin: therapeutic target, efficacy limitations and
“MIC creep”

There continues to be controversy about optimal vancomycin
use in serious MRSA infections: nephrotoxicity, poor tissue (spe-
cifically lung) penetration for some patients, and effects of small
increases in vancomycin MICs (“Minimum Inhibitory Concentra-
tion, MIC creep”) are issues. AUC-guided dosing above trough
levels is the established consensus method to optimize between
efficacy and toxicity, but its practice between centers varies in
real-world settings.'”*

Contribution of toxin-suppressing adjunctive treatment
(such as clindamycin or linezolid)

Use of agents that allegedly lower toxin production (clindamycin,
linezolid) in PVL-positive/necrotizing MRSA infections is based
primarily on in vitro, animal, and observational evidence and
less so on large RCTs. The value of adjunctive toxin suppression
to enhance hard clinical endpoints thus remains disputed, and
clinicians practice differently in the treatment of severe necro-
tizing pneumonia or toxin-mediated syndromes'"®

Biofilms, prosthetic devices, and eradication strategies
Biofilm development on prosthetic material (joints, cardiac de-
vices) generates high-level phenotypic resistance to antibiotics
and is a predominant cause of treatment failure and reoperation.
A major need is for standardized clinical approaches: antibiotic
choice, best use of rifampicin combinations, suppressive
therapy duration versus explanation, and adjunctive anti-biofilm
techniques are all topics of current research and clinical
debate.'’®
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Figure 7. Commonly used antibiotics and
their mode of action against MRSA strains
have been illustrated

Cell wall synthesis (PBPs/peptidoglycan): f-lac-
tams (e.g., cefazolin, nafcillin) inhibit trans-
peptidation by acylating PBPs (PBP1-4); ceftaro-
line retains activity against MRSA via high-affinity
binding to PBP2a. Glycopeptides (vancomycin,
teicoplanin) bind D-Ala-D-Ala termini, blocking
transglycosylation, and transpeptidation. Cell
wall and membrane: Lipoglycopeptides (dalba-
vancin) anchor in the membrane while binding
peptidoglycan precursors, enhancing potency. Cell
membrane: Daptomycin inserts into the membrane

Folate synthesis
Folate inhibitor

* Ozenoxacin in a calcium-dependent manner, causing depolari-

zation and rapid killing. Protein synthesis: 50S in-
hibitors—linezolid  (oxazolidinone), clindamycin
(lincosamide), clarithromycin (macrolide), block
initiation or elongation; 30S inhibitors, minocycline
(tetracycline), and tigecycline (glycylcycline)—pre-

o Co-trimoxazole

vent aminoacyl-tRNA binding. DNA/RNA synthesis: Ciprofloxacin and ozenoxacin (quinolones) inhibit DNA gyrase/topoisomerase |V; rifampin blocks RNA poly-
merase. Folate synthesis: Co-trimoxazole inhibits sequential steps in tetrahydrofolate synthesis. Drug lists are representative; activity varies with resistance
mechanisms (e.g., mecA/PBP2a, erm-mediated MLSB resistance, tet genes, and quinolone target mutations).

Knowledge gaps for the newer drugs and how to place
them in clinical practice

The newer anti-MRSA drugs such as ceftaroline, tedizolid, oma-
dacycline, eravacycline, and oritavancin, provide promising ther-
apeutic options, but there are significant knowledge gaps about
how best to use them in severe MRSA infection. Ceftaroline has
been studied in MRSA pneumonia in a recent systematic review,
showing some clinical effectiveness in patients with MRSA pneu-
monia, but a wide range of data from only case series or observa-
tional studies, not strong randomized trials."”” Similarly, eravacy-
cline exhibits strongin vitro activity against MRSA in isolates from
patients with cancer, proposing potential but lacks clinical trials in
invasive MRSA infections.'”® Omadacycline was evaluated in
randomized controlled trials in cSSTls, with noninferior clinical
effectiveness to linezolid and similar safety profiles, but its activity
in invasive MRSA infections is unproven.'”® Tedizolid, in compar-
ison with linezolid for acute bacterial skin and skin structure infec-
tion in a meta-analysis, showed noninferiority of efficacy and
slightly better toxicity profiles (fewer Gl side effects, less neutro-
penia) in MRSA cases; but again, evidence is predominantly
restricted to skin/soft tissue infection, not invasive infection.'®°

OTHER NOVEL THERAPEUTICS TO MANAGE
METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS

Nanoparticle based approaches to curb methicillin-
resistant Staphylococcus aureus

Nanoparticles (NPs) are now a leading trend in finding a solution for
antibiotic resistance. Phospholipid NPs made from penicillin G
enhanced the cellular absorption of the drug and eliminated intra-
cellular MRSA in infected A549 lung epithelial cells.'®' Recently, di-
aldehyde nanocrystalline cellulose NPs with increasing aldehyde
group concentrations were found to have strong antibacterial ac-
tivity against Gram-positive pathogens in vitro and to reduce the
quantity of MRSA on the skin of infected mouse models.'®* Bacte-
rial biofilms on wounds cause them to heal more slowly and stay
open longer than they should. MRSA biofilm-infected wounds

treated in vivo with nitric oxide-releasing chitosan NPs exhibited
improved epithelialization, collagen deposition, decreased wound
size, and rapid biofilm dispersal.'®® Further chitosan-Ag hanocom-
posites had a strong bactericidal effect on MRSA both in vitro and
in vivo."® Further, Alginate-loaded NPs in conjugation with
essential oils enhanced antibacterial activity against MRSA."'%°
Copper-containing ferrite NPs were also reported to show excel-
lent antibacterial activity against MRSA, with a minimum inhibitory
concentration (MIC) of 1 pg/mL."%® More significantly, MRSA cell
membranes exposed to CuFe NPs experienced severe rupture
and cell contents leakage. Moreover, CuFe NPs led to an exces-
sive intracellular buildup of exogenous reactive oxygen species
(ROS) and dramatically decreased the iron ions necessary for
bacterial growth.'®® Recently, Hyaluronic acid-based NPs were
72 times more effective than free medicine at fighting MRSA.'®”
Furthermore, MRSA is more effectively killed by gentamicin-filled
gentamicin-virus-shaped mesoporous SiO,-coated Silver nano-
cubes than by other antibiotics.'®®

Radiation therapy

Radiation therapy, which employs powerful beam energy, pho-
tons, or other forms of energy to destroy cancer cells, is typically
used to treat cancer. Radiation will enter the patient’s body
during brachytherapy. MRSA is efficiently killed by pulse laser
therapy, which also reduces treatment duration. It is perfect for
clinical applications because it does not produce any heat or
pain. When the infection spreads and forms a biofilm or slimy
accumulation of bacteria, which is more challenging to cure,
diabetic individuals with open wounds are particularly vulnerable
to MRSA.'®® Researchers at Boston University College of
Engineering developed a novel radiation therapy method that
can eradicate 99.9% of MRSA."°

CONCLUSION

Despite advances in diagnosis and prevention strategies, MRSA
continues to be a serious healthcare issue. MRSA can be difficult
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to treat, particularly in patients who are at high risk of complica-
tions or have toxigenic or multidrug-resistant strains. Early
detection of MRSA is a critical step toward the timely implemen-
tation of suitable treatment. New molecular and immunochroma-
tographic testing technologies have the potential to significantly
reduce diagnostic and therapy delays. Furthermore, there is an
urgent need for innovative antibiotics, providing viable alterna-
tives for strains that have developed resistance to conventional
drugs. While these advancements do not eliminate the need
for attention and effective MRSA prevention methods, they do
help to alleviate some of the difficulties associated with MRSA
management.
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